
COMP 322: Fundamentals of Parallel Programming

Lecture 17: Midterm Review

Mack Joyner and Zoran Budimlić

{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322	 Lecture 17 February 2022

http://comp322.rice.edu

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Data Races
A data race occurs on location L in a program execution with computation graph
CG if there exist steps (nodes) S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1, i.e., S1 and S2
can potentially execute in parallel, and

2. Both S1 and S2 read or write L, and at least one of the accesses is a write.

• A data-race is usually considered an error. The result of a read operation in a
data race is undefined. The result of a write operation is undefined if there are
two or more writes to the same location.

• Note that our definition of data race includes the case that both S1 and S2 write
the same value in location L, even if the data race is benign.

• Above definition includes all “potential” data races i.e., we consider it to be a
data race even if S1 and S2 end up executing on the same processor.

2

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example: String Search variation Data Race
Free?

Functionally
Deterministic?

Structurally
Deterministic?

V1: Count of all occurrences YES YES YES
V2: Existence of an occurrence NO YES YES
V3: Index of any occurrence NO NO YES
V4: Optimized existence of an occurrence:
do not create more async tasks after
occurrence is found

NO YES NO

V5: Optimized index of any occurrence: do
not create more async tasks after
occurrence is found

NO NO NO

Worksheet solution: Classifying different versions of parallel search
algorithms

3

Enter “YES” or “NO”, as appropriate, in each box below

Honor Code Policy for Worksheets: You are free to discuss all aspects of in-class worksheets with your other classmates, the teaching assistants and the
professor during the class. You can work in a group and write down the solution that you obtained as a group. If you work on the worksheet outside of class (e.g.,
due to an absence), then it must be entirely your individual effort, without discussion with any other students. If you use any material from external sources, you
must provide proper attribution. You should submit the worksheet in Canvas.

Parallelism vs. Concurrency

Next to each one of the following activity scenarios, write whether that scenario exhibits Parallelism, Concurrency, Both or Neither.

Scenario 1:

Task: Throwing a ball in the air and catching it.

Activity: A circus performer is juggling 5 balls at the same time.

Scenario 2:

Task: Throwing a knife at a target.

Activity: A circus performer is throwing knives at a target.

Scenario 3:

Task: Riding a monocycle.

Activity: Two circus performers are riding monocycles around the ring.

Scenario 4:

Task: Throwing the ball in the air and catching it.

Activity: Two circus performers are juggling 5 balls between each other.

CPU Frequency and Power

Assume you have a CPU with 16 cores that consumes 160 Watts of power and runs at 2GHz. At what frequency would a single-core CPU with the same
processing power have to run, and how much power would it have to consume?

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Concurrency vs. Parallelism

4

Concurrency

Neither

Parallelism

Both

32GHz, 40.96 KW (~32 average households)

Functional Programming in Java

Write a function evens, that uses purely functional approach (no mutation,
probably want to use recursion), that takes a GList<Integer> and outputs a list
that contains only and all the even numbers from the original list, in the same
order. In which class(es) or interface(s) will you put this function?

“Functional” solution:

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Functional Programming and Recursion

5

public interface GList<T> {
 static GList<Integer> evens(GList<Integer> input){

 if (input.isEmpty()) return input;

 return input.head() % 2 == 0
 ? evens(input.tail()).prepend(input.head())

 : evens(input.tail());

 }

}

Write a function sumOddStringLengths, that uses higher-order functions we
studied today. This function should take as an argument GList<String>, find all
the strings in that list that have an odd length, and compute the sum of the
lengths of those odd-length strings.

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Higher-order functions

6

public Integer sumOddStringLengths(GList<String> input) {

 return input.map(String::length).filter(x -> x % 2 == 1).foldRight(0,(a, e) -> a + e);

}

You are given the following supplier for a lazy list of integers:

public static LazyList<Integer> from(int i, int step) {

 System.out.println("Hi");

 return cons(i,()->from(i+step, step));

}

In the following sequence of statements, write how many times will “Hi” be printed out as a side
effect of executing that statement:

var nats = from(0, 1); // 1
var evens = from(0, 2); // 1
var alsoEvens = nats.filter(x -> x % 2 == 0); // 0
var yetAnotherEvens = nats.map(x -> x * 2); // 0
var thirdEven = evens.tail().tail().head(); // 2
var thirdEvenAgain = evens.tail().tail().head(); // 0
var fiveEvens = evens.take(5); // 0
var sumFiveEvens = fiveEvens.foldRight(0 , (x, y) -> x + y); // 3

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Lazy Computation

7

public LazyList<T> take(int n) {

 if (n < 1) {

 return empty();

 } else if (n == 1) {

 return cons(headVal, ()-> empty());

 } else {

 return cons(headVal, ()-> tail().take(n - 1));

 }

}

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Why is fold evaluating an “extra” element?

8

public LazyList<T> take(int n) {

 if (n < 1) {

 return empty();

 } else {

 return cons(headVal, ()-> tail().take(n - 1));

 }

}

What will the following piece of code print?

List<String> list = Arrays.asList("Rice", "Owls", "are", "the", "best");

String answer =

 list.stream()

 .skip(1)

 .map(e -> {

 System.out.println("Map was called on " + e);

 return e.substring(0, 3);

 })

 .filter(e -> {

 System.out.println("Filter was called on " + e);

 return e.charAt(2) == 'e';

 })

 .findFirst()

 .get();

System.out.println(answer);

Will your answer change (and how), if you replace

list.stream() with list.stream.parallel()?

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Java Streams

9

Map was called on Owls

Filter was called on Owl

Map was called on are

Filter was called on are

are

Could be anything that has

both a Map and a Filter on “are”.

For example:

Map was called on are

Filter was called on are

Map was called on best

Filter was called on bes

Map was called on Owls

Filter was called on Owl

are

You are given the following parallel Map/Reduce “framework” for processing a collection of Strings
using Java Streams:

List<String> list = Arrays.asList("Rice", "Owls", "are", "the", "best");

var value =

 list.stream().parallel()

 .filter(_____A______)

 .map(_____B_____)

 .reduce(_____C_____);

Using this framework, solve the following problems by filling in the blanks A, B and C (note that C
can be 1, 2 or 3 arguments, depending on which variant of reduce you choose):

1. Find all the strings that contain the letter “s”, convert them all to upper case, and concatenate
them

2. Find all the strings of length 4, repeat each of them twice (i.e. “are” becomes “areare”), then find
the smallest of them in lexicographical order

3. Find the total length of all the strings that start with a lowercase letter

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Map/Reduce

10

1. Find all the strings that contain the letter “s”, convert them all to upper case, and concatenate
them

List<String> list = Arrays.asList("Rice", "Owls", "are", "the", "best");

var value =

 list.stream().parallel()

 .filter(e -> e.contains("s"))

 .map(e -> e.toUpperCase())

 .reduce("", String::concat, String::concat);

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Map/Reduce

11

“OWLSBEST”

2. Find all the strings of length 4, repeat each of them twice (i.e. “are” becomes “areare”), then
find the smallest of them in lexicographical order

List<String> list = Arrays.asList("Rice", "Owls", "are", "the", "best");

var value =

 list.stream().parallel()

 .filter(e -> e.length() == 4)

 .map(e -> e.repeat(2))

 .reduce((a,b) -> a.compareToIgnoreCase(b) < 0 ? a : b);

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Map/Reduce

12

Optional[“bestbest”]

3. Find the total length of all the strings that start with a lowercase letter

List<String> list = Arrays.asList("Rice", "Owls", "are", "the", "best");

var value =

 list.stream().parallel()

 .filter(e -> e.charAt(0) >= 'a' && e.charAt(0) <= 'z')

 .map(String::length)

 .reduce(Integer::sum);

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Map/Reduce

13

Optional[10]

Here is a recursive, sequential divide-and-conquer function for finding a maximum value in an array:

static int findMax(int[] X, int lo, int hi) {

 if (lo > hi) return 0;

 else if (lo == hi) return X[lo];

 else {

 int mid = (lo+hi)/2;

 var max1 =

 findMax(X, lo, mid);

 var max2 =

 findMax(X, mid+1, hi);

 return (max1 > max2)? max1 : max2;

 }

} // findMax

Indicate in the code the changes you need to make to this function in order to create a parallel,
recursive divide-and-conquer function for finding a maximum value in an array.

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Futures

14

Here is a recursive, sequential divide-and-conquer function for finding a maximum value in an array:

static int findMax(int[] X, int lo, int hi) throws SuspendableException {

 if (lo > hi) return 0;

 else if (lo == hi) return X[lo];

 else {

 int mid = (lo+hi)/2;

 var max1 = future(() ->

 findMax(X, lo, mid));

 var max2 = future(() ->

 findMax(X, mid+1, hi));

 // Parent now waits for the future values

 return (max1.get() > max2.get())? max1.get() : max2.get();

 }

} // findMax

Indicate in the code the changes you need to make to this function in order to create a parallel,
recursive divide-and-conquer function for finding a maximum value in an array.

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Futures

15

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Computation Graphs

• A Computation Graph (CG) captures the dynamic execution of a parallel program, for a
specific input

• CG nodes are “steps” in the program’s execution

— A step is a sequential subcomputation without any spawned, begin-finish or end-finish operations

• CG edges represent ordering constraints

— “Continue” edges define sequencing of steps within a task

— “Spawn” edges connect parent tasks to child spawned tasks

— “Join” edges connect the end of each spawned task to its IEF’s end-must finish

operations

• All computation graphs must be acyclic

—It is not possible for a node to depend on itself

• Computation graphs are examples of “directed acyclic graphs” (DAGs)

16

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

Worksheet: Reverse Engineering a Parallel Program from a
Computation Graph (CG)

Write a parallel program that generates
exactly the same ordering constraints as
the computation graph shown. The
program should be written in pseudocode
using must finish and spawn annotations.
The CG nodes should be clearly identified
as statements in the program e.g., as
method calls A(), B(), etc. Since the CG
edges are not labeled as spawn, continue,
or join, you can make whatever
assumptions you choose about the edges
when writing your program. The only
requirement is that the ordering constraints
in your program coincide with those in the
graph. Submit solution in Canvas.

17

	

COMP 322, Spring 2022 (M.Joyner, Z. Budimlić)

One Possible Solution to Worksheet

(Reverse Engineering a Computation Graph)

18

1.A();

2.must finish { // F1

3. spawn D();

4. B();

5. E();

6. must finish { // F2

7. spawn H();

8. F();

9. } // F2

10. G();

11.} // F1

12.C();

Observations:

•Any node with out-degree > 1 must be an async

(must have an outgoing spawn edge)

•Any node with in-degree > 1 must be an end-finish

(must have an incoming join edge

•Adding or removing transitive edges does not impact

ordering constraints

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Worksheet: Computation Graphs for Async-Finish and Future Constructs

19

1) Can you write pseudocode with async & finish
constructs that generates a Computation Graph
with the same ordering constraints as the graph
on the right? If so, provide a sketch of the
program. If not, why not?

2) Can you write pseudocode with future & get
constructs that generates a Computation Graph
with the same ordering constraints as the graph
on the right? If so, provide a sketch of the
program. If not, why not?

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Worksheet solution

1) Can you write pseudocode with async-finish
constructs that generates a Computation Graph with
the same ordering constraints as the graph on the
right? If so, provide a sketch of the program.

No. Finish cannot be used to ensure that D only waits
for B and C, while E waits only for C.

2) Can you write pseudocode with future async-get
constructs that generates a Computation Graph with
the same ordering constraints as the graph on the
right? If so, provide a sketch of the program.

Yes, see program sketch with dummy return values.

20

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Worksheet solution (contd.)

21

1. var A = future(() -> {

2. return "A"; });

3. var B = future(() -> {

4. A.get(); return "B"; });

5. var C = future(() -> {

6. A.get(); return "C"; });

7. var D = future(() -> {

8. // Order of B.get() & C.get() doesn’t matter

9. B.get(); C.get(); return "D"; });

10. var E = future(() -> {

11. C.get(); return "E"; });

12. var F = future(() -> {

13. D.get(); E.get(); return "F"; });

14. F.get();

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Extending HJ Futures for Macro-Dataflow: 
Data-Driven Tasks (DDTs)

asyncAwait(ddfA, ddfB, …, () -> Stmt);

• Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB, … become available (i.e.,
after task becomes “enabled”)

• Alternatively, you can pass a list to asyncAwait

• Await clause can be used to implement “nodes” and “edges” in a computation graph

ddfA.get()

• Return value (of type T1) stored in ddfA

• Throws an exception if put() has not been performed

ddfA.safeGet()

• Doesn’t throw an exception

— Should be performed by async’s that contain ddfA in their await clause, or if there’s some other

synchronization to guarantee that the put() was performed

22

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

 For the example below, will reordering the five async statements change the meaning of the program (assuming that
the semantics of the reader/writer methods depends only on their parameters) ? If so, show two orderings that exhibit
different behaviors. If not, explain why not.

1. var left = newDataDrivenFuture();

2. var right = newDataDrivenFuture();

3. finish {

4. asyncAwait(left) leftReader(left); // Task3

5. asyncAwait(right) rightReader(right); // Task5

6. asyncAwait(left,right)

7. bothReader(left,right); // Task4

8. async left.put(leftWriter()); // Task1

9. async right.put(rightWriter());// Task2

10. }

Worksheet: Data Driven Tasks

23

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

 For the example below, will reordering the five async statements change the meaning of the program (assuming that
the semantics of the reader/writer methods depends only on their parameters) ? If so, show two orderings that exhibit
different behaviors. If not, explain why not.

 No, reordering the asyncs doesn’t change the meaning of the program. Regardless of the order, Task 3 will always wait on Task 1. Task 5 will
always wait on Task 2. Task 4 will always wait on both Task 1 and 2.

1.var left = newDataDrivenFuture();

2. var right = newDataDrivenFuture();

3. finish {

4. asyncAwait(left) leftReader(left); // Task3

5. asyncAwait(right) rightReader(right); // Task5

6. asyncAwait(left,right)

7. bothReader(left,right); // Task4

8. async left.put(leftWriter()); // Task1

9. async right.put(rightWriter());// Task2

10. }

Worksheet solution

24

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

 A logged in user would like to get the articles they authored using the getArticles(userId) request to fetch their articles. The
request returns an object that has a list of articles that looks like the following:

 { articles: [“I like Rice”, “Where are they putting the 12th college”] }

 Can you modify the code on the next slide to safely get the user’s articles? If not, explain why not.

Worksheet: Events with Data Driven Tasks

25

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Worksheet solution
var username = …

var password = …

var session = -1;
var regUser = newDataDrivenFuture();

var logUser = newDataDrivenFuture();

var loggedIn = newDataDrivenFuture();

var logOut = newDataDrivenFuture();

var articles = newDataDrivenFuture();

…
async(() -> regUser.put(registerNewUser(username, password))); // { username: user, result: “success” or “failure”}

…

asyncAwait(regUser, () -> { if (regUser.safeGet().result.equals(“success”))

 logUser.put(loginUser(username, password)); // {userId: id, result: “success” or “failure”}

 else

 logUser.put({result: “failure” }); });

 …
asyncAwait(logUser, () -> { if (logUser.safeGet().result.equals(“success”))

 session = logUser.safeGet().userId; loggedIn.put(isLoggedIn(session));// {userId: id, result: “success” or “failure” }

 else

 loggedIn.put({result: “failure” }); });

…
asyncAwait(loggedIn, () -> { if (loggedIn.safeGet().result.equals(“success”))

 logOut.put(logoutUser(session)); session = -1; // { result: “success” or “failure” }

 else

 logOut.put({result: “failure” }); });

…
asyncAwait(loggedIn, () -> { if (loggedIn.safeGet().result.equals(“success”) && session != -1)

 articles.put(getArticles(session)); // { articles: [“a1”, “a2”, “a3”] }

 else

 articles.put({articles: [] }); });

…

26

Still not entirely safe. What happens if logoutUser() is called before getArticles()? We
should move isLoggedIn() to the server and have logoutUser() and getArticles() internally
call isLoggedIn().

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Worksheet solution
var username = …

var password = …

var session = -1;
var regUser = newDataDrivenFuture();

var logUser = newDataDrivenFuture();

var loggedIn = newDataDrivenFuture();

var logOut = newDataDrivenFuture();

var articles = newDataDrivenFuture();

…
async(() -> regUser.put(registerNewUser(username, password))); // { username: user, result: “success” or “failure”}

…

asyncAwait(regUser, () -> { if (regUser.safeGet().result.equals(“success”))

 logUser.put(loginUser(username, password)); // {userId: id, result: “success” or “failure”}

 else

 logUser.put({result: “failure” }); });

 …
asyncAwait(logUser, () -> { if (logUser.safeGet().result.equals(“success”))

 session = logUser.safeGet().userId; loggedIn.put(isLoggedIn(session));// {userId: id, result: “success” or “failure” }

 else

 loggedIn.put({result: “failure” }); });

…
asyncAwait(loggedIn, () -> { if (loggedIn.safeGet().result.equals(“success”))

 logOut.put(logoutUser(session)); session = -1; // { result: “success” or “failure” }

 else

 logOut.put({result: “failure” }); });

…
asyncAwait(loggedIn, () -> { if (loggedIn.safeGet().result.equals(“success”) && session != -1)

 articles.put(getArticles(session)); // { articles: [“a1”, “a2”, “a3”] }

 else

 articles.put({articles: [] }); });

…

27

Still not entirely safe. What happens if logoutUser() is called before getArticles()? We
should move isLoggedIn() to the server and have logoutUser() and getArticles() internally
call isLoggedIn().

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Parallel Speedup

•Define Speedup(P) = T1 / TP

—Factor by which P processors speeds up execution time relative to 1 processor, for fixed input size

—For ideal executions without overhead, 1 <= Speedup(P) <= P

—You see this with abstract metrics, but bounds may not hold when measuring real execution times with
real overheads

—Linear speedup

–When Speedup(P) = k*P, for some constant k, 0 < k < 1

•Ideal Parallelism = WORK / CPL = T1 / T∞

= Parallel Speedup on an unbounded (infinite) number of processors

28

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Worksheet: Speedup
Array Sum Speedup

•	Assume T(S,P) = WORK(G,S)/P + CPL(G,S) = (S-1)/P + log2(S) for the parallel array sum
computation shown in slide 4 (using the upper bound)

•	Assume S = 1024 ==> log2(S) = 10

•	Compute for 10, 100, 1000 processors (round to 1 decimal place)

	 T(S,P) = (S-1)/P + log2(S) = 1023/P + 10

	 Speedup(10) = T(1)/T(10) =

	 Speedup(100) = T(1)/T(100) =

	 Speedup(1000) = T(1)/T(1000) =

	

•	Why does the speedup not increase linearly in proportion to the number of processors?

29

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Worksheet solution

• Estimate T(S,P) ~ WORK(G,S)/P + CPL(G,S) = (S-1)/P + log2(S) for the parallel
array sum computation shown in slide 4.

• Assume S = 1024 ==> log2(S) = 10

• Compute for 10, 100, 1000 processors

—T(P) = 1023/P + 10, when P > 1

—Speedup(10) = T(1)/T(10) = 1023/112.3 ~ 9.1

—Speedup(100) = T(1)/T(100) = 1023/20.2 ~ 50.6

—Speedup(1000) = T(1)/T(1000) = 1023/11.0 ~ 93.7

• Why does the speedup not increase linearly in proportion to the number of
processors?

—Because of the critical path length, log2(S), is a bottleneck

30

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Recap:

A binary function f is associative if f(f(x,y),z) = f(x,f(y,z)).

A binary function f is commutative if f(x,y) = f(y,x).

Worksheet problems:

1) Claim: a Finish Accumulator (FA) can only be used with operators that are associative and commutative.

Why? What can go wrong with accumulators if the operator is non-associative or non-commutative?

You may get different answers in different executions if the operator is non-associative or non-commutative
e.g., an accumulator can be implemented using one “partial accumulator” per processor core.

2) For each of the following functions, indicate if it is associative and/or commutative.

a) f(x,y) = x+y, for integers x, y, is associative and commutative
b) g(x,y) = (x+y)/2, for integers x, y, is commutative but not associative
c) h(s1,s2) = concat(s1, s2) for strings s1, s2, e.g., h(“ab”,”cd”) = “abcd”, is associative but not commutative

Worksheet solution: Associativity and Commutativity

31

You are given a linked list, and you need to compute the rank of each element of the list, i.e. the
distance of that element from the end of the list.

Give a high-level idea of how would you solve this problem in parallel using pointer skipping. You
can assume that the list is stored in a contiguous array, with a pointer to the next element in the list
being a simple index of that element. For example, the following array:

Represents the following list:

What is the total WORK that your solution would perform (integer addition counts as WORK(1),
everything else is ignored)?

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Pointer Skipping

32

A 0 1 B 0 3 F 0 ⏊ C 0 5 E 0 3 D 0 4

A 0 B 0 F 0C 0 E 0D 0

Assume d[i] = 1 for all nodes

Algorithm:

1. Repeat log N times:

1. Finish

1. Create an async task for each list node

2. In each task i:

1. set d[i] += d[succ[i]]

2. set succ[i] = succ[succ[i]]

What is the big-O for total WORK and CPL that your solution would perform (integer addition counts
as WORK(1), everything else is ignored)?

WORK = O(N log N), CPL = O(log N)

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Worksheet: Pointer Skipping

33

A 0 B 0 F 0C 0 E 0D 0
1 1 1 1 1 1
2 2 2 2 2 1
4 4 4 3 2 1

iter 1:
iter 2:
iter 3: 6 5 4 3 2 1

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Announcements & Reminders

• Quiz #4 is due Tuesday, Feb. 22nd by 11:59pm

• Midterm exam is Thursday, Feb. 24th from 7pm - 10pm (Canvas)

• HW #3 is due Friday, Mar. 4th by 11:59pm

34

