
COMP 322: Parallel and Concurrent Programming

Lecture 18: Abstract vs. Real Performance

“Everything You Ever Wanted to Know About HJLib but Were Too Afraid to Ask”

Zoran Budimlić and Mack Joyner

{zoran, mjoyner}@rice.edu

http://comp322.rice.edu

COMP 322	 Lecture 18	 23 February 2022

http://comp322.rice.edu

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Functional Approach to Parallelism

• “Functional”: futures, future tasks, streams, data-driven tasks and futures

• “Not-so functional”: async tasks and finish scopes, tasks that modify shared memory

• Advantages to functional approach

• Easier to reason about

• Don’t have to worry about data races

• Leads to compact, elegant, easy to read code

• Easy to scale to massively parallel (because you don’t need to worry about data races)

• Disadvantages

• May be hard to express exactly the computation graph you need (i.e. a finish scope with millions of tasks)

• May be more expensive to execute (blocking future.get() vs. simply reading a shared memory location)

• May need additional data structures (futures, data-driven futures) to express the computation

• May need copying of data structures to avoid data races and mutation

• Hard to scale to massively parallel (because of overheads)

2

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Abstract vs. Real Performance

• Abstract performance

• Focus on operation counts for WORK and CPL, regardless of actual execution time

• Ignore the nitty-gritty of task creation and execution overhead

• Same “performance” regardless of the machine

• Real performance

• Lots of things happening “under the hood”

• Operating system, runtime and hardware all have an impact

• Process creation/execution vs. thread creation/execution vs. task creation/execution

• Tasks could be blocked, waiting on some event

• Complex matter, but important to at least have a general idea of the costs

3

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Lab 4: Recursive Task Parallelism

4

private static double recursiveMaxParallel(final double[] inX, final int start, final int end)

 throws SuspendableException

{

 if (end - start == 2) {

 doWork(1);

 return 1/inX[end - 1] + 1/inX[start];

 } else {

 var bottom = future(() -> recursiveMaxParallel(inX, start, (end + start) / 2));

 var top = future(() -> recursiveMaxParallel(inX, (end+start) / 2, end));

 var bVal = bottom.get();

 var tVal = top.get();

 doWork(1);

 return bVal + tVal;

 }

}

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Lab 4: Recursive Task Parallelism

4

private static double recursiveMaxParallel(final double[] inX, final int start, final int end)

 throws SuspendableException

{

 if (end - start == 2) {

 doWork(1);

 return 1/inX[end - 1] + 1/inX[start];

 } else {

 var bottom = future(() -> recursiveMaxParallel(inX, start, (end + start) / 2));

 var top = future(() -> recursiveMaxParallel(inX, (end+start) / 2, end));

 var bVal = bottom.get();

 var tVal = top.get();

 doWork(1);

 return bVal + tVal;

 }

}

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Cutoff Strategy for Recursive Task Parallelism

5

private static double recursiveMaxParallelCutoff(final double[] inX, final int start, final int end,

 final int threshold) throws SuspendableException {

 if (end - start <= threshold) {

 double sum = 0.0;

 for(int i = start; i < end; i++) {

 doWork(1);

 sum = sum + 1 / inX[i];

 }

 return sum;

 } else {

 var bottom = future(() -> recursiveMaxParallelCutoff(inX, start, (end + start) / 2, threshold));

 var top = future(() -> recursiveMaxParallelCutoff(inX, (end+start) / 2, end, threshold));

 var bVal = bottom.get();

 var tVal = top.get();

 doWork(1);

 return bVal + tVal;

 }

}

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Cutoff Strategy for Recursive Task Parallelism

5

private static double recursiveMaxParallelCutoff(final double[] inX, final int start, final int end,

 final int threshold) throws SuspendableException {

 if (end - start <= threshold) {

 double sum = 0.0;

 for(int i = start; i < end; i++) {

 doWork(1);

 sum = sum + 1 / inX[i];

 }

 return sum;

 } else {

 var bottom = future(() -> recursiveMaxParallelCutoff(inX, start, (end + start) / 2, threshold));

 var top = future(() -> recursiveMaxParallelCutoff(inX, (end+start) / 2, end, threshold));

 var bVal = bottom.get();

 var tVal = top.get();

 doWork(1);

 return bVal + tVal;

 }

}

Execution with threshold 64000 took 56 milliseconds.

Execution with threshold 128000 took 54 milliseconds.

Execution with threshold 256000 took 4 milliseconds.

Execution with threshold 512000 took 3 milliseconds.

Execution with threshold 1024000 took 6 milliseconds.

Execution with threshold 2048000 took 10 milliseconds.

Execution with threshold 4096000 took 11 milliseconds.

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

HJ-lib Compilation and Execution Environment

6

Foo.java

Java compiler
Java compiler translates Foo.java
to Foo.class, along with calls to HJ-
lib with lambda parameters (async,
finish, future, etc)

Foo.class

HJ-lib source program is a standard Java 11
program

HJ-lib Runtime
Environment =

Java Runtime
Environment +

HJ-lib libraries

HJ Abstract Performance Metrics

(enabled by appropriate options)

HJ-lib Program Output

javac Foo.java

java Foo

HJ runtime initializes m worker
threads

(value of m depends on options or
default value)

Java 11 IDE

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

HJ-lib Compilation and Execution Environment

6

Foo.java

Java compiler
Java compiler translates Foo.java
to Foo.class, along with calls to HJ-
lib with lambda parameters (async,
finish, future, etc)

Foo.class

HJ-lib source program is a standard Java 11
program

HJ-lib Runtime
Environment =

Java Runtime
Environment +

HJ-lib libraries

HJ Abstract Performance Metrics

(enabled by appropriate options)

HJ-lib Program Output

javac Foo.java

java Foo

HJ runtime initializes m worker
threads

(value of m depends on options or
default value)

Java 11 IDE

All the “magic” happens here!

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Looking under the hood - let’s start with the
hardware

7

Main Memory (DRAM)

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

How does a process run on a single core?

8

(e.g., Java application A) (e.g., Java application B)

Context switches between two processes can be very expensive!

Source: COMP 321 lecture on Exceptional Control Flow (Alan Cox)

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

What happens when we execute a Java program

• A Java program executes in a single Java Virtual Machine
(JVM) process with multiple threads

• Threads associated with a single process can share the
same data

• Java main program starts with a single thread (T1), but can
create additional threads (T2, T3, T4, T5) via library calls

• Java threads may execute concurrently on different cores, or
may be context-switched on the same core

9

T1

T2
T4

T5 T3

shared code, data
and process context

Figure source: COMP 321 lecture on Concurrency (Alan Cox)

Java application with five threads —-

T1, T2, T3, T4, T5 — all of which can

access a common set of shared objects

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Thread-level Context Switching on the same processor core

• Thread context switch is cheaper than a process context switch, but is still expensive (just not “very”
expensive!)

• It would be ideal to just execute one thread per core (or hardware thread context) to avoid context
switches

 Figure source: COMP 321 lecture on Concurrency (Alan Cox)

10

Thread 1
(main thread)

Thread 2
(peer thread)

Time
thread context switch

thread context switch

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Now, what happens is a task-parallel Java program

(e.g., HJ-lib, Java Fork/Join, etc.)

• HJ-lib runtime creates a small number of worker threads, typically one per core

• Workers push new tasks and “continuations” into a logical work queue

• Workers pull task/continuation work items from logical work queue when they are

idle (remember greedy scheduling?)

11

HJ-Lib Tasks & Continuations

Worker threads

Operating System

Hardware cores

Ready

Tasks

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Task-Parallel Model: Checkout Counter
Analogy

12

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,

http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

• Think of each checkout counter as a processor core

http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Task-Parallel Model: Checkout Counter
Analogy

• Think of each checkout counter as a processor core

• And of customers as tasks

13

Image sources: http://www.deviantart.com/art/Randomness-20-178737664,

http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

http://www.wholefoodsmarket.com/blog/whole-story/new-haight-ashbury-store

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

All is well until a task blocks …

• A blocked task/customer can hold up the entire line

• What happens if each checkout counter has a blocked customer?

14

. . .

source: http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Approach 1: Create more worker threads

(as in HJ-Lib’s Blocking Runtime)

• Creating too many worker threads can exhaust system resources
(OutOfMemoryError)

• Leads to context-switch overheads when blocked worker threads get unblocked

15

source: http://www.deviantart.com/art/Randomness-5-90424754

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Blocking Runtime (contd)

• Assume that there are five tasks (A1 … A5)

• Q: What happens if four tasks (say, A1 … A4) executing on workers w1 … w4 all wait

on the same future that’s computed by A5?

16

future.get() operation

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Blocking Runtime (contd)

• Assume that there are five tasks (A1 … A5)

• Q: What happens if four tasks (say, A1 … A4) executing on workers w1 … w4 all wait on

the same future that’s computed by A5?

• A: Deadlock! (All four tasks will wait for task A5 to compute the future.)

• Blocking Runtime’s solution to avoid deadlock: keep task blocked on worker thread, and

create a new worker thread when task blocks

17

future.get() operation

To avoid deadlock, a
blocked worker (e.g., w4) creates a

new worker thread, w5

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Blocking Runtime (contd)

• Examples of blocking operations

• End of finish

• Future get

• Barrier next

• Approach: Block underlying worker thread when task performs a blocking operation, and launch an
additional worker thread

• Too many blocking operations can result in exceptions and/or poor performance, e.g.,

• java.lang.IllegalStateException: Error in executing blocked code! [89 blocked
threads]

• Maximum number of worker threads can be configured if needed

• HjSystemProperty.maxThreads.set(100);

18

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Approach 2: Suspend task continuations at blocking points

(as in HJ-Lib’s Cooperative Runtime)

• Upon a blocking operation, the currently executing tasks suspends itself and yields
control back to the worker

• Task’s continuation is stored in the suspended queue and added back into the ready
queue when it is unblocked

• Pro: No overhead of creating additional worker threads

• Con: Need to create continuations (enabled by -javaagent option)

19

C
he

ck
ou

t
co

un
te

r

Suspended

Queue

Ready

Queue

Executing

Task

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Continuations

• A continuation can be a point immediately following a blocking operation, such as an end-finish,
future get(), barrier/phaser next(), etc.

• Continuations are also referred to as task-switching points

• Program points at which a worker may switch execution between different tasks (depends on scheduling

policy)

1. finish { // F1

2. async A1;

3. finish { // F2

4. async A3;

5. async A4;

6. }

7. S5;

8. }

20

Continuations

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Cooperative Scheduling (view from a single worker)

21

…

suspend

suspend

…

resume
suspend/complete

Useful work
for some

other task on
same worker

thread

tim
e

(in
cr

ea
se

s
do

w
nw

ar
ds

)

Task-1 Task-1

Task-2

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Cooperative Scheduling (view from a single worker)

21

…

suspend

suspend

…

resume
suspend/complete

Useful work
for some

other task on
same worker

thread

tim
e

(in
cr

ea
se

s
do

w
nw

ar
ds

)

Task-1 Task-1

Task-2

Cooperative
runtime

automatically
creates

continuations at
suspend points via

bytecode
instrumentation

enabled by
-javaagent option

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

HJ-lib’s Cooperative Runtime (contd)

Any operation that contributes to unblocking a task can be viewed as an event e.g., task termination in
finish, return from a future, signal on barrier, put on a data-driven-future, …

22

…

task
task
task

task
task

…

EDC EDC

…

Ready/Resumed Task
Queues

Suspended Tasks

registered with “Event-

Driven Controls (EDCs)”

Worker Threads Synchronization objects

that use EDCs

EDC

{ }task
{ }task

{ }task

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Why are Data-Driven Tasks (DDTs) more efficient than Futures?

• Consumer task blocks on get() for each future that it reads, whereas asyncAwait does not start
execution until all Data-Driven Futures (DDFs) are available

• An “asyncAwait” call does not block the worker, unlike a future.get()

• No need to create a continuation for asyncAwait; a data-driven task is directly placed on the Suspended queue

by default

• Therefore, DDTs can be executed on a Blocking Runtime without the need to create additional worker
threads, or on a Cooperative Runtime without the need to create continuations

23

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Abstract vs Real Performance in HJ-Lib

• Abstract Performance

• Abstract metrics focus on operation counts for

WORK and CPL, regardless of actual execution time

• Real Performance

• HJlib uses ForkJoinPool implementation of Java

Executor interface with Blocking or Cooperative
Runtime (default)

24

COMP 322, Spring 2022 (Z. Budimlić, M. Joyner)

Summmary

• Functional approach is great, but sometimes can lead to performance issues

• Knowing what is happening “under the covers” can help you design better performing algorithms

• Cutoff strategy is a great way to balance parallelism and overhead for recursive task parallelism

• Depending on the runtime, your task parallel program may have some tasks that could block the
whole CPU thread

• Processes are more expensive than threads, threads are more expensive than tasks

• In order to deliver performance, most runtimes assume they have a full control of OS threads

• Don’t mix Java parallel Streams with HJLib constructs

• Don’t mix Java threads with HJLib tasks and/or Java parallel Streams

• An HJ runtime instance inside of its own Java thread is usually OK

• A Java parallel Stream computation inside an HJ task is usually OK

25

