COMP 322: Fundamentals of Parallel Programming

Lecture 27: Read-Write Locks, Linearizability

Mack Joyner and Zoran Budimlić {mjoyner, zoran}@rice.edu

http://comp322.rice.edu

Reading vs Writing

- Recall that the use of synchronization is to protect interfering accesses
 - —Concurrent reads of same memory: Not a problem
 - —Concurrent writes of same memory: Problem
 - —Concurrent read & write of same memory: Problem

So far:

—If concurrent write/write or read/write might occur, use synchronization to ensure one-thread-at-a-time

But:

—This is unnecessarily conservative: we could still allow multiple simultaneous readers (as in object-based isolation)

Consider a hashtable with one coarse-grained lock

—Only one thread can perform operations at a time

But suppose:

—There are many simultaneous lookup operations and insert operations are rare

java.util.concurrent.locks.ReadWriteLock interface

```
interface ReadWriteLock {
   Lock readLock();
   Lock writeLock();
}
```

- Even though the interface appears to just define a pair of locks, the semantics of the pair of locks is coupled as follows
 - —Case 1: a thread has successfully acquired writeLock().lock()
 - No other thread can acquire readLock() or writeLock()
 - —Case 2: no thread has acquired writeLock().lock()
 - Multiple threads can acquire readLock()
 - No other thread can acquire writeLock()
- java.util.concurrent.locks.ReadWriteLock interface is implemented by java.util.concurrent.locks.ReadWriteReentrantLock class

Hashtable Example

```
class Hashtable<K, V> {
  // coarse-grained, one lock for table
  ReentrantReadWriteLock lk = new ReentrantReadWriteLock();
  V lookup(K key) {
    int bucket = hasher(key);
    lk.readLock().lock(); // only blocks writers
    ... read array[bucket] ...
    lk.readLock().unlock();
  void insert(K key, V val) {
    int bucket = hasher(key);
    lk.writeLock().lock(); // blocks readers and writers
   ... write array[bucket] ...
    lk.writeLock().unlock();
```


Linearizability: Correctness of Concurrent Objects

- A concurrent object is an object that can correctly handle methods invoked concurrently by different tasks or threads
 - -e.g., AtomicInteger, ConcurrentHashMap, ConcurrentLinkedQueue, ...
- For the discussion of linearizability, we will assume that the body of each method in a concurrent object is itself sequential
 - —Assume that methods do not create threads or async tasks

Linearizability: Correctness of Concurrent Objects

- Consider a simple FIFO (First In, First Out) queue as a canonical example of a concurrent object
 - —Method q.enq(o) inserts object o at the tail of the queue
 - Assume that there is unbounded space available for all enq() operations to succeed
 - —Method q.deq() removes and returns the item at the head of the queue.
 - Throws EmptyException if the queue is empty.
- Without seeing the implementation of the FIFO queue, we can tell if an execution of calls to enq() and deq() is correct or not, in a sequential program
- How can we tell if the execution is correct for a parallel program?

Linearization: Identifying a sequential order of concurrent method calls

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Informal Definition of Linearizability

- Assume that each method call takes effect "instantaneously" at some point in time between its invocation and return.
- An execution (schedule) is linearizable if we can choose one set of instantaneous points that is consistent with a sequential execution in which methods are executed at those points
 - It's okay if some other set of instantaneous points is not linearizable
- A concurrent object is linearizable if all its executions are linearizable
 - Linearizability is a "black box" test based on the object's behavior, not its internals

Example 1

Example 1 cont.

Example 1 cont.

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Example 1 cont.

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Example 1: is this execution linearizable?

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter 03.ppt

13

Example 2: is this execution linearizable?

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Example 3

Is this execution linearizable? How many possible linearizations does it have?

15

Example 4: execution of an isolated implementation of FIFO queue q

Is this a linearizable execution?

Time	${\color{red}{Task}} \; A$	${\rm Task}\ B$
0	Invoke q.enq(x)	
1 1	Work on q.enq(x)	
2	Work on q.enq(x)	
3	Return from q.enq(x)	
4		Invoke q.enq(y)
5		Work on q.enq(y)
6		Work on q.enq(y)
7		Return from q.enq(y)
8		Invoke q.deq()
9		Return x from q.deq()

Yes! Can be linearized as "q.enq(x); q.enq(y); q.deq():x"

Linearizability of Concurrent Objects (Summary)

Concurrent object

- A concurrent object is an object that can correctly handle methods invoked in parallel by different tasks or threads
 - —Examples: Concurrent Queue, AtomicInteger

Linearizability

- Assume that each method call takes effect "instantaneously" at some distinct point in time between its invocation and return.
- An <u>execution</u> is linearizable if we can choose instantaneous points that are consistent with a sequential execution in which methods are executed at those points
- An object is linearizable if all its possible executions are linearizable

Announcements & Reminders

- Quiz #6 is due Wednesday, Mar. 30th at 11:59pm
- Hw #4 is due Friday, Apr. 1st at 11:59pm

Hw #4 myjob.slurm

```
#!/bin/bash
     #SBATCH --job-name=comp322-hw4
     #SBATCH --nodes=1
     #SBATCH --ntasks-per-node=1
     #SBATCH --cpus-per-task=16
                                  Try --partition=scavenge
     #SBATCH --mem=16000m
     #SBATCH --time=01:00:00
     #SBATCH --mail-type=ALL
     #SBATCH --export=ALL
     #SBATCH --partition=commons
     #SBATCH --exclusive
13
     cd /home/$USER/hw4-GITID # TODO: Change path to your hw 4 folder
15
     source /home/mjoyner/comp322/322_setup.sh
17
     mvn -DBoruvkaPerformanceTest test
```

