
COMP 322: Fundamentals of Parallel Programming

Lecture 27: Read-Write Locks, Linearizability

Mack Joyner and Zoran Budimlić

{mjoyner, zoran}@rice.edu

http://comp322.rice.edu

COMP 322	 Lecture 27	 March 2022

http://comp322.rice.edu

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Reading vs Writing
• Recall that the use of synchronization is to protect interfering accesses

—Concurrent reads of same memory: Not a problem

—Concurrent writes of same memory: Problem

—Concurrent read & write of same memory: Problem

So far:

—If concurrent write/write or read/write might occur, use synchronization to ensure one-thread-at-a-time

But:

—This is unnecessarily conservative: we could still allow multiple simultaneous readers (as in object-

based isolation)

Consider a hashtable with one coarse-grained lock

—Only one thread can perform operations at a time

But suppose:

—There are many simultaneous lookup operations and insert operations are rare

2

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

java.util.concurrent.locks.ReadWriteLock interface
interface ReadWriteLock { 
 Lock readLock(); 
 Lock writeLock();

 }

• Even though the interface appears to just define a pair of locks, the semantics of the pair of locks is coupled as
follows

—Case 1: a thread has successfully acquired writeLock().lock()

– No other thread can acquire readLock() or writeLock()

—Case 2: no thread has acquired writeLock().lock()

– Multiple threads can acquire readLock()

– No other thread can acquire writeLock()

• java.util.concurrent.locks.ReadWriteLock interface is implemented by
java.util.concurrent.locks.ReadWriteReentrantLock class

3

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Hashtable Example
class Hashtable<K,V> {
 …

 // coarse-grained, one lock for table
 ReentrantReadWriteLock lk = new ReentrantReadWriteLock();

 V lookup(K key) {
 int bucket = hasher(key);

 lk.readLock().lock(); // only blocks writers

 … read array[bucket] …

 lk.readLock().unlock();

 }

 void insert(K key, V val) {
 int bucket = hasher(key);

 lk.writeLock().lock(); // blocks readers and writers

 … write array[bucket] …

 lk.writeLock().unlock();

 }

}

4

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Linearizability: Correctness of Concurrent Objects
• A concurrent object is an object that can correctly handle methods invoked concurrently by different tasks

or threads

—e.g., AtomicInteger, ConcurrentHashMap, ConcurrentLinkedQueue, …

• For the discussion of linearizability, we will assume that the body of each method in a concurrent object is
itself sequential

—Assume that methods do not create threads or async tasks

5

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Linearizability: Correctness of Concurrent Objects
• Consider a simple FIFO (First In, First Out) queue as a canonical example of a concurrent object

—Method q.enq(o) inserts object o at the tail of the queue

– Assume that there is unbounded space available for all enq() operations to succeed

—Method q.deq() removes and returns the item at the head of the queue.

– Throws EmptyException if the queue is empty.

• Without seeing the implementation of the FIFO queue, we can tell if an execution of calls to enq() and
deq() is correct or not, in a sequential program

• How can we tell if the execution is correct for a parallel program?

6

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Linearization: Identifying a sequential order of concurrent
method calls

7

time

q.deq():x

q.enq(x)

 enq(x) deq() returns x

 isolated-wait/begin isolated-end

isolated-wait/begin isolated-end

“Linearizability” -- identify
order of enq() and deq()
calls that is consistent
with sequential execution

enq

deq

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

Task T2

http://www.elsevierdirect.com/companions/9780123705914/Lecture%2520Slides/03~Chapter_03.ppt

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Informal Definition of Linearizability
• Assume that each method call takes effect “instantaneously” at some point in time between its invocation

and return.

• An execution (schedule) is linearizable if we can choose one set of instantaneous points that is consistent
with a sequential execution in which methods are executed at those points

• It’s okay if some other set of instantaneous points is not linearizable

• A concurrent object is linearizable if all its executions are linearizable

• Linearizability is a “black box” test based on the object’s behavior, not its internals

8

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example 1

9

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example 1 cont.

10

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

q.enq(y)

Task T2

http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example 1 cont.

11

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

q.enq(y)

Task T2

q.deq():x

http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example 1 cont.

12

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

q.enq(y)

Task T2

q.deq():x

q.deq():y

http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example 1: is this execution linearizable?

13

q.enq(x)

time

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

q.enq(y)

Task T2

q.deq():x

q.deq():y

linearizable

(2)

(1)

(3)

(4)

http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example 2: is this execution linearizable?

14

time

q.enq(x)

q.enq(y)

q.deq():yq.enq(x)

q.enq(y)

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

Task T1

Task T2

not linearizable

http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example 3
Is this execution linearizable? How many possible linearizations does it have?

15

q.enq(x)

q.enq(y)

q.deq():y

q.deq():x

time

linearizable

(two possible linearizations)

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Example 4: execution of an isolated implementation of FIFO
queue q

Is this a linearizable execution?

16

Yes! Can be linearized as “q.enq(x) ; q.enq(y) ; q.deq():x”

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Linearizability of Concurrent Objects (Summary)
Concurrent object

• A concurrent object is an object that can correctly handle methods invoked in parallel by different tasks or

threads

—Examples: Concurrent Queue, AtomicInteger

Linearizability

• Assume that each method call takes effect “instantaneously” at some distinct point in time between its

invocation and return.

• An execution is linearizable if we can choose instantaneous points that are consistent with a sequential

execution in which methods are executed at those points

• An object is linearizable if all its possible executions are linearizable

17

COMP 322, Spring 2022 (M.Joyner, Zoran Budimlić)

Announcements & Reminders

• Quiz #6 is due Wednesday, Mar. 30th at 11:59pm

• Hw #4 is due Friday, Apr. 1st at 11:59pm

18

Hw #4 myjob.slurm

Try --partition=scavenge

