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0 Introduction

0.1 What is Parallel Programming?

Since the dawn of early digital computers and the Von Neumann computing model [24]1, programming
has been viewed as a sequential abstraction of computation. Sequential programming is a step-by-step
specification of each operation in a computation as a sequence — a program is a sequence of statements,
a loop is a sequence of iterations, an expression is a sequence of operations, and so on. The sequential
programming model has served the computing industry well for over six decades as the default model
for the vast majority of programming languages. Sequential programming has also simplified reasoning
about program execution because a sequential program always performs its operations in a predefined order.
However, in many respects, sequential programming can be considered “unnatural” because many application
domains modeled by software (e.g., physical systems, social networks) are inherently parallel rather than
sequential.

The concept of parallelism is often used to denote multiple events occurring side-by-side in space and time. In
Computer Science, we use it to denote simultaneous computation of operations on multiple processing units.
Thus, parallel programming is a specification of operations in a computation that can be executed in parallel
on different processing units. This course will focus on the fundamental concepts that underlie parallel
programming so as to provide you with the foundations needed to understand any parallel programming
model that you encounter in the future.

To introduce you to a concrete example of parallel programming, let us first consider the following sequential
algorithm for computing the sum of the elements of an array of numbers, X:

Algorithm 1: Sequential ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
sum← 0;
for i← 0 to X.length− 1 do

sum← sum+X[i];

return sum;

This algorithm is simple to understand since it sums the elements of X sequentially from left to right.
However, we could have obtained the same algebraic result by summing the elements from right to left
instead. This over-specification of the ordering of operations in sequential programs has been classically
referred to as the Von Neumann bottleneck [2]. The left-to-right evaluation order in Algorithm 1 can be
seen in the computation graph shown in Figure 1. We will study computation graphs formally later in the
course. For now, think of each node or vertex (denoted by a circle) as an operation in the program and each
edge (denoted by an arrow) as an ordering constraint between the operations that it connects, due to the
flow of the output from the first operation to the input of the second operation. It is easy to see that the
computation graph in Figure 1 is sequential because the edges enforce a linear order among all nodes in the
graph.

How can we go about converting Algorithm 1 to a parallel program? The answer depends on the parallel
programming constructs that are available for our use. Let’s use the word, task, to denote a sequential
subcomputation of a parallel program. A task can be made as small or as large as needed. We can think
of the start of program execution as a single root task. We now informally introduce two constructs, async
and finish2:

• The statement “async 〈stmt1〉” causes the parent task to create a new child task to execute the body of

1These lecture notes include citation such as [24] as references for optional further reading.
2These constructs have some similarities to the “fork” and “join” constructs available in many languages, but there are

notable differences as well, as you will learn later in the course.
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Figure 1: Computation graph for Algorithm 1 (Sequential ArraySum)

the async, 〈stmt1〉, asynchronously (i.e., before, after, or in parallel) with the remainder of the parent
task.

• The statement “finish 〈stmt2〉” causes the parent task to execute the body of the finish, 〈stmt2〉, and
then wait until all async tasks created within 〈stmt2〉 have completed.

The notation, 〈stmt〉, refers to any legal program statement e.g., if-then-else, for-loop, method call, or a block
enclosed in { } braces. Async and finish statements may be arbitrarily nested, so they can be contained in
〈stmt〉 too. (The use of angle brackets in “〈stmt〉” follows a standard notational convention to denote units of
a program. They are unrelated to the < and > comparison operators used in many programming languages.)

We can use async and finish to obtain a simple parallel program for computing an array sum as shown in
Algorithm 2. The graph structure for Algorithm 2 is shown in Figure 2. Note that it differs from Figure 1
since there is no edge or sequence of edges connecting Tasks T2 and T3. This indicates that tasks T2 and T3
can execute in parallel with each other; for example, if your computer has two processor cores, T2 and T3
can be executed on two different processors at the same time. We will see much richer examples of parallel
programs using async, finish and other constructs during the course.

Algorithm 2: Two-way Parallel ArraySum

Input: Array of numbers, X.
Output: sum = sum of elements in array X.
// Start of Task T1 (main program)

sum1← 0; sum2← 0;
// Compute sum1 (lower half) and sum2 (upper half) in parallel.

finish{
async{

// Task T2

for i← 0 to X.length/2− 1 do
sum1← sum1 +X[i];

};
async{

// Task T3

for i← X.length/2 to X.length− 1 do
sum2← sum2 +X[i];

};
};
// Task T1 waits for Tasks T2 and T3 to complete

// Continuation of Task T1

sum← sum1 + sum2;
return sum;
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// Start of Task T1 (main program) 

Figure 2: Computation graph for code example in Algorithm 2 (Two-way Parallel ArraySum)

0.2 Why is Parallel Programming important?

Historically, parallel programming was motivated by the need for speed and memory. When a problem is
too large to fit or solve quickly on a single computer, we use multiple computers to solve it instead. Figure 3
shows the historical trend of the number of processors used in the Top 500 computers3 during 1993–2010. In
1993, the maximum number of processors used was in the 1025–2048 range, whereas that number increased
to over 128,000 in 2010 and is projected to reach one billion in the next decade!

Until recently, all computer users could reasonably expect the speed of a single processor to increase rapidly
with new generations of hardware technology, and the motivation for parallel computing was low among
mainstream computer users. Now, parallel programming has become important for all computers in the
world — even laptops and mobile devices — because clock frequencies for individual processors are no longer
increasing. For example, in 1980, a major milestone for researchers was to build a microprocessor that could
execute one million instructions per second (1 MIPS) with clock speeds in the range of 1 Megahertz (106

cycles per second). Now, all commodity personal computers and laptops have processors with clock speeds
that exceed 1 Gigahertz (109 cycles per second). This increase in speed was predicted by two observations
from the 1960’s and 1970’s that are now referred to as Moore’s Law [20] and Dennard Scaling [7]. Moore’s
Law predicted that the transistor density of semiconductor chips would double roughly every 18 months
i.e., the transistor feature size would decrease by a factor of

√
2 roughly every 18 months. Dennard Scaling

predicted that as transistors get smaller, they will switch faster and use less power. Even though this ability
to increase the number of transistors in a chip continues unabated, a major disruption for the computer
industry is that clock speeds are not expected to increase beyond the Gigahertz level in the foreseeable
future.

There are multiple complex factors that have contributed to clock speeds plateauing at the Gigahertz level.
They involve a detailed understanding of semiconductor physics and silicon technologies, but here’s a simple
summary. In a nutshell, for clock speeds in the Gigahertz or higher range, the power consumed by a processor
using current device technologies varies as the cube of the frequency, Power ∝ (Frequency)3. Processor chips
in laptop and personal computers are typically limited to consume at most 75 Watts because a larger power
consumption would lead to chips overheating and malfunctioning, given the limited air-cooling capacity
of these computers. This power limitation has been referred to as the “Power Wall”. The Power Wall
is even more critical for smart-phones and handheld devices than for server systems because larger power
consumption leads to a shorter battery life. Thus, the dilemma facing the computer industry is: what to
do when the number of transistors continues to double every 18 months, but the power budget and clock
frequency can no longer be increased?

This dilemma is being solved by the introduction of multicore processor chips, each of which contains multiple
processor cores. The earliest multicore processors contained two processor cores that can execute independent
instruction streams, such as the two async tasks shown in Algorithm 2. This is a sea change in the history of

3This list is compiled by measuring the rate at which each computer can perform a pre-assigned dense matrix computation
called High Performance LINPACK (HPL).
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Figure 3: Historical chart showing the distribution of the number of processors used in the Top 500 computers
from 1993 to 2010 (source: http://www.top500.org)

personal computers, since the only parallel computers available until 2005 were expensive servers with prices
that started at around 100,000 US dollars. How did the introduction of multicore processors help with over-
coming the Power Wall? Consider a 1 GHz processor chip that consumes power P , and two options for how
to use the extra transistors when the number of transistors is doubled. With Option A, the clock frequency
is doubled to 2 GHz thereby leading to a power consumption of 8P (recall that Power α (Frequency)3). With
Option B, two cores are created, each with clock speed still at 1 GHz, thereby leading to a power consump-
tion of 2P (with power P consumed by each core). In theory, both options deliver the same computation
capacity, but Option B does so with one-fourth the power of Option A4. Extrapolating to the future, the
number of cores per chip will have to continue to increase because of the Power Wall. Some projections
are that the number of cores in general-purpose chips will exceed one thousand by 2020. Some specialized
processors such as NVIDIA’s Kepler GPGPU chip already contain more than 1500 cores today.

In addition to future hardware roadmaps, there is another important trend in 21st computing that is fueling
an increased demand for parallel computing — this is the trend popularly referred to as big data. Analyzing
data at volumes and velocities that are growing at an exponential rate is now emerging as the “fourth
paradigm” for scientific discovery, and has also become a critical source of innovation and disruption across
a wide spectrum of industries. Analysis of this large volume of complex data to derive knowledge, therefore,
requires parallel computing by necessity since it is impractical to process terabytes or petabytes of data on
a single processor.

The final observation is that the challenge of exploiting parallelism across these large numbers of cores falls
squarely on the shoulders of software. When hardware makes multiple cores available to the user, it expects
that software will somehow find a way of decomposing its workload to execute in parallel across the cores.
Of course, the majority of computer users will not need to worry about parallel programming, just like the
majority of computer users today don’t worry about sequential programming. However, given that the entire

4Caveat: a number of simplifying assumptions were made in this analysis.
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computing industry has bet on parallelism, there is a desperate need for all Computer Science majors to be
aware of the fundamentals of parallel software and parallel programming. Further, it is widely acknowledged
that many commonly available parallel programming models provide low-level primitives that can be very
difficult to compose, debug or reason about. As an example, Prof. John Hennessy, a prominent computer
scientist (and also president of Stanford University) has observed that the “golden opportunity” for advances
in Computer Engineering is “a programming and architectural model that makes parallel programming easy
(in the sense that achieving both correctness and performance is not very difficult) and the result remains
reasonably portable. If a group solves this problem, they will be heroes.” The importance of parallel
computing, and the challenges of developing parallel software using many current approaches provided the
motivation for our creating a sophomore-level course on “Fundamentals of Parallel Programming” at Rice
that provides a pedagogic approach to structured parallel programming to prepare you for our brave new
world of ubiquitous parallel computing.

0.3 Course Organization

The desired learning outcomes from the course fall into three major areas, that we refer to as modules:

• Module 1: Parallelism — creation and coordination of parallelism (async, finish), abstract performance
metrics (work, critical paths), Amdahl’s Law, weak vs. strong scaling, data races and determinism, data
race avoidance (immutability, futures, accumulators, dataflow), deadlock avoidance, abstract vs. real
performance (granularity, scalability), collective and point-to-point synchronization (phasers, barriers),
parallel algorithms, systolic algorithms.

• Module 2: Concurrency — critical sections, atomicity, isolation, high level data races, nondeterminism,
linearizability, liveness/progress guarantees, actors, request-response parallelism, Java Concurrency,
locks, condition variables, semaphores, memory consistency models.

• Module 3: Locality and Distribution — memory hierarchies, locality, cache affinity, data movement,
message-passing (MPI), communication overheads (bandwidth, latency), MapReduce, accelerators,
GPGPUs, CUDA, OpenCL.

Each module is further divided into units, and each unit consists of a set of topics. This document consists
of lecture notes for Module 1. The section numbering in the document follows the unit.topic format. Thus,
Section 1.2 in the document covers topic 2 in unit 1. The same numbering convention is used for the videos
hosted on edX.
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//Task T0(Parent) 

finish {   //Begin finish 

  async  

    STMT1; //T1(Child) 

  //Continuation  

  STMT2;   //T0 

} //Continuation //End finish 

STMT3;     //T0 

STMT2 

async 

STMT1 

terminate 
wait 

T1 T0 

STMT3 

Figure 4: A example code schema with async and finish constructs

1 Task-level Parallelism

1.1 Task Creation and Termination (Async, Finish)

1.1.1 Async notation for Task Creation

As mentioned earlier in Section 0.1, the statement “async 〈stmt〉” causes the parent task to create a new
child task to execute 〈stmt〉 asynchronously (i.e., before, after, or in parallel) with the remainder of the
parent task. Figure 4 illustrates this concept by showing a code schema in which the parent task, T0, uses
an async construct to create a child task T1. Thus, STMT1 in task T1 can potentially execute in parallel with
STMT2 in task T0.

async is a powerful primitive because it can be used to enable any statement to execute as a parallel task,
including for-loop iterations and method calls. Listing 1 shows some example usages of async. These
examples are illustrative of logical parallelism, since it may not be efficient to create separate tasks for all
the parallelism created in these examples. Later in the course, you will learn the impact of overheads in
determining what subset of logical parallelism can be useful for a given platform.

All algorithm and code examples in the module handouts should be treated as “pseudo-code”, which is different
from the actual notation that you will use for programming projects in COMP 322.

In Example 1 in Listing 1, the for loop sequentially increments index variable i, but all instances of the loop
body can logically execute in parallel because of the async statement. The pattern of parallelizing counted
for-loops in Example 1 occurs so commonly in practice that many parallel languages include a specialized
construct for this case, that may be given a name such as foreach, forall or forasync.

In Example 2 in Listing 1, the async is used to parallelize computations in the body of a pointer-chasing
while loop. Though the sequence of p = p.next statements is executed sequentially in the parent task, all
dynamic instances of the remainder of the loop body can logically execute in parallel with each other.

Example 3 in Listing 1 shows the computation in Example 2 rewritten as a static void recursive method.
You should first convince yourself that the computations in Examples 2 and 3 are equivalent by omitting
the async keyword in each case. An interesting point to note in Example 3 is that a method can return
even though its child async tasks might not have completed. It’s only the enclosing finish that awaits the
completion of all the async’s. If you need to ensure that all async’s are completed before a method returns,
then the method body should be enclosed in a finish.

Example 4 shows the use of async to execute two method calls as parallel tasks (as was done in the two-way
parallel sum algorithm).

As these examples show, a parallel program can create an unbounded number of tasks at runtime. The
parallel runtime system is responsible for scheduling these tasks on a fixed number of processors. It does
so by creating a fixed number of worker threads as shown in Figure 5, typically one worker per processor
core. Worker threads are allocated by the Operating System (OS). By creating one thread per core, we limit
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1 // Example 1 : execute i t e r a t i o n s o f a counted f o r loop in p a r a l l e l
2 // (we w i l l l a t e r s ee f o r a l l l oops as a shorthand f o r t h i s common case )
3 for ( int i = 0 ; i < A. length ; i++)
4 async { A[ i ] = B[ i ] + C[ i ] ; } // value o f i i s copied on entry to async
5
6 // Example 2 : execute i t e r a t i o n s o f a whi l e loop in p a r a l l e l
7 p = f i r s t ;
8 while ( p != null ) {
9 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async

10 p = p . next ;
11 }
12
13 // Example 3 : Example 2 r ewr i t t en as a r e c u r s i v e method
14 stat ic void proce s s (T p) {
15 i f ( p != null ) {
16 async { p . x = p . y + p . z ; } // value o f p i s cop ied on entry to async
17 proce s s (p . next ) ;
18 }
19 }
20
21 // Example 4 : execute method c a l l s in p a r a l l e l
22 async l e f t s = quickSort ( l e f t ) ;
23 async r i g h t s = quickSort ( r i g h t ) ;

Listing 1: Example usages of async

the role of the OS in task scheduling to that of binding threads to cores at the start of program execution,
and let the parallel runtime system take over from that point onwards. These workers repeatedly pull work
from a shared work queue when they are idle, and push work on the queue when they generate more work.
The work queue entries can include async’s and continuations. An async is the creation of a new task, such
as T1 in Figure 4. A continuation5 represents a potential suspension point for a task, which (as shown in
in Figure 4) can include the point after an async creation as well as the point following the end of a finish
scope. Continuations are also referred to as task-switching points, because they are program points at which
a worker may switch execution between different tasks. A key motivation for this separation between tasks
and threads is that it would be prohibitively expensive to create a new OS-level worker thread for each async

task that is created in the program.

An important point to note in Figure 5 is that local variables are private to each task, whereas static
and instance fields are shared among tasks. This is similar to the rule for accessing local variables and
static/instance fields within and across Java methods. Listing 2 summarizes the rules for accessing local
variables across async boundaries. For convenience, as shown in Rules 1 and 2, an inner async is allowed
to access a local variable declared in an outer async or method by simply capturing the value of the local
variable when the async task is created (analogous to capturing the values of local variables in parameters at
the start of a method call). Note that an inner async is not permitted to modify a local variable declared in
an outer scope (Rule 3) because doing so will violate the assumption that local variables are private to each
task. If needed, you can work around this constraint by replacing the local variable by a static or instance
field, since fields can be shared among tasks.

1.1.2 Finish notation for Task Termination

Let us look back at the code schema in Figure 4. It included a finish statement, which was defined as
follows in Section 0.1: the statement “finish 〈stmt〉” causes the parent task to execute 〈stmt〉 and then wait

5This use of “continuation” is related to, but different from continuations in functional programming languages.
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w1 w2 w3 w4 

push 
work 

pull 
work 

Logical Work Queue 
(async’s & continuations) 

Workers 

Local variables are 
private to each task 

Static & instance fields are shared among tasks 

Figure 5: Scheduling an parallel program on a fixed number of workers. (Figure adapted from [11].)

1 // Rule 1 : an inner async may read the value o f any outer f i n a l l o c a l var
2 f ina l int i 1 = 1 ;
3 async { . . . = i 1 ; /∗ i 1=1 ∗/ }
4
5 // Rule 2 : an inner async may read the value o f any outer l o c a l var
6 int i 2 = 2 ; // i 2=2 i s copied on entry in to the async l i k e a method param
7 async { . . . = i 2 ; /∗ i 2=2∗/}
8 i 2 = 3 ; // This ass ignment i s not seen by the above async
9

10 // Rule 3 : an inner async i s not permitted to modify an outer l o c a l var
11 int i 3 ;
12 async { i 3 = . . . ; /∗ ERROR ∗/}

Listing 2: Rules for accessing local variables across async’s
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until all async tasks created within 〈stmt〉 have completed.

Thus, the finish statement in Figure 4 is used by task T0 to ensure that child task T1 has completed executing
STMT1 before T0 executes STMT3. If T1 created a child async task, T2 (a “grandchild” of T0), T0 will wait for
both T1 and T2 to complete in the finish scope before executing STMT3. This waiting is also referred to as a
synchronization. There is an implicit finish scope surrounding the body of the main program, so program
execution will only end after all async tasks have completed. The nested structure of finish ensures that
no deadlock cycle can be created between two tasks such that each is waiting on the other due to end-finish
operations. (A deadlock cycle refers to a situation where two tasks can be blocked indefinitely because each
is waiting for the other to complete some operation.)

We also observe that each dynamic instance TA of an async task has a unique Immediately Enclosing Finish
(IEF) instance F of a finish statement during program execution, where F is the innermost finish containing
TA.

Like async, finish is a powerful primitive because it can be wrapped around any statement thereby support-
ing modularity in parallel programming. Why do you need finish constructs beyond the implicit finish in
main()? Because a parent (ancestor) task needs to be sure that its child (descendant) tasks have completed
before it can access the results that they computed. This could occur if STMT3 in Figure 4 used a value
computed by STMT1. You saw a concrete example of this case in the Two-way Parallel ArraySum program
discussed in Section 0.1 where the finish was used to ensure that sum1 and sum2 were fully computed before
their values were used to compute sum.

If you want to convert a sequential program into a parallel program, one approach is to insert async state-
ments at points where the parallelism is desired, and then insert finish statements to ensure that the parallel
version produces the same result as the sequential version. Listing 3 extends the first two code examples
from Listing 1 to show the sequential version, an incorrect parallel version with only async’s inserted, and
a correct parallel version with both async’s and finish’s inserted.

The source of errors in the incorrect parallel versions are data races, which are notoriously hard to debug.
As you will learn later in the course, a data race occurs if two parallel computations access the same shared
location in an “interfering” manner i.e., such that at least one of the accesses is a write (so called because the
effect of the accesses depends on the outcome of the “race” between them to determine which one completes
first). Data races form a class of bugs that are specific to parallel programming.

async and finish statements also jointly define what statements can potentially be executed in parallel
with each other. Consider the finish-async nesting structure shown in Figure 6. It reveals which pairs of
statements can potentially execute in parallel with each other. For example, task A2 can potentially execute
in parallel with tasks A3 and A4 since async A2 was launched before entering the finish F2, which is the
Immediately Enclosing Finish for A3 and A4. However, Part 3 of Task A0 cannot execute in parallel with
tasks A3 and A4 since it is performed after finish F2 is completed.

1.1.3 Exception Semantics

Besides termination detection, the finish statement plays an important role with regard to exception
semantics. If any async throws an exception, then its IEF statement throws a MultiException [6] formed
from the collection of all exceptions thrown by all async’s in the IEF. Consider Listing 5, which is Listing 4
extended with two try-catch blocks. If async task A3 throws an exception, the exception will not be caught
as e1 (line 8) but instead as e2 (line 11), since the catch block for e2 encloses the finish statement containing
A2. The catch block for e1 only catches any errors that may occur in the creation of an async (e.g., an
OutOfMemoryError), not the execution of the async.

If the program has no try-catch blocks, then an error message is displayed on the console upon program exit.
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1 // Example 1 : Sequent i a l v e r s i on
2 for ( int i = 0 ; i < A. length ; i++) A[ i ] = B[ i ] + C[ i ] ;
3 System . out . p r i n t l n (A [ 0 ] ) ;
4
5 // Example 1 : I n c o r r e c t p a r a l l e l v e r s i on
6 for ( int i = 0 ; i < A. length ; i++) async A[ i ] = B[ i ] + C[ i ] ;
7 System . out . p r i n t l n (A [ 0 ] ) ;
8
9 // Example 1 : Correct p a r a l l e l v e r s i on

10 f in ish for ( int i = 0 ; i < A. length ; i++) async A[ i ] = B[ i ] + C[ i ] ;
11 System . out . p r i n t l n (A [ 0 ] ) ;
12
13 // Example 2 : Sequent i a l v e r s i on
14 p = f i r s t ;
15 while ( p != null ) {
16 p . x = p . y + p . z ; p = p . next ;
17 }
18 System . out . p r i n t l n ( f i r s t . x ) ;
19
20 // Example 2 : I n c o r r e c t p a r a l l e l v e r s i on
21 p = f i r s t ;
22 while ( p != null ) {
23 async { p . x = p . y + p . z ; }
24 p = p . next ;
25 }
26 System . out . p r i n t l n ( f i r s t . x ) ;
27
28 // Example 2 : Correct p a r a l l e l v e r s i on
29 p = f i r s t ;
30 f in ish while ( p != null ) {
31 async { p . x = p . y + p . z ; }
32 p = p . next ;
33 }
34 System . out . p r i n t l n ( f i r s t . x ) ;

Listing 3: Correct parallelization with async and finish
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1 f in ish { // F1
2 // Part 1 o f Task A0
3 async {A1 ; async A2;}
4 f in ish { // F2
5 // Part 2 o f Task A0
6 async A3 ;
7 async A4 ;
8 }
9 // Part 3 o f Task A0

10 }

Listing 4: Example usage of async and finish

Task A4 

finish 

async async 

Task A0 (Part 3) 

Task A0 (Part 2) 

finish 
Task A0 (Part 1) 

async 

Task A1 

async 

Task A2 
Task A3 

Figure 6: Finish-async nesting structure for code fragment in Listing 4

1 f in ish { // F1
2 // Part 1 o f Task A0
3 async {A1 ; async A2;}
4 try {
5 f in ish { // F2
6 // Part 2 o f Task A0
7 try { async A3 ; }
8 catch ( Throwable e1 ) { } ; // w i l l not catch except ion in A3
9 async A4 ;

10 }
11 } catch ( Throwable e2 ) { } ; // w i l l catch except ion in A3
12 // Part 3 o f Task A0
13 }

Listing 5: Extension of Listing 4 with try-catch blocks
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1.2 Computation Graphs

A Computation Graph (CG) is a formal structure that captures the meaning of a parallel program’s execution.
When you learned sequential programming, you were taught that a program’s execution could be understood
as a sequence of operations that occur in a well-defined total order, such as the left-to-right evaluation order
for expressions. Since operations in a parallel program do not occur in a fixed order, some other abstraction
is needed to understand the execution of parallel programs. Computation Graphs address this need by
focusing on the extensions required to model parallelism as a partial order. Specifically, a Computation
Graph consists of:

• A set of nodes, where each node represents a step consisting of an arbitrary sequential computation.
For programs with async and finish constructs, a task’s execution can be divided into steps by using
continuations to define the boundary points. Recall from Section 1.1.1 that a continuation point in a
task is the point after an async creation or a point following the end of a finish scope. It is acceptable
to introduce finer-grained steps in the CG if so desired i.e., to split a step into smaller steps. The
key constraint is that a step should not contain any parallelism or synchronization i.e., a continuation
point should not be internal to a step.

• A set of directed edges that represent ordering constraints among steps. For async–finish programs,
it is useful to partition the edges into three cases [11]:

1. Continue edges that capture sequencing of steps within a task — all steps within the same task
are connected by a chain of continue edges.

2. Spawn edges that connect parent tasks to child async tasks. When an async is created, a spawn
edge is inserted between the step that ends with the async in the parent task and the step that
starts the async body in the new child task.

3. Join edges that connect descendant tasks to their Immediately Enclosing Finish (IEF) operations.
When an async terminates, a join edge is inserted from the last step in the async to the step in
the ancestor task that follows the IEF operation.

Consider the example program shown in Listing 6 and its Computation Graph shown in Figure 7. There are
6 tasks in the CG, T1 to T6. This example uses finer-grained steps than needed, since some steps (e.g., v1
and v2) could have have been combined into a single step. In general, the CG grows as a program executes
and a complete CG is only available when the entire program has terminated. The three classes of edges
(continue, spawn, join) are shown in Figure 7. Even though they arise from different constructs, they all
have the same effect viz., to enforce an ordering among the steps as dictated by the program.

In any execution of the CG on a parallel machine, a basic rule that must be obeyed is that a successor node
B of an edge (A,B) can only execute after its predecessor node A has completed. This relationship between
nodes A and B is referred to as a dependence because the execution of node B depends on the execution of
node A having completed. In general, node Y depends on node X if there is a path of directed edges from
X to Y in the CG. Therefore, dependence is a transitive relation: if B depends on A and C depends on B,
then C must depend on A. The CG can be used to determine if two nodes may execute in parallel with each
other. For example, an examination of Figure 7 shows that all of nodes v3 . . . v15 can potentially execute
in parallel with node v16 because there is no directed path in the CG from v16 to any node in v3 . . . v15 or
vice versa.

It is also important to observe that the CG in Figure 7 is acyclic i.e., it is not possible to start at a node
and trace a cycle by following directed edges that leads back to the same node. An important property of
CGs is that all CGs are directed acyclic graphs, also referred to as dags. As a result, the terms “computation
graph” and “computation dag” are often used interchangeably.
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1 // Task T1
2 v1 ; v2 ;
3 f in ish {
4 async {
5 // Task T2
6 v3 ;
7 f in ish {
8 async { v4 ; v5 ; } // Task T3
9 v6 ;

10 async { v7 ; v8 ; } // Task T4
11 v9 ;
12 } // f i n i s h
13 v10 ; v11 ;
14 async { v12 ; v13 ; v14 ; } // Task T5
15 v15 ;
16 }
17 v16 ; v17 ;
18 } // f i n i s h
19 v18 ; v19 ;
20 f in ish {
21 async { v20 ; v21 ; v22 ; }
22 }
23 v23 ;

Listing 6: Example program

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

Γ1

Γ2

Γ3 Γ4 Γ5

Γ6

Figure 7: Computation Graph G for example program in Listing 6
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1.3 Ideal Parallelism

In addition to providing the dependence structure of a parallel program, Computation Graphs can also be
used to reason about the ideal parallelism of a parallel program as follows:

• Assume that the execution time, time(N), is known for each node N in the CG. Since N represents an
uninterrupted sequential computation, it is assumed that time(N) does not depend on how the CG is
scheduled on a parallel machine. (This is an idealized assumption because the execution time of many
operations, especially memory accesses, can depend on when and where the operations are performed
in a real computer system.)

• Define WORK(G) to be the sum of the execution times of the nodes in CG G,

WORK(G) =
∑

node N in G

time(N)

Thus, WORK(G) represents the total amount of work to be done in CG G.

• Define CPL(G) to be the length of the longest path in G, when adding up the execution times of all
nodes in the path. There may be more than one path with this same length. All such paths are referred
to as critical paths, so CPL stands for critical path length.

Consider again the CG, G, in Figure 7. For simplicity, we assume that all nodes have the same execution
time, time(N) = 1. It has a total of 23 nodes, so WORK(G) = 23. In addition the longest path consists of
17 nodes as follows, so CPL(G) = 17:

v1→ v2→ v3→ v6→ v7→ v8→ v10→ v11→ v12→ v13→ v14→ v18→ v19→ v20→ v21→ v22→ v23

Given the above definitions of WORK and CPL, we can define the ideal parallelism of Computation Graph
G as the ratio, WORK(G)/CPL(G). The ideal parallelism can be viewed as the maximum performance
improvement factor due to parallelism that can be obtained for computation graph G, even if we ideally had
an unbounded number of processors. It is important to note that ideal parallelism is independent of the
number of processors that the program executes on, and only depends on the computation graph

1.3.1 Abstract Performance Metrics

While Computation Graphs provide a useful abstraction for reasoning about performance, it is not practical
to build Computation Graphs by hand for large programs. The Habanero-Java (HJ) library used in the
course includes the following utilities to help programmers reason about the CGs for their programs:

• Insertion of calls to doWork(). The programmer can insert a call of the form perf.doWork(N) any-
where in a step to indicate execution of N application-specific abstract operations e.g., floating-point
operations, comparison operations, stencil operations, or any other data structure operations. Multiple
calls to perf.doWork() are permitted within the same step. They have the effect of adding to the
abstract execution time of that step. The main advantage of using abstract execution times is that the
performance metrics will be the same regardless of which physical machine the HJ program is executed
on. The main disadvantage is that the abstraction may not be representative of actual performance
on a given machine.

• Printout of abstract metrics. If an HJlib program is executed with a specified option, abstract metrics
are printed at the end of program execution that capture the total number of operations executed
(WORK) and the critical path length (CPL) of the CG generated by the program execution. The
ratio, WORK/CPL is also printed as a measure of ideal parallelism.

• Visualization of computation graph. A tool called HJ-viz is also provided that enables you to see an
image of the computation graph of a program executed with abstract performance metrics.
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1.4 Multiprocessor Scheduling

Now, let us discuss the execution of CG G on an idealized parallel machine with P processors. It is idealized
because all processors are assumed to be identical, and the execution time of a node is assumed to be
independent of which processor it executes on. Consider all legal schedules of G on P processors. A legal
schedule is one that obeys the dependence constraints in the CG, such that for every edge (A,B) the scheduled
guarantees that B is only scheduled after A completes. Let tP denote the execution time of a legal schedule.
While different schedules may have different execution times, they must all satisfy the following two lower
bounds:

1. Capacity bound: tp ≥ WORK(G)/P . It is not possible for a schedule to complete in time less than
WORK(G)/P because that’s how long it would take if all the work was perfectly divided among P
processors.

2. Critical path bound: tp ≥ CPL(G). It is not possible for a schedule to complete in time less than
CPL(G) because any legal schedule must obey the chain of dependences that form a critical path.
Note that the critical path bound does not depend on P .

Putting these two lower bounds together, we can conclude that tp ≥ max(WORK(G)/P,CPL(G)). Thus,
if the observed parallel execution time tP is larger than expected, you can investigate the problem by
determining if the capacity bound or the critical path bound is limiting its performance.

It is also useful to reason about the upper bounds for tP . To do so, we have to make some assumption about
the “reasonableness” of the scheduler. For example, an unreasonable scheduler may choose to keep processors
idle for an unbounded number of time slots (perhaps motivated by locality considerations), thereby making
tP arbitrarily large. The assumption made in the following analysis is that all schedulers under consideration
are “greedy” i.e., they will never keep a processor idle when there’s a node that is available for execution.

We can now state the following properties for tP , when obtained by greedy schedulers:

• t1 = WORK(G). Any greedy scheduler executing on 1 processor will simply execute all nodes in the
CG in some order, thereby ensuring that the 1-processor execution time equals the total work in the
CG.

• t∞ = CPL(G). Any greedy scheduler executing with an unbounded (infinite) number of processors must
complete its execution with time = CPL(G), since all nodes can be scheduled as early as possible.

• tP ≤ t1/P + t∞ = WORK(G)/P + CPL(G). This is a classic result due to Graham [10]. An informal
sketch of the proof is as follows. At any given time in the schedule, we can declare the time slot
to be complete if all P processors are busy at that time and incomplete otherwise. The number of
complete time slots must add up to at most t1/P since each such time slot performs P units of work.
In addition, the number of incomplete time slots must add up to at most t∞ since each such time slot
must advance 1 time unit on a critical path. Putting them together results in the upper bound shown
above. Combining it with the lower bound, you can see that:

max(WORK(G)/P,CPL(G)) ≤ tP ≤WORK(G)/P + CPL(G)

It is interesting to compare the lower and upper bounds above. You can observe that they contain
the max and sum of the same two terms, WORK(G)/P and CPL(G). Since x + y ≤ 2 max(x, y), the
lower and upper bounds vary by at most a factor of 2×. Further, if one term dominates the other e.g.,
x� y, then the two bounds will be very close to each other.

1.5 Parallel Speedup and Amdahl’s Law

Given definitions for t1 and tP , the speedup for a given schedule of a computation graph on P processors
is defined as Speedup(P) = t1/tP . Speedup(P) is the factor by which the use of P processors speeds up
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Figure 8: Illustration of Amdahl’s Law (source: http://en.wikipedia.org/wiki/Amdahl’s law)

execution time relative to 1 processor, for a fixed input size. For ideal executions without overhead, 1 ≤
Speedup(P) ≤ P . The term linear speedup is used for a program when Speedup(P) = k × P as P varies, for
some constant k, 0 < k < 1.

We can now summarize a simple observation made by Gene Amdahl in 1967 [1]: if q ≤ 1 is the fraction
of WORK in a parallel program that must be executed sequentially, then the best speedup that can be
obtained for that program, even with an unbounded number of processors, is Speedup(P) ≤ 1/q. As in the
Computation Graph model studied earlier, this observation assumes that all processors are uniform i.e., they
all execute at the same speed.

This observation follows directly from a lower bound on parallel execution time that you are familiar with,
namely tP ≥ CPL(G), where tP is the execution time of computation graph G on P processors and CPL
is the critical path length of graph G. If fraction q of WORK(G) is sequential, it must be the case that
CPL(G) ≥ q ×WORK(G). Therefore, Speedup(P) = t1/tP must be ≤ WORK(G)/(q ×WORK(G)) = 1/q
since t1 = WORK(G) for greedy schedulers.

The consequence of Amdahl’s Law is illustrated in Figure 8. The x-axis shows the number of processors
increasing in powers of 2 on a log scale, and the y-axis represents speedup obtained for different values of
q. Specifically, each curve represents a different value for the parallel portion, (1− q), assuming that all the
non-sequential work can be perfectly parallelized. Even when the parallel portion is as high as 95%, the
maximum speedup we can obtain is 20× since the sequential portion is 5%. The ideal case of q = 0 and a
parallel portion of 100% is not shown in the figure, but would correspond to the y = x line which would
appear to be an exponential curve since the x-axis is plotted on a log scale.

Amdahl’s Law reminds us to watch out for sequential bottlenecks both when designing parallel algorithms
and when implementing programs on real machines. While it may paint a bleak picture of the utility of
adding more processors to a parallel computing, it has also been observed that increasing the data size
for a parallel program can reduce the sequential portion [13] thereby making it profitable to utilize more
processors. The ability to increase speedup by increasing the number of processors for a fixed input size
(fixed WORK) is referred to as strong scaling, and the ability to increase speedup by increasing the input
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size (increasing WORK) is referred to as weak scaling.

1.6 Parallel Quicksort

In this section, we introduce the well-known sequential Quicksort algorithm, and discuss three approaches
to parallelizing this algorithm.

1.6.1 Parallelizing Quicksort: Approach 1

Quicksort is a classical sequential sorting algorithm introduced by C.A.R. Hoare in 1961 [16], and is still
very much in use today. There are a number of factors that have contributed to its longevity. First, it is
simple to implement. Second, even though it has a worst case O(n2) execution time complexity, it executes
sequentially in O(n log n) time in practice. Third, it is an “in place” sorting algorithm i.e., it does not need
the allocation of a second copy of the array. For many computers today, the “in place” characteristic may not
be as important now as it was 50 years ago. Finally, Quicksort epitomizes the divide-and-conquer paradigm
of computer algorithms, which naturally lend themselves to parallel implementations.

As a historical note, Figure 9 contains a facsimile of the exact description of the original Quicksort algorithm
from 1961 [16]. (Note that the comment section is longer than the code for the algorithm!) A call to
quicksort(A,M,N) has the effect of sorting array elements A[M . . .N ] in place. The value keyword indicates
that integer parameters M and N will not be changed (as in Java’s final declaration). The body of the
procedure is enclosed in the keywords, begin and end. The divide and conquer stages in this algorithm are
captured as follows:

Divide: The call to partition(A,M,N,I,J) partitions the subarray, A[M . . .N ] into disjoint sub-arrays, A[M . . . J ]
and A[I . . . N ] (where M ≤ J < I ≤ N) such that all elements in A[M . . .N ] are guaranteed to be
≤ all elements in A[J + 1 . . . I − 1], which in turn are guaranteed to be ≤ all elements in A[I . . . N ].
A facsimile of the original specification of the partition procedure6 is included in Figure 10. It uses a
randomly selected element in A[M . . .N ] to serve as the pivot for partitioning the array.

Conquer: The two recursive calls to quicksort operate on sub-arrays A[M . . . J ] and A[I . . . N ]. The re-
cursion terminates when M < N is false i.e., when M ≥ N . There is no combining to be done after
the two sub-arrays have been sorted, since they can just be left in place to obtain a sorted version of
A[M . . .N ].

The divide-and-conquer structure of the quicksort procedure naturally leads to parallel execution of the
recursive calls, akin to the recursive parallel algorithm for the Array Sum problem that you studied earlier.
In particular, the two recursive calls to quicksort can be executed in parallel as shown below in Algorithm 3.
We refer to this parallel algorithm as Approach 1.

Algorithm 3: ParallelQuickSort (Approach 1)

Input: Array of comparable objects, A; start of range to be sorted, M ; end of range to be sorted, N .
Output: Updated version of A, in which elements M . . .N are sorted.
// Main program calls finish { ParallelQuickSort(A, M, N)}
if M < N then

// Call sequential partition() algorithm in Figure 10.

I, J ← partition(A,M,N);
async{

ParallelQuickSort(A, M, J)
};
async{

ParallelQuickSort(A, I, N)
};

6Modern implementations of this algorithm usually replace the go to statements by while, continue, and break statements.
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Figure 9: Algorithm 64: Quicksort (source: [16])

What is the parallel execution time complexity of this approach to parallelization? For simplicity, let us
perform a big-O analysis assuming perfect pivoting, i.e., that each call to partition() is able to divide the
input array into two sub-arrays of equal size. In that case, the first call to partition() takes O(n) time, the
next two calls execute in parallel and take O(n/2) time each, the next four calls execute in parallel and take
O(n/4) time each, and so on. Thus, the critical path length for this algorithm is CPL(n) = O(n) +O(n/2) +
O(n/4) + . . . = O(n), and the total computation performed by the algorithm is WORK(n) = O(n log n).
The computation graph structure in Figure 11 illustrates the derivation of WORK(n) and CPL(n) for
Approach 1. With O(n) processors, the best parallel speedup that we can expect from this algorithm, even
with an unbounded number of processors, is WORK(n)/CPL(n) = O(log n), which is highly limiting.

1.6.2 Parallelizing Quicksort: Approach 2

We studied Approach 1 to parallelizing Quicksort in Section 1.6, by using async statements to parallelize
recursive calls. An alternate approach is to leave the calls to quicksort() unchanged and instead focus on
parallelizing the computation within each call to partition(). This can be very challenging if we use the code
in Figure 10 as a starting point, since that algorithm performs sequential incremental updates to the array
using calls to exchange(). Instead, we can exploit parallelism by making a copy of the sub-array in a new
location, identifying elements that are <, =, or > the pivot value, and then packing elements from the copy
back into the original sub-array as shown in Listing 7.

The program in Listing 7 has more detail than a high-level algorithmic description, but it is informative
to see what computations are necessary to perform this kind of parallelization. The forall statement in
lines 8–13 computes in parallel the values of lt[k], eq[k], and gt[k], each of which is set to 0 or 1 de-
pending on whether A[M+k] < A[M+pivot], A[M+k] == A[M+pivot] or A[M+k] > A[M+pivot] respectively.
The forall also copies sub-array A[M . . .N ] into buffer[0 . . . N −M + 1]. We can use the parallel prefix
sum algorithm described in Section 1.6.5 to obtain a parallel implementation of the computePrefixSums()

procedure called in lines 14, 15, and 16. We assume that the computePrefixSums() procedure replaces the
input int[] array by the prefix sums, and also returns an int value containing the total sum of the input
array (same as the last element in the prefix sum). The three prefix sums can also be combined into a single
scan operation when using segmented scans [3].

The forall loop in lines 17–21 permutes the elements in sub-array A[M . . .N ] so as to pack the sub-arrays
containing <, =, or > values relative to the pivot value. For the < case, line 18 copies buffer[k] into
A[M + lt[k]− 1]. For example, if only one element, A[M + k] satisfies this condition, then its prefix sum is
lt[k]=1, and line 18 assigns buffer[k] (which contains a copy of the original A[M + k]) to A[M]. Similarly,
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Description of procedure partition(A,M,N,I,J) from [15]:

Figure 10: Algorithm 63: Partition (source: [15])
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WORK(n) = O(n log n) 
CPL(n) = O(n) + O(n/2) + O(n/4) + … = O(n) 

partition 
(size = n) 

partition 
(size=n/2) 

partition 
(size=n/2) 

part 
(n/4) 

part 
(n/4) 

part 
(n/4) 

part 
(n/4) 

O(log n) depth of calls to partition() 

Figure 11: Computation Graph for Approach 1

for the = case, line 19 copies buffer[k] into A[M + ltCount + eq[k] − 1], and for the > case, line 20 copies
buffer[k] into A[M + ltCount+ eqCount+ gt[k]− 1]. Finally, the procedure returns [I, J ] based on the three
cases in lines 22, 23, and 24.

What is the parallel execution time complexity of this implementation of partition()? The total computation
performed is WORKpartition(n) = O(n), and the critical path length is CPLpartition(n) = O(log n) due

to the calls to computePrefixSums(). When combined with sequential calls to quicksort() as in [15], the
total work will be O(n) for the first call to partition(), 2×O(n/2) = O(n) for the 2 calls to partition() with
sub-arrays of size n/2, 4 × O(n/4) = O(n) for the 4 calls to partition() with sub-arrays of size n/4, and so
on. Thus, the total work is still WORK(n) = O(n log n) as in Approach 1. The critical path length can
be defined by the recurrence, CPL(n) = CPLpartition(n) + 2CPL(n/2) = log n + 2CPL(n/2), which can

be solved as CPL(n) = O(n). The computation graph structure in Figure 12 illustrates the derivation of
WORK(n) and CPL(n) for Approach 2. Thus, Approach 2 has the same low level of ideal parallelism as
Approach 1.

1.6.3 Parallelizing Quicksort: Approach 3

Approaches 1 and 2 considered two complementary strategies for exploiting parallelism in quicksort() —
execution of the recursive calls as parallel tasks, and exploitation of parallelism with a single call of partition()
respectively. Can we get the best of both worlds? What if we combine the parallel version of quicksort() in
Algorithm 3 with the parallel version of partition in Listing 7? The total computation remains the same,
WORK(n) = O(n log n). The computation graph structure is shown in Figure 13. It shows that the critical
path length is of the form log(n) + log(n/2) + log(n/4) + . . . = O(log2 n). The computation graph structure
in Figure 13 illustrates the derivation of WORK(n) and CPL(n) for Approach 3. Thus, the ideal parallelism
for this approach is WORK(n)/CPL(n) = (n log n)/ log2 n = O(n/(log n)), which is much better than that
of Approach 1 and Approach 2.

1.6.4 Parallel Array Sum Reduction using Async and Finish

Let’s start with the sequential Array Sum algorithm that you saw in Algorithm 1 (Section 0.1). You already
know how to decompose this computation into two tasks for two-way parallelism. However, a more general
parallelization structure can be obtained by using the reduction tree schema shown in Figure 14. This schema
is designed to allow elements of the original array to be overwritten so that the final sum is written in X[0].
If this poses a problem, a copy of the original array should be saved before executing this algorithm.
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1 stat ic point p a r t i t i o n ( int [ ] A, int M, int N) {
2 int I , J ;
3 f ina l int pivot = M + new java . u t i l .Random ( ) . next Int (N−M+1);
4 f ina l int [ ] b u f f e r = new int [N−M+1];
5 f ina l int [ ] l tOr i g = new int [N−M+1]; f ina l int [ ] l t = new int [N−M+1];
6 f ina l int [ ] gtOrig = new int [N−M+1]; f ina l int [ ] gt = new int [N−M+1];
7 f ina l int [ ] eqOrig = new int [N−M+1]; f ina l int [ ] eq = new int [N−M+1];
8 f o ra l l ( po int [ k ] : [ 0 :N−M] ) {
9 l tOr i g [ k ] = (A[M+k ] < A[ p ivot ] ? 1 : 0 ) ; l t [ k ] = l tOr i g [ k ] ;

10 eqOrig [ k ] = (A[M+k ] == A[ p ivot ] ? 1 : 0 ) ; eq [ k ] = eqOrig [ k ] ;
11 gtOrig [ k ] = (A[M+k ] > A[ p ivot ] ? 1 : 0 ) ; gt [ k ] = gtOrig [ k ] ;
12 bu f f e r [ k ] = A[M+k ] ;
13 }
14 f ina l int l tCount = computePrefixSums ( l t ) ; //update l t with p r e f i x sums
15 f ina l int eqCount = computePrefixSums ( eq ) ; //update eq with p r e f i x sums
16 f ina l int gtCount = computePrefixSums ( gt ) ; //update gt with p r e f i x sums
17 f o ra l l ( po int [ k ] : [ 0 :N−M] ) {
18 i f ( l tOr i g [ k]==1) A[M+l t [ k ]−1] = bu f f e r [ k ] ;
19 else i f ( eqOrig [ k]==1) A[M+ltCount+eq [ k ]−1] = bu f f e r [ k ] ;
20 else A[M+ltCount+eqCount+gt [ k ]−1] = bu f f e r [ k ] ;
21 }
22 i f (M+ltCount == M) return [M+ltCount+eqCount , M+ltCount ] ;
23 else i f (M+ltCount == N) return [M+ltCount , M+ltCount −1] ;
24 else return [M+ltCount+eqCount , M+ltCount −1] ;
25 } // p a r t i t i o n

Listing 7: Parallel algorithm for procedure partition()

WORK(n) = O(n log n) 
CPL(n) = log(n) + 2 log(n/2) + 4 log(n/4) + … = O(n) 

partition 
(CPL = log n) 

partition 
(log n/2) 

part 
(log n/4) 

O(n) depth of partition() steps 

part 
(log n/4) 

… …

partition 
(log n/2) 

part 
(log n/4) 

part 
(log n/4) 

… …

Figure 12: Computation Graph for Approach 2
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WORK(n) = O(n log n) 
CPL(n) = O(log n) + O(log n/2) + O(log n/4) + … = O(log2 n) 

partition 
(CPL = log n) 

partition 
(log n/2) 

partition 
(log n/2) 

part 
(log n/4) 

part 
(log n/4) 

part 
(log n/4) 

part 
(log n/4) 

O(log n) depth of calls to partition() 

Figure 13: Computation Graph for Approach 3

+ 

X[2] X[3] 

+ 

X[0] X[1] 

+ 

X[4] X[5] 

+ 

X[6] X[7] 

+ + 

+ 

X[0] X[2] X[4] X[6] 

X[0] X[4] 

X[0] 

stride = 1, size = 4 

stride = 2, size = 2 

stride = 4, size = 1 

Figure 14: Reduction tree schema for computing ArraySum in parallel, assuming X.length=8. Note that
elements of the input array are over-written with partial sums, and the final sum is written in X[0].
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1 f in ish { // s t r i d e = 1 , s i z e = 4 p a r a l l e l add i t i on s
2 async X[0]+=X[ 1 ] ; async X[2]+=X[ 3 ] ; async X[4]+=X[ 5 ] ; async X[6]+=X[ 7 ] ; }
3 f in ish { // s t r i d e = 2 , s i z e = 2 p a r a l l e l add i t i on s
4 async X[0]+=X[ 2 ] ; async X[4]+=X[ 6 ] ; }
5 f in ish { // s t r i d e = 4 , s i z e = 1 p a r a l l e l add i t i on s
6 async X[0]+=X[ 4 ] ; }

Listing 8: Async-Finish code to implement reduction tree schema in Figure 14

How can the schema shown in Figure 14 be converted to executable code? By designing a parallel program
that generates a computation graph that satisfies the dependences in Figure 14. One such program for the
X.length = 8 case is shown in Listing 8:

Looking at the dependence structure in Figure 14, we see that the computation can be decomposed into three
stages with 4 parallel additions in the first stage, 2 parallel additions in the second stage, and 1 addition
in the third stage. The code in Listing 8 follows this structure by using three finish scopes for the three
stages. The stride in each stage is the distance between the subscripts of the two array element operands for
each addition in the stage. Thus, the stride values for the three stages are 1, 2 and 4 respectively. The size
of each stage is the number of parallel additions that can be performed in the stage. The sizes of the three
stages are 4, 2, and 1 respectively. Note that stride∗size = X.length/2 = 4, in all stages. Though the last
stage just contains a single addition, X[0]+=X[4], we treat it as a degenerate case of parallel additions for
convenience.

After verifying that Listing 8 correctly implements the schema in Figure 14 for the X.length = 8 case, the
next question is: how do we implement a program that works in the general case for an array of arbitrary
size? The answer can be found in Listing 9. The stages are defined by sequential iterations of the outer
for loop starting at line 1. This loop initializes stride = 1 and doubles stride for each stage, terminating
when stride becomes ≥ X.length. The size value for each stage can be computed by using the observation
that stride∗size = X.length/2. Thus, we set size = X.length/(2*stride), using the ceilDiv function to round
up. (ceilDiv(x, y) returns dx/ye, where de represents the ceiling function, which rounds up.) The parallel
additions in each stage can then be implemented using the finish–for–async pattern in line 4. (This
pattern occurs commonly in practice, and can be replaced by a forall loop which you will learn later in
the course.) Each iteration performs the statement, X[2*i*stride] += X[(2*i+1)*stride]; in line 8, where
i iterates from 0 to size − 1. The if condition in line 5 ensures that the addition is only performed when
both operands are available. It is needed to handle the general case when X.length may not be a power of 2.
(An alternate approach is to use a recursive method to implement a parallel divide-and-conquer algorithm
to compute the sum of the elements of an array.)

As discussed in class, the overhead of creating an async on a real machine will be much larger than the
time taken to execute the instructions in its body (lines 6 and 8). You will learn about these overhead
considerations later in the course. For now, let us analyze the performance of this code using abstract
performance metrics. For simplicity let’s assume that each execution of line 8 takes 1 unit of time (since
line 8 contains the actual addition operation), and assume that everything else has zero cost. If n = X.length
is the size of the array, then the total WORK (number of array element additions) performed by the program
in Listing 9 is n−1 or O(n). Also, the critical path length (CPL) for this program is dlog2(n)e or O(log(n)).
Thus, the ideal parallelism is O(n/log(n)), which shows that the available parallelism increases as n, the size
of the input array, increases.

As a final note, let us determine how many processors could best be used to execute this program (ignoring
overhead issues). If we have p processors, we could have each processor compute partial sums for n/p array
elements in parallel, and then use the program in Listing 9 to sum the resulting p values. In this case, the
total work will be O(n), the critical path length will be O(n/p+ log p), and the resulting parallelism will be
O(n)/O(n/p+ log p). If we set p = n/(log n), then the resulting parallelism will be O(n)/O(log n+ log n−
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1 for ( int s t r i d e = 1 ; s t r i d e < X. length ; s t r i d e ∗= 2 ) {
2 // Compute s i z e = number o f add i t i on s to be performed in s t r i d e
3 int s i z e=c e i lD i v (X. length ,2∗ s t r i d e ) ; //Divide X. l ength /2∗ s t r i d e & round up
4 f in ish for ( int i = 0 ; i < s i z e ; i++)
5 async {
6 i f ( (2∗ i +1)∗ s t r i d e < X. length ) //Check i f both operands are a v a i l a b l e
7 // This cond i t i on w i l l always be t rue when X. l ength i s a power o f 2
8 X[2∗ i ∗ s t r i d e ]+=X[ ( 2∗ i +1)∗ s t r i d e ] ; //Array sub s c r i p t s d i f f e r by s t r i d e
9 } // f i n i s h−fo r−async

10 } // f o r
11
12 // Divide x by y , round up to next l a r g e s t int , and return r e s u l t
13 stat ic int c e i lD i v ( int x , int y ) { return ( x+y−1) / y ; }

Listing 9: Async-Finish code to implement schema in Figure 9 for arbitrarily sized arrays

1 // Copy input array A in to output array X
2 X = new int [A. l ength ] ; System . arraycopy (A, 0 ,X, 0 ,A. l ength ) ;
3 // Update array X with p r e f i x sums
4 for ( int i=1 ; i < X. length ; i++ ) X[ i ] += X[ i −1] ;

Listing 10: Sequential Prefix Sum

log log n) = O(n/(log n)) = O(p), which matches the number of processors. A larger value for p (e.g., p = n)
will lead to available parallelism that is less than p (e.g., parallelism = n/(log n). In this sense, we can say
that the algorithm in Listing 9 is optimal for p = n/(log n) or fewer processors.

1.6.5 Parallel Prefix Sum

Let us now consider an extension of the Array Sum computation known as Prefix Sum. Prefix Sum com-
putations are useful building blocks in a wide range of algorithms such as team standings, index of last
occurrence, lexical string comparison, and multi-precision arithmetic [3, 18].

The Prefix Sum problem can be stated as follows:

Given an input array A, compute an output array X as follows (where n = A.length):

X[i] =
∑

0≤j≤i

A[j] (1)

Thus, each output element, X[i], is the sum of the prefix of array A consisting of elements A[0 . . . i]. This
computation is also referred to as a scan operation [3]. In general, the sum operation in Equation 1 can be
replaced by any binary associative operation.

What is the most efficient sequential algorithm for this problem? The problem statement in 1 may suggest
that O(n2) additions are required because X[0] requires 0 additions, X[1] requires 1 addition, X[2] requires
2 additions, and so on. However, it is easy to see that the sequential Prefix Sum program in Listing 10
computes the desired prefix sums in O(n) time.

The program in Listing 10 appears to be inherently sequential since output X[i] depends on output X[i−1].
How can we execute it in parallel? One approach could be to invoke the parallel Array Sum reduction
algorithm from Section 1.6.4 independently for each element in output array X as follows:

Recall that the parallel execution time for a single sum reduction operation was O(log n). Since all X[i]
elements in Listing 11 are computed in parallel, the parallel execution time for computing all output elements
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1 f in ish {
2 for ( int i=0 ; i < X. length ; i++ )
3 async X[ i ] = computeSum(A, 0 , i ) ;
4 }

Listing 11: Inefficient Parallel Prefix Sum program

is also O(log n). However, if you count each addition as taking 1 unit of time, then the total WORK performed
by the program in Listing 11 is

∑
0≤i<n i = O(n2). This means that you will need at least O(n2/(log n))

processors to perform the computation in O(log n) time, which is highly inefficient considering that the
sequential algorithm takes O(n) time. For optimality, you need a parallel algorithm that ideally takes
O(log n) time on O(n/(log n)) processors, like the parallel algorithm for Sum Reduction.

To develop such a parallel algorithm, the key observation is that each prefix sum consists of some number
of partial sums that can be obtained by grouping together the terms in the prefix into powers of 2. For
example, the expression for X[6] can be rewritten as

X[6] = A[0] +A[1] +A[2] +A[3] +A[4] +A[5] +A[6]

= (A[0] +A[1] +A[2] +A[3]) + (A[4] +A[5]) +A[6]

We then observe that there will be at most O(log n) terms in ( ) parentheses for each such X[i] and that
these terms can be reused across different X[i] values. Further, these terms are naturally computed as partial
sums in the parallel Sum Reduction algorithm that you learned earlier.

Figure 15 shows the “upward sweep” for the Parallel Prefix algorithm, following the reduction tree schema
studied earlier. The rules to be followed by each non-leaf node in this reduction tree are:

1. Receive values from left child and right child.

2. Store the left child’s value in the node’s “box”. The left child’s value is the sum of all array elements
that are descendants of the left child, and can be reused as a common term in the partial sums for
elements that are descendants of the right child.

3. Compute the sum of the left child’s and right child’s values, and send that value up to the parent.

For the example in Figure 15, the input array is [3, 1, 2, 0, 4, 1, 1, 3]. If you look at the shaded box in the
figure, it receives the values 3 and 1 from its children, and propagates 3 + 1 = 4 to its parent. In addition,
it stores 3 in the box. All other boxes are filled in the same way. The critical path length for this sweep
is the height of the reduction tree, which is O(log n). This sweep can be performed in O(log n) time using
(n/(log n)) processors, as discussed earlier.

Figure 16 shows the “downward sweep” necessary to complete the prefix sum calculation. The rules to be
followed for each box are:

1. Receive value from its parent. This value contains the sum of the array elements located to the left of
the subtree rooted at the current box. Thus, the root box receives a zero (identity) value to start with.

2. Send value received from its parent to its left child, since its left child’s subtree has the same prefix as
it does.

3. Compute the sum of the value receive from its parent and the value stored in its box from the upward
sweep, and send that value to its right child. Recall that the value stored in its box is the sum of the
elements belong to its left child’s subtree. By adding these two values, we obtain the sum of the array
elements located to the left of the subtree rooted at the right child.
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Upward sweep!
1.  Receive values from children!
2.  Store left value in box!
3.  Send left+right value to parent!

15!

2!

Input array, A:!

Figure 15: Upward sweep for Parallel Prefix algorithm

After the downward sweep has completed, each leaf will contain the sum of the array element to its left
(also known as the pre-scan). To compute the prefix sum, all that remains to be done is to add the pre-scan
value to the array element value at that position, which can be performed in O(1) time in parallel on O(n)
processors or O(log n) time in parallel on O(n/(log n) processors.

If you look at the shaded box in Figure 16, it receives the value 6 from its parent which is the sum of all the
elements to the left of the subtree rooted at the shaded box (see input array in Figure 15). This value of 6
is propagated to the left child, whereas the value of 6 + 5 = 11 is propagated to the right child. As with the
upward sweep, the downward sweep can be performed in O(log n) time using (n/(log n)) processors.
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Downward sweep!
1.  Receive value from parent (root receives 0)!
2.  Send parentʼs value to left child!
3.  Send parent+box value to right child!
Add X[i] to get prefix sum!

= Prefix sum!
including A[i]!

+ A[i]!

Prefix sum!
excluding A[i]!

Figure 16: Downward sweep for Parallel Prefix algorithm
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2 Functional Parallelism and Determinism

2.1 Future Tasks and Functional Parallelism

2.1.1 Tasks with Return Values

The async construct introduced in previous sections provided the ability to execute any statement as a
parallel task, and the finish construct provided a mechanism to await termination of all tasks created
within its scope. async task creation leads to a natural parent-child relation among tasks, e.g., if task TA
creates async task TB , then TA is the parent of TB and TB is the child of TA. Thus, an ancestor task, TA,
can use a finish statement to ensure that it is safe to read values computed by all descendant tasks, TD
enclosed in the scope of the finish. These values are communicated from TD to TA via shared variables,
which (in the case of Java tasks) must be an instance field, static field, or array element.

However, there are many cases where it is desirable for a task to explicitly wait for the return value from a
specific single task, rather than all descendant tasks in a finish scope. To do so, it is necessary to extend
the regular async construct with return values, and to create a container (proxy) for the return value which
is done using future objects as follows:

• A variable of type future<T>7 is a reference to a future object i.e., a container for a return value
of type T from an async task. An important parallel programming rule is that all variables of type
future<T> should be declared with a final modifier, thereby ensuring that the value of the reference
cannot change after initialization. This rule ensures that the synchronization associated with reading
future values cannot lead to a deadlock cycle.

• There are exactly two operations that can be performed on a variable, V1, of type future<T1>, assuming
that type T2 is a subtype of, or the same as, type T1:

1. Assignment — variable V1 can be assigned a reference to an async with return value type T2 as
described below, or V1 can be assigned the value of a variable V2 with type future<T2>.

2. Blocking read — the operation, V1.get(), waits until the async referred to by V1 has completed,
and then propagates the return value of the async to the caller as a value of type T1. This
semantics also avoids the possibility of a race condition on the return value.

• An async with a return value is called a future task, and can be defined by introducing two extensions
to regular async’s as follows:

1. The body of the async must start with a type declaration, async<T1>, in which the type of the
async’s return value, T1, immediately follows the async keyword.

2. The body itself must consist of a compound statement enclosed in { } braces, dynamically termi-
nating with a return statement. It is important to note that the purpose of this return statement
is to communicate the return value of the enclosing async and not the enclosing method.

Listing 12 revisits the two-way parallel array sum example discussed in Section 0.1, but using future tasks
instead of regular async’s. There are two variables of type future<int> in this example, sum1 and sum2,
and both are declared as final. Each future task can potentially execute in parallel with it parent, just like
regular async’s. However, unlike regular async’s, there is no finish construct needed for this example since
the parent task T1, performs sum1.get() to wait for future task T2 and sum2.get() to wait for future task
T3.

In addition to waiting for completion, the get() operations are also used to access the return values of the
future tasks. This is an elegant capability because it obviates the need for shared fields or shared arrays,
and avoids the possibility of race conditions on those shared variables. Notice the three declarations for
variables sum in lines 4, 9, and 14. Each occurrence of sum is local to a task, and there’s no possibility of

7“future” is a pseudocode keyword, and will need be replaced by the appropriate data type in real code.
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1 // Parent Task T1 (main program )
2 // Compute sum1 ( lower h a l f ) and sum2 ( upper h a l f ) in p a r a l l e l
3 f ina l future<int> sum1 = async<int> { // Future Task T2
4 int sum = 0 ;
5 for ( int i=0 ; i < X. length /2 ; i++) sum += X[ i ] ;
6 return sum ;
7 } ; //NOTE: semico lon needed to terminate ass ignment to sum1
8 f ina l future<int> sum2 = async<int> { // Future Task T3
9 int sum = 0 ;

10 for ( int i=X. l ength /2 ; i < X. length ; i++) sum += X[ i ] ;
11 return sum ;
12 } ; //NOTE: semico lon needed to terminate ass ignment to sum2
13 //Task T1 waits f o r Tasks T2 and T3 to complete
14 int sum = sum1 . get ( ) + sum2 . get ( ) ;

Listing 12: Two-way Parallel ArraySum using Future Tasks

race conditions on these local variables or the return values from the future tasks. These properties have
historically made future tasks well suited to express parallelism in functional languages [14].

2.1.2 Computation Graph Extensions for Future Tasks

Future tasks can be accommodated very naturally in the Computation Graph (CG) abstraction introduced
in Section 1.2. The main CG extensions required to accommodate the get() operations are as follows:

• A get() operation is a new kind of continuation operation, since it can involve a blocking operation.
Thus, get() operations can only occur on the boundaries of steps. To fully realize this constraint,
it may be necessary to split a statement containing one or more get() operations into multiple sub-
statements such that a get() occurs in a sub-statement by itself.

• A spawn edge connects the parent task to a child future task, just as with regular async’s.

• When a future task, TF , terminates, a join edge is inserted from the last step in TF to the step in the
ancestor task that follows its Immediately Enclosing Finish (IEF) operation, as with regular async’s.
In addition, a join edge is also inserted from TF ’s last step to every step that follows a get() operation
on the future task. Note that new get() operations may be encountered even after TF has terminated.

To compute the computation graph for the example in Listing 12, we will need to split the statement in
line 14 into the following sub-statements:

14a int temp1 = sum1.get();

14b int temp2 = sum2.get();

14c int sum = temp1 + temp2;

The resulting CG is shown in Figure 17. Note that the end of each step in a future task has two outgoing
join edges in this example, one to the get() operation and one to the implicit end-finish operation in the
main program.

2.1.3 Why should Future References be declared as final?

In the previous section, we stated the rule that all variables containing references to future objects should
be declared as final. This means that the variable cannot be modified after initialization. To motivate this
rule, consider the buggy program example in Listing 13. WARNING: this is an example of bad parallel
programming practice that you should not attempt!
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Stmts 
1, 2 

Stmt 
14a 

Stmt 
14b 

Stmt 
14c 

Start-
Finish 
(main) 

End-
Finish 
(main) 

Stmts 
3 -- 7 

Stmts 
8 -- 12 

Continue edge Join edge Spawn edge 

Figure 17: Computation Graph G for example parallel program in code:TwoParArraySumFuture, with
statement 14 split into statements 14a, 14b, 14c

This program declares two static non-final future reference fields, f1 and f2, in lines 1 and 2 and initializes
them to null. The main() programs then creates two future tasks, T1 and T2, in lines 5 and 6 and assigns
them to f1 and f2 respectively. Task T1 uses a “spin loop” in line 10 to wait for f2 to become non-null, and
task T2 does the same in line 15 to wait for f1 to become non-null. After exiting the spin loop, each task
performs a get() operation on the other thereby attempting to create a deadlock cycle in the computation
graph. Fortunately, the rule that all variables containing references to future objects should be declared to
be final can avoid this situation.

2.1.4 Future Tasks with a void return type

A key distinction made thus far between future tasks and regular async’s is that future tasks have return
values but regular async’s do not. However, there is a construct that represents a hybrid of these two task
variants, namely a future task, TV , with a void return type. This is analogous to Java methods with void

return types. In this case, a get() operation performed on TV has the effect of waiting for TV to complete,
but no return value is communicated from TV .

Figure 18 shows Computation Graph G3 that cannot be generated using only async and finish constructs,
and Listing 14 shows the code that can be used to generate G3 using future tasks. This code uses futures
with a void return type, and provides a systematic way of converting any CG into a task-parallel program
using futures.

2.2 Memoization

The basic idea of memoization is to remember results of function calls f(x) as follows:

1. Create a data structure that stores the set {(x1, y1 = f(x1)), (x2, y2 = f(x2)), . . .} for each call f(xi)
that returns yi.

2. Look up data structure when processing calls of the form f(x′) when x′ equals one of the xi inputs for
which f(xi) has already been computed.

The memoization pattern lends itself easily to parallelization using futures by modifying the memoized data
structure to store {(x1, y1 = future(f(x1))), (x2, y2 = future(f(x2))), . . .}. The lookup operation can then be
extended with a get() operation on the future value if a future has already been created for the result of a
given input.
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1 stat ic future<int> f 1=null ;
2 stat ic future<int> f 2=null ;
3
4 stat ic void main ( St r ing [ ] a rgs ) {
5 f1 = async<int> {return a1 ( ) ; } ; // Task T1
6 f2 = async<int> {return a2 ( ) ; } ; // Task T2
7 }
8
9 int a1 ( ) {

10 while ( f 2 == null ) ; // sp in loop
11 return f 2 . get ( ) ; // T1 waits f o r T2
12 }
13
14 int a2 ( ) {
15 while ( f 1 == null ) ; // sp in loop
16 return f 1 . get ( ) ; // T2 waits f o r T1
17 }

Listing 13: Buggy Use of Future Tasks due to missing final declarations

A 

B C 

D E 

F 

Figure 18: Computation Graph G3

1 // NOTE: return statement i s op t i ona l when return type i s void
2 f ina l future<void> A = async<void> { . . . ; return ;}
3 f ina l future<void> B = async<void> { A. get ( ) ; . . . ; return ;}
4 f ina l future<void> C = async<void> { A. get ( ) ; . . . ; return ;}
5 f ina l future<void> D = async<void> { B. get ( ) ; C. get ( ) ; . . . ; return ;}
6 f ina l future<void> E = async<void> { C. get ( ) ; . . . ; return ;}
7 f ina l future<void> F = async<void> { D. get ( ) ; E . get ( ) ; . . . ; return ;}

Listing 14: Task-parallel code with futures to generate Computation Graph G3 from Figure 18
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// Reduction operators

enum Operator {SUM, PROD, MIN, MAX, CUSTOM}

// Predefined reduction

accum(Operator op, Class dataType); // Constructor

void accum.put(Number datum); // Remit a datum

void accum.put(int datum);

void accum.put(double datum);

Number accum.get(); // Retrieve the result

// User-defined reduction

interface reducible<T> {

void reduce(T arg); // Define reduction

T identity(); // Define identity

}

accum<T>(Operator op, Class dataType); // Constructor

void accum.put(T datum); // Remit a datum

T accum.customGet(); // Retrieve the result

Figure 19: Example of accumulator API

2.3 Finish Accumulators

In this section, we introduce the programming interface and semantics of finish accumulators. Finish accu-
mulators support parallel reductions, which represent a common pattern for computing the aggregation of
an associative and commutative operation, such as summation, across multiple pieces of data supplied by
parallel tasks. There are two logical operations, put, to remit a datum and get, to retrieve the result from
a well-defined synchronization (end-finish) point. Section 2.3.1 describes the details of these operations,
and Section 2.3.2 describes how user-defined reductions are supported in finish accumulators.

2.3.1 Accumulator Constructs

Figure 19 shows an example of a finish-accumulator programming interface. The operations that a task, Ti,
can perform on accumulator, ac, are defined as follows.

• new: When task Ti performs a “ac = new accumulator(op, dataType);” statement, it creates a
new accumulator, ac, on which Ti is registered as the owner task. Here, op is the reduction operator
that the accumulator will perform, and dataType is the type of the data upon which the accumulator
operates. Currently supported predefined reduction operators include SUM, PROD, MIN, and MAX; CUSTOM
is used to specify user-defined reductions.

• put: When task Ti performs an “ac.put(datum);” operation on accumulator ac, it sends datum to
ac for the accumulation, and the accumulated value becomes available at a later end-finish point. The
runtime system throws an exception if a put() operation is attempted by a task that is not the owner
and does not belong to a finish scope that is associated with the accumulator. When a task performs
multiple put() operations on the same accumulator, they are treated as separate contributions to the
reduction.

• get: When task Ti performs an “ac.get()” operation on accumulator ac with predefined reduction
operators, it obtains a Number object containing the accumulated result. Likewise “ac.customGet()”
on ac with a CUSTOM operator returns a user-defined T object with the accumulated result. When no
put is performed on the accumulator, get returns the identity element for the operator, e.g., 0 for SUM,
1 for PROD, MAX VALUE/MIN VALUE for MIN/MAX, and user-defined identity for CUSTOM.

• Summary of access rules: The owner task of accumulator ac is allowed to perform put/get op-
erations on ac and associate ac with any finish scope in the task. Non-owner tasks are allowed to
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ac = new accum(...);
async { ... ac.put(foo()); }  // T1
finish (ac) {
    async {  // T2
        finish {
            async {  // T3
                ac.put(bar());
            }
            ac.put(baz());
        }
        ac.put(qux());
    }
    ac.put(quux());
}
n = ac.get();

ac.put(...);

ac.put(...);

ac.put(...);

ac.put(...);

ac.get(); ac.put(...);ac.put(...);ac.put(...);

: async : end-finish sync

ac = new accum(...);

finish (ac) {

}

/* ERROR */

T0

T2

T3

T1

Figure 20: Finish accumulator example with three tasks that perform a correct reduction and one that
throws an exception

access ac only within finish scopes with which ac is associated. To ensure determinism, the accumu-
lated result only becomes visible at the end-finish synchronization point of an associated finish;
get operations within a finish scope return the same value as the result at the beginning of the
finish scope. Note that put operations performed by the owner outside associated finish scopes are
immediately reflected in any subsequent get operations since those results are deterministic.

In contrast to traditional reduction implementations, the put() and get() operations are separate, and
reduction results are not visible until the end-finish point.

To associate a finish statement with multiple accumulators, Towner can perform a special finish statement
of the form, “finish (ac1, ac2, · · · , acn)〈stmt〉”. Note that finish (ac) becomes a no-op if ac is already
associated with an outer finish scope.

Figure 20 shows an example where four tasks T0, T1, T2, and T3 access a finish accumulator ac. As described
earlier, the put operation by T1 throws an exception due to nondeterminism since it is not the owner and
was created outside the finish scope associated with accumulator ac. Note that the inner finish scope
has no impact on the reduction of ac since ac is associated only with the outer finish. All put operations
by T0, T2, and T3 are reflected in ac at the end-finish synchronization of the outer finish, and the result
is obtained by T0’s get operation.

2.3.2 User-defined Reductions

User-defined reductions are also supported in finish accumulators, and its usage consists of these three steps:
1) specify CUSTOM and reducible.class as the accumulator’s operator and type,
2) define a class that implements the reducible interface,
3) pass the implementing class to the accumulator as a type parameter.

Figure 21 shows an example of a user-defined reduction. Class Coord contains two double fields, x and y,
and the goal of the reduction is to find the furthest point from the origin among all the points submitted to
the accumulator. The reduce method computes the distance of a given point from the origin, and updates
x and y if arg has a further distance than the current point in the accumulator.

2.4 Map Reduce

Data structures based on key-value pairs are used by a wide range of data analysis algorithms, including
web search and statistical analyses. In Java, these data structures are often implemented as instances of the
Map interface. An important constraint imposed on sets of key-value pairs is that no key occurs more than
once, thereby ensuring that each key can map to at most one value. Thus, a mathematical abstraction of a
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1: void foo() {

2: accum<Coord> ac = new accum<Coord>(Operation.CUSTOM,

3: reducible.class);

4: finish(ac) {

5: forasync (point [j] : [1:n]) {

6: while(check(j)) {

7: ac.put(getCoordinate(j));

8: } } }

9: Coord c = ac.customGet();

10: System.out.println("Furthest: " + c.x + ", " + c.y);

11: }

12:

13: class Coord implements reducible<Coord> {

14: public double x, y;

15: public Coord(double x0, double y0) {

16: x = x0; y = y0;

17: }

18: public Coord identity(); {

19: return new Coord(0.0, 0.0);

20: }

21: public void reduce(Coord arg) {

22: if (sq(x) + sq(y) < sq(arg.x) + sq(arg.y)) {

23: x = arg.x; y = arg.y;

24: } }

25: private double sq(double v) { return v * v; }

26: }

Figure 21: User-defined reduction example

Map data structure is as a set of pairs, S = {(k1, v1), . . . , (kn, vn)}, such that each (ki, vi) pair consists of a
key, ki, and a value, vi and ki 6= kj for any i 6= j.

Many data analysis algorithm can be specified as sequences of map and reduce operations on sets of key-
value pairs. For a given key-value pair, (ki, vi), a map function f generates a sets of output key-value pairs,
f(ki, vi) = {(k1, v1), . . . , (km, vm)}. The kj keys can be different from the ki key in the input of the map
function. When applied to a set of key-value pairs, the map function results in the union of the output set
generated from each input key-value pair as follows:

f(S) =
⋃

(ki,vi)∈S

f(ki, vi)

f(S) is referred to as a set of intermediate key-value pairs because it will serve as an input for a reduce
operation, g. Note that it is possible for f(S) to contain multiple key-value pairs with the same key. The
reduce operation groups together intermediate key-value pairs, {(k, vj)} with the sam key k, and generates
a reduced key-value pair, (k, v), for each such k, using a reduce function g on all v′j values with the same
intermediate key k′. Therefore g(f(S)) is guaranteed to satisfy the unique-key property.

Listing 15 shows the pseudocode for one possible implementation of map-reduce operations using finish and
async primitives. The basic idea is to complete all operations in the map phase before any operation in the
reduce phase starts. Alternate implementations are possible that expose more parallelism.

As an example, Listing 16 shows how the WordCount problem can be solved using map and reduce operations
on sets of key-value pairs. All map operations in step a) (line 4) can execute in parallel with only local data
accesses, making the map step highly amenable to parallelization. Step b) (line 5) can involve a major
reshuffle of data as all key-value pairs with the same key are grouped (gathered) together. Finally, step c)
(line 6) performs a standard reduction algorithm for all values with the same key.
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1 f in ish { // map phase
2 for each ( ki , v i ) pa i r in input s e t S
3 async compute f ( ki , v i ) and append output to f (S ) ; // map operat i on
4 }
5 f in ish { // reduce phase
6 for each key k ’ in in t e rmed ia t e s e t f (S)
7 async { // reduce operat i on
8 temp = id en t i t y ;
9 f o r each value v ’ ’ such that ( k ’ , v ’ ’ ) i s in f (S) {

10 temp = g ( temp , v ’ ’ ) ;
11 }
12 append (k ’ , temp) to output set , g ( f (S ) ;
13 }
14 }

Listing 15: Pseudocode for one possible implementation of map-reduce operations using finish and async
primitives

1 Input : s e t o f words
2 Output : s e t o f (word , count ) pa i r s
3 Algorithm :
4 a ) For each input word W, emit (W, 1) as a key−value pa i r (map s tep ) .
5 b) Group toge the r a l l key−value pa i r s with the same key ( in t e rmed ia t e
6 key−value pa i r s ) .
7 c ) Perform a sum reduct i on on a l l va lue s with the same key ( reduce s tep ) .

Listing 16: Computing Wordcount using map and reduce operations on sets of key-value pairs
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1 // Sequent i a l v e r s i on
2 for ( p = f i r s t ; p != null ; p = p . next ) p . x = p . y + p . z ;
3 for ( p = f i r s t ; p != null ; p = p . next ) sum += p . x ;
4
5 // I n c o r r e c t p a r a l l e l v e r s i on
6 for ( p = f i r s t ; p != null ; p = p . next )
7 async p . x = p . y + p . z ;
8 for ( p = f i r s t ; p != null ; p = p . next )
9 sum += p . x ;

Listing 17: Sequential and incorrect parallel versions of example program

2.5 Data Races

2.5.1 What are Data Races?

The fundamental primitives for task creation (async) and termination (finish) that you have learned thus far
are very powerful, and can be used to create a wide range of parallel programs. You will now learn about a
pernicious source of errors in parallel programs called data races, and how to avoid them.

Consider the example program shown in Listing 17. The parallel version contains an error because the writes
to instances of p.x in line 7 can potentially execute in parallel with the reads of instances of p.x in line 9.
This can be confirmed by building a computation graph for the program and observing that there is no chain
of dependence edges from step instances of line 7 to step instances of line 9. As a result, it is unclear whether
a read in line 9 will receive an older value of p.x or the value written in line 7. This kind of situation, where
the outcome depends on the relative completion times of two events, is called a race condition. When the
race condition applies to read and write accesses on a shared location, it is called a data race. A shared
location must be a static field, instance field or array element, since it is not possible for interfering accesses
to occur in parallel on a local variable in a method.

Data races are a challenging source of errors in parallel programming, since it is usually impossible to
guarantee that all possible orderings of the accesses to a location will be encountered during program testing.
Regardless of how many tests you write, so long as there is one ordering that yields the correct answer it
is always possible that the correct ordering in encountered when testing your program and an incorrect
ordering is encountered when the program executes in a production setting. For example, while testing the
program, it is possible that the task scheduler executes all the async tasks in line 7 of Listing 17 before
executing the continuation starting at line 8. In this case, the program will appear to be correct during test,
but will have a latent error that could be manifest at any arbitrary time in the future.

Formally, a data race occurs on location L in a program execution with computation graph CG if there exist
steps S1 and S2 in CG such that:

1. S1 does not depend on S2 and S2 does not depend on S1 i.e., there is no path of dependence edges
from S1 to S2 or from S2 to S1 in CG, and

2. both S1 and S2 read or write L, and at least one of the accesses is a write.

Programs that are guaranteed to never exhibit a data race are said to to be data-race-free. It is also common
to refer to programs that may exhibit data races as “racy”.

There are a number of interesting observations that follow from the above definition of a data race:

1. Immutability property: there cannot be a data race on shared immutable data. Recall that shared data
in a parallel Habanero-Java program consists of static fields, instance fields, and array elements. An
immutable location, Li, is one that is only written during initialization, and can only be read after
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1 f in ish {
2 St r ing s1 = ”XYZ” ;
3 async { St r ing s2 = s1 . toLowerCase ( ) ; . . . }
4 System . out . p r i n t l n ( s1 ) ;
5 }

Listing 18: Example of immutable string operations in a parallel program

initialization. In this case, there cannot be a data race on Li because there will only be one step that
writes to Li in CG, and all steps that read from L must follow the write. This property applies by
definition to static and non-static final fields. It also applies to instances of any immutable class e.g.,
java.lang.String.

2. Single-task ownership property: there cannot be a data race on a location that is only read or written
by a single task. Let us say that step Si in CG owns location L if it performs a read or write access on
L. If step Si belongs to Task Tj , we can also say that Task Tj owns L when executing Si. (Later in
the course, it will be useful to distinguish between read ownership and write ownership.) Consider a
location L that is only owned by steps that belong to the same task, Tj . Since all steps in Task Tj must
be connected by continue edges in CG, all reads and writes to L must be ordered by the dependences
in CG. Therefore, no data race is possible on location L.

3. Ownership-transfer property: there cannot be a data race on a location if all steps that read or write
it are totally ordered in CG. The single-task-ownership property can be generalized to the case when
all steps that read or write a location L are totally ordered by dependences in CG, even if the steps
belong to different tasks i.e., for any two steps Si and Sj that read or write L, it must be the case
that there is a path of dependence edges from Si to Sj or from Sj to Si. In this case, no data race
is possible on location L. We can think of the ownership of L being “transferred” from one step to
another, even across task boundaries, as execution follows the path of dependence edges.

4. Local-variable ownership property: there cannot be a data race on a local variable. If L is a local
variable, it can only be written by the task in which it is declared (L’s owner). Though it may be read
by a descendant task, the “copy-in” semantics for local variables (Rule 2 in Listing 2 of Section 1.1.1)
ensures that the value of the local variable is copied on async creation thus ensuring that there is no
race condition between the read access in the descendant task and the write access in L’s owner.

2.5.2 Avoiding Data Races

The four observations in Section 2.5.1 directly lead to the identification of programming tips and best
practices to avoid data races. There is considerable effort under way right now in the research community
to provide programming language support for these best practices, but until they enter the mainstream it is
your responsibility as a programmer to follow these tips on avoiding data races:

1. Immutability tip: Use immutable objects and arrays as far as possible. Sometimes this may require
making copies of objects and arrays instead of just modifying a single field or array element. Depending
on the algorithm used, the overhead of copying could be acceptable or prohibitive. For example, copying
has a small constant factor impact in the Parallel Quicksort algorithm.

Consider the example program in Listing 18. The parent task initializes s1 to the string, "XYZ" in
line 2, creates a child task in line 3, and prints out s1 in line 4. Even though the child task invokes
the toLowerCase() method on s1 in line 3, there is no data race between line 3 and the parent task’s
print statement in line 4 because toLowerCase() returns a new copy of the string with the lower-case
conversion instead of attempting to update the original version.
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1 f in ish { // Task T1
2 int [ ] A = new int [ n ] ; // A i s owned by T1
3 // . . . i n i t i a l i z e array A . . .
4 // c r e a t e a copy o f array A in B
5 int [ ] B = new int [A. l ength ] ; System . arraycopy (A, 0 ,B, 0 ,A. l ength ) ;
6 async { // Task T2 now owns B
7 int sum = computeSum(B, 0 ,B. length −1); // Modi f i e s B
8 System . out . p r i n t l n ( ”sum = ” + sum ) ;
9 }

10 // . . . update Array A . . .
11 System . out . p r i n t l n ( Arrays . t oS t r i ng (A) ) ; // pr in ted by task T1
12 }

Listing 19: Example of single-task ownership

2. Single-task ownership tip: If an object or array needs to be written multiple times after initialization,
then try and restrict its ownership to a single task. This will entail making copies when sharing the
object or array with other tasks. As in the Immutability tip, it depends on the algorithm whether the
copying overhead can be acceptable or prohibitive.

In the example in Listing 19, the parent Task T1 allocates and initializes array A in lines 2 and 3, and
creates an async child Task T2 to compute its sum in line 6. Task T2 calls the computeSum() method
that actually modifies its input array. To avoid a data race, Task T1 acts as the owner of array A and
creates a copy of A in array B in lines 4 and 5/ Task T2 becomes the owner of B, while Task T1 remains
the owner of A thereby ensuring that each array is owned by a single task.

3. Ownership-transfer tip: If an object or array needs to be written multiple times after initialization and
also accessed by multiple tasks, then try and ensure that all the steps that read or write a location L
in the object/array are totally ordered by dependences in CG. Ownership transfer is even necessary
to support single-task ownership. In Listing 19, since Task T1 initializes array B as a copy of array A,
T1 is the original owner of A. The ownership of B is then transferred from T1 to T2 when Task T2 is
created with the async statement.

4. Local-variable tip: You do not need to worry about data races on local variables, since they are not
possible. However, local variables in Java are restricted to contain primitive data types (such as int)
and references to objects and arrays. In the case of object/array references, be aware that there may
be a data race on the underlying object even if there is no data race on the local variable that refers
to (points to) the object.

You will learn additional mechanisms for avoiding data races later in the course, when you study the future,
phaser, accumulator, isolated and actor constructs.

2.6 Functional and Structural Determinism

A computation is said to be functionally deterministic if it always computes the same answer, when given
the same inputs. By default, any sequential computation is expected to be deterministic with respect to
its inputs; if the computation interacts with the environment (e.g., a GUI event such as a mouse click, or
a system call like System.nanoTime()) then the values returned by the environment are also considered to
be inputs to the computation. Further, a computation is said to be structurally deterministic if it always
computes the same computation graph, when given the same inputs.

The presence of data races often leads to functional and/or structural nondeterminism because a parallel
program with data races may exhibit different behaviors for the same input, depending on the relative
scheduling and timing of memory accesses involved in a data race. In general, the absence of data races
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1 p . x = 0 ; q = p ;
2 async p . x = 1 ; // Task T1
3 async p . x = 2 ; // Task T2
4 async { // Task T3
5 System . out . p r i n t l n ( ” F i r s t read = ” + p . x ) ;
6 System . out . p r i n t l n ( ”Second read = ” + q . x ) ;
7 System . out . p r i n t l n ( ”Third read = ” + p . x ) ;
8 }
9 async { // Task T4

10 System . out . p r i n t l n ( ” F i r s t read = ” + p . x ) ;
11 System . out . p r i n t l n ( ”Second read = ” + p . x ) ;
12 System . out . p r i n t l n ( ”Third read = ” + p . x ) ;
13 }

Listing 20: Example of a parallel program with data races

is not sufficient to guarantee determinism. However, the parallel constructs introduced in this module
(“Module 1: Determinism”) were carefully selected to ensure the following Determinism Property:

If a parallel program is written using the constructs introduced in Module 1 and is guaranteed to
never exhibit a data race, then it must be both functionally and structurally deterministic.

Note that the determinism property states that all data-race-free programs written using the constructs
introduced in Module 1 are guaranteed to be deterministic, but it does not imply that all racy programs are
non-deterministic.

The determinism property is a powerful semantic guarantee since the constructs introduced in Module 1
span a wide range of parallel programming primitives that include async, finish, finish accumulators,
futures, data-driven tasks (async await), forall, barriers, phasers, and phaser accumulators. The notable
exceptions are critical sections, isolated statements, and actors, all of which will be covered in Module 2
(“Concurrency”).

2.6.1 Optional topic: Memory Models and assumptions that can be made in the presence of
Data Races

Since the current state-of-the-art lacks a fool-proof approach for avoiding data races, this section briefly
summarizes what assumptions can be made for parallel programs that may contain data races.

A memory consistency model, or memory model, is the part of a programming language specification that
defines what write values a read may see in the presence of data races. Consider the example program in
Listing 20. It exhibits multiple data races since location p.x can potentially be written in parallel by Tasks
T1 and T2 and read in parallel by Tasks T3 and T4. T3 and T4 each read and print the value of p.x three
times. (Note that q.x and p.x both refer to the same location.) It is the job of the memory model to specify
what outputs are legally permitted by the programming language.

There is a wide spectrum of memory models that have been proposed in the literature. We briefly summarize
three models for now, and defer discussion of a fourth model, the Java Memory Model, to later in the course:

1. Sequential Consistency: The Sequential Consistency (SC) memory model was introduced by Leslie
Lamport in 1979 [17] and builds on a simple but strong rule viz., all steps should observe writes to all
locations in the same order. Thus, the SC memory model will not permit Task T3 to print “0, 1, 2”
and Task T4 to print “0, 2, 1”.

While the SC model may be intuitive for expert system programmers who write operating systems and
multithreaded libraries such as java.util.concurrent, it can lead to non-obvious consequences for
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1 async { // Task T3
2 int p x = p . x ;
3 System . out . p r i n t l n ( ” F i r s t read = ” + p x ) ;
4 System . out . p r i n t l n ( ”Second read = ” + q . x ) ;
5 System . out . p r i n t l n ( ”Third read = ” + p x ) ;
6 }

Listing 21: Rewrite of Task T3 from Listing 20

mainstream application programmers. For example, suppose an application programmer decided to
rewrite the body of Task T3 as shown in Listing 21. The main change is to introduce a local variable
p x that captures the value of p.x in line 2, and replaces p.x by p x in lines 3 and 5. This rewrite
is perfectly legal for a sequential program, and should be legal for computations performed within a
sequential step. However, a consequence of this rewrite is that Task T3 may print “0, 1, 0” as output,
which would not be permitted by the SC model. Thus, an apparently legal code transformation within
a sequential step has changed the semantics of the parallel program under the SC model.

2. Location Consistency: The Location Consistency (LC) memory model [9] was introduced to provide
an alternate semantics to address the code transformation anomalies that follow from the SC model.
The LC rule states that a read of location L in step Si may receive the value from any Most Recent
Write (MRW) of L relative to Si in the CG. A MRW is a write operation that can potentially execute
in parallel with Si, or one that precedes Si by a chain of dependence edges such that there is no other
write of L on that chain. LC is a weaker model than SC because it permits all the outputs that SC
does, as well as additional outputs that are not permitted by SC. For the program in Listing 20, the
LC model permits Task T3 to print “0, 1, 2” and Task T4 to print “0, 2, 1” in the same execution,
and also permits Task T3 to print “0, 1, 0” in a different execution.

3. C++ Memory Model: The proposed memory model for the new C++0x standard [5] makes the fol-
lowing assumption about data races:

“We give no semantics to programs with data races. There are no benign C++ data races.”

A data race that cannot change a program’s output with respect to its inputs is said to be benign.
A special case of benign races is when all write accesses to a location L (including the initializing
write) write the same value to L. It is benign, because it does not matter how many writes have been
performed on L before a read occurs, since all writes update L with the same value.

Thus, the behavior of a program with data races is completely undefined in the C++ memory model.
While this approach may be acceptable for systems programming languages like C/C++, it is unac-
ceptable for type-safe languages like Java that rely on basic safety guarantees for pointers and memory
accesses.

Why should you care about these memory models if you write bug-free code without data races? Because
the code that you write may be used in conjunction with other code that causes your code to participate in
a data race. For example, if your job to provide a sequential method that implements the body of Task T3
in Listing 20, the program that uses your code may exhibit data races even though your code may be free
of bugs. In that case, you should be aware what the impact of data races may be on the code that you
have written, and whether or not a transformation such as the one in Listing 21 is legal. The type of the
shared location also impacts the assumptions that you make. On some systems, the guarantees for 64-bit
data types such as long and double are weaker than those for smaller data types such as int and Java
object references.
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1 // Case 1 : l oops i , j can run in p a r a l l e l
2 f in ish for (point [ i , j ] : [ 0 :m−1 ,0:n−1]) async A[ i ] [ j ] = F(A[ i ] [ j ] ) ;
3
4 // Case 2 : only loop i can run in p a r a l l e l
5 f in ish for (point [ i ] : [ 1 :m−1]) async
6 for (point [ j ] : [ 1 : n−1]) // Equiva lent to f o r ( j =1; j<n ; j++)
7 A[ i ] [ j ] = F(A[ i ] [ j −1]) ;
8
9 // Case 3 : only loop j can run in p a r a l l e l

10 for (point [ i ] : [ 1 :m−1]) // Equiva lent to f o r ( i =1; i<m; j++)
11 f in ish for (point [ j ] : [ 1 : n−1]) async
12 A[ i ] [ j ] = F(A[ i −1] [ j ] ) ;

Listing 22: Examples of three parallel loops using finish-for-async (pseudocode)

1 // Case 1 : l oops i , j can run in p a r a l l e l
2 f o ra l l (point [ i , j ] : [ 0 :m−1 ,0:n−1]) A[ i ] [ j ] = F(A[ i ] [ j ] ) ;
3
4 // Case 2 : only loop i can run in p a r a l l e l
5 f o ra l l (point [ i ] : [ 1 :m−1])
6 for (point [ j ] : [ 1 : n−1]) // Equiva lent to f o r ( j =1; j<n ; j++)
7 A[ i ] [ j ] = F(A[ i ] [ j −1]) ;
8
9 // Case 3 : only loop j can run in p a r a l l e l

10 for (point [ i ] : [ 1 :m−1]) // Equiva lent to f o r ( i =1; i<m; j++)
11 f o ra l l (point [ j ] : [ 1 : n−1])
12 A[ i ] [ j ] = F(A[ i −1] [ j ] ) ;

Listing 23: Examples of three parallel loops using forall (pseudocode)

3 Loop-level Parallelism

3.1 Parallel Loops

As mentioned earlier, the finish and async constructs can be used to create parallel loops using the finish–
for–async pattern shown in Listing 22. In this pseudocode, we assume that the for construct can be used
to express sequential multidimensional (nested) loops. For example, the for loop in Case 1 expresses a
two-dimensional loop with m×n iterations. Since the body of this loop is an async statement, both loops i
and j can run in parallel in Case 1. However, only loop i can run in parallel in Case 2, and only loop j can
run in parallel in Case 3.

Most parallel programming languages include special constructs to embody the commonly used finish–for–
async parallel loop pattern shown above in Listing 22. Following past parallel languages, we use the forall

notation to identify loops with single or multi-dimensional parallelism and an implicit finish. Listing 23,
shows how the loops in Listing 22 can be rewritten using the forall notation.

3.2 Parallel Matrix Multiplication

Consider the pseudocode fragment for a parallel matrix multiplication example in Listing 24.

This program executes all (i, j) iterations for line 4 in parallel to initialize array C, waits for all the iterations
to complete at line 5, and then executes all (i, j) iterations for lines 10–11 in parallel (each of which executes
the k loop sequentially). Since async and finish are powerful and general constructs, the structure of
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1 f in ish {
2 for ( int i = 0 ; i < n ; i++)
3 for ( int j = 0 ; j < n ; j++)
4 async C[ i ] [ j ] = 0 ;
5 }
6 f in ish {
7 for ( int i = 0 ; i < n ; i++)
8 for ( int j = 0 ; j < n ; j++)
9 async

10 for ( int k = 0 ; k < n ; k++)
11 C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
12 }
13 System . out . p r i n t l n (C [ 0 ] [ 0 ] ) ;

Listing 24: Matrix multiplication program using finish-async

1 f o ra l l (point [ i , j ] : [ 0 : n−1 ,0:n−1]) C[ i ] [ j ] = 0 ;
2 f o ra l l (point [ i , j ] : [ 0 : n−1 ,0:n−1])
3 for (point [ k ] : [ 0 :K−1])
4 C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;
5 System . out . p r i n t l n (C [ 0 ] [ 0 ] ) ;

Listing 25: Matrix multiplication program using forall

sequential and parallel loops in Listing 24 is not immediately easy to discern. Instead, the same program
can be rewritten more compactly and clearly using forall loops as shown in Listing 25.

There are a number of features worth noting in Listing 25:

• The combination of for–for–async is replaced by a single keyword, forall. Multiple loops can be
collapsed into a single forall with a multi-dimensional iteration space. (In Listing
refcode:finish-async, both loop nests are two-dimensional.)

• The iteration variable for a forall is a point (integer tuple) such as [i, j].

• The loop bounds can be specified as a rectangular region (dimension ranges) such as [0 : n−1, 0 : n−1].

• We also extend the sequential for statement so as to iterate sequentially over a rectangular region, as
in line 5.

We now briefly discuss the point and region constructs. A point is an element of an k-dimensional Cartesian
space (k ≥ 1) with integer-valued coordinates, where k is the rank of the point. A point’s dimensions are
numbered from 0 to k − 1. Points can be used outside of forall loops, if so desired. For completeness,
we summarize the following operations that are defined on a point-valued expression p1, even though it is
unlikely that you will need to go beyond the use of points shown in Listing 25:

• p1.rank — returns rank of point p1

• p1.get(i) — returns element in dimension i of point p1, or element in dimension (i mod p1.rank)
if i < 0 or i ≥ p1.rank.

• p1.lt(p2), p1.le(p2), p1.gt(p2), or p1.ge(p2) returns true if and only if p1 is lexicographically <,
≤, >, or ≥ p2. These operations are only defined when p1.rank = p1.rank.
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1 // Unchunked ve r s i on
2 f o ra l l (point [ i ] : [ 0 : n−1]) X[ i ] = Y[ i ] + Z [ i ] ;
3 . . .
4 // Chunked ve r s i on
5 int nc = numWorkerThreads ( ) ; // Set number o f chunks to number o f worker threads
6 int s i z e = (n+nc−1)/nc ; // chunk s i z e = c e i l i n g (n/nc ) f o r i n t e g e r s n>=0, nc>0
7 f o ra l l (point [ i i ] : [ 0 : nc−1]) {
8 int myLo = i i ∗ s i z e ;
9 int myHi = Math . min (n−1, ( i i +1)∗ s i z e −1);

10 for ( int i = myLo ; i <= myHi ; i++)
11 X[ i ] = Y[ i ] + Z [ i ] ;
12 }
13 }

Listing 26: Unchunked and chunked versions of a forall loop

A k-dimensional region is a set of k-dimensional points, defined as a Cartesian product of low:high contiguous
subranges in each dimension. Thus, [1 : 10] is a 1-dimensional region consisting of the 10 points [1], . . . , [10],
and [1 : 10,−5 : 5] is a 2-dimensional region consisting of 110 points since the first dimension has 10 values
(1 . . . 10) and the second dimension has 11 values (−5 . . . 5). Likewise, the region [0:200,1:100] specifies
a collection of two-dimensional points (i,j) with i ranging from 0 to 200 and j ranging from 1 to 100.
Regions are used to define the range for sequential point-wise for and parallel forall loops.

A task executes a point-wise for statement by sequentially enumerating the points in its region in canonical
lexicographic order, and binding the components of the points to the index variables defined in the for

statement e.g., variable k in line 3 of Listing 25. A convenience relative to the standard Java idiom, “for
(int i = low; i <= high; i++)”, is that the upper bound, high, is re-evaluated in each iteration of a
Java loop, but it is only evaluated once in a [low:high] region expression. Another convenience is that
loops can be easily converted from sequential to parallel (or vice versa) by replacing for by forall.

Finally, we include a forsync statement that is like forall but does not include an implicit finish statement.
The statement forasync (point p : R) S supports parallel iteration over all the points in region R by
launching each iteration S as a separate async. Just as with standard async statements, a separate finish

construct is needed to await termination of all iterations in a forasync.

There are other differences between forasync and forall which you will study later, most notably the fact
that forall includes an implicit barrier, whereas forasync can be used for explicit phaser declarations.

3.3 Iteration Grouping: Chunking of Parallel Loops

Though the forall construct is convenient for the programmer, the approach of creating a separate async

task for each iteration can lead to excessive overheads. For a parallel loop, there are additional choices
available. A natural approach to reduce the overhead of parallel loops is that of batching or “chunking”
groups of iterations together so that iterations in the same chunk execute sequentially within a single async

task, but parallelism can be exploited across chunks. The chunks size plays a critical role in determining
the effectiveness of chunking. If it is too small, then the overhead can still be an issue due to the small size
of async tasks. If it is too large, then there is a danger of losing too much parallelism. Fortunately, it is
possible to set up chunking of parallel loops such that the number of chunks (or equivalently, the chunk size)
can be specified as a runtime parameter that can be “tuned” for a given input size and parallel machine.
For loops in which the amount of work per iteration is fixed, a common approach is to set the number of
chunks to the number of available processors.

Listing 26 includes unchunked and chunked version of an example forall loop. The chunking is achieved by
creating an outer parallel forall loop with number of chunks = nc and an inner sequential for loop that
executes the iterations in a given chunk. We assume the availability of a library call, numWorkerThreads(),
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1 // Return range f o r chunk i i i f range [ rLo : rHi ] i s d iv ided in to nc chunks
2 stat ic r eg i on getChunk ( int rLo , rHi , int nc , int i i ) {
3 i f ( rLo > rHi ) return [ 0 : −1 ] ; // Empty reg i on
4 a s s e r t ( nc > 0 ) ; // number o f chunks must be > 0
5 a s s e r t (0 <= i i && i i < c ) ; // i i must be in [ 0 : c−1] range
6 int chunkSize = ( rHi−rLo+c−1)/c ;
7 int myLo = rLo + i i ∗ chunkSize ;
8 int myHi = Math . min ( rHi , rLo + ( i i +1)∗ chunkSize − 1 ) ;
9 return [myLo :myHi ] ; // range f o r chunk i i

10 }
11
12 // Chunked ve r s i on us ing getChunk func t i on
13 int nc = numWorkerThreads ( ) ; // Set number o f chunks to number o f worker threads
14 f o ra l l (point [ i i ] : [ 0 : nc−1]) {
15 reg i on myRange = getChunk ( rLo , rHi , nc , i i ) ;
16 int myLo = myRange . rank ( 0 ) . low ( ) ;
17 int myHi = myRange . rank ( 0 ) . high ( ) ;
18 for ( int i = myLo ; i <= myHi ; i++)
19 X[ i ] = Y[ i ] + Z [ i ] ;
20 }
21 }

Listing 27: Unchunked and chunked versions of a one-dimensional forall loop

that returns the number of worker threads with which the parallel program execution was initiated; this is
a suitable value for the number of chunks in this example. The size variable is then set to the expected
chunk size i.e., number of iterations per chunk. If nc evenly divides n, then we could just set size to equal
n/nc. Otherwise, we’d like to set size to be dn/nce. Since Java does not provide a convenient primitive for
performing this operation on integers8, we use the mathematical property that dx/ye equals b(x+ y− 1)/ye
for integers x, y such that y > 0. (Recall that standard integer division in languages like Java and C truncates
downwards like the floor function.)

After nc and size have been identified, the outer forall loop is set up to execute for nc iterations with
index variable ii ranging from 0 to nc− 1. Each forall iteration then computes the range of iterations for
its chunk, myLo. . .myHi as a function of its index variable ii. The use of the Math.min function ensures that
the last chunk stays within the bounds of the original loop (in the case that nc does not evenly divide n).
This division into chunks guarantees that each iteration of the original loop is assigned to exactly one chunk
and that all chunks have the same size when n is a multiple of nc.

The above calculation can get more complicated when the lower bound of the original loop is non-zero, and
when the original forall has a multidimensional region. For general loop bounds, we can introduce a helper
function called GetChunk() as shown in Listing 27. For multidimensional regions, the GetChunk() function
can simply be performed separately in each dimension, provided that the total number of chunks is also
given as a multidimensional region that specifies the number of chunks in each dimension.

3.4 Barriers in Parallel Loops

Thus far, you have learned the fundamentals of task creation (async, async await) and task termination
(finish, future.get()). There are many algorithms that also need to implement some form of directed syn-
chronization among tasks, with well defined predecessor and successor steps in the computation graph. While
the finish and future.get() constructs impose directed synchronization, they only apply to cases where the
predecessor has to terminate for the synchronization to be enabled (via join edges in the computation graph).

8Math.ceiling() only operates on values of type double.
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1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f o ra l l (point [ i ] : [ 0 :m−1]) {
3 int square = i ∗ i ;
4 System . out . p r i n t l n ( ”He l lo from task ” + i + ” with square = ” + square ) ;
5 System . out . p r i n t l n ( ”Goodbye from task ” + i + ” with square = ” + square ) ;
6 }

Listing 28: Hello-Goodbye forall loop

To understand the need for other forms of directed synchronization, especially a barrier synchronization,
consider the simple “Hello-Goodbye” forall example program shown in Listing 28. This example contains
a single forall loop with m iterations numbered 0. . .m-1. The main program task starts execution at line 1,
creates m child tasks at line 2, and waits for them to finish after line 7. (Recall that forall is shorthand for
finish–for–async.) Each forall iteration (task) then prints a “Hello” string (line 5) and a “Goodbye”
string (line 6). While the Hello and Goodbye strings from the same task must be printed in order, there
is no other guarantee on the relative order among print statements from different tasks9. For example, the
following output is legal for the m = 4 case:

Hello from task ranked 0 with square = 0

Hello from task ranked 1 with square = 1

Goodbye from task ranked 0 with square = 0

Hello from task ranked 2 with square = 4

Goodbye from task ranked 2 with square = 4

Goodbye from task ranked 1 with square = 1

Hello from task ranked 3 with square = 9

Goodbye from task ranked 3 with square = 9

Now, let us consider how to modify the program in Listing 28 so as to ensure that all Hello strings are printed
before any Goodbye string. One approach would be to replace the forall loop by two forall loops, one for
the Hellos and one for the Goodbyes. However, a major inconvenience with this approach is that all local
variables in the first forall loop (such as square) need to be copied into objects or arrays so that they can
be communicated into the second forall loop. The preferred approach instead is to use next statements,
commonly known as barriers, as shown in Listing 29.

The semantics of a next statement inside a forall is as follows. A forall iteration i suspends at next until
all iterations arrive (i.e., all iterations complete their previous phase), after which iteration i can advance
to its next phase. Thus, in Listing 29, next acts as a barrier between Phase 0 which corresponds to all the
computations executed before next and Phase 1 which corresponds to all the computations executed after
next.

Figure 22 illustrates how the barrier synchronization (next statement) works for the program example in
Listing 29 for the m = 4 case. Each task (iteration) performs a signal (sig) operation when it enters the
barrier, and then performs a wait (wait) operation thereby staying idle until all tasks have entered the
barrier. In the scenario shown in Figure 22, iteration i = 0 is the first to enter the barrier, and has the
longest idle time. Iteration i = 2 is the last to enter the barrier, so it has no idle time since its signal
operation releases all iterations waiting at the barrier.

Can you think of real-world situations that can be modeled by barriers? Consider a (somewhat elaborate)
family meal where no one starts eating the main course until everyone has finished their soup, and no one
starts eating dessert until everyone has finished their main course. In this case, each family member can be

9The source of nondeterminism in this example arises from the race conditions among the print statements, which violates
the precondition of the Structural Determinism property in Section 2.6.
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1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f o ra l l (point [ i ] : [ 0 :m−1]) {
3 // Star t o f phase 0
4 int square = i ∗ i ;
5 System . out . p r i n t l n ( ”He l lo from task ” + i + ” with square = ” + square ) ;
6 next ; // Acts as b a r r i e r between phases 0 and 1
7 // Star t o f phase 1
8 System . out . p r i n t l n ( ”Goodbye from task ” + i + ” with square = ” + square ) ;
9 }

Listing 29: Hello-Goodbye forall loop with barrier (next) statement

Forall 
iterations 

Phase 0 Phase 1 

i=0 

i=1 

i=2 

i=3 

SIG 

SIG 

SIG 

WAIT 

SIG 

WAIT 

WAIT 

WAIT 

Figure 22: Illustration of barrier synchronization (next statement) for program example in Listing 29

modeled as a forall iteration, each course — soup, main dish, and dessert — can be modeled as a phase,
and each synchronization between phases can be modeled as a barrier.

The next statement in a forall provides its parallel iterations/tasks with a mechanism to periodically
rendezvous with each other. The scope of synchronization for a next statement is its closest enclosing
forall statement10. Specifically, when iteration i of the forall executes next, it is informing the other
iterations that it has completed its current phase and is now waiting for all other iterations to complete
their current phase by executing next. There is no constraint on which statements are executed by a forall

iteration before or after a next statement. There is also no constraint on where a next can be performed by
a forall iteration. For example, a next can be performed by a task in the middle of an if, while or for

statement, and different forall iterations can even perform next at different program points in different
methods.

When a forall iteration i terminates, it also drops its participation in the barrier i.e., other iterations do
not wait for iteration i past its termination. This rule avoids the possibility of deadlock with next operations.
The example in Listing 30 illustrates this point.

The iteration numbered i in the forall-i loop in line 1 of Listing 30 performs a sequential for-j loop in
line 2 with i + 1 iterations (0 ≤ j ≤ i). Each iteration of the for-j loop prints (i, j) before performing a
next operation. Thus, j captures the phase number for each forall-i iteration participating in the barrier.
Iteration i = 0 of the forall-i loop prints (0, 0), performs a next, and then terminates. Iteration i = 1 of
the forall-i loop prints (1, 0), performs a next, prints (1, 1), performs a next, and then terminates. And
so on, as shown in Figure 23 which illustrates how the set of forall iterations synchronizing on the barrier
decreases after each phase in this example.

Figure 24 shows how a next operation can be modeled in the dynamic Computation Graph by adding signal
and wait edges. A1, A2, A3, A4 represent four iterations in a common forall loop. The execution of a

10Later, you will learn how the next statement can be used outside forall’s as well.
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1 f o ra l l (point [ i ] : [ 0 :m−1]) {
2 for (point [ j ] : [ 0 : i ] {
3 // Fo ra l l i t e r a t i o n i i s execut ing phase j
4 System . out . p r i n t l n ( ” ( ” + i + ” , ” + j + ” ) ” ) ;
5 next ;
6 }
7 }

Listing 30: Example of forall loop with varying numbers of next operations across different iterations

i=0   i=1   i=2   i=3   i=4   i=5   i=6   i=7 
  |     |     |     |     |     |     |     | 
(0,0)  (1,0)  (2,0)  (3,0)  (4,0)  (5,0)  (6,0)  (7,0) 
  |     |     |     |     |     |     |     | 
next ----- next ----- next ----- next ----- next ----- next ----- next ----- next 
  |     |     |     |     |     |     |     | 
  |   (1,1)  (2,1)  (3,1)  (4,1)  (5,1)  (6,1)  (7,1) 
  |     |     |     |     |     |     |     | 
end ----- next ----- next ----- next ----- next ----- next ----- next ----- next 
     |     |     |     |     |     |     | 

    |   (2,2)  (3,2)  (4,2)  (5,2)  (6,2)  (7,2) 
    |     |     |     |     |     |     | 
  end ----- next ----- next ----- next ----- next ----- next ----- next 

         |     |     |     |     |     | 
      |   (3,3)  (4,3)  (5,3)  (6,3)  (7,3) 

        |     |     |     |     |     | 
    end ----- next ----- next ----- next ----- next ----- next 

             |     |     |     |     | 
        |   (4,4)  (5,4)  (6,4)  (7,4) 

             |     |     |     |     | 
      end ----- next ----- next ----- next ----- next 

                 |     |     |     |   
          |   (5,5)  (6,5)  (7,5) 

                 |     |     |     | 
        end ----- next ----- next ----- next 

                     |     |     | 
            |   (6,6)  (7,6) 

                     |      |     | 
          end ----- next ----- next 

                         |     | 
              |   (7,7) 

                         |     | 
            end ----- next  

                             | 
              end 

i=0…7 are forall iterations 

(i,j) = println output 

next = barrier operation 

end = termination of a forall iteration 

Figure 23: Illustration of the execution of forall example in Listing 30
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next  
signal edges 

wait edges 

Phase j 

Phase j+1 

Figure 24: Modeling a next operation in the Computation Graph with Signal and Wait edges and a Next
node

1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f o ra l l (point [ i ] : [ 0 :m−1]) {
3 // Star t o f He l l o phase
4 int square = i ∗ i ;
5 System . out . p r i n t l n ( ”He l lo from task ” + i + ” with square = ” + square ) ;
6 next ; // Bar r i e r
7 i f ( i == 0 ) System . out . p r i n t l n ( ”LOG: Between He l lo & Goodbye Phases ” ) ;
8 next ; // Bar r i e r
9 // Star t o f Goodbye phase

10 System . out . p r i n t l n ( ”Goodbye from task ” + i + ” with square = ” + square ) ;
11 }

Listing 31: Hello-Goodbye program in Listing 29 extended with a second barrier to print a log message
between the Hello and Goodbye phases

next statement causes the insertion of a single next node in the CG as shown in Figure 24. signal edges
are added from the last step prior to the next in each forall iteration to the next node, and wait edges
are added from the next node to the continuation of each forall iteration. Collectively, these edges enforce
the barrier property since all tasks must complete their Phase j computations before any task can start its
Phase j+1 computation.

3.4.1 Next-with-single Statement

Consider an extension to the Hello-Goodbye program in which we want to print a log message after the Hello
phase ends but before the Goodbye phase starts. Thought this may sound like a contrived problem, it is
representative of logging functionalities in real servers where status information needs to be printed at every
“heartbeat”.

A simple solution is to assign this responsibility to iteration i = 0 of the forall loop as shown in Listing 31.
The log message is printed by iteration i = 0 on line 8 after a barrier in line 7 and before a second barrier
in line 9. Though correct, it is undesirable to use two barriers when trying to log a single phase transition.
To mitigate this problem, the next statement offers a next-with-single option. This option has the form
next single 〈single-statement〉, where 〈single-statement〉 is a statement that is performed exactly once
after all tasks have completed the previous phase and before any task begins its next phase. The CG edges
for a next-with-single statement are shown in Figure 25.

Listing 32 shows how a next-with-single statement can be used to perform the same computation as in
Listing 31 by using one barrier operation (with a single statement) instead of two. Note that no if statement
is needed in the body of the single statement, since it will be executed exactly once by a randomly selected
iteration of the forall loop.
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next-end  

signal edges 

wait edges 

next-start  

single-statement 

Figure 25: Modeling a next-with-single statement in the Computation Graph

1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f o ra l l (point [ i ] : [ 0 :m−1]) {
3 // Star t o f He l l o phase
4 int square = i ∗ i ;
5 System . out . p r i n t l n ( ”He l lo from task ” + i + ” with square = ” + square ) ;
6 next s i n g l e { // s i n g l e statement
7 System . out . p r i n t l n ( ”LOG: Between He l lo & Goodbye Phases ” ) ;
8 }
9 // Star t o f Goodbye phase

10 System . out . p r i n t l n ( ”Goodbye from task ” + i + ” with square = ” + square ) ;
11 }

Listing 32: Listing 31 extended with a next-with-single statement in lines 15–17
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Figure 26: Illustration of the One-Dimensional Iterative Averaging Example for n = 8 (source: Figure 6.19
in [18])

1 double [ ] myVal = new double [ n ] ; myVal [ 0 ] = 0 ; myVal [ n+1] = 1 ;
2 for (point [ i t e r ] : [ 0 : i t e r a t i o n s −1]) {
3 // Output array MyNew i s computed as func t i on o f
4 // input array MyVal from prev ious i t e r a t i o n
5 double [ ] myNew = new double [ n ] ; myNew [ 0 ] = 0 ; myNew[ n+1] = 1 ;
6 f o ra l l (point [ j ] : [ 1 : n ] ) { // Create n ta sk s
7 myNew[ j ] = (myVal [ j −1] + myVal [ j +1 ] ) /2 . 0 ;
8 } // f o r a l l
9 myVal = myNew; // myNew becomes input array f o r next i t e r a t i o n

10 } // f o r

Listing 33: Idealized One-Dimensional Iterative Averaging program using for-forall computation structure
with n parallel tasks working on elements 1 . . . n

3.5 One-Dimensional Iterative Averaging

To further motivate the need for barriers, consider the one-dimensional iterative averaging algorithm illus-
trated in Figure 26. The idea is to initialize a one-dimensional array of double with n+2 elements, myVal,
with boundary conditions, myVal[0] = 0 and myVal[n+1] = 1. Then, in each iteration, each interior el-
ement (with index in the range 1 . . . n) is replaced by the average of its left and right neighbors. After a
sufficient number of iterations, we expect each element of the array to converge to myV al[i] = i/(n + 1).
For this final quiescent equilibrium state, it is easy to see that myV al[i] = (myV al[i− 1] +myV al[i+ 1])/2
must be the average of its left and right neighbors, for all i in the range 1 . . . n.

3.5.1 Idealized Implementations of One-Dimensional Iterative Averaging Example

In this section, we discuss two idealized implementations of the one-dimensional iterative averaging example.
The first version in Listing 33 uses a for–forall structure, whereas the second version in Listing 34 uses a
forall–for–next structure.

The first version in Listing 33 contains an outer for–iter loop in line 2 which is intended to run for a
sufficiently large number of iterations to guarantee convergence. (Many real-world applications use a
while loop instead of a counted for loop to test for convergence.) Each iteration of the for–iter loop starts
by allocating and initializing a new output array, myNew, in line 5. For each instance of the forall in
lines 6–8, myVal is a reference to the array computed in the previous iteration and myNew is a reference to the
array computed in the current iteration. Line 6 performs the averaging step in parallel due to the forall–j
loop. There are no data races induced by line 6, since the reads and writes are performed on distinct arrays
and each write is performed on a distinct location in myNew.

You learned earlier that repeated execution of forall, as in Listing 33, can incur excessive overhead because
each forall spawns multiple async tasks and then waits for them to complete with an implicit finish

operation. Keeping this observation in mind, Listing 34 shows an alternate implementation of the iterative
averaging example using the next (barrier) statement. Now, the forall loop has moved to the outer level

52 of 78



COMP 322
Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

1 // Assume that myVal and myNew are mutable f i e l d s o f type double [ ]
2 myNew = new double [ n ] ; myNew [ 0 ] = 0 ; myNew[ n+1] = 1 ;
3 f o ra l l (point [ j ] : [ 1 : n ] ) { // Create n ta sk s
4 for (point [ i t e r ] : [ 0 : i t e r a t i o n s −1]) {
5 next { // s i n g l e statement
6 myVal = myNew; // myNew becomes input array f o r next i t e r a t i o n
7 myNew = new double [ n ] ; myNew [ 0 ] = 0 ; myNew[ n+1] = 1 ;
8 }
9 myNew[ j ] = (myVal [ j −1] + myVal [ j +1 ] ) /2 . 0 ;

10 } // f o r
11 } // f o r a l l

Listing 34: One-Dimensional Iterative Averaging Example using forall-for-next-single computation structure
with n parallel tasks working on elements 1 . . . n

in line 3 and the for loop to the inner level in line 4. Further, the array references myVal and myNew are
stored in fields rather than local variables so that they can be updated inside a forall iteration. Finally,
a next-with-single statement is used in lines 5–8 to ensure that the “myVal = myNew;” copy statement and
the allocation of a new array in lines 6 and 7 are executed exactly once during each phase transition.

3.5.2 Optimized Implementation of One-Dimensional Iterative Averaging Example

Though Listing 34 in Section 3.5.1 reduced the number of tasks created by the use of an outer forall with
a barrier instead of an inner forall, two major inefficiencies still remain. First, the allocation of a new
array in every iteration of the for–iter loop is a major source of memory management overhead. Second,
the forall loop creates one task per array element which is too fine-grained for use in practice.

To address the first problem, we observe that only two arrays are needed for each iteration, an input array
and an output array. Therefore, we can get by with two arrays for the entire algorithm by just swapping
the roles of input and output arrays in every iteration of the for–iter loop. To address the second problem,
we can use loop chunking as discussed in Section 3.3. Specifically, the forall loop can be created for t � n

iterations, and each iteration of the forall loop can be responsible for processing a batch of n/t iterations
sequentially.

Keeping these observations in mind, Listing 35 shows an alternate implementation of the iterative averaging
example. The forall loop is again at the outermost level (line 4), as in Listing 34. However, each iteration of
the forall now maintains local variables, myVal and myNew, that point to the two arrays. The swap(myNew,
myVal) computation in line 11 swaps the two references so that myNew becomes myVal in the next iteration
of the for loop. (There are two distinct array objects allocated in lines 1 and 2, whereas myVal and myNew

are pointers to them that are swapped each time line 10 is executed.) Maintaining these pointers in local
variables avoids the need for synchronization in the swap computation in line 11.

Line 3 computes batchSize as dn/te. Line 6 computes the start index for batch i, where 0 ≤ i ≤ t − 1.
The for loop in line 7 sequentially computes all array elements assigned to batch i. (The Math.min()

function is used to ensure that the last iteration of the last batch equals n.) This form of batching is very
common in real-world parallel programs. In some cases, the compiler can perform the batching (chunking)
transformation automatically, but programmers often perform the batching by hand so as to be sure that it
is performed as they expect.

The for–iter loop at line 7 contains a next operation in line 10. The barrier semantics of the next statement
ensures that all elements of myNew are computed in line 9 across all tasks, before moving to line 11 and the
next iteration of the iter loop at line 8. We can see that only t tasks are created in line 4, and the same
tasks repeatedly execute the iterations of the iter loop in line 7 with a barrier synchronization in line 10.
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1 double [ ] va l1 = new double [ n ] ; va l [ 0 ] = 0 ; va l [ n+1] = 1 ;
2 double [ ] va l2 = new double [ n ] ;
3 int batchS ize = Cei lDiv (n , t ) ; // Number o f e lements per task
4 f o ra l l (point [ i ] : [ 0 : t−1]) { // Create t ta sk s
5 double [ ] myVal = val1 ; double myNew = val2 ; double [ ] temp = null ;
6 int s t a r t = i ∗ batchS ize + 1 ; int end = Math . min ( s t a r t+batchSize −1,n ) ;
7 for (point [ i t e r ] : [ 0 : i t e r a t i o n s −1]) {
8 for (point [ j ] : [ s t a r t : end ] )
9 myNew[ j ] = (myVal [ j −1] + myVal [ j +1 ] ) /2 . 0 ;

10 next ; // b a r r i e r
11 temp = myNew; myNew = myVal ; myVal = temp ; // swap (myNew, myVal )
12 } // f o r
13 } // f o r a l l

Listing 35: One-Dimensional Iterative Averaging Example using forall-for-next computation structure with
t parallel tasks working on an array with n+ 2 elements (each task processes a batch of array elements)

4 Dataflow Synchronization and Pipelining

4.1 Fuzzy Barriers

Thus far, you have studied the use of next as shorthand for signal and wait operations performed by a
task. In fact, the deadlock freedom property for phasers depends on the fact that the programmer does not
have the ability to perform a wait operation separately from signal operations. However, there are some
cases when it can be useful to perform a signal operation for a given phase ahead of a next operation. This
idiom is referred to as split-phase barriers or fuzzy barriers [12].

A typical use case of this occurs when a task has a combination of shared work and local work to perform in
a given phase. Listing 36 contains a simple example to illustrate this point.

Each of tasks T1 and T2 in Listing 36 contain shared work and local work in phase 0. Task T1 computes a
in phase 0 (line 4) whose value is to be shared with task T2 in phase 1 (line 15). Likewise, task T2 computes
x in phase 0 (line 11) whose value is to be shared with task T1 in phase 1 (line 8). The use of next in lines 7
and 14 provides the necessary synchronization to ensure that this sharing can occur without creating a data
race.

However, each of tasks T1 and T2 also have some local work to perform between phases 0 and 1. In the case
of T1, it is the computation of b in line 6, and in the case of T2, it is the computation of y in line 13. These
local computations can logically be performed before or after the next operation, but it would be ideal if
they could be performed in parallel with the phase transition. The use of signal statements in lines 5 and
12 achieves this desired effect.

When a task T performs a signal operation, it notifies all the phasers it is registered on that it has
completed all the work expected by other tasks in the current phase (the “shared” work). Since signal is a
non-blocking operation, an early execution of signal cannot create a deadlock. Later on, when T performs
a next operation, the next degenerates to a wait since a signal has already been performed in the current
phase. The execution of “local work” between signal and next is performed during phase transition; hence
the use of names such as “split-phase barrier” and “fuzzy barrier” to describe this concept.

Figure 27 shows the Computation Graph (CG) corresponding to Listing 36. Note that there is a path of
dependence edges from statement 4 in task T1 to statement 15 in task T2, but no dependence path from
statement 6 in task T1 to statement 15 in task T2. Likewise, there is a path of dependence edges from
statement 11 in task T2 to statement 8 in task T1, but no dependence path from statement 13 in task T2
to statement 8 in task T1. The ability to overlap statements 6 and 13 with the phase transition reduces the
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1 f in ish {
2 phaser ph = new phaser ( phaserMode .SIG WAIT) ;
3 async phased { // Task T1
4 a = . . . ; // Shared work in phase 0
5 signal ; // S igna l complet ion o f a ’ s computation
6 b = . . . ; // Local work in phase 0
7 next ; // Bar r i e r −− wait f o r T2 to compute x
8 b = f (b , x ) ; // Use x computed by T2 in phase 0
9 }

10 async phased { // Task T2
11 x = . . . ; // Shared work in phase 0
12 signal ; // S igna l complet ion o f x ’ s computation
13 y = . . . ; // Local work in phase 0
14 next ; // Bar r i e r −− wait f o r T1 to compute a
15 y = f (y , a ) ; // Use a computed by T1 in phase 0
16 }
17 } // f i n i s h

Listing 36: Example of split-phase barrier

overall critical path length of the CG, compared to the case if the signal statements in lines 5 and 12 were
removed.

The HJ language provides two utility functions ph.getSigPhase() and ph.getWaitPhase() to indicate
which phase a task is in with respect to phaser ph. At the start of phase i, both ph.getSigPhase()

and ph.getWaitPhase() will return i. However, if a signal operation is performed before a next, then
ph.getSigPhase() returns i + 1 while ph.getWaitPhase() still returns i at any program point between
signal and next. After the next, both ph.getSigPhase() and ph.getWaitPhase() will return i + 1.
These signal and wait phase numbers can be used to establish the following phase-ordering property, which
states how the phase numbers can be used to establish ordering among steps in a Computation Graph.

Phase-ordering property: Given two CG steps S1 and S2 in the CG, if there exists a phaser ph such that
ph.getSigPhase(S1) < ph.getWaitPhase(S2) then there must be a path of dependence edges from S1 to S2 in
the CG.

As an example, statement 4 in Figure 27 would return ph.getSigPhase() = 0 but statement 6 in Figure 27
would return ph.getSigPhase() = 1. Since statement 15 would return ph.getWaitPhase() = 1, the phase-
ordering property guarantees that statement 4 (but not statement 6) must precede statement 15.

The idea of split-phase barriers can be used to further increase the parallelism in the optimized one-
dimensional iterative averaging example using point-to-point synchronization in Listing 45. The key ob-
servation is that only the boundary elements need to be communicated between tasks in each iteration.
Listing 37 shows how the split-phase concept can be combined with point-to-point synchronization. The
computations of myNew[start] and myNew[end] have now been “peeled” out in lines 12 and 13, after which
the signal operation in line 14 indicates that all shared work has been completed. The computation of
interior elements start+1:end-1 is local work and can be overlapped with phase transition by placing the
for loop in lines 15 and 16 between the signal (line 14) and next (line 17) operations.

4.2 Point-to-point Synchronization with Phasers

Your repertoire of fundamental parallel programming constructs now includes task creation (async, async
await), task termination (finish, future.get()), and barrier synchronization (next in forall loops). These
constructs can all be modeled by a unified Computation Graph in which each node represents a sequential
indivisible step, and each (directed) edge represents one of the following cases:
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Figure 27: Computation Graph for HJ program in Listing 36. Shaded steps 6 and 13 represent local work
executed in parallel with phase transition.

1 double [ ] va l1 = new double [ n ] ; va l [ 0 ] = 0 ; va l [ n+1] = 1 ;
2 double [ ] va l2 = new double [ n ] ;
3 int batchS ize = Cei lDiv (n , t ) ; // Number o f e lements per task
4 f in ish {
5 phaser ph = new phaser [ t +2] ;
6 f o ra l l (point [ i ] : [ 0 : t +1]) ph [ i ]=new phaser ( phaserMode .SIG WAIT) ;
7 for (point [ i ] : [ 1 : t ] )
8 async phased (ph [ i ]<SIG>, ph [ i−1]<WAIT>, ph [ i +1]<WAIT>) {
9 double [ ] myVal = val1 ; double myNew = val2 ; double [ ] temp = null ;

10 int s t a r t=( i −1)∗ batchS ize +1; int end=Math . min ( s t a r t+batchSize −1,n ) ;
11 for (point [ i t e r ] : [ 0 : i t e r a t i o n s −1]) {
12 myNew[ s t a r t ] = (myVal [ s t a r t −1] + myVal [ s t a r t +1 ] ) /2 . 0 ;
13 myNew[ end ] = (myVal [ end−1] + myVal [ end +1 ] ) /2 . 0 ;
14 signal ; // s i g n a l ph [ i ]
15 for (point [ j ] : [ s t a r t +1:end−1])
16 myNew[ j ] = (myVal [ j −1] + myVal [ j +1 ] ) /2 . 0 ;
17 next ; // wait on ph [ i −1] and ph [ i +1]
18 temp = myNew; myNew = myVal ; myVal = temp ; // swap (myNew, myVal )
19 } // f o r
20 } // for−async
21 } // f i n i s h

Listing 37: Optimized One-Dimensional Iterative Averaging Example using signal statements for split-phase
point-to-point synchronization
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1 f in ish {
2 for (point [ i ] : [ 1 :m] )
3 async {
4 doPhase1 ( i ) ;
5 doPhase2 ( i ) ;
6 }
7 }

Listing 38: A simple parallel loop

COMP 322, Spring 2011 (V.Sarkar)!18 

Barrier & P-2-P Sync for 1-D 
Averaging!

doPhase1(i) 

doPhase2(i) 

 i=1   i=2    i=3    i=4    i=5    i=6    i=7    i=8 

Figure 28: Illustration of left-neighbor right-neighbor point-to-point synchronization in a loop like Listing 38,
assuming m = 8

• Continue edges capture sequencing of steps within a task.

• Spawn edges capture creation of child tasks, as in async and forall.

• Join edges capture task termination as in finish and future.get().

• Signal and wait edges capture directed synchronization as in the next statement.

While barrier synchronization is an important special case of directed synchronization, there are are many
other synchronization patterns that can be expressed using signal and wait edges in a Computation Graph
including nearest-neighbor synchronization and pipeline parallelism. These patterns build on the idea of
point-to-point synchronization between two tasks that date back to the concept of binary semaphores [8]11.

As one example of point-to-point synchronization, consider the following parallel loop expressed using the
expanded finish–for–async notation rather than a forall. (The reason for the expansion will become
clear later.) Each iteration i of the parallel loop in Listing 38 performs two method calls in sequence,
doPhase1(i) and doPhase2(i). Earlier, you learned how to insert a next statement in a forall loop to
implement a barrier. Now, consider a less constrained case when iteration i only needs to wait for iterations
i−1 and i+1 to complete their work in doPhase1() before it starts doPhase2(i) i.e., iteration i only needs
to synchronize on its left neighbor and right neighbor.

Figure 28 illustrates this synchronization pattern. Since it is different from a barrier, you will learn how
the necessary point-to-point synchronization can be implemented using the more general phaser construct.
Note the boundary conditions in Figure 28 where iteration i = 1 only needs to wait for iteration i + 1 = 2
to complete doPhase1(), and iteration i = m − 1 = 8 only needs to wait for iteration i = m − 1 = 7
to complete doPhase1(). Continuing the dining analogy discussed earlier for barriers, we can think of this
synchronization as enforcing a rule that you cannot advance to your next course (Phase 2) until the neighbors
on your left and right have completed their previous course (Phase 1), which is a less stringent requirement
than a barrier between the two phases.

The previous examples motivated the need for point-to-point synchronization in multiple scenarios. We
now introduce phasers [22]. Phasers were added to the HJ language as an extension to the clock con-

11When you learn about semaphores in an Operating Systems class, you can relate them to this class by thinking of semaphores
as lower-level OS mechanisms that can be used to implement programming constructs such as finish, future.get(), isolated,
and next.
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SINGLE = { signal, wait, single } 

SIG_WAIT = { signal, wait } 

SIG = { signal } WAIT = { wait } 

Figure 29: Capability hierarchy for phaser registration modes

struct developed in the X10 language [6]. A limited version of phasers was also added to the Java 7
java.util.concurrent.Phaser library [19]. A phaser is a special kind of synchronization object that unifies
point-to-point and barrier synchronization in a single construct, while supporting dynamic parallelism i.e.,
the ability for tasks to drop phaser registrations and for new tasks to add new phaser registrations.

Each async task has the option of registering with a phaser in signal-only (signal) or wait-only mode for
point-to-point synchronization or signal-wait mode for barrier synchronization. As with barriers, a next

statement is used to advance each phaser that a task is registered on (according to the registration modes),
and the next statement can optionally include a single statement which is guaranteed to be executed
exactly once during a phase transition. The forall barrier synchronization that you learned earlier is
actually implemented by allocating an implicit phaser for each forall instance, and registering all forall
iterations on that phaser in signal-wait mode.

At any point in time, a task can be registered in one of four modes with respect to a phaser: SINGLE,
signal-wait, signal-only, or wait-only. The mode defines the set of capabilities — signal, wait, single

— that the task has with respect to the phaser. The subset relationship defines a natural hierarchy of
the registration modes, as shown in Figure 29. Thus, signal-wait mode is above signal-only and wait-only
modes in the hierarchy because the capability set for registration mode signal-wait is {signal, wait} and
the capability sets for signal-only and wait-only are {signal} and {wait} respectively.

The four primary phaser operations that can be performed by a task, Ai, are defined as follows. You will
learn some additional (advanced) phaser operations later in the course:

1. new: When Ai performs a new phaser(MODE) operation, it results in the creation of a new phaser,
ph, such that Ai is registered with ph according to MODE. If MODE is omitted, the default mode assumed
is signal-wait. Phaser creation also initializes the phaser to its first phase (phase 0). At this point, Ai

is the only task registered on ph. Additional descendant tasks of Ai can add registrations on ph, using
the async phased construct described in item 2. The scope of the phaser is limited to the Immediately
Enclosing Finish (IEF) for the new statement.

2. phased async: async phased ( ph1〈mode1〉, . . . )Aj

When task Ai creates an async child task Aj , it has the option of registering Aj with any subset of
phaser capabilities possessed by Ai. This subset is specified by the registration mode (modek for phaser
phk) contained in the phased clause. We also permit the “async phased Aj” syntax as shorthand to
indicate that Ai is transmitting all its capabilities on all phasers that it is registered with to Aj .

The subset rule is also referred to as the Capability Rule for phasers i.e., a child task can only inherit
a subset of its parent task’s phaser capabilities. However, it can add new capabilities by creating new
phasers in its scope.

3. drop: Ai implicitly drops its registration on all phasers when it terminates. In addition, when Ai

executes an end-finish instruction for finish statement F , it implicitly de-registers from each phaser

58 of 78



COMP 322
Spring 2015

COMP 322: Fundamentals of Parallel Programming

Module 1: Parallelism

1 f in ish {
2 ph = new phaser ( ) ; // Defau l t mode i s SIG WAIT
3 async phased (ph<SIG>){doA1Phase1 ( ) ; next ; doA1Phase2 ( ) ; } //A1 (SIG mode)
4 async phased{doA2Phase1 ( ) ; next ; doA2Phase2 ( ) ; } //A2 (SIG WAIT mode)
5 async phased{doA3Phase1 ( ) ; next ; doA3Phase2 ( ) ; } //A3 (SIG WAIT mode)
6 async phased (ph<WAIT>){doA4Phase1 ( ) ; next ; doA4Phase2 ( ) ; } //A4 (WAIT mode)
7 }

Listing 39: Simple example with four async tasks and one phaser

Semantics of next depends on registration mode 
SIG_WAIT: next = signal + wait 
SIG: next = signal 
WAIT: next = wait 

signal 

wait 
next 

SIG SIG_WAIT SIG_WAIT WAIT 

 A master thread (worker) gathers all signals and broadcasts a barrier completion 

Figure 30: “next” actions performed by tasks with different registration modes on the same phaser

ph for which F is the Immediately Enclosing Finish (IEF) for ph’s creation. Finally, any task Ai can
explicitly de-register from phaser ph by executing ph.drop().

4. next: The next operation has the effect of advancing each phaser on which Ai is registered to its
next phase, thereby synchronizing all tasks registered on the same phaser. As described in [22], the
semantics of next depends on the registration mode that Ai has with a specific phaser, ph.

Listing 39 contains a simple example to illustrate these concepts. A single phaser, ph is allocated in line 2, and
its IEF is the finish statement that spans lines 1–7. Four async tasks are created in lines 3–6 with different
registration modes defined by their phased clauses. Figure 30 illustrates these concepts by showing the
actions performed by the next statements in tasks A1 . . . A4 as Computation Graph edges. The unification
of point-to-point synchronization can be seen in the fact that tasks A2 and A3 perform barrier (signal-wait)
operations at each next statement, whereas tasks A1 and A4 perform point-to-point synchronizations.

Let us now revisit the example in Listing 38, and first consider the simple case when m = 3. Listing 40 shows
the use of phasers to ensure proper synchronization for the m = 3 case. The synchronizations enforced by the
phasers ph1, ph2, and ph3 match the pattern in Figure 28, including the boundary conditions for i = 1 and
i = 3, which need to wait on one phaser each. This code could also have been written by creating separate
future async tasks for method calls doPhase1() and doPhase2(), and by using future.get() operations
instead of next. However, doing so would incur the same overheads and inconveniences discussed earlier for
replacing barriers by finish–async constructs.
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1 f in ish {
2 phaser ph1 = new phaser ( ) ; // Defau l t mode i s SIG WAIT
3 phaser ph2 = new phaser ( ) ; // Defau l t mode i s SIG WAIT
4 phaser ph3 = new phaser ( ) ; // Defau l t mode i s SIG WAIT
5 async phased ( ph1<SIG>, ph2<WAIT>) { // i = 1
6 doPhase1 ( 1 ) ;
7 next ; // S i gna l s ph1 , and waits on ph2
8 doPhase2 ( 1 ) ;
9 }

10 async phased ( ph2<SIG>, ph1<WAIT>, ph3<WAIT>) { // i = 2
11 doPhase1 ( 2 ) ;
12 next ; // S i gna l s ph2 , and waits on ph1 and ph3
13 doPhase2 ( 2 ) ;
14 }
15 async phased ( ph3<SIG>, ph2<WAIT>) { // i = 3
16 doPhase1 ( 3 ) ;
17 next ; // S i gna l s ph3 , and waits on ph2
18 doPhase2 ( 3 ) ;
19 }
20 }

Listing 40: Extension of example in Listing 38 with three phasers for m = 3

1 f in ish {
2 phaser ph = new phaser [m+2] ;
3 f o ra l l (point [ i ] : [ 0 :m+1]) ph [ i ]=new phaser ( ) ; // Defau l t mode i s SIG WAIT
4 fo ra sync phased (ph [ i ]<SIG>, ph [ i−1]<WAIT>, ph [ i +1]<WAIT>)

(point [ i ] : [ 1 :m] ) {
5 doPhase1 ( i ) ;
6 next ; // S i gna l s ph [ i ] , and waits on ph [ i −1] and ph [ i +1]
7 doPhase2 ( i ) ;
8 }
9 }

Listing 41: Extension of example in Listing 38 with array of m+ 2 phasers for general m

This idea can be extended to general values of m by using the code in Listing 41. Lines 2 and 3 allocate and
initialize a phaser array. This makes it convenient to specify the phaser registrations as a function of i in the
phased clause in line 5. No special case if conditions need to be specified for the boundary cases of i = 1
and i = m, since the general formulation works correctly in those cases too. For example, the async task for
iteration i = 1 waits on phaser ph[0]. However, no task is registered with a signal capability on ph[0],
so this wait is essentially a no-op. Listing 41 also illustrates the use of a phased clause with a forasync

construct.

In summary, phasers are general synchronization constructs that can be used to create complex synchroniza-
tion patterns specified by phased clauses in async constructs. A task can be registered on multiple phasers in
different modes, and a phaser can have multiple tasks registered on it. The use of a next statement, instead
of individual signal and wait operations, ensures that each task performs the correct synchronization at
the end of each phase. Further, since the expansion of next into signal and wait operations is performed
by the compiler and runtime, it is not possible for the programmer to create a deadlock cycle with phasers.
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Adding Phaser Operations to the Computation Graph You have already learned how to define
Computation Graphs for HJ programs that use async, finish, and future.get() operations. We now add
Computation Graph rules for signal, wait, next and drop phaser operations.

Recall that a Computation Graph (CG) node represents a step consisting of an arbitrary sequential com-
putation, and that a task’s execution is divided into steps by using continuations to define the boundary
points. The set of operations that induce continuation points includes async (source of a spawn edge), end of
a finish statement (destination of join edges), future.get() (destination of a join edge), signal and drop

(source of signal edges), wait (destination of wait edges), and next (source of signal edges and destination of
wait edges). As discussed earlier, it is acceptable to introduce finer-grained steps in the CG if so desired i.e.,
to split a step into smaller steps than the boundaries induced by continuation points. The key constraint is
that a continuation point should not be internal to a step.

Each next operation performed by a task is modeled as two steps, signal and wait, in the task. Likewise,
each end-finish operation is modeled as two steps, drop (to drop all phaser registrations in the finish scope)
and end-finish. For convenience, we assume that the CG also includes an unbounded set of pairs of phase
transition CG nodes, ph.next-start(i→ i+1) and ph.next-end(i→ i+1), for each phaser ph allocated during
program execution that transitions from phase i to phase i+ 1.

Given a set of CG nodes, the following classes of CG edges enforce ordering constraints among the nodes:

1. Continue edges capture sequencing of steps within a task — all steps within the same task are connected
by a chain of continue edges. In addition, each pair of phase transition CG nodes, ph.next-start(i →
i+ 1) and ph.next-end(i→ i+ 1), is connected by a continue edge.

2. Spawn edges connect parent tasks to child async tasks. When an async is created, a spawn edge is
inserted between the step that ends with the async in the parent task and the step that starts the
async body in the new child task.

3. Join edges connect descendant tasks to their Immediately Enclosing Finish (IEF) operations and to
get() operations for future tasks. When an async terminates, a join edge is inserted from the last step
in the async to the step in the ancestor task that follows the IEF operation. If the async represents
a future task, then a join edge is also inserted from the last step in the async to each step that starts
with a get() operation on that future.

4. Signal edges connect each signal or drop operation performed by a task to the phase transition node,
ph.next-start(i → i + 1), for each phaser ph that the task is registered on with signal capability when
that phaser is transitioning from phase i to phase i+ 1.

5. Wait edges connect each phase transition node, ph.next-end(i → i + 1) to a wait or next operation
performed by a task, for each phaser ph that the task is registered on with wait capability when that
phaser is transitioning from phase i to phase i+ 1.

6. Single edges connect each phase transition node, ph.next-start(i → i + 1) to the start of a single

statement instance in a task registered on phaser ph with single capability when that phaser is transi-
tioning from phase i to phase i+ 1, and the end of that single statement to the phase transition node,
ph.next-end(i→ i+ 1) .

Let us now revisit the code in Listing 42 which shows the use of phasers to ensure proper synchronization for
the m = 3 case of the left-right neighbor synchronization example studied earlier. The computation graph
for this program is shown in Figure 31. The steps in Figure 31 are labeled with statement numbers from
Listing 42. The spawn, continue and join edges capture the basic finish-async structure of the program
as before. The new CG nodes include phaser transition nodes (e.g., ph1.next-start(0 → 1) and ph1.next-
end(0 → 1)) and the expansion of next statements into signal and wait nodes (e.g., the next operation
in line 12 is expanded into two CG nodes, 12-signal and 12-wait). The new CG edges are the signal (green)
and wait (red) edges corresponding to phaser operations. For example, a signal edge is added from the
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1 f in ish {
2 phaser ph1 = new phaser ( phaserMode .SIG WAIT) ;
3 phaser ph2 = new phaser ( phaserMode .SIG WAIT) ;
4 phaser ph3 = new phaser ( phaserMode .SIG WAIT) ;
5 async phased ( ph1<phaserMode .SIG>, ph2<phaserMode .WAIT>)
6 { doPhase1 ( 1 ) ; // Task T1
7 next ; // S i gna l s ph1 , and waits on ph2
8 doPhase2 ( 1 ) ;
9 }

10 async phased ( ph2<phaserMode .SIG>,ph1<phaserMode .WAIT>,ph3<phaserMode .WAIT>)
11 { doPhase1 ( 2 ) ; // Task T2
12 next ; // S i gna l s ph2 , and waits on ph1 and ph3
13 doPhase2 ( 2 ) ;
14 }
15 async phased ( ph3<phaserMode .SIG>, ph2<phaserMode .WAIT>)
16 { doPhase1 ( 3 ) ; // Task T3
17 next ; // S i gna l s ph3 , and waits on ph2
18 doPhase2 ( 3 ) ;
19 }
20 } // f i n i s h

Listing 42: Example of left-right neighbor synchronization for m = 3 case

1, 2, 3 
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Figure 31: Computation Graph for example HJ program in Listing 42
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1 rank . count = 0 ; // rank ob j e c t conta in s an i n t f i e l d , count
2 f in ish {
3 phaser ph = new phaser ( phaserMode .SIG WAIT) ;
4 for (point [ i ] : [ 0 :m−1]) async phased {
5 // Star t o f phase 0
6 int square = i ∗ i ;
7 System . out . p r i n t l n ( ”He l lo from task ” + i + ” with square = ” + square ) ;
8 next ; // Acts as b a r r i e r between phases 0 and 1
9 // Star t o f phase 1

10 System . out . p r i n t l n ( ”Goodbye from task ” + i + ” with square = ” + square ) ;
11 } // f o r async phased
12 } // f i n i s h

Listing 43: Translation of Listing 29 to a finish-for-async-phased code structure (phaser version)

12-signal node to the ph2.next-start(0 → 1) node because task T2 is registered on phaser ph2 in signal

mode. Likewise, wait edges are added from the ph1.next-end(0 → 1) and ph3.next-end(0 → 1) nodes to
the 12-wait node because task T2 is registered on phasers ph1 and ph3 in wait mode. Finally, end-finish
statement 20 is expanded into two CG nodes, 20-drop and 20-end-finish. The signal edges from 20-drop
to the three ph.next-start(0 → 1) nodes models the synchronization that occurs with the parent task on
next operations. The 20-end-finish nodes serves as the destination for join edges as before. Note that this
splitting of an end-finish statement into two CG nodes avoids the creation of a cycle in the CG.

Barriers in Forall Statements revisited Earlier, you learned the use of next as a barrier statement
in forall loops with examples such as the one in Listing 29. However, now that you have learned the use
of phaser operations in their full generality, the forall barrier can be understood as an implicit phaser
allocated as part of a forall statement. Specifically, the HJ programming model implements a forall

as the finish-for-async-phased code structure shown in Listing 43 with the allocation of a phaser, ph, that
is not visible to the programmer. Recall that the default convention for async phased is that each child
task inherits the same phaser registrations as its parent i.e., SIG WAIT registration on ph in this case. Even
though both Listing 29 and Listing 43 are equivalent, it is recommended that you use the forall barrier
version (Listing 29) whenever possible because of its simplicity. The phaser version (Listing 43) should be
used only when more general synchronization patterns are needed.

4.3 One-Dimensional Iterative Averaging Example with Point-to-Point Synchronization

Listing 44 shows the optimized implementation of the One-Dimensional Iterative Averaging Example with
a forall loop and barrier (next) operations. The first optimization implemented in this version is batching
so that only t tasks (forall iterations) are created, and each task sequentially executes iterations start:end
in its batch (line 8). The second optimization is the reuse of two arrays instead of allocating a new array in
each iteration of the for-iter loop in lines 7–12.

Figure 32 shows the synchronization structure for this example, where the red line indicates the barrier
operation and the black arrows indicate the actual dependences in the algorithm that need to be satisfied
across successive iterations of the for-iter loop in lines 7–12. As can be seen in Figure 32, the use of a barrier
is overkill since the algorithm only needs left-right neighbor synchronization for correctness. Instead, the
only synchronizations needed are the ones shown in blue lines in Figure 33. This can be accomplished using
point-to-point synchronization with an array of phasers as shown in Listing 45. Note that the synchronization
structure in this example is identical to that of the left-right neighbor synchronization studied earlier.
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1 double [ ] va l1 = new double [ n ] ; va l [ 0 ] = 0 ; va l [ n+1] = 1 ;
2 double [ ] va l2 = new double [ n ] ;
3 int batchS ize = Cei lDiv (n , t ) ; // Number o f e lements per task
4 f o ra l l (point [ i ] : [ 0 : t−1]) { // Create t ta sk s
5 double [ ] myVal = val1 ; double myNew = val2 ; double [ ] temp = null ;
6 int s t a r t=i ∗ batchS ize +1; int end=Math . min ( s t a r t+batchSize −1,n ) ;
7 for (point [ i t e r ] : [ 0 : i t e r a t i o n s −1]) {
8 for (point [ j ] : [ s t a r t : end ] )
9 myNew[ j ] = (myVal [ j −1] + myVal [ j +1 ] ) /2 . 0 ;

10 next ; // b a r r i e r
11 temp = myNew; myNew = myVal ; myVal = temp ; // swap (myNew, myVal )
12 } // f o r
13 } // f o r a l l

Listing 44: Optimized One-Dimensional Iterative Averaging Example using forall-for-next computation
structure with t parallel tasks working on an array with n + 2 elements (each task processes a batch of
array elements)

iter 

iter + 1 

Task i=0 Task i=1 Task i=2 

Figure 32: Synchronization structure of HJ program in Listing 44 (red line indicates barrier in line 10, and
black arrows indicate actual dependences)

iter 

iter+1 

Task i=0 Task i=1 Task i=2 

Figure 33: Synchronization structure of HJ program in Listing 45 (blue lines indicate point-to-point phaser
synchronization, and black arrows indicate actual dependences)
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1 double [ ] va l1 = new double [ n ] ; va l [ 0 ] = 0 ; va l [ n+1] = 1 ;
2 double [ ] va l2 = new double [ n ] ;
3 int batchS ize = Cei lDiv (n , t ) ; // Number o f e lements per task
4 f in ish {
5 phaser ph = new phaser [ t +2] ;
6 f o ra l l (point [ i ] : [ 0 : t +1]) ph [ i ]=new phaser ( phaserMode .SIG WAIT) ;
7 for (point [ i ] : [ 1 : t ] )
8 async phased (ph [ i ]<SIG>, ph [ i−1]<WAIT>, ph [ i +1]<WAIT>) {
9 double [ ] myVal = val1 ; double myNew = val2 ; double [ ] temp = null ;

10 int s t a r t = ( i −1)∗ batchS ize + 1 ; int end = Math . min ( s t a r t+batchSize −1,n ) ;
11 for (point [ i t e r ] : [ 0 : i t e r a t i o n s −1]) {
12 for (point [ j ] : [ s t a r t : end ] )
13 myNew[ j ] = (myVal [ j −1] + myVal [ j +1 ] ) /2 . 0 ;
14 next ; // s i g n a l ph [ i ] and wait on ph [ i −1] and ph [ i +1]
15 temp = myNew; myNew = myVal ; myVal = temp ; // swap (myNew, myVal )
16 } // f o r
17 } // for−async
18 } // f i n i s h

Listing 45: Optimized One-Dimensional Iterative Averaging Example using point-to-point synchronization,
instead of barrier synchronization as in Listing 44

4.4 Pipeline Parallelism

As another example of point-to-point synchronization, consider a one-dimensional pipeline of tasks (stages),
P0, P1, . . ., as shown in Figure 34. Pipelines occur in multiple domains e.g., automobile manufacturing
assembly lines and image processing pipelines. Figure 35 shows a pipeline used for seismic images that
consists of three stages — simulation, rendering, and formatting. The seismic simulation in the first stage
generates a sequence of results, one per time step. The rendering application in the second stage takes
as input the simulation results for one time step, and generates an image for that time step. Finally, the
formatting application in the third stage takes the image as input and outputs it into an animation sequence.
Even though the processing is sequential for a single time step, pipeline parallelism can be exploited via point-
to-point synchronization between neighboring stages so as to enable multiple stages to process different data
items in a coordinated way.

This general idea can be seen in the timing diagram in Figure 36, which illustrates the scheduling of data
items on pipeline stages, using the notation from Figure 34. The horizontal axis shows the progress of time
from left to right, and the vertical axis shows which data item is being processed by which pipeline stage at
a given time. Assuming that the inputs d0, d1, . . . arrive sequentially, pipeline parallelism can be exploited
by enabling task (stage) Pi to work on item dk−i when task (stage) P0 is working on item dk.

We can undertake a simplified analysis of the timing diagram in Figure 36, assuming that each stage takes
1 unit of time to process a single data item. Let n be the number of input items and p the number of stages
in the pipeline (n = p = 10 in Figure 36.) Then, WORK = n × p is the total work that must be done for
all data items, and CPL = n+ p− 1 is the critical path length of the pipeline schedule shown in Figure 36.
Thus, the ideal parallelism is PAR = WORK/CPL = np/(n+ p− 1).

This formula can be validated by considering a few boundary cases. When p = 1, the ideal parallelism
degenerates to PAR = 1, which confirms that the computation is sequential when only one stage is avail-
able. Likewise, when n = 1, the ideal parallelism again degenerates to PAR = 1, which confirms that the
computation is sequential when only one data item is available. When n is much larger than p (n� p), then
the ideal parallelism approaches PAR = p in the limit, which is the best possible case. Finally, when n = p,
then the ideal parallelism becomes p/(2− 1/p), which approaches PAR = p/2, when n = p is � 1.

In summary, assuming that the number of stages, p, is fixed, the ideal parallelism, PAR, increases with
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Figure 34: One-dimensional pipeline with tasks, P0 . . . P9, and sequence of input items, d0, d1, . . . (Source:
Figure 5.6(a) in [25])

Oregon State University C. M. Pancake (pancake@cs.orst.edu)

Pipeline Parallelism

! Scenario:  seismic imaging problem
! Data from different time steps used to generate series of images
! Job can be subdivided into phases which process the output of earlier phases
! Concurrency comes from overlapping the processing for multiple phases

! Key characteristic: only need to pass results one-way
! Can delay start-up of later phases so input will be ready

! Potential problems
! Assumes phases are computationally balanced  
! (or that processors have unequal capabilities)
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Fully Synchronous Parallelism

! Scenario:  atmospheric dynamics problem
! Data models atmospheric layer; highly interdependent in horizontal layers
! Same operation is applied in parallel to multiple data
! Concurrency comes from handling large amounts of data at once 

! Key characteristic: Each operation is performed on all (or most) data
! Operations/decisions depend on results of previous operations

! Potential problems
! Serial bottlenecks force other processors to “wait”

I ni t i a l  At mo s ph er i c  Part i t i ons
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Re s ul t i n g Pa rt i t i on s
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Resulting Partitions

Figure 35: Seismic imaging pipeline (Source: [21])

an increasing number of data items. PAR starts with a degenerate value of 1 when n = 1, increases to
approximately p/2 when n = p and approaches p as n increases further. This analysis will need to be refined
for more realistic scenarios (such as the seismic imaging pipeline in Figure 35) when different stages take
different amounts of time. Also, pipelines can be multidimensional e.g., in a two-dimensional pipeline, a
stage may receive inputs from both the stage to its west and the stage to its north.
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Figure 36: Timing diagram for pipeline shown in Figure 34 assuming n = p = 10 (Source: Figure 5.6(b) in
[25])
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4.5 Data-Driven Futures

Data-Driven Futures [23] are an extension of future tasks in HJ that support the dataflow model. This
extension is enabled by adding an await clause to the async statement as follows:

async await (DDF a, DDF b, · · · ) 〈 statement 〉

Each of DDF a, DDF b, · · · is an instance of the standard DataDrivenFuture class in HJ. A DDF acts as a
container for a single-assignment value, like regular future objects. However, unlike future objects, DDF’s
can be used in an await clause, and any async task can be a potential producer for a DDF (though only
one task can be the actual producer at runtime because of the single-assignment property).

Specifically, the following rules apply to DataDrivenFuture objects:

• A variable of type DataDrivenFuture is a reference to a DDF object. Unlike regular future objects,
there is no requirement that variables of type DataDrivenFuture be declared with a final modifier.

• The following four operations can be performed on variables of type DataDrivenFuture:

1. Create — an instance of a DDF container can be created using the standard Java statement, new
DataDrivenFuture().

2. Produce — any task can provide a value, V , for a DDF container by performing the operation,
DDF.put(V ). After the put operation, the DDF’s value is said to become available. If another
put operation is attempted on the same DDF, the second put will throw an exception because of
its violation of the single-assignment rule.

3. Await — a new async task can be created with an await clause, await (DDF a, DDF b, · · · ).
The task will only start execution after all the DDFs in the await clause become available.

4. Consume — any task that contains a DDF in its await clause is permitted to perform a get()

operation on the DDF. A cast operation will be required to cast the result of get() to the expected
object type. If a get() operation is attempted by a task that has no await clause or does not
contain the DDF in its await clause, then the get() will throw an exception. Thus, a get() on
a DDF will never lead to a blocking operation (unlike a get() on a regular future object).

• It is possible for an instance of an async with an await clause to never be enabled, if one of its input
DDF never becomes available. This can be viewed as a special case of deadlock.

Example The example HJ code fragment in Figure 37 shows five logically parallel tasks and how they are
synchronized through DDFs. Initially, two DDFs are created as containers for data items left and right.
Then a finish is created with five async tasks. The tasks, leftReader and rightReader, include left or
right in their await clauses respectively. The fifth task, bothReader, includes both both left and right

in its await clause. Regardless of the underlying scheduler, the first two asyncs are guaranteed to execute
before the fifth async.

The computation graph for the five tasks in Figure 37 can be seen in the left side of Figure 39. This exact
graph structure can not be created with pure async and finish constructs without futures or DDFs.
Instead, an approximate version with extra dependences can be created using async and finish, as shown
in Figure 38 (for which the computation graph can be see in the right side of Figure 39).

Implementing regular Future Tasks using Data-Driven Futures To further understand Data-
Driven Futures, we show how regular future tasks can be implemented using DDFs. Consider the example
Habanero Java future construct shown in Figure 40. It can be rewritten to use DDFs, as shown in Figure 41.
Once the DDF gets created, it will await the availability of the f object, if it has not been produced yet.
The execution of that DDF will thus be delayed until f becomes available.
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DataDrivenFuture left = new DataDrivenFuture();

DataDrivenFuture right = new DataDrivenFuture();

finish { // begin parallel region

async left.put(leftBuilder()); // Task1
async right.put(rightBuilder()); // Task2
async await (left) leftReader(left.get()); // Task3
async await (right) rightReader(right.get());// Task4
async await (left, right) bothReader(left.get(), right.get()); //Task5

} // end parallel region

Figure 37: Example Habanero Java code fragment with Data-Driven Futures.

Object left = new Object();

Object right = new Object();

finish { // begin region

async left = leftBuilder(); // Task1
async right = rightBuilder(); // Task2

} // end region

finish { // begin region

async leftReader(left); // Task3
async rightReader(right);// Task4
async bothReader(left, right);{ //Task5

} // end region

Figure 38: A finish-async version of the example in Figure 37
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Figure 39: Computation Graphs for Figure 37 (left) and Figure 38 (right)

final future<int> f = async<int> { return g(); };
· · ·
int local = f.get();

Figure 40: Habanero Java interface for the language construct future

DataDrivenFuture f = new DataDrivenFuture();

async { f.put(g()); };
· · ·
async await (f) { local = f.get(); };

Figure 41: Data-Driven Future equivalent of Figure 40
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1 f in ish {
2 DataDrivenFuture<Void> ddfA = new DataDrivenFuture<Void>() ;
3 DataDrivenFuture<Void> ddfB = new DataDrivenFuture<Void>() ;
4 DataDrivenFuture<Void> ddfC = new DataDrivenFuture<Void>() ;
5 DataDrivenFuture<Void> ddfD = new DataDrivenFuture<Void>() ;
6 DataDrivenFuture<Void> ddfE = new DataDrivenFuture<Void>() ;
7 async { . . . ; ddfA .put ( ) ; } // Task A
8 async await ( ddfA ) { . . . ; ddfB .put ( ) ; } // Task B
9 async await ( ddfA ) { . . . ; ddfC .put ( ) ; } // Task C

10 async await ( ddfB , ddfC ) { . . . ; ddfD .put ( ) ; } // Task D
11 async await ( ddfC ) { . . . ; ddfE .put ( ) ; } // Task E
12 async await ( ddfD , ddfE ) { . . . } // Task F
13 } // f i n i s h

Listing 46: HJ code to generate Computation Graph G3 using DDFs

Data-Driven Futures with empty objects In Section 2.1.4, you learned how the future<void> type
can be used to create future async tasks with a void return type. Likewise, a DataDrivenFuture¡Void¿
can be used when a DDF is just intended for synchronization rather than communicating a value. (Actually,
any object can be used, since no get() operation will be performed on such a DDF.)

Listing 46 shows the HJ code that can be used to generate computation graph G3 in Figure 18 with DDFs.
This code uses DDFs without get() operations, and provides a systematic way of converting any Computa-
tion Graph into an HJ program. The difference between the regular future version studied in Section 2.1.1
and this version is that the async tasks in Listing 46 will never be started till all their input DDFs become
available.

A Optional topic: Abstract vs. Real Performance

Thus far in the course, we have lived in a “Neverland” where parallel programs never run slower than
their sequential counterparts, if their performance is measured using idealized abstract performance metrics.
However, in the real world, there are a number of overheads that can cause a parallel program to run slower
than their sequential counterparts even when they have abundant amounts of parallelism. Here are some of
the overheads that are encountered in practice for the constructs that you have studied so far:

Spawn overhead When an async construct is executed (the source of a spawn edge in the computation
graph) there is extra book-keeping work that needs to be performed by the parent task to create
necessary data structures for the child task. This extra work is referred to as spawn overhead, and it
is incurred sequentially for each child task spawned by the same parent task. There is also overhead
incurred when the child task begins execution, but that overhead can be incurred in parallel when
different child tasks are executed by different workers.

Join overhead When a task TC terminates (the source of a join edge in the computation graph) there is
some overhead incurred to check if it is the last task in its Immediately Enclosing Finish (IEF) to
terminate. If so, the worker thread executing TC will switch tasks after TC terminates, and resume ex-
ecution of the ancestor task containing IEF (TC) which involves additional context switching overhead.
If not, nothing further needs to be done and TC ’s worker can look for other work after TC terminates.
If TC is a future task then additional overhead is incurred to process any pending get() operations on
the future.

IEF-Join overhead When the end of a finish construct F is encountered (the sink of a join edge in the
computation graph) there is some overhead incurred to check if all tasks with IEF = F have terminated.
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w1 w2 w3 w4
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Figure 42: Work-stealing Scheduling Paradigm with distributed task queues (one queue per worker). Arrows
represent stealing of tasks by idle workers from busy workers.

Γ1

Γ3

Γ6

Γ4 Γ5

Depth-first traversal: Γ1, Γ2, Γ3, Γ4, Γ5, Γ6
Breath-first travesal: Γ1, Γ2, Γ6, Γ3, Γ4, Γ5

1-thread work-first schedule: Γ1, Γ2, Γ3, Γ4, Γ5, Γ6
1-thread help-first schedule: Γ1, Γ6, Γ2, Γ5, Γ4, Γ3

Figure 43: Example spawn tree with work-first and help-first schedules on a single worker. (A spawn tree
only contains spawn edges from a computation graph.)

If so, nothing further needs to be done. If not, additional overhead is incurred by the worker executing
F to suspend the current task at the end of F , and to look for other work instead (another instance of
context switching overhead).

A.1 Work-sharing vs. Work-stealing schedulers

Earlier in the course, you learned that the Habanero-Java (HJ) runtime system is responsible for scheduling
unbounded numbers of async tasks on a fixed number of processors. It does so by creating a fixed number
of worker threads as shown in Figure 5, typically one worker per processor core. (This approach is used by
many other task-parallel programming models.) These workers repeatedly pull work from a logical work
queue when they are idle, and push work on the queue when they generate more work. The work queue
entries can include async’s and continuations (Section 1.1.1).

Work-sharing and work-stealing are two task scheduling paradigms for task parallelism. In work-sharing,
when a new task is created, the creator works eagerly to share the task with other worker. This task re-
distribution is usually implemented by a centralized task queue a shown in Figure 5. A key limitation with
the work-sharing approach is that accesses to the task queue by multiple workers need to be synchronized
by the scheduler to avoid race conditions. This centralized task queue can become a scalability bottleneck
when the number of workers increases, or when many fine-grain tasks are created. (Remember Amdahl’s
Law.) Work-sharing is the default scheduling paradigm used in HJ since it supports all the parallel
constructs in the language.

In contrast, the work-stealing paradigm is implemented using distributed task queues, as shown in Figure 42.
Each worker just adds work (tasks) to its own queue when new work is created. An idle worker then selects
a “victim” worker to “steal” work from. If it doesn’t obtain any work from its first choice of victim, it then
attempts to steal work from another victim worker. Note that the time spent by the idle worker looking
for work when no spare work is available will not add to the critical path length (CPL) of the program
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finish { //startFinish

for (int i=1; i<k; i++)

async Ti; // task i

T0; //task 0

}

Figure 44: Iterative Fork-Join Microbenchmark

execution. (Why?) This is one of the reasons why work-stealing is more efficient than work-sharing.

In classical work stealing [4], when a task Γa spawns task Γb, the worker that spawns Γb will start to work on
Γb eagerly, and the continuation of Γa after the spawn might be stolen by other idle workers. This strategy
is called the work-first task scheduling policy in the work-stealing paradigm. As the alternative, the worker
can stay with Γa and let another worker help by stealing Γb. The worker will work on Γb later if Γb is not
picked up by other workers. This alternative work-stealing strategy is called the help-first task scheduling
policy.

The naming of the “work-first” and “help-first” policies can be understood from the perspective of the worker
of the parent task when executing an async. Under the work-first policy, the parent task’s worker will work
on the child task first. Under the help-first policy, the parent task’s worker will ask other workers to help
execute the child task first. The work-first policy is sometimes referred to as a depth-first policy because,
in a 1-worker execution, all the tasks will be executed in the order of depth-first traversal of the task spawn
tree. Figure 43 shows a task spawn tree and the 1-thread execution order of the tasks under the work-first
policy and the help-first policy.

The work-stealing paradigm with work-first policy can be enabled by using the “hjc -rt w” option when
compiling HJ programs, whereas work-stealing with the help-first policy can be enabled by using the “hjc -rt
h” option. However, the current implementation of the work-stealing paradigm does not support all parallel
constructs in the language; notably, it does not support future tasks, data-driven tasks and phasers.

A.2 Modeling and Measurement of Overhead

In this section, we use microbenchmarks to model and measure some of the overheads described earlier.
A convenient way to measure some of these overheads is to execute a parallel program on a single worker
and compare the execution time with that of the sequential counterpart of the parallel program (if one is
available).

A.2.1 Single-Worker Execution Times for Iterative Async-Finish example

We break down the single worker execution time (t1) of a HJ program with a work-stealing scheduler into the
following components: serial Java execution (ts), async task spawns, context switches (tcs) before starting a
new task, startFinish (tsf ) and task synchronization at endFinish. Depending on the scheduling policy,
the overhead of asynchronous task spawns is denoted as taw for work-first task spawns or tah for help-first
task spawns. The task synchronization at endFinish is either trivial or non-trivial. In the trivial case, all
tasks created in the finish scope will be completed and the worker will just continue execution. In the non-
trivial case, the current serial execution flow will be interrupted, and a context switch is performed before
executing new tasks. We use tef to denote the overhead of non-trivial task synchronization. The overhead of
the trivial case is considered to be included in tsf . A similar analysis can be performed for get() operations
on future tasks, which are omitted for simplicity.

Consider the HJ microbenchmark shown in Figure 44. The microbenchmark performs k tasks; tasks 1 to k−1
are performed asynchronously and task 0 is performed serially. Under the work-first policy, the single worker
execution incurs no context switch. Thus, the single worker execution time of the whole microbenchmark as
a function of k for the work-first policy is

twf
1 (k) = ts(k) + tsf + (k − 1)taw (2)
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k ts(k) twf
1 (k) thf1 (k) tws

1 (k) Java-thread(k)
1 0.11 0.21 0.22
2 0.22 0.44 2.80
4 0.44 0.88 2.95
8 0.90 1.96 3.92 335 3,600

16 1.80 3.79 6.28
32 3.60 7.15 10.37
64 7.17 14.59 19.61

128 14.47 28.34 36.31 2,600 63,700
256 28.93 56.75 73.16
512 57.53 114.12 148.61

1024 114.85 270.42 347.83 22,700 768,000

Table 1: Execution time (in microseconds) of the serial execution time and the single worker HJ execution
time of the microbenchmark in Figure 44 with k = 1, 2, 4, 8, ..., 1024 on the Xeon SMP machine

where ts(k) is the serial execution time of the whole microbenchmark as a function of k. There is no extra
synchronization cost (tef ) at the end of the finish scope for single-worker work-first execution.

Under the help-first policy, tasks 1 to k−1 will be executed after a context switch and there is one non-trivial
task synchronization at end-finish for k > 1. Thus

thf1 (k) =

{
ts(k) + tsf , k = 1

ts(k) + tsf + (k − 1)(tah + tcs) + tef , k > 1
(3)

We assume every task in the microbenchmark shown in Figure 44 contains the same amount of work, t0
(also called task granularity). The task granularity t0 can be calculated as the slope of the serial execution
ts(k). Based on Equation 2 and 3, we have

tsf = twf
1 (1)− ts = thf1 (1)− ts(1)

taw = SLOPE(k, twf
1 (k))− t0 (k >= 1)

tah + tcs = SLOPE(k, thf1 (k))− t0 (k > 1)

tef = thf1 (2)− thf1 (1)− taw + tcs − t0
.

Table 1 shows the execution time of the serial Java execution times and the single worker HJ execution time
of the microbenchmark in Figure 44 for k = 1, 2, 4, 8, ..., 1024 on a Xeon SMP machine. A few data points
are also provided for work-sharing (tws

1 (k)) and Java-thread implementations of async tasks.

We calculate t0, tsf , taw, tah + tcs and tef from and get the following results from Table 1: t0 ≈ 0.1µs, or 417
cycles, tsf ≈ 0.1µs or 417 cycles, taw ≈ 0.15µs or 625 cycles, tah + tcs ≈ 0.22µs or 917 cycles, tef ≈ 2.11µs
or 8800 cycles.

A.2.2 Single-Worker Execution Times for Recursive Async example

Consider the HJ microbenchmark shown in Figure 45 and Figure 46. The code shown in Figure 45 uses
a global finish to synchronize all task whereas each task in the code shown in Figure 46 waits for all child
tasks. For fib(35), both versions spawns 29, 860, 703 tasks. The code shown in Figure 46 (version 2) will also
create 14, 930, 351 finish instances. Using the earlier definitions and notations, the 1-worker execution times
of the version shown in Figure 45 under the work-first and help-first policy are:

t1wf = ts + tsf + taw ∗ 29, 860, 703
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finish fib(n);

fib (int n) {

if (n<2) {

. . .

} else {

async fib(n-1);

async fib(n-2);

}

}

Figure 45: Version 1: Recursive microbenchmark with one global finish scope. Even though the method is
called fin(), it does not actually compute the Fibonacci sequence.

void fib (int n) {

if (n<2) {

. . .

} else {

finish {

async fib(n-1);

async fib(n-2);

}

}

}

Figure 46: Version 2: Recursive microbenchmark in which every task waits for its child tasks. Even though
the method is called fin(), it does not actually compute the Fibonacci sequence.

serial 1-worker work-first 1-worker help-first
Code in Figure 45 (Version 1) 0.103 3.405 6.974
Code in Figure 46 (Version 2) 0.103 5.872 43.18

Table 2: Execution time (in secs) of the serial and 1-worker execution time of the code shown in Figure 45
and 46 under both policies. Both versions have the same sequential counterpart.
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void fib (int n) {

if (n<2) {

. . .

} else if ( n > THRESHOLD) { // PARALLEL VERSION

finish {

async fib(n-1);

async fib(n-2);

}

}

else { // SEQUENTIAL VERSION

fib(n-1); fib(n-2);

}

}

Figure 47: Modified version of Figure 46 with threshold test

void fib (int n) {

if (n<2) {

. . .

} else {

finish {

async seq(n <= THRESHOLD) fib(n-1);

async seq(n <= THRESHOLD) fib(n-2);

}

}

}

Figure 48: Figure 47 rewritten with seq clause

t1hf = ts + tsf + tef + (tah + tcs) ∗ 29, 860, 703

The 1-worker execution time of the code shown in Figure 46 under the work-first and help-first policy are:

t2wf = ts + tsf ∗ 14, 930, 351 + taw ∗ 29, 860, 703

t2hf = ts + (tsf + tef ) ∗ 14, 930, 351 + (tah + tcs) ∗ 29, 860, 703

Table 2 shows the serial and 1-worker execution time of the code shown in Figure 45 and 46 under both
policies. We compute taw, tah + tcs, tsf and tef , and get the following result: taw = 0.11µs (460 cycles),
tah + tcs = 0.23µs (960 cycles),tsf = 0.17µs (709 cycles), tef = 2.26µs (9400 cycles).

The results from both examples confirm that spawning and executing a task under the help-first policy
(about 0.22-0.23 microseconds) is slower than the work-first policy (about 0.11-0.15 microseconds) , and the
context switch at the endFinish instruction is the most expensive operation (about 2.11-2.26 microseconds).
The construction and destruction of a finish instance costs about 0.10-0.17 microseconds. We did not include
results for work-sharing and Java threads for the recursive microbenchmarks because they would take too
long to compute and, in some cases, may even run out of memory.

A.3 The “seq” clause for Async tasks

A very common way to reduce the large overheads seen in Table 2 is for the programmer to add a threshold
test as shown in Figure 47. A THRESHOLD value of T implies that all calls to Fib() with parameters ≤ T
are implemented as sequential calls. However, one of the drawbacks of the approach in Figure 47 is that
it violates the Don’t Repeat Yourself (DRY) principle of software engineering since the same work needs to
be specified in the parallel and sequential versions. To avoid this problem, the HJ language supports a seq
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Figure 49: Execution times of Fib(45) using 64 workers for HFP (Help-First Policy) and WFP (Work-First
Policy) with thresholds 5, 10, 15, and 20 on an UltraSparc T2 system.

clause for an async statement with the following syntax and the semantics:

async seq(cond) <stmt> ≡ if (cond) <stmt> else async <stmt>

The seq clause simplifies programmer-controlled serialization of task creation to deal with the overhead
issue. However, the seq clause is restricted to cases when no blocking operation such as finish or get() is
permitted inside <stmt>. The main benefit of the seq clause is that it removes the burden on the programmer
to specify <stmt> twice with the accompanying software engineering hazard of ensuring that the two copies
remain consistent. Figure 48 shows how the code in Figure 47 can be rewritten with the seq clause. In the
future, the HJ system will explore approaches in which the compiler and/or runtime system can select the
serialization condition automatically for any async statement. The seq clause is currently not supported for
future async tasks.

Figure 49 compares the execution time of the work-first and help-first policies for Fib(45) using 64 workers
and varying THRESHOLD from 5 to 20. As expected, the work-first policy (WS-WFP) significantly outperforms
the help-first policy (WS-HFP) for smaller threshold values. This result re-establishes the fact that the work-
first policy is well-suited for recursive parallel algorithms with abundant parallelism and small numbers of
steals. However, if we increase the threshold to 20 (a value considered to be reasonable for Fib), the
performance gap between WS-HFP and WS-WFP disappears.
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