


ABSTRACT

Optimizing Convolutions in State-of-the-art Convolutional Neural Networks on Intel

Xeon Phi

by

Ankush Mandal

Convolution layers are the core of Convolutional Neural Networks (CNNs), a class

of Deep Neural Networks which provide state-of-the-art results in pattern recognition

tasks in various domains, such as image recognition, speech recognition, and natu-

ral language processing. However, CNNs are very time consuming to train due to

the computationally intensive nature of convolution operation. As a result, we have

a prolific number of optimized implementations of convolution using matrix-matrix

multiplication formulation, FFT formulation, Winograd algorithm, and direct convo-

lution. Interestingly, most of these implementations target GPU architecture, which

is mainly due to - 1) higher theoretical peak FLOPs of GPU and 2) popularity of

CUDA deep learning library. However, not much investigation has been done on

the performance of convolution on high-end CPUs such as Intel second generation

Xeon Phi, codenamed Knights Landing (KNL) with theoretical peak performance of

6 TFLOPS. So, here we shed some light on what we can achieve regarding perfor-

mance for convolution on these high-end CPUs. In this work, we optimize directed

convolution for Intel Xeon Phi systems with AVX-512 support. Our strategy in-

volves dynamic compilation approach along with standard compiler optimizations

and software prefetching. We show that our JIT-based approach for direct convolu-

tion achieves close to peak performance on KNL for many cases. We also analyze



the performance of convolution layers of several state-of-the-art CNNs, pointing out

what helps in performance gain and what breaks our approach.



Acknowledgments

First and foremost, I would like to convey my deepest gratitude to my advisor Dr.

Vivek Sarkar for his mentorship, encouragement, and support throughout my gradu-

ate study at Rice University. His guidance and enthusiasm in research were invalu-

able to my development as a graduate student. He has been my source of inspiration

whenever I faced di�culties. I owe him so much for giving me the opportunity to join

Habanero Extreme Scale Software Research Group.

I would like to express the greatest degree of appreciation to my committee member

Dr. Rajkishore Barik for giving me the opportunity to work with him at Intel. His

expertise and insights were indispensable to the success of this project. I am incred-

ibly grateful for his unwavering support during my time at Intel. I would also thank

the team at Intel for all the help in this work.

I would like to thank my committee members Dr. Anshumali Shrivastava and Dr.

Keith Cooper for their time and valuable feedbacks on this thesis.

I am grateful to all the members of the Habanero Extreme Scale Software Research

group for their help and feedback in my research work. My study at Rice would not

have been as entertaining and educational without them.

I have been very fortunate to have great friends in my graduate life. I am very

thankful for all their support and encouragement. Special thanks to Ananya, Arijit,

Arkabandhu, Arunim, Debarshi, Hamim, Himadri, Nilanjan, Pranabendu, Prasanth,

Puspita, Rabimba, Rohan, Ronnie, Sagnik, Saikat, Sandip, Shams, Shantanu, Shu-

vadeep, Siam, Sourav, Sriraj, Trijit.

Last but not the least, I am indebted to my parents Kalpana Mandal and Durgapada

Mandal, and my sister Ankita Mandal for their unconditional love. They continu-

ously supported and encouraged me to pursue my dreams. Without them standing

by my side, I could not have come this far.



Contents

Abstract ii

Acknowledgments iv

List of Illustrations vii

List of Tables ix

1 Introduction 1

2 Background 4

2.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Intel Xeon Phi systems . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 LIBXSMM JITer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Optimizations for Direct Convolution on KNL 9

3.1 Naive Direct Convolution for Back Propagation . . . . . . . . . . . . 10

3.2 Naive Direct Convolution for Weight Update . . . . . . . . . . . . . . 10

3.3 Data Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Optimized Direct Convolution for Back Propagation on KNL . . . . . 14

3.4.1 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.2 Optimize for Temporal and Spatial Locality . . . . . . . . . . 15

3.4.3 Optimize loads and stores . . . . . . . . . . . . . . . . . . . . 18

3.4.4 Runtime Code Specialization and Parallelization . . . . . . . . 21

3.4.5 Optimize Code Size . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.6 Hiding fmadd Latency . . . . . . . . . . . . . . . . . . . . . . 25

3.4.7 Software Prefetch . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.8 Low Precision Operations . . . . . . . . . . . . . . . . . . . . 27

3.4.9 Packed fmadd Operations . . . . . . . . . . . . . . . . . . . . 30



vi

3.5 Optimized Direct Convolution for Weight Update on KNL . . . . . . 32

3.5.1 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.2 Optimize for Temporal and Spatial Locality . . . . . . . . . . 33

3.5.3 Optimize loads and stores . . . . . . . . . . . . . . . . . . . . 33

3.5.4 Runtime Code Specialization and Parallelization . . . . . . . . 36

3.5.5 Software Prefetch . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Performance Results on KNL 39

5 Related Work 56

5.1 GEMM Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Convolution on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Convolution on Other Hardware Accelerators . . . . . . . . . . . . . . 57

5.4 Convolution on CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 JIT Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6 Distributed CNN Training . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion and Future Work 59

Bibliography 61



Illustrations

2.1 Depiction of convolution (adapted from [1]) . . . . . . . . . . . . . . 5

2.2 KNL Architecture (adapted from [2]) . . . . . . . . . . . . . . . . . . 6

3.1 Pseudo code of naive direct convolution for back propagation . . . . . 10

3.2 Pseudo code of naive direct convolution for weight update . . . . . . 11

3.3 Pictorial representation of input tensor . . . . . . . . . . . . . . . . . 12

3.4 Pseudo code for back propagation after vectorization . . . . . . . . . 16

3.5 Pseudo code for back propagation after 1-D register blocking . . . . . 17

3.6 Pseudo code for back propagation after L1 cache blocking . . . . . . . 19

3.7 Access pattern for input when stride is 1 . . . . . . . . . . . . . . . . 20

3.8 Pseudo code for back propagation after optimization of loads and stores 22

3.9 Pseudo code for back propagation after runtime code specialization

and parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.10 Pseudo code for back propagation with JIT interface and software

prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.11 Low precision FMA strategy . . . . . . . . . . . . . . . . . . . . . . . 31

3.12 Pseudo code of naive direct convolution for weight update . . . . . . 32

3.13 Pseudo code for weight update after vectorization . . . . . . . . . . . 33

3.14 Pseudo code for weight update after 2-D register blocking and cache

blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.15 Pseudo code for weight update after optimizing loads and stores . . . 35

3.16 Pseudo code for weight update after runtime code specialization and

parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.17 Pseudo code for weight update with software prefetching . . . . . . . 38



viii

4.1 Performance results for Back Propagation on AlexNet, Overfeat, and

Vgga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Performance results for Back Propagation on GoogleNetV1 . . . . . . 47

4.3 Performance results for Back Propagation on DeepBench . . . . . . . 49

4.4 Performance results for Weight Update on AlexNet, Overfeat, and Vgga 49

4.5 Performance results for Weight Update on GoogleNetV1 . . . . . . . 50

4.6 Performance results for Weight Update on DeepBench . . . . . . . . . 51



Tables

3.1 Tensor Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Parameters for Convolutional Layers of AlexNet, Overfeat, and Vgga 40

4.2 Parameters for Convolutional Layers of GoogleNetV1 . . . . . . . . . 41

4.3 Parameters for Convolutional Layers of DeepBench . . . . . . . . . . 43

4.4 Back Propagation: Base Line Comparison . . . . . . . . . . . . . . . 52

4.5 Weight Update: Base Line Comparison . . . . . . . . . . . . . . . . . 53

4.6 Back Propagation: GEMM Method Comparison . . . . . . . . . . . . 54

4.7 Weight Update: GEMM Method Comparison . . . . . . . . . . . . . 55



1

Chapter 1

Introduction

Concepts from the field of Machine Learning drive many aspects of the modern so-

ciety, from social networks to recommendations on e-commerce, and becoming more

and more commercially valuable as we see an increasing number of consumer prod-

ucts powered by them such as cameras, self-driving car. In particular, Deep Learning

has become one of the most critical technologies, demonstrating equal or even bet-

ter than human-level performance for tasks in domains of object recognition, board

games, and speech recognition. This became possible because due to two reasons - 1)

its underlying model, Deep Neural Network (DNN) can learn features automatically

from large datasets and represent complex functions using multiple hidden layers, 2)

recent advances in processor technologies made it possible to satisfy the huge com-

putational requirement associated with Deep Learning. Naturally, it is now an active

topic of research in the community, leading many academic groups and companies

release open source frameworks aiming to improve the productivity of data scientists

by abstracting away implementation details. TensorFlow [3], Ca↵e [4] are few popular

ones among such frameworks.

Although Di↵erent DNNs aim at di↵erent problems, one of the most important ap-

plication today is image recognition [5] and currently, Convolution Neural Network

(CNN) is the state-of-the-art DNN for this. The core of a CNN consists of multiple

layers performing a large number of small convolutions. As an abundant amount of

data parallelism is available in the computation of convolution through many images

or mini-batch size and feature maps or channels, massively parallel architectures such
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as GPUs, in particular, has been used for training and inference on CNNs. As a

consequence, all existing frameworks [3, 6, 7, 8, 4, 9] have GPU backend that im-

plements convolution layers as libraries using cuDNN. However, high-end CPUs such

as second-generation Intel Xeon Phi systems [10] with 70+ cores and AVX-512 sup-

port, has not been explored much in the domain of CNN. So in our perspective, it is

noteworthy to shed some light on CPU performance and understand what it takes to

achieve peak performance on CPUs for CNNs.

Although training and inference on CNNs are both time-consuming operations, re-

quiring high-performance software implementations, training, in particular, takes an

enormous amount of time and can span several weeks. For example, AlphaGo [11]

took three weeks and 340 million training steps on 50 GPUs. So, we investigate into

what makes training on CNN so time-consuming. We discover two factors here 1)

training involves back propagation and weight update whereas inference does not,

and it is much harder to have an optimized implementation for back propagation and

weight update compared to forward propagation, a step common to both training

and inference 2) usually training is done for large number of iterations compared to

inference which is done in single pass. As the back propagation and weight update

code are used over so many times during training, it makes sense to put some e↵ort

to optimize these steps.

Regarding convolution method, a general approach is to flatten the corresponding in-

put data (image2column operation) and use standard matrix multiplications (GEMM)

on the flattened data. This approach has a severe drawback. The flattening of input

data is done to represent the image data as a 2-D matrix so that convolution can

be formulated as GEMM. Hence, flattening step copies the input data from image

data format (i.e. [Number of Images][Channel][Height][Width]) to 2-D matrix for-

mat, which is very low on arithmetic operations and makes the step purely memory
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bandwidth bound. Even though the GEMM computation is highly optimized, the

flattening step acts as a bottleneck and creates a huge performance penalty. In re-

cent years, a new and straightforward approach for implementation of convolution

has started to materialize, called direct convolution. In this method, convolution is

directly applied to input data.

In this work, we try to optimize back propagation and weight update on second-

generation Intel Xeon Phi systems. We leverage direct convolution approach to avoid

expensive memory operations and implement the convolutions associated with back

propagation and weight update as direct convolution. [12] has shown that statically

tuned BLAS calls incur overheads for small GEMMs and therefore do not achieve

peak performance. They propose to use runtime code specialization via a JIT for

small GEMMs. Since the tensor dimensions vary widely for convolutions on CNNs,

we also propose runtime code specialization through a similar JIT strategy. We lay

our data in a data format that helps the computation and apply standard compiler

optimizations such as register blocking, cache blocking. When we mention ”data

format”, we mean a particular sequence of the tensor dimensions. We also perform

some optimizations specific to Xeon Phi, such as software prefetching. We demon-

strate that, for training steps on CNNs, peak performance can be achieved on CPUs

targeting High-Performance Computing (HPC) using this approach.
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Chapter 2

Background

In this section, we describe the computation, i.e. convolution, and the architecture on

which we are trying to optimize the computation, i.e. second-generation Intel Xeon

Phi systems.

2.1 Convolution

In a convolution layer, each output pixel is generated from the weighted sum of a spa-

tially connected neighborhood of input. So, convolution operation adds each element

of the input image with elements from a defined neighborhood after multiplying all

the elements with specific weights from filter data as shown in Figure 2.1.

In case of CNNs, we usually perform convolution over a batch of images. This is

termed as batched convolution [13]. Mathematically, a batched convolution deals

with three four-dimensional tensors: I 2 RNCHW as input image data, O 2 RNKPQ

as output data, and F 2 RKCRS as filter data. The input data ranges over N

images in a mini-batch, C input image feature maps, H rows or image height, W

columns or image width. The filter data ranges over K output feature maps, C

input feature maps, R rows or filter height, and S columns or filter width. The

height and width of the output tensor is function of input image and filter height

and width along with padding and stride, i.e. P = f(H,R, stride h, pad h), and

Q = f(W,S, stride w, pad w). Here stride h and stride w are stride of access along

respectively input image height and input image width. pad h and pad w are respec-

tively height and width of the zero padding on each side of the input image. The
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Figure 2.1 : Depiction of convolution (adapted from [1])

function f is defined as follows:

f(H,R, stride h, pad h) =

⇠
H �R + 1 + 2 ⇤ pad h

stride h

⇡
(2.1)

Now, the convolution for back propagation can be defined as follows:

For 8n 2 [0, N) , 8c 2 [0, C) , 8h 2 [0, H) , and 8w 2 [0,W ) ,

I[n, c, h, w] =
KX

k=0

RX

r=0

SX

s=0

F [k, c, r, s].O[n, k, g(h, r, stride h, pad h),

g(w, s, stride w, pad w)]

(2.2)

Similarly, the convolution for weight update can be defined as follows:

For 8k 2 [0, K) , 8c 2 [0, C) , 8r 2 [0, R) , and 8s 2 [0, S) ,

F [k, c, r, s] =
NX

n=0

PX

p=0

QX

q=0

I[n, c, p ⇤ stride h+ r, q ⇤ stride w + s].O[n, k, p, q] (2.3)



6

Figure 2.2 : KNL Architecture (adapted from [2])

2.2 Intel Xeon Phi systems

As discussed in chapter 1, we are interested in investigating what peak performance

can be achieved on CPUs for convolutions in back propagation and weight update.

As we are dealing with performance critical application, we are interested in high-end

CPUs targeting HPC. Intel Xeon Phi processors are one family of such CPUs. The

second generation Intel Xeon Phi processor code-named Knights Landing (KNL) is

one of the strongest general purpose CPUs available today. So, we choose this pro-

cessor as target architecture for our implementation and evaluate our implementation

concerning performance over this processor.

A sample figure representing the architectural overview of KNL chip is given in

Figure 2.2. The KNL chip features up to 72 out-of-order Silvermont Atom cores

with each being 4-way hyper-threaded to hide memory and multi-cycle instruction

latency. The cores are tiled in pairs and connected via 2-D mesh interconnect. In

general, it is advisable to set one core aside for OS housekeeping. Micro-architecture
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wise, one key feature of this processor is that each core is embedded with two 512-bit

vector processing units (VPU) for increased SIMD level parallelism, i.e. each core can

start execution of two 16-wide single precision SIMD instructions in the same clock

cycle. Besides this, each core has 32 KB L1 data cache ( 3 cycles latency), 32 KB L1

instruction cache ( 3 cycles latency). Each tile has 1MB globally coherent L2 cache

( 17 cycle latency) shared between two cores. Apart from standard DDR4 memory

up to 384 GB with a bandwidth of 90 GB/s, an additional 16 GB of high bandwidth

stacked MCDRAM can be attached to the system that provides 500GB/s memory

bandwidth. The latency for accessing data from memory can be as high as 160 ns.

Another important feature of KNL is that it supports explicit cache operation hint

instructions. These include instructions to prefetch data into L1 or L2 caches (via

prefetcht0 and prefetcht2 instructions respectively) and instruction modes to reduce

the priority of a cache line. These instructions work together with streaming hardware

L2 cache prefetcher. To achieve peak performance, one needs to carefully architect

the placement and amount of L1/L2 prefetch instructions within the application.

It is important to mention that the machine is only two-issue wide but features two

VPUs per core, which results in an upper limit of achievable peak performance as 80%

of the theoretical peak performance. The reason behind this is the fact that, to achieve

theoretical peak FLOPs, two issues have to be always filled with vector instructions of

floating point operations. This is not possible in reality because there are overhead of

loop management, pointer address calculations, and software prefetching to support

corresponding memory movement operations. All of these instructions fill at least

one of two pipeline slots and block a useful FMA instruction. Therefore, to achieve

optimal performance on this system, these instructions should be limited to a bare

minimum, which requires high-quality code concerning optimizations and can be quite

a bit of challenge.
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2.3 LIBXSMM JITer

We have previously mentioned in chapter 1 that we adopt a runtime code special-

ization strategy by using JIT compilation. In our work, we use LIBXSMM SMALL-

GEMM JITer [12] for generating optimized code for direct convolution at runtime.

Originally, the JITer is designed for small matrix multiplications. It has an appli-

cation specific GEMM code generation backend. Using this assembly generator for

JITing, it showed significant performance improvement on x86 architectures. In order

to generate code for direct convolution using this JITer, we modified the assembly

generator backend. The reasons behind choosing this JITer are:

1) It is very light weight; it adds very little overhead during JITing. By compromising

on generality, this JITer generates problem specific codes at runtime very e�ciently.

As we are targeting a particular problem, i.e. direct convolution, it makes sense to

use a fast and low profile JITer. LIBXSMM SMALLGEMM JITer fits this criterion

exactly.

2) It is designed for small matrix multiplication which follows fused multiply add

pattern. As our direct convolution problem also follows fused multiply add pattern,

this JITer is a good fit for our problem.

2) It targets AVX-512 systems, specifically Intel Xeon Phi systems. As our target

is KNL, extending the AVX-512 code generation for direct convolution on KNL is

easier.

We discuss in detail in section 3.4.4 about how we use this JITer and which goals we

try to achieve during code generation.
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Chapter 3

Optimizations for Direct Convolution on KNL

The input parameters for convolution including N, C, H, W, R, S, u or stride h, and

v or stride w (section 2.1) vary significantly across layers of a CNN and also across

di↵erent CNNs. This makes it hard to achieve peak IA performance by static com-

pilation because the optimization factors and strategy depend on these parameters

and these parameters are only known during execution time. For example, the loops

to tile and their tiling factor, the loops to unroll and their unroll factor cannot be

determined statically without knowing the values of these parameters. In order to

address this problem, we propose a runtime code specialization approach to produce

optimized code at runtime depending on the values of these parameters. This makes

the core of our ninja code for direct convolution on IA.

In this section, we first discuss the nave direct convolution in back propagation and

weight update. Then we discuss the data layouts for input, output, and weight ten-

sors we considered and how they impact code optimization. We also give details on

how we can e�ciently implement direct convolution for back propagation and weight

update on x86 architectures. For these ninja implementations, we discuss in par-

ticular about compiler optimizations such as register blocking, tiling, and unrolling

to optimize the corresponding loop nests, runtime code specialization, code quality

enhancements, and software prefetching.
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1 for(img = 0; img < N; ++img) { //independent
2 for(ifm = 0; ifm < C; ++ifm) { //independent
3 for(ofm = 0; ofm < K; ++ofm) { //reduction
4 for(oj = 0; oj < P; ++oj) { //carry dependency
5 ij = oj * u;
6 for(oi = 0; oi < Q; ++oi) { //carry dependency
7 ii = oi * v;
8 for(kj = 0; kj < R; ++kj) { //carry dependency
9 for(ki = 0; ki < S; ++ki) { //carry dependency

10 grad_input(img, ifm, ij + kj, ii + ki) +=
11 grad_output(img, ofm, oj, oi) *
12 weight(ifm, ofm, kj, ki);
13 } } } } } } }

Figure 3.1 : Pseudo code of naive direct convolution for back propagation

3.1 Naive Direct Convolution for Back Propagation

A pseudo code of naive direct convolution for back propagation is given in Figure 3.1⇤.

As we can see, it has seven deep loop nests. In the innermost loop, we read data from

gradient output tensor and weight tensor. We multiply them and accumulate on gra-

dient input tensor.

We annotate the independent loops as “independent”. These loops are easily paral-

lelizable. We also annotate loops carrying some dependency as “carry dependency”

and loops across which reduction takes place as “reduction”.

3.2 Naive Direct Convolution for Weight Update

A pseudo code of naive direct convolution for weight update is given in Figure 3.12.

It also has seven deep loop nests like back propagation. But we do slight reordering

of the loops to present the computation in a more clean way. In the innermost loop,

we read data from gradient output tensor and input tensor. We multiply them and

⇤
array accesses appear within “( )” instead of “[ ]” due to use of macros. A(i, j, k, l) = A [i*bound

of(j)*bound of(k)*bound of(l) + j*bound of(k)*bound of(l) + k*bound of(l) + l]
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1 for(ofm = 0; ofm < K; ++ofm) { //independent
2 for(ifm = 0; ifm < C; ++ifm) { //independent
3 for(img = 0; img < N; ++img) { //reduction
4 for(oj = 0; oj < P; ++oj) {//reduction
5 ij = oj * u;
6 for(oi = 0; oi < Q; ++oi) {//reduction
7 ii = oi * v;
8 for(kj = 0; kj < R; ++kj) { //independent
9 for(ki = 0; ki < S; ++ki) { //independent

10 grad_weight(ofm, ifm, kj, ki) +=
11 input(img, ifm, ij + kj, ii + ki) *
12 grad_output(img, ofm, oj, oi);
13

14 } } } } } } }

Figure 3.2 : Pseudo code of naive direct convolution for weight update

accumulate on gradient weight tensor. Furthermore, we also annotate the loops in

the same way as we do in case of pseudo code for back propagation in Figure 3.1.

3.3 Data Layout

In this section, we consider di↵erent layouts of the tensor dimensions. For the refer-

ence of what they mean, we give a list of dimensions and their meaning in Table 3.1

and also a pictorial representation of input tensor in Figure 3.3.

The layout of input, output, and weight tensors play a significant role in achieving

high throughput for convolution. In general, if the data access pattern matches the

data layout, achieving spatial locality becomes much easier, and this is a crucial factor

to consider for x86 architectures due to multiple levels of cache and TLB. Existing

GPU frameworks such as cuDNN [13] use H and W dimension for vectorization,

partly due to e�cient scatter/gather support in the GPU architecture. However,

from our experience, x86 architectures do not yet support e�cient scatter/gather op-

erations. Furthermore, the input feature map, C, and the output feature map, K, are
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Table 3.1 : Tensor Dimensions

Dimensions Description
N Number of images
C Input channel/feature map
K Output channel/feature map
H Input image height
W Input image width
P Output image height
Q Output image width
R Filter/Weight height
S Filter/Weight width

Figure 3.3 : Pictorial representation of input tensor
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typically multiples of vector length on IA. So, for vectorization, we block these dimen-

sions by vector length and bring in the blocking factor to the innermost dimension.

Now, considering parallelization on back propagation, N and blocked C dimensions

are good candidates because the loops corresponding to them are independent as we

see in Figure 3.1. Furthermore, they usually have high value, which results in high

level of parallelism in the code. So, it makes sense to make N and blocked C the

outermost dimensions and parallelize the loops corresponding to these dimensions.

Thus our data layout for input tensor becomes to I 2 NCBI
HWBI format where BI

denotes the blocking factor of input feature map and is equal to vector length. Simi-

larly, the data layout for output tensor becomes to O 2 NKBO
PQBO format where

BO is the blocking factor of output feature map and also equals to vector length. We

use same data layouts for input gradient and output gradient tensors.

Now for the weight tensor, which includes dimensions equal to input feature map and

also output feature map, we have to decide the blocking factor from which dimension

will be the innermost dimension. We use the blocking factor from output feature map

for vectorization in both forward pass and weight update, and we only use the block-

ing factor of input feature map for vectorization in back propagation. So, based on

usage frequency, we choose the blocking factor from output feature map as the inner-

most dimension for weight tensor. Considering parallelism for weight update, blocked

C and blocked K are good candidates for parallelism as the loops corresponding to

them are independent (Figure 3.12). So, we put them as the outermost dimensions.

Thus the data layout for weight tensor becomes to W 2 KBO
CBI

RSBIBO format.

The weight gradient tensor has similar data layout as weight tensor. We call these

data formats collectively as Custom data format and all our optimizations refer to

these data formats.

Besides using our Custom data format, we also experimented with the data format
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of a state-of-the-art DNN framework that is very popular in the field, namely, Ten-

sorflow [3]. Tensorflow uses NHWC format for input and output tensors and RSCK

format for weight tensor. By comparing performance across di↵erent data formats,

we gain more insight into the impact of data layout on the performance of direct

convolution on KNL.

3.4 Optimized Direct Convolution for Back Propagation on

KNL

3.4.1 Vectorization

As we talked in section 3.3, our strategy for back propagation is to vectorize along

the blocking factor of input feature map. So, we block the ifm loop in Figure 3.1

by a factor of vector length on IA and bring that blocking factor loop to the in-

nermost position, i.e. after ki loop. Then we vectorize the loop. From the direct

convolution loop nests for back propagation shown in Figure 3.1, we can easily see

that the computation in the innermost loop follows multiply and accumulate com-

putational pattern. For this computational pattern, we have several fused multiply

and add (fmadd) vector instructions [14]. For example, fmadd operation on 32-

bit floating-point data comes with these variants: vfmadd132ps, vfmadd213ps,

vfmadd231ps, and vfmadd233ps. The first three variants can be represented as

follows:

vfmadd132ps::zmm1,zmm2,zmm3 : zmm1 = zmm1xzmm3+zmm2

vfmadd213ps::zmm1,zmm2,zmm3 : zmm1 = zmm2xzmm1+zmm3

vfmadd231ps::zmm1,zmm2,zmm3 : zmm1 = zmm2xzmm3+zmm1

Where zmm represents vector registers, “::” represents argument list to a instruction,

and “:” represents translation of a instruction to mathematical operation. Memory

loads, modifiers such as conversion or broadcast are only applied to zmm3. The fourth
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fmadd variant, i.e. vfmadd233ps is a special fmadd instruction that acts as scale

and bias transformation in one instruction. As we have separate tensors for input,

output, and weight, this instruction is not applicable in our case.

Considering the fmadd vector instructions, we think vfmadd231ps is the most suit-

able instruction in our case. We implement our multiply and accumulate computation

with the following strategy:

• As the data layout of input tensor has BI as innermost dimension and it is of

vector length, we achieve vectorizing accesses to input. We use zmm1 for input

because we want to accumulate to input.

• Now, the weight tensor has BO as the innermost dimension and then BI . So,

in order to vectorize along BI dimension, we transpose weight tensor so that

BI becomes the innermost dimension. This adds an overhead but if we have to

maintain the same data layout for forward pass, back propagation, and weight

update, we have pay some penalty in one of the stages because all of the stages

do not use same dimension for vectorization. We use zmm2 for weight.

• The output is then broadcast to a vector register in order to perform vector

multiplication. As we need broadcast operation for output and we can use only

zmm3 for broadcast, we use zmm3 for output.

So, we perform the multiply and add operation inside our innermost loop in Figure 3.1

with combination of broadcast and fmadd in a single vector instruction, namely,

vfmadd231ps. The resulting code after vectorization is shown in Figure 3.4.

3.4.2 Optimize for Temporal and Spatial Locality

Temporal locality and spatial locality are very important factors for achieving peak

performance in x86 architectures because of multiple level cache hierarchy and TLB.
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1 for(img = 0; img < N; ++img) {
2 for(ifm1 = 0; ifm1 < C/VLEN; ++ifm1) { //blocked by VLEN
3 for(ofm1 = 0; ofm1 < K/BO; ++ofm1) {
4 for(ofm2 = 0; ofm2 < BO; ++ofm2) {
5 for(oj = 0; oj < P; ++oj) {
6 ij = oj * u;
7 for(oi = 0; oi < Q; ++oi) {
8 ii = oi * v;
9 for(kj = 0; kj < R; ++kj) {

10 for(ki = 0; ki < S; ++ki) {
11 grad_input_vec = vload(gard_input[img][ifm1][ij+kj]

[ii+ki][0]);
12 weight_vec = vload(weight[ofm1][ifm1][kj][ki][ofm2][0]);
13 vfmadd231ps::grad_input_vec,weight_vec,
14 broadcast(grad_output[img][ofm1][oj][oi][ofm2]);
15 vstore(gard_input[img][ifm1][ij+kj][ii+ki][0],

grad_input_vec);
16 } } } } } } } }

Figure 3.4 : Pseudo code for back propagation after vectorization

The code in Figure 3.4 that we get after vectorization can be optimized for temporal

locality by blocking for floating-point vector registers (register blocking). If we con-

sider the data layout of input tensor, it becomes apparent that W dimension is ideal

candidate for register blocking since it is the innermost dimension after BI which is

used for vectorization. However, W dimension changes with oi and ki loops. If

we block along oi loop, we will achieve temporal locality for weight tensor since it

is invariant to oi loop. On the other hand, if we block along ki loop, we will gain

temporal locality for output tensor. In case of CNNs, the filter width, S, usually

has small value and the output feature width, Q, usually have large enough value.

Hence, in order to gain enough temporal locality through register blocking we use

oi loop. We unroll-and-jam oi loop and decide the unroll factor based on input

parameter values and number of available vector registers. The resulting pseudo code

after register blocking is shown in Figure 3.5. The constraint for the unroll factor

here is the number of available floating-point vector registers (typically 32 in modern
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1 for(img = 0; img < N; ++img) {
2 for(ifm1 = 0; ifm1 < C/VLEN; ++ifm1) {
3 for(ofm1 = 0; ofm1 < K/BO; ++ofm1) {
4 for(ofm2 = 0; ofm2 < BO; ++ofm2) {
5 for(oj = 0; oj < P; ++oj) {
6 ij = oj * u;
7 for(oi = 0; oi < Q/BQ; ++oi) { //BQ is equal to

unroll_factor_rb
8 ii = oi * v;
9 for(kj = 0; kj < R; ++kj) {

10 for(ki = 0; ki < S; ++ki) {
11 weight_vec = vload(weight[ofm1][ifm1][kj][ki][ofm2][0]);
12

13 grad_input_vec = vload(gard_input[img][ifm1][ij+kj]
[oi*BQ*v+ki][0]);

14 vfmadd231ps::grad_input_vec,weight_vec,
broadcast(grad_output[img][ofm1][oj][oi*BQ][ofm2]);

15 vstore(gard_input[img][ifm1][ij+kj][oi*BQ*v+ki][0],
grad_input_vec);

16

17 grad_input_vec = vload(gard_input[img][ifm1]
[ij+kj][(oi*BQ+1)*v+ki][0]);

18 vfmadd231ps::grad_input_vec,weight_vec,
broadcast(grad_output[img][ofm1][oj][oi*BQ+1][ofm2]);

19 vstore(gard_input[img][ifm1]
[ij+kj][(oi*BQ+1)*v+ki][0],grad_input_vec);

20

21 ...//BQ times
22 } } } } } } } }

Figure 3.5 : Pseudo code for back propagation after 1-D register blocking

x86 architectures). However, we set aside at least 4 floating-point vector registers for

other purposes (described later). Then the number of floating-point vector registers

available for register blocking becomes 28. So, we set the unroll factor as follows:

unroll factor rb = min(Q, divider of Q lower than 28)

where rb denotes register blocking. Typically the value of Q is high enough that 1-D

register blocking su�ces. If the value of Q is so small that 1-D register blocking does

not su�ce, we go for 2-D register blocking which includes another level of register

blocking along oj loop.
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The code from Figure 3.5 can be further optimized to gain spatial locality and more

temporal locality by blocking for L1 data cache (cache blocking). Since we are

broadcasting one element of output tensor at each fmadd instruction and the in-

nermost dimension of output tensor is BO, we can gain spatial locality in output

tensor access by bringing ofm2 loop inside ki loop. Here, we make the assumption

that unroll factor rb * BO output element fits in the L1 cache. In our case,

unroll factor rb  28 and BO is VLEN which is typically a cache line size on

IA for AVX-512. Since we are considering 28 cache lines and L1 cache can contain

up to 512 cache lines, our assumption is quite reasonable. Besides bringing spatial

locality, this L1 cache blocking along ofm2 loop also brings temporal locality in input

tensor access because accumulation occurs on the same input values along ofm2 loop.

The resulting code after L1 cache blocking is given in Figure 3.6.

3.4.3 Optimize loads and stores

We do vector load operation on weight and input tensor and vector store operation

on input tensor. We do not perform vector load on output tensor, but we perform

broadcast instead, i.e. one element of output tensor is broadcast to all the lanes

of vector register containing values from weight tensor. The code from Figure 6

can be further optimized regarding loads and stores. First, we consider the vector

loads of weight tensor. The fmadd instructions are dependent on the weight vector

load that precedes them. Therefore a cache miss on weight load can cause havoc on

performance because it will stall all the fmadd instructions following it. In order to

eliminate such stalls, we schedule the weight vector loads in advance at the cost of

a moderate increase in register pressure. We use 4 floating-point vector registers for

loading weights in advance and setting up a 4-register ring-bu↵er of vector loads on

weight tensor.
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1 for(img = 0; img < N; ++img) {
2 for(ifm1 = 0; ifm1 < C/VLEN; ++ifm1) {
3 for(ofm1 = 0; ofm1 < K/BO; ++ofm1) {
4 for(oj = 0; oj < P; ++oj) {
5 ij = oj * u;
6 for(oi = 0; oi < Q/BQ; ++oi) { //BQ is equal to

unroll_factor_rb
7 ii = oi * v;
8 for(kj = 0; kj < R; ++kj) {
9 for(ki = 0; ki < S; ++ki) {

10 { weight_vec = vload(weight[ofm1][ifm1][kj][ki][0][0]);
11

12 grad_input_vec = vload(gard_input[img][ifm1][ij+kj]
[oi*BQ*v+ki][0]);

13 vfmadd231ps::grad_input_vec,weight_vec,
broadcast(grad_output[img][ofm1][oj][oi*BQ][0]);

14 vstore(gard_input[img][ifm1][ij+kj][oi*BQ*v+ki][0],
grad_input_vec);

15

16 grad_input_vec = vload(gard_input[img][ifm1]
[ij+kj][(oi*BQ+1)*v+ki][0]);

17 vfmadd231ps::grad_input_vec,weight_vec,
broadcast(grad_output[img][ofm1][oj][oi*BQ+1][0]);

18 vstore(gard_input[img][ifm1]
[ij+kj][(oi*BQ+1)*v+ki][0],grad_input_vec);

19

20 ... //BQ times
21 }
22

23 { weight_vec = vload(weight[ofm1][ifm1][kj][ki][1][0]);
24

25 grad_input_vec = vload(gard_input[img][ifm1][ij+kj]
[oi*BQ*v+ki][0]);

26 vfmadd231ps::grad_input_vec,weight_vec,
broadcast(grad_output[img][ofm1][oj][oi*BQ][1]);

27 vstore(gard_input[img][ifm1][ij+kj][oi*BQ*v+ki][0],
grad_input_vec);

28

29 grad_input_vec = vload(gard_input[img][ifm1]
[ij+kj][(oi*BQ+1)*v+ki][0]);

30 vfmadd231ps::grad_input_vec,weight_vec,
broadcast(grad_output[img][ofm1][oj][oi*BQ+1][1]);

31 vstore(gard_input[img][ifm1]
[ij+kj][(oi*BQ+1)*v+ki][0],grad_input_vec);

32

33 ... //BQ times
34 }
35

36 ... //BO times
37 } } } } } } } }

Figure 3.6 : Pseudo code for back propagation after L1 cache blocking
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Figure 3.7 : Access pattern for input when stride is 1

The scenario for vector load and store on input tensor is little tricky. From Figure 3.6,

we see that we need unroll factor rb number of vector length inputs in each

iteration of ki. However, after carefully analyzing input access pattern along W

dimension, we see that, as ki varies from one iteration to another iteration, there is a

significant reuse in input access if the stride along W dimension is one. The scenario

is depicted in Figure 3.7. In case of CNNs, the stride is one most of the times. Hence,

if we take advantage of the reuse of input data, we can reduce the number of vector

loads and stores significantly on input data. The strategy we use is as follows:

• In the first iteration of ki, we load all the unroll factor rb vector length

inputs. Lets index them by 0 to (unroll factor rb-1)

• Then for the next iteration, we need vector length inputs from 1 to unroll factor rb.

So, from next iteration of ki, we load only one vector length input that has

the next index to the last index from the previous iteration.

• We shift and rotate the register indices so that fmadds are performed on cor-

responding right floating-point vector registers.

• We store the vector register that has the first index for the current iteration. If
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it is the last iteration of ki, we store all the vector registers.

We unroll ki loop completely and employ the load/store strategy mentioned above.

Moreover, it also reduces branching in the code. Although the value of R and S are

usually small, typically we unroll only ki loop. This is because the code needs to fit

in the L1 instruction cache. We discuss this in detail in section 3.4.5. After optimizing

the vector loads and stores, the pseudo code becomes the one given in Figure 3.8.

3.4.4 Runtime Code Specialization and Parallelization

As we discussed at the beginning of chapter 3, we cannot achieve peak performance

through static compilation in case of direct convolution on CNNs because of widely

varying values of input parameters. Our optimization strategy and factors depend on

these input parameter values, and these dynamic values are only known at execution

time. So, our approach is to perform runtime code specialization, and we do so with

the help of SMALLGEMM jus-in-time assembly generator [12].

The innermost code sequence starting from kj loop in Figure 3.8 is abstracted out

to the SMALLGEMM JITer. The assembly code for this code sequence is generated

before entering the loop nest as shown in Figure 3.9. The bp jit function pointer

takes the convolution parameters as a descriptor and generates an optimal sequence

of x86 instructions. Since we generate the JITed code only at the setup phase and the

cost of code generation by SMALLGEMM is very low, there is virtually no overhead of

JITing in our case. Furthermore, we can generate more than one version of specialized

JITed code and use the appropriate version in the corresponding scenario. However,

there are two constraints when aiming for peak performance with this approach. We

have to ensure that the code fits in L1 instruction cache while switching between

multiple versions of the JITed code and the memory footprint of each JITed code fits

in the L1 data cache. Fortunately, it is easy to do so in our case. As we keep the loop
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1 for(img = 0; img < N; ++img) {
2 for(ifm1 = 0; ifm1 < C/VLEN; ++ifm1) {
3 for(ofm1 = 0; ofm1 < K/BO; ++ofm1) {
4 for(oj = 0; oj < P; ++oj) {
5 ij = oj * u;
6 for(oi = 0; oi < Q/BQ; ++oi) {
7 ii = oi * v;
8 for(kj = 0; kj < R; ++kj) {
9 for(ki = 0; ki < S; ++ki) { //unrolled, but represented

//here as loop to give cleaner logical view of the code
10 weight_vec_0 = vload(weight[ofm1][ifm1][kj][ki][0][0]);
11 weight_vec_1 = vload(weight[ofm1][ifm1][kj][ki][1][0]);
12 weight_vec_2 = vload(weight[ofm1][ifm1][kj][ki][2][0]);
13 weight_vec_3 = vload(weight[ofm1][ifm1][kj][ki][3][0]);
14

15 if (ki == 0) {
16 vload BQ VLEN grad_inputs starting from

grad_input[img][ifm1][ij+kj][oi*BQ*v][0];
17 } else {
18 vload (grad_input[img][ifm1][ij+kj][(oi*BQ+(BQ+ki-1))*v

][0]);
19 }
20

21 { //starting index for grad_input_vec_reg is determined by
22 //rotating register indices
23 vfmadd231ps::grad_input_vec_reg_start,weight_vec_0,

broadcast(grad_output[img][ofm1][oj][oi*BQ][0]);
24 vfmadd231ps::grad_input_vec_reg_start+1,weight_vec_0,

broadcast(grad_output[img][ofm1][oj][oi*BQ+1][0]);
25 ... }
26

27 {
28 weight_vec_4 = vload(weight[ofm1][ifm1][kj][ki][4][0]);
29

30 vfmadd231ps::grad_input_vec_reg_start,weight_vec_1,
broadcast(grad_output[img][ofm1][oj][oi*BQ][1]);

31 vfmadd231ps::grad_input_vec_reg_start+1,weight_vec_1,
broadcast(grad_output[img][ofm1][oj][oi*BQ+1][1]);

32 ... }
33 ...
34 if (ki == (S-1)) {
35 vstore BQ grad_input_regs;
36 } else {
37 vstore grad_input_vec_reg_start;
38 }
39 } } } } } } }

Figure 3.8 : Pseudo code for back propagation after optimization of loads and stores
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1 bp_desc = setup backward descriptor using N,C,H,W,K,R,S,u,v,pad_h,
pad_w;

2 conv_bp = bp_jit(bp_desc, ...); //Call to JITer to generate JIT
code at Runtime

3 #pragma omp for collapse(2)
4 for(img = 0; img < N; ++img) {
5 for(ifm1 = 0; ifm1 < C/VLEN; ++ifm1) {
6 for(ofm1 = 0; ofm1 < K/BO; ++ofm1) {
7 for(oj = 0; oj < P; ++oj) {
8 ij = oj * u;
9 for(oi = 0; oi < Q/BQ; ++oi) {

10 float *inp_ptr = &(grad_input[img][ifm1][ij][oi*BQ*v][0]);
11 const float *out_ptr = &(grad_output[img][ofm1][oj]

[oi*BQ][0]);
12 const float *wt_ptr = &(weight[ofm1][ifm1][0][0][0][0]);
13 conv_bp(input_ptr, wt_ptr, out_ptr);
14 } } } } }

Figure 3.9 : Pseudo code for back propagation after runtime code specialization and
parallelization

nests for register and cache blocking outside of our JITer, we can control the code

size and memory footprint fairly easily. The memory footprint of bp jit in bytes

can be computed as follows:

Mem(bp jit) = BQ ⇤BO ⇤ 4 (for output)+

R ⇤ S ⇤BO ⇤ V LEN ⇤ 4 (for weight)+

R ⇤ (BO + S) ⇤ V LEN ⇤ 4 (for input)

(3.1)

The parameters BO, BQ, unroll factor of ki loop, and unroll factor of kj loop are

chosen such that Mem(bp jit) is less than L1 data cache size (typically 32 KB in

Intel x86 Architectures). Moreover, we also ensure that the code size of bp jit and

all of its variants generated at runtime is less than L1 instruction cache size (typically

32 KB in IA). We discuss this in detail in section 3.4.5.

As we can see in Figure 3.9, we dedicate our JITer to generate highly optimized code
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only for the most critical innermost loop nests. We still leverage a regular compiler for

parallelizing and optimizing outer loop nests. Having the outer loop nests in high-level

language has several advantages. They can be easily parallelized using widely avail-

able threading libraries, such as OpenMP. In our case, the outermost img loop and

blocked ifm1 loop are independent and easily parallelizable. Furthermore, the mini-

batch size, N, usually have high value. So, the mini-batch loop together with ifm1

loop exhibits su�cient thread-level parallelism for x86 architectures. Hence, we use

them to exploit thread-level parallelism via OpenMP constructs such as collapse

and pragma omp parallel.

3.4.5 Optimize Code Size

In order to achieve peak performance on x86 architecture, we have to ensure that

the code fits in L1 instruction cache. Otherwise, we have to pay a huge penalty for

fetching it from lower level caches or main memory. The parameters that a↵ect JITed

code size is BO, BQ, unroll factor of ki loop, and unroll factor of kj loop. Now for

determining code size, we take a nave approach. We use a simple heuristic where

we have an empirical value of the code size when all these parameters have a value

of 1. Now we multiply that code size with the values of these parameters and get

a projection of the final JITed code size. Depending on the values of code size, we

determine whether to unroll ki loop and or kj loop. On KNL, we typically unroll

only ki loop.

Besides these parameters, there is also another issue that can increase the code size

and negatively a↵ect the performance. As Xeon Phi does not have a decoded in-

struction cache, AVX-512 code quality plays an important role in achieving good

performance. A general rule that we have to follow in this case is that only up to 16

Bytes can be fetched per cycle from the instruction cache. This constraint becomes
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problematic in the case of our fmadd operations. When reading output in a broad-

cast fashion, we have strided access by a factor of BO. This sometimes results in an

o↵set larger than 1024 bytes between broadcasts. In such a case, the length of the

fmadd instruction increases from 7 to 10 bytes and instructions with this increased

length cannot be fetched on a sustainable basis from the instruction cache. So, we

utilize x86 SIB (scale index base) addressing mode to reduce the instruction size to

8 bytes per fmadd operation. Since we have spare general purpose (gp) registers, we

use them for expressing up to 28 streams. The strategy is as follows:

• In SIB mode an address is represented as (Base Address+ Scale ⇤ Index)

• We load the size of BO in a gp register. We also store 3*BO, 5*BO, and 7*BO

in three other gp registers. We use these registers as index registers.

• Due to scaling in SIB mode, {1,2,4,8} * any index register value can be added

for free. Hence, we are now able to express 9 addresses with stride BO starting

from a Base Address.

• Further storing BaseAddress + {9, 18, 27} ⇤ BO in three di↵erent gp registers,

we are now able to express up to 28 addresses with the stride of BO.

3.4.6 Hiding fmadd Latency

As discussed in section 2.2, each KNL core has two VPUs. The latency of each VPU

is 6 cycles. So, if our vector floating-point register blocking is less than 12, we issue

a fmadd instruction to a VPU before it has finished executing the previous fmadd

instruction on a vector register. This creates fmadd stalls and bubble in the pipeline.

To avoid this kind of situation, we proposed in section 3.4.2 a 2-D register blocking,

i.e. another level of register blocking along H dimension. However, we cannot make

register blocking arbitrarily large. We have the upper limit set to 28 vector floating-
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pointer registers for this purpose. Sometimes the values of H and W may prevent us

doing 2-D register blocking within this constraint. For example, the scenario where

H = 7 and W = 7. In this kind of scenario, we use another strategy to hide fmadd

latency. We use extra accumulator registers and store partial results alternatively

in those accumulators. At the end of the convolution, we sum up the result to

get the final value of a register. This strategy transforms dependent instructions to

independent instructions as we have decoupled the destination registers.

3.4.7 Software Prefetch

Intel x86 ISA has explicit L1 and L2 cache prefetch instructions in the form of

prefetcht0 and prefetcht2, respectively. We use these instructions in our JITer

to prefetch the required data from one JITed function call to another. We extended

the JITer interface with additional arguments that hold the address for input, out-

put, and weight tensor accesses for the next JITed function call. As we discussed

in section 3.4.3, we schedule weight loads in advance. So, our prefetch strategy is

to prefetch the weights to L2 cache, but prefetch input and output to L1 cache.

The input prefetches are inserted along the input vector loads and that makes total

R⇤ (BO+S) input prefetches, which amounts to R⇤ (BO+S)⇤64 bytes of input data

being brought to L1 data cache. This is because a single prefetch instruction brings

one cache line size of data and cache line size in IA is typically 64 bytes. We insert

the output prefetches along fmadd instructions until all the required BQ cache lines

are prefetched. This results in BQ ⇤64 bytes of output data being brought to L1 data

cache. We also insert the weight prefetches along fmadd instructions, which results

in R ⇤ S ⇤BO ⇤ 64 bytes of weight data being prefethed to L2 cache.

We can see from Figure 3.9, the weight tensor is reused across oi and oj loop.

Since weights are reused, there is no need to prefetch weight inside oi and oj loop.
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1 bp_desc = setup backward descriptor using N,C,H,W,K,R,S,u,v,pad_h,
pad_w;

2 conv_bp_pf_noweight = bp_jit(bp_desc, PREFETCH NO WEIGHT); //JITed
code without weight prefecth

3 conv_bp_pf = bp_jit(bp_desc, PREFETCH ALL); //JITed code with
weight prefecth

4 #pragma omp for collapse(2)
5 for(img = 0; img < N; ++img) {
6 for(ifm1 = 0; ifm1 < C/VLEN; ++ifm1) {
7 for(ofm1 = 0; ofm1 < K/BO; ++ofm1) {
8 for(oj = 0; oj < P; ++oj) {
9 ij = oj * u;

10 for(oi = 0; oi < Q/BQ; ++oi) {
11 float *inp_ptr = &(grad_input[img][ifm1][ij][oi*BQ*v][0]);
12 const float *out_ptr = &(grad_output[img][ofm1][oj]

[oi*BQ][0]);
13 const float *wt_ptr = &(weight[ofm1][ifm1][0][0][0][0]);
14 if ( not last iteration of oj loop) {
15 //do not prefetch weights
16 conv_bp_pf_noweight(input_ptr, wt_ptr, out_ptr,
17 &(grad_input[img][ifm1][ij][(oi+1)*BQ*v][0]),
18 NULL, //weights are not prefetched
19 &(grad_output[img][ofm1][oj][(oi+1)*BQ][0]);
20

21 } else { //last iteration of oj loop, prefetch weights
22 conv_bp_pf(input_ptr, wt_ptr, out_ptr,
23 &(grad_input[img][ifm1][0][0][0]),
24 &(weight[ofm1+1][ifm1][0][0])
25 &(grad_output[img][ofm1+1][0][0]);
26 }
27 } } } } }

Figure 3.10 : Pseudo code for back propagation with JIT interface and software
prefetching

We only need to prefetch weight at the end of oj loop. So, to prevent redundant

weight prefetch, we generate two versions of JITed code, one without weight prefetch

(conv bp pf noweight) and another with weight prefetch (conv bp pf). The

resulting code with software prefetching is shown in Figure 3.10.
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3.4.8 Low Precision Operations

In general, the data associated with CNNs are represented in 32-bit single precision

floating points. But, currently, there is a growing interest within the community to

present the data associated with CNNs in low precision format and perform convolu-

tion on these low precision data to accelerate the computation. We also investigated

on this topic of performing convolution e�ciently for low precision data, on Intel

x86 architecture. Intel Software Developers Manual March 2017 update [15] includes

some instructions that are of interest considering our objective here.

First, let us consider the low precision formats and configurations that we can have

1) 16-bit data and 32-bit accumulator, 2) 8-bit data and 16-bit accumulator, 3) 8-bit

data and 32-bit accumulator. The general optimization strategies that we talked ear-

lier remain more or less same for convolution in these low precision formats, except

the strategy to perform fused multiply-adds (FMA) inside the innermost loop. So,

we present our revised strategy to perform FMA in these low precision formats here.

1) 16-bit data and 32-bit accumulator In general for low precision computation, we

reserve one floating point vector register storing pairs of output data, and one other

for storing the result of partial sum. As a result, we have 26 vector registers for

register blocking instead of 28 vector registers.

• We convert input data from 16-bit to 32-bit before passing the input tensor

pointer to the JITed function.

• During weight loads, we load 32 16-bit weight elements into a vector register.

• For performing FMA, we first broadcast a pair of 16-bit values from output

tensor to one of our reserved vector register using VPBROADCASTD instruction.

• Then we perform 16-bit multiply and add with horizontal add using VPMADDWD

instruction. It multiplies the individual signed words of the destination operand
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with the corresponding signed words of the source operand, producing tem-

porary signed doubleword results. The adjacent doubleword results are then

summed (we refer to this as horizontal add) and stored in the destination

operand, the other reserved vector register used for storing partial sums.

• We then add this result to vector register containing input tensor values. We

use VPADDD instruction for this.

• After returning from of the JITed function call, we convert input data from

32-bit to 16-bit.

The whole process is depicted in Figure 3.11.

2) 8-bit data and 16-bit accumulator the strategy is exactly same as the one de-

scribed for 16-bit data and 32-bit accumulator. The only exceptions are - We use

VPBROADCASTW instruction for broadcasting pairs of 8-bit output values, VPMADDUBSW

instruction for doing FMA with horizontal add, and VPADDW instruction for adding

the intermediate result to input vector register.

3) 8-bit data and 32-bit accumulator the strategy, in this case, is similar to what we

stated for 16-bit data and 32-bit accumulator scenario. However, we need one more

vector register to perform horizontal add between intermediate 16-bit results. So,

now we are left with 25 vector registers for register blocking.

• We convert input data from 8-bit to 32-bit before calling the JITed function.

• During weight loads, we load 64 8-bit weight tensor values into a vector register.

• We broadcast quadruple of 8-bit output tensor values to a vector register.

• Then we perform 8-bit FMA with horizontal add using VPMADDUBSW instruc-

tion which produces 16-bit intermediate results.
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• We further perform horizontal add of these results. For this, we preload one

vector register with 32 16-bit 1s. We use this vector register to perform FMA

with horizontal add on 16-bit intermediate values which results in 32-bit hori-

zontal add because one operand of the multiplications is 1. We use VPMADDWD

instruction for this purpose.

• Then we add these 32-bit partial sums to input register using VPADDD instruc-

tion.

• After returning from JITed function, we convert back input data from 32-bit to

8-bit.

3.4.9 Packed fmadd Operations

Another interesting class of instructions from Intel x86 ISA [16] that is relevant to

our case is packed single-precision floating-point fmadd instructions. We are specifi-

cally interested in V4FMADDPS instruction. This instruction computes four sequential

packed fused multiply add instructions with a sequentially selected memory operand

in each of the four steps. The instruction works as follows:

V4FMADDPS :: zmm1, zmm2+3, m128 - it accesses four source registers start-

ing with zmm2; sources are consecutive and start in a multiple-of-4 boundary. It

multiplies packed single-precision floating-point values from these source registers by

values from m128 and accumulates the result in zmm1.

We use this instruction to execute e�ciently four fmadds together in a single instruc-

tion if the blocking factor BO (Figure 3.10) of output feature map is divisible by 4,

which is typically the case. We replace each sequence of 4 vfmadd231ps instruc-

tions along BO with one V4FMADDPS. One downside of this approach, we cannot set

up a 4-register ring-bu↵er for weight loads as described in section 3.4.3 because now

we need four source registers for weight data in each step.
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Figure 3.11 : Low precision FMA strategy
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1 for(ofm = 0; ofm < K; ++ofm) { //independent
2 for(ifm = 0; ifm < C; ++ifm) { //independent
3 for(img = 0; img < N; ++img) { //reduction
4 for(oj = 0; oj < P; ++oj) {//reduction
5 ij = oj * u;
6 for(oi = 0; oi < Q; ++oi) {//reduction
7 ii = oi * v;
8 for(kj = 0; kj < R; ++kj) { //independent
9 for(ki = 0; ki < S; ++ki) { //independent

10 grad_weight(ofm, ifm, kj, ki) +=
11 input(img, ifm, ij + kj, ii + ki) *
12 grad_output(img, ofm, oj, oi);
13

14 } } } } } } }

Figure 3.12 : Pseudo code of naive direct convolution for weight update

3.5 Optimized Direct Convolution for Weight Update on KNL

For convenience of understanding, we reproduce Figure 3.12 here.

The optimizations that we applied to direct convolution in back propagation also

applies here. So, we will only talk about the details that are di↵erent for weight

update from back propagation.

3.5.1 Vectorization

For direct convolution in weight update, we vectorize along the blocking factor BO of

output feature map because weight tensor and output tensor both have BO as their

innermost dimension. So, we block the ofm loop by vector length VLEN and bring

that loop to the innermost position and then vectorize. We do the fused multiply add

operation using vfmadd231ps instruction as we did in section 3.4.1 with change

in vector register arguments. As we are accumulating to weight tensor now, we use

zmm1 for weight tensor. We broadcast input tensor value to zmm3 and use zmm2 for

output tensor. The resulting code is shown in Figure 3.13.
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1 for(ofm1 = 0; ofm1 < K/VLEN; ++ofm1) { //blocked by VLEN
2 for(ifm1 = 0; ifm1 < C/BI; ++ifm1) {
3 for(ifm2 = 0; ifm2 < BI; ++ifm2) {
4 for(img = 0; img < N; ++img) {
5 for(oj = 0; oj < P; ++oj) {
6 ij = oj * u;
7 for(oi = 0; oi < Q; ++oi) {
8 ii = oi * v;
9 for(kj = 0; kj < R; ++kj) {

10 for(ki = 0; ki < S; ++ki) {
11 grad_weight_vec = vload(gard_weight[ofm1][ifm1][kj][ki][

ifm2][0]);
12 output_vec = vload(output[img][ofm1][oj][oi][0]);
13 vfmadd231ps:: grad_weight_vec, grad_output_vec,
14 broadcast(input[img][ifm1][ij+kj][ii+ki][ifm2]);
15 vstore(gard_weight[ofm1][ifm1][kj][ki][ifm2][0],

grad_weight_vec);
16 } } } } } } } }

Figure 3.13 : Pseudo code for weight update after vectorization

3.5.2 Optimize for Temporal and Spatial Locality

We do a 2-D cache blocking along oi and oj loops in order to get temporal locality

along weight tensor accesses. We register block on ifm loop and gain spatial locality

for input tensor accesses and temporal locality for output tensor accesses. The pseudo

code for weight update, after performing register blocking and cache blocking, is given

in Figure 3.14.

3.5.3 Optimize loads and stores

To optimize load and stores of weight tensor, we hoist weight tensor loading and

storing outside oj b loop because it does not depend on output feature height, P ,

and output feature width, Q. We set up a 4-register ring bu↵er for output loads to

load outputs in advance to their use in corresponding fmadds; similar to what we do

for weight loads in section 3.4.3. The resulting code is given in Figure 3.15.
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1 for(ofm1 = 0; ofm1 < K/VLEN; ++ofm1) { //blocked by VLEN
2 for(ifm1 = 0; ifm1 < C/BI; ++ifm1) {
3 for(img = 0; img < N; ++img) {
4 for(oj = 0; oj < P/BP; ++oj) {
5 ij = oj * u;
6 for(oi = 0; oi < Q/BQ; ++oi) {
7 ii = oi * v;
8 for(kj = 0; kj < R; ++kj) {
9 for(ki = 0; ki < S; ++ki) {

10 for (oj_b = 0; oj_b < BP; ++oj_b) { //unrolled
11 for (oi_b = 0; oi_b < BQ; ++oi_b) { //unrolled
12 grad_weight_vec = vload(gard_weight[ofm1][ifm1][kj][ki

][0][0]);
13 output_vec = vload(output[img][ofm1][oj*BP+oj_b][oi*

BQ+oi_b][0]);
14 vfmadd231ps:: grad_weight_vec, grad_output_vec,

broadcast(input[img][ifm1][(oj*BP+oj_b)*u+kj][(oi*
BQ+oi_b)*v+ki][0]);

15 vstore(gard_weight[ofm1][ifm1][kj][ki][0][0],
grad_weight_vec);

16

17 grad_weight_vec = vload(gard_weight[ofm1][ifm1][kj][ki
][1][0]);

18 output_vec = vload(output[img][ofm1][oj*BP+oj_b][oi*
BQ+oi_b][0]);

19 vfmadd231ps:: grad_weight_vec, grad_output_vec,
broadcast(input[img][ifm1][(oj*BP+oj_b)*u+kj][(oi*
BQ+oi_b)*v+ki][1]);

20 vstore(gard_weight[ofm1][ifm1][kj][ki][1][0],
grad_weight_vec);

21

22 ...
23 } } } } } } } } }

Figure 3.14 : Pseudo code for weight update after 2-D register blocking and cache
blocking
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1 for(ofm1 = 0; ofm1 < K/VLEN; ++ofm1) { //blocked by VLEN
2 for(ifm1 = 0; ifm1 < C/BI; ++ifm1) {
3 for(img = 0; img < N; ++img) {
4 for(oj = 0; oj < P/BP; ++oj) {
5 ij = oj * u;
6 for(oi = 0; oi < Q/BQ; ++oi) {
7 ii = oi * v;
8 for(kj = 0; kj < R; ++kj) {
9 for(ki = 0; ki < S; ++ki) {

10 grad_weight_vec_0 = vload(gard_weight[ofm1][ifm1][kj][ki
][0][0]);

11 grad_weight_vec_1 = vload(gard_weight[ofm1][ifm1][kj][ki
][1][0]);

12 ...
13 for (oj_b = 0; oj_b < BP; ++oj_b) { //unrolled
14 output_vec_0 = vload(output[img][ofm1][oj*BP+oj_b][oi*

BQ][0]);
15 output_vec_1 = vload(output[img][ofm1][oj*BP+oj_b][oi*

BQ+1][0]);
16 output_vec_2 = vload(output[img][ofm1][oj*BP+oj_b][oi*

BQ+2][0]);
17 output_vec_3 = vload(output[img][ofm1][oj*BP+oj_b][oi*

BQ+3][0]);
18

19 vfmadd231ps:: grad_weight_vec_0, grad_output_vec_0,
broadcast(input[img][ifm1][(oj*BP+oj_b)*u+kj][(oi*
BQ)*v+ki][0]);

20 vfmadd231ps:: grad_weight_vec_1, grad_output_vec_0,
broadcast(input[img][ifm1][(oj*BP+oj_b)*u+kj][(oi*
BQ)*v+ki][1]);

21 ...
22

23 output_vec_4 = vload(output[img][ofm1][oj*BP+oj_b][oi*
BQ+4][0]);

24 vfmadd231ps:: grad_weight_vec_0, grad_output_vec_1,
broadcast(input[img][ifm1][(oj*BP+oj_b)*u+kj][(oi*
BQ+1)*v+ki][0]);

25 vfmadd231ps:: grad_weight_vec_1, grad_output_vec_1,
broadcast(input[img][ifm1][(oj*BP+oj_b)*u+kj][(oi*
BQ+1)*v+ki][1]);

26

27 ...
28 }
29 vstore(gard_weight[ofm1][ifm1][kj][ki][0][0],

grad_weight_vec_0);
30 vstore(gard_weight[ofm1][ifm1][kj][ki][1][0],

grad_weight_vec_1);
31 ...
32 } } } } } } }

Figure 3.15 : Pseudo code for weight update after optimizing loads and stores
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3.5.4 Runtime Code Specialization and Parallelization

As discussed in section 3.4.4, we use SMALLGEMM jus-in-time assembly genera-

tor [12] for runtime code specialization. In case of weight update, we take the code

sequence inside ki loop in Figure 3.15 and abstract it out using SMALLGEMM

JITer.

In Figure 3.15, the independent loops, which are easily parallelizable, are ofm1,

ifm1, kj, and ki. Among these loops, kj and ki loops carry significant reuse for

input tensor. So, we only parallelize ofm1 and ifm1 loops for thread-level paral-

lelism on x86 architecture. However, sometimes this results in limited parallelism for

some layers of popular CNNs. One solution is to try to parallelize img loop. But

this loop is a reduction loop in weight update. So, we use thread local weight tensor

bu↵er in this special case, for storing partial results. Then we do parallel reduction

over these thread-local bu↵ers to get the final results. Here, we pay a moderate cost

in terms of memory requirement to gain more parallelism. The pseudo code with JIT

interface and thread-level parallelism is given in Figure 3.16.

3.5.5 Software Prefetch

As discussed in section 3.4.7, we do software prefetch in JITed function to prefetch the

data required for next JITed function invocation. In case of weight update, we need to

prefetch in general BP ⇤BQ⇤BI input elements, BP ⇤BQ⇤V LEN output elements, and

BI ⇤V LEN weight elements in a JITed function call. However, there are some corner

cases. For example, we reuse the output elements across ki and kj loops. We do

not need to prefetch output data for JITed function calls within these loops. Hence,

we generate two variants of JITed code for weight update, one with output prefetch

(conv wt pf) and another with no output prefetch (conv wt pf nooutput). The

pseudo code for weight update with software prefetching is given in Figure 3.17.
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1 wt_desc = setup weight update descriptor using N,C,H,W,K,R,S,u,v,
pad_h,pad_w;

2 conv_wt = wt_jit(wt_desc, ...); //Generate JIT code
3 if (enough parallelism) {
4 temp_wt_ptr = &(weight[0][0][0][0][0][0]);
5 #pragma omp for collapse(2)
6 } else { //not enough parallelism
7 temp_wt_ptr = &(thread_local_wt_tensor);
8 #pragma omp for collapse(3)
9 }

10 for(ofm1 = 0; ofm1 < K/VLEN; ++ofm1) {
11 for(ifm1 = 0; ifm1 < C/BI; ++ifm1) {
12 for(img = 0; img < N; ++img) {
13 for(oj = 0; oj < P/BP; ++oj) {
14 for(oi = 0; oi < Q/BQ; ++oi) {
15 for(kj = 0; kj < R; ++kj) {
16 for(ki = 0; ki < S; ++ki) {
17 const float *inp_ptr = &(grad_input[img][ifm1][oj*BP*u+kj

][oi*BQ*v+ki][0]);
18 const float *out_ptr = &(grad_output[img][ofm1][oj*BP][oi*

BQ][0]);
19 float *wt_ptr = &(temp_wt_ptr[ofm1][ifm1][kj][ki][0][0]);
20 conv_wt(input_ptr, wt_ptr, out_ptr);
21 } } } } } } }

Figure 3.16 : Pseudo code for weight update after runtime code specialization and
parallelization
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1 wt_desc = setup weight update descriptor using N,C,H,W,K,R,S,u,v,
pad_h,pad_w;

2 conv_wt_pf = wt_jit(wt_desc, PREFETCH_ALL);
3 conv_wt_pf_nooutput = wt_jit(wt_desc, PREFETCH_NO_OUTPUT);
4 if (enough parallelism) {
5 temp_wt_ptr = &(weight[0][0][0][0][0][0]);
6 #pragma omp for collapse(2)
7 } else { //not enough parallelism
8 temp_wt_ptr = &(thread_local_wt_tensor);
9 #pragma omp for collapse(3)

10 }
11 for(ofm1 = 0; ofm1 < K/VLEN; ++ofm1) {
12 for(ifm1 = 0; ifm1 < C/BI; ++ifm1) {
13 for(img = 0; img < N; ++img) {
14 for(oj = 0; oj < P/BP; ++oj) {
15 for(oi = 0; oi < Q/BQ; ++oi) {
16 for(kj = 0; kj < R; ++kj) {
17 for(ki = 0; ki < R; ++ki) {
18 const float *inp_ptr = &(grad_input[img][ifm1][oj*BP*u+kj]
19 [oi*BQ*v+ki

][0]);
20 const float *out_ptr = &(grad_output[img][ofm1][oj*BP][oi*

BQ][0]);
21 float *wt_ptr = &(temp_wt_ptr[ofm1][ifm1][kj][ki][0][0]);
22 if (within kj loop) {
23 conv_wt_pf_nooutput(input_ptr, wt_ptr, out_ptr,
24 input_prefetch_ptr,
25 weight_prefetch_ptr,
26 NULL //No output prefetch);
27 } else {
28 conv_wt_pf(input_ptr, wt_ptr, out_ptr,
29 input_prefetch_ptr,
30 weight_prefetch_ptr,
31 output_prefetch_ptr);
32 }
33 } } } } } } }

Figure 3.17 : Pseudo code for weight update with software prefetching
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Chapter 4

Performance Results on KNL

We evaluated our optimized implementation of direct convolution for back propaga-

tion and weight update on Intel x86 platform named Knights Landing (KNL). We

give our performance results on a single-socket Intel Xeon Phi 7250 processor with

68 cores, 1.2 GHz mesh-clock, 16 GB MCDRAM@7.2 GT, 96 GB DDR4-2400, FLAT

memory mode and QUADRANT cluster mode. For details, one can look into [10].

In our experiments, we enabled Turbo mode, which makes the processor run at 1.3

GHz. We use the Intel R�C++ Compiler (ICC) with “-O2” flag for the compilation.

All the data were kept in the MCDRAM instead of DDR4 for higher bandwidth and

latency. We achieve this by using“numactl membind=1”. We use 64 threads for

all the experiments.

For evaluation of performance across di↵erent state-of-the-art CNNs, we choose five

popular CNNs - Alexnet [5], Overfeat [17], Vgga [18], GoogleNet V1 [19], and Deep-

Bench [20]. We select these topologies as each of them will stress several code gen-

eration aspects. The most important aspects are: a) the feature map dimensions of

Overfeat and Alexnet are close or at the boundary of hardware latencies for FMA

units b) odd number for the dimensions of images in Alexnet c) inner layers of Over-

feat and Vgga are wide layers which exceed the L1 cache size, therefore cache data

management and prefetching properly is a necessity for these cases d) Vgga layers

have large feature map dimensions that require su�cient tiling even within the fea-

ture maps e) GoogleNet V1 has a widely varying configurations from small feature

map dimensions to large feature map dimensions, small feature height and width to
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Table 4.1 : Parameters for Convolutional Layers of AlexNet, Overfeat, and Vgga

Layers W H N C K R S P Q Stride
Alexnet CONV1 227 227 256 3 64 11 11 55 55 4
Alexnet CONV2 27 27 256 64 192 5 5 27 27 1
Alexnet CONV3 13 13 256 192 384 3 3 13 13 1
Alexnet CONV4 13 13 256 384 256 3 3 13 13 1
Alexnet CONV5 13 13 256 256 256 3 3 13 13 1
Overfeat CONV1 231 231 256 3 96 11 11 56 56 4
Overfeat CONV2 28 28 256 96 256 5 5 24 24 1
Overfeat CONV3 12 12 256 256 512 3 3 12 12 1
Overfeat CONV4 12 12 256 512 1024 3 3 12 12 1
Overfeat CONV5 12 12 256 1024 1024 3 3 12 12 1
Vgga CONV1 224 224 128 3 64 3 3 224 224 1
Vgga CONV2 112 112 256 64 128 3 3 112 112 1
Vgga CONV3 56 56 256 128 256 3 3 56 56 1
Vgga CONV4 56 56 256 256 256 3 3 56 56 1
Vgga CONV5 28 28 256 256 512 3 3 28 28 1
Vgga CONV6 28 28 256 512 512 3 3 28 28 1
Vgga CONV7 14 14 256 512 512 3 3 14 14 1
Vgga CONV8 14 14 256 512 512 3 3 14 14 1

large feature height and width, small filter height and width to large filter height

and width; in a sense it tests our implementation on the aspect of wide applicability,

and finally f) DeepBench represent a wide range of corner cases which are good for

testing performance on worst case configurations. The parameters of convolutional

layers of AlexNet, Overfeat, and Vgga are represented in Table 4.1, GoogleNet V1 in

Table 4.2, and DeepBench in Table 4.3.
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Table 4.2 : Parameters for Convolutional Layers of GoogleNetV1

Layers W H N C K R S P Q Stride

Googlenetv1 CONV1 224 224 128 3 64 7 7 112 112 2

Googlenetv1 CONV2 56 56 128 64 64 1 1 56 56 1

Googlenetv1 CONV3 56 56 128 64 192 3 3 56 56 1

Googlenetv1 CONV4 28 28 128 192 64 1 1 28 28 1

Googlenetv1 CONV5 28 28 128 192 96 1 1 28 28 1

Googlenetv1 CONV6 28 28 128 96 128 3 3 28 28 1

Googlenetv1 CONV7 28 28 128 192 16 1 1 28 28 1

Googlenetv1 CONV8 28 28 128 16 32 5 5 28 28 1

Googlenetv1 CONV9 28 28 128 192 32 1 1 28 28 1

Googlenetv1 CONV10 28 28 128 256 128 1 1 28 28 1

Googlenetv1 CONV11 28 28 128 128 192 3 3 28 28 1

Googlenetv1 CONV12 28 28 128 256 32 1 1 28 28 1

Googlenetv1 CONV13 28 28 128 32 96 5 5 28 28 1

Googlenetv1 CONV14 28 28 128 256 64 1 1 28 28 1

Googlenetv1 CONV15 14 14 128 480 192 1 1 14 14 1

Googlenetv1 CONV16 14 14 128 480 96 1 1 14 14 1

Googlenetv1 CONV17 14 14 128 96 208 3 3 14 14 1

Googlenetv1 CONV18 14 14 128 480 16 1 1 14 14 1

Googlenetv1 CONV19 14 14 128 16 48 5 5 14 14 1

Googlenetv1 CONV20 14 14 128 480 64 1 1 14 14 1

Googlenetv1 CONV21 14 14 128 512 160 1 1 14 14 1

Googlenetv1 CONV22 14 14 128 512 112 1 1 14 14 1

Continued on next page
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Table 4.2 : Parameters for Convolutional Layers of GoogleNetV1

Layers W H N C K R S P Q Stride

Googlenetv1 CONV23 14 14 128 112 224 3 3 14 14 1

Googlenetv1 CONV24 14 14 128 512 32 1 1 14 14 1

Googlenetv1 CONV25 14 14 128 32 64 5 5 14 14 1

Googlenetv1 CONV26 14 14 128 512 64 1 1 14 14 1

Googlenetv1 CONV27 14 14 128 512 128 1 1 14 14 1

Googlenetv1 CONV28 14 14 128 128 256 3 3 14 14 1

Googlenetv1 CONV29 14 14 128 512 144 1 1 14 14 1

Googlenetv1 CONV30 14 14 128 144 288 3 3 14 14 1

Googlenetv1 CONV31 14 14 128 512 32 1 1 14 14 1

Googlenetv1 CONV32 14 14 128 32 64 5 5 14 14 1

Googlenetv1 CONV33 14 14 128 528 256 1 1 14 14 1

Googlenetv1 CONV34 14 14 128 528 160 1 1 14 14 1

Googlenetv1 CONV35 14 14 128 160 320 3 3 14 14 1

Googlenetv1 CONV36 14 14 128 528 32 1 1 14 14 1

Googlenetv1 CONV37 14 14 128 32 128 5 5 14 14 1

Googlenetv1 CONV38 14 14 128 528 128 1 1 14 14 1

Googlenetv1 CONV39 7 7 128 832 256 1 1 7 7 1

Googlenetv1 CONV40 7 7 128 832 160 1 1 7 7 1

Googlenetv1 CONV41 7 7 128 160 320 3 3 7 7 1

Googlenetv1 CONV42 7 7 128 832 32 1 1 7 7 1

Googlenetv1 CONV43 7 7 128 32 128 5 5 7 7 1

Googlenetv1 CONV44 7 7 128 832 128 1 1 7 7 1

Continued on next page
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Table 4.2 : Parameters for Convolutional Layers of GoogleNetV1

Layers W H N C K R S P Q Stride

Googlenetv1 CONV45 7 7 128 832 384 1 1 7 7 1

Googlenetv1 CONV46 7 7 128 832 192 1 1 7 7 1

Googlenetv1 CONV47 7 7 128 192 384 3 3 7 7 1

Googlenetv1 CONV48 7 7 128 832 48 1 1 7 7 1

Googlenetv1 CONV49 7 7 128 48 128 5 5 7 7 1

Table 4.3 : Parameters for Convolutional Layers of DeepBench

Layers W H N C K R S P Q Stride

Deepbench CONV1 700 161 4 1 32 20 5 79 341 2

Deepbench CONV2 700 161 8 1 32 20 5 79 341 2

Deepbench CONV3 700 161 16 1 32 20 5 79 341 2

Deepbench CONV4 700 161 32 1 32 20 5 79 341 2

Deepbench CONV5 341 79 4 32 32 10 5 38 166 2

Deepbench CONV6 341 79 8 32 32 10 5 38 166 2

Deepbench CONV7 341 79 16 32 32 10 5 38 166 2

Deepbench CONV8 341 79 32 32 32 10 5 38 166 2

Deepbench CONV9 480 48 16 1 16 3 3 48 480 1

Deepbench CONV10 240 24 16 16 32 3 3 24 240 1

Deepbench CONV11 120 12 16 32 64 3 3 12 120 1

Deepbench CONV12 60 6 16 64 128 3 3 6 60 1

Deepbench CONV13 108 108 8 3 64 3 3 108 108 1

Continued on next page
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Table 4.3 : Parameters for Convolutional Layers of DeepBench

Layers W H N C K R S P Q Stride

Deepbench CONV14 54 54 8 64 64 3 3 54 54 1

Deepbench CONV15 27 27 8 128 128 3 3 27 27 1

Deepbench CONV16 14 14 8 128 256 3 3 14 14 1

Deepbench CONV17 7 7 8 256 512 3 3 7 7 1

Deepbench CONV18 224 224 8 3 64 3 3 224 224 1

Deepbench CONV19 112 112 8 64 128 3 3 112 112 1

Deepbench CONV20 56 56 8 128 256 3 3 56 56 1

Deepbench CONV21 28 28 8 256 512 3 3 28 28 1

Deepbench CONV22 14 14 8 512 512 3 3 14 14 1

Deepbench CONV23 7 7 8 512 512 3 3 7 7 1

Deepbench CONV24 224 224 16 3 64 3 3 224 224 1

Deepbench CONV25 112 112 16 64 128 3 3 112 112 1

Deepbench CONV26 56 56 16 128 256 3 3 56 56 1

Deepbench CONV27 28 28 16 256 512 3 3 28 28 1

Deepbench CONV28 14 14 16 512 512 3 3 14 14 1

Deepbench CONV29 7 7 16 512 512 3 3 7 7 1

Deepbench CONV30 224 224 16 3 64 7 7 224 224 1

Deepbench CONV31 28 28 16 192 32 5 5 28 28 1

Deepbench CONV32 28 28 16 192 64 1 1 28 28 1

Deepbench CONV33 14 14 16 512 48 5 5 14 14 1

Deepbench CONV34 14 14 16 512 192 1 1 14 14 1

Deepbench CONV35 7 7 16 832 256 1 1 7 7 1

Continued on next page
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Table 4.3 : Parameters for Convolutional Layers of DeepBench

Layers W H N C K R S P Q Stride

Deepbench CONV36 7 7 16 832 128 5 5 7 7 1

We measure the performance of our approach with three di↵erent data layouts

(refer to section 3.3) 1) input, output, and weight tensors all are in our custom for-

mat, we call it Custom/Custom 2) input and output tensors is in TensorFlow format

NHWC and weight tensor is in our Custom format, we call this setting NHWC/Cus-

tom 3) input and output is in TensorFlow format NHWC and also weight tensor is

in TensorFlow format RSCK.

One thing to mention is that even though we implemented our direct convolution

approach with low precision instructions as discussed in section 3.4.8 and also packed

fmadd instructions as discussed in section 3.4.9, we can not provide performance

results for these implementations at this point of time. This is because, to the best of

our knowledge, current Intel x86 architectures do not have support for these instruc-

tions. But as the updated Intel x86 ISA includes these instructions, our projection is

that the future Intel x86 architectures will have support for these instructions.

The performance results for Back Propagation are represented in the following way: a)

results for AlexNet, Overfeat, and Vgga are in Figure 16, b) results for GoogleNetV1

are in Figure 17, and c) results for DeepBench are in Figure 18. Similarly, perfor-

mance results for weight update are organized in the following way: a) results for

AlexNet, Overfeat, and Vgga are in Figure 19, b) results for GoogleNetV1 are in Fig-

ure 20, and finally c) results for DeepBench are in Figure 21. For Back Propagation,

we do report performance result for the layers for which we cannot perform vec-

torization and the execution fallbacks to nave implementation for producing correct



46

Figure 4.1 : Performance results for Back Propagation on AlexNet, Overfeat, and
Vgga

results. As we observe from Figure 4.1, we consistently get 4-4.5 TeraFlops across the

convolutional layers of AlexNet, Overfeat, and Vgga for our Custom/Custom data

format. This is 80% of the theoretical peak (6 TFLOPS) on KNL. Please note, large

HPC-style (Top500 benchmark [21]) matrix multiplications hit close to 80% of the

machines peak. Hence, we are hitting the maximum possible peak performance on

KNL. Due to a two-issue wide machine, this is the maximum achievable peak perfor-

mance of the machine. However, there is serious degradation in performance when

we use NHWC/Custom or NHWC/RSCK format. Our understanding behind this

performance drop is 1) increased probability of conflict miss and 2) increased TLB

pressure due to these data formats. As input feature map C and output feature map

K are powers of 2 and our L1 data cache is 8-way set associative, the probability

of conflict miss increases if we make C or K as the innermost dimension for input

and output tensors respectively. The situation gets even worse when put K as the
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Figure 4.2 : Performance results for Back Propagation on GoogleNetV1

innermost dimension and C just after K, for weight tensor. Apart from increasing

the probability of conflict miss, TLB pressure also increases with these data formats

due to our tensor data access pattern. We do register blocking along W . If we put C

and K as the innermost dimension and they have high values, which is typically the

case, we might end up accessing completely di↵erent page tables for each index along

W . Furthermore, we access weight tensor along R and S inside the JITed function.

If the data format for weight is RSCK, we also might end up accessing completely

di↵erent page tables for each access along R and S. This scenario increases TLB

pressure tremendously, and the cost of TLB miss is very high on KNL.

From performance results for GoogleNetV1 in Figure 4.2, we see that we get excel-

lent performance (around 4 TFLOPS) in Custom/Custom data format for 3x3 and
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5x5 convolutions when W and H are more than 14. These are ideal scenarios for

our implementation because we get good reuse of input tensor and the value of W

is just perfect to hide the FMA latency on KNL. However, the performance drops

to 3-3.5TFLOPS when W and H drop to 7. The reason is that we cannot hide the

FMA latency completely in this case. We use extra accumulators to handle this sce-

nario as discussed in section 3.4.6 but it has some overhead, which results in some

performance drop. In case of 1x1 convolutions, we get around 2-3 TFLOPS. This sig-

nificant drop in performance is observed because mainly there is no reuse of output

and input data along R and S. This results in low FMA to loads/stores ratio and

makes the performance depend more on memory bandwidth. For NHWC/Custom

and NHWC/RSCK data formats, the performance is a less than what we achieve in

Custom/Custom data format as expected.

In Figure 4.3, the performance from DeepBench shows how our implementation

performs in corner cases. It still performs reasonably well (3.5-4TFLOPS) when the

suitable conditions met, i.e. R and S are greater than 1, H and W are 14 or 28. In

general, the performance on DeepBench su↵ers due to the reason that most of the

layer has very small (less than 32) mini-batch size, N . In case of back propagation,

we do a costly transpose of weight tensor as discussed in section 3.4.1. We amor-

tize this cost over the mini-batch size because same weight tensor is used across all

the images. So, when the number of images is not enough to amortize the cost of

transposing weight tensor, we see a serious degradation in performance. Besides this

major issue, some convolutional layers in DeepBench have values for C and K that

do not yield enough parallelism for 64 threads. For example, layer 5, 6, 7, 8, and 10.

This a↵ects the performance severely.

As we see from Figure 4.4, 4.5, and 4.6, performance for weight update also fol-

lows the same trend of Custom/Custom data format having the highest performance
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Figure 4.3 : Performance results for Back Propagation on DeepBench

Figure 4.4 : Performance results for Weight Update on AlexNet, Overfeat, and Vgga
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Figure 4.5 : Performance results for Weight Update on GoogleNetV1
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Figure 4.6 : Performance results for Weight Update on DeepBench

among all the data formats, followed by NHWC/Custom, and NHWC/RSCK gives

the lowest performance. In case of AlexNet, Overfeat, and Vgga, we get 3-4TFLOPS

as peak performance, for some layers we get 2.5 TFLOPS, and in worst cases, we get

around 1TFLOPS. If we observe carefully, these worst cases are associated with first

layers of the networks where ifm is 3. In this scenario, two adverse situation oc-

curs 1) We do not have enough parallelism which results in using thread-local bu↵ers

2) As we reduce across mini-batch size, N , the reduction work per weight element

becomes quite high. We get to see the impact of the second factor more clearly on

GoogleNetV1 and DeepBench. On GoogleNetV1, the factor causes havoc on the per-

formance for all the convolutional layers having R=1, S=1. In these cases, it becomes

a giant reduction problem which is memory bandwidth bound. On DeepBench, we

see good performance (around 3 TFLOPS) when N , H, W (these are the dimensions
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Table 4.4 : Back Propagation: Base Line Comparison

CNN Layers Our Approach
(GFLOPs)

ICC with -O3
(GFLOPs)

Improvement Fac-
tor

Alexnet CONV2 4102.5 19.036 215.51x
Alexnet CONV3 4136.2 10.418 397.02x
Alexnet CONV4 4176.8 10.413 401.11x
Alexnet CONV5 4156.9 10.403 399.59x
Overfeat CONV2 4352 8.3448 521.52x
Overfeat CONV3 4245.7 5.7789 734.69x
Overfeat CONV4 3993.4 6.8257 585.05x
Overfeat CONV5 3990.1 5.1609 773.14x
Vgga CONV2 3462.3 8.6424 400.62x
Vgga CONV3 3981.4 7.5249 529.1x
Vgga CONV4 4084.9 8.6536 472.05x
Vgga CONV5 4027.4 7.7366 520.56x
Vgga CONV6 4045.4 7.6822 526.59x
Vgga CONV7 4053 8.4561 479.3x
Vgga CONV8 4049.6 5.7651 702.43x

over which reduction occurs) is low (N16, H and W 14) and C and K are su�ciently

high to have enough parallelism for 64 threads. For example, convolutional layers 16

and 17 of DeepBench have these parameters.

We also perform a base line comparison of our JIT-based approach with naive

C codes compiled with ICC while turning on -O3 optimization flag, i.e. we do not

perform any optimization and leave all to the standard compiler. We used -O3

flag because -O3 optimization flag specifically enables vectorization and software

prefetching. We present the performance comparison for back propagation in Table

4.4 and weight update in Table 4.5. The results are for convolution layers from

AlexNet, Overfeat, and Vgga. As can be seen from the tables, we achieve up to 700x

performance improvement for back propagation and up to 500x for weight update.

This emphasizes the need for careful optimization to achieve good performance on

KNL architecture.
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Table 4.5 : Weight Update: Base Line Comparison

CNN Layers Our Approach
(GFLOPs)

ICC with -O3
(GFLOPs)

Improvement Fac-
tor

Alexnet CONV1 1272.2 34.959 36.39x
Alexnet CONV2 3920.7 18.492 212.02x
Alexnet CONV3 2494.6 10.034 248.61x
Alexnet CONV4 2708 10.008 270.58x
Alexnet CONV5 2646.2 9.8914 267.53x
Overfeat CONV1 1267.2 10.394 121.92x
Overfeat CONV2 4082.1 8.6243 473.33x
Overfeat CONV3 3486.3 5.8512 595.83x
Overfeat CONV4 3693.4 6.7614 546.25x
Overfeat CONV5 3710.9 6.9178 536.43x
Vgga CONV1 955.11 3.8885 245.62x
Vgga CONV2 2504 6.9011 362.84x
Vgga CONV3 2575 6.8821 374.16x
Vgga CONV4 2553.8 5.4316 470.17x
Vgga CONV5 2494.2 8.7221 285.96x
Vgga CONV6 2520.1 8.5131 296.03x
Vgga CONV7 3235.4 6.6083 489.6x
Vgga CONV8 3224 6.1214 526.68x
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Table 4.6 : Back Propagation: GEMM Method Comparison

CNN Layers Our Approach
(GFLOPs)

GEMM Method
with -O3
(GFLOPs)

Improvement Fac-
tor

Alexnet CONV2 4102.5 125.42 32.71x
Alexnet CONV3 4136.2 261.72 15.8x
Alexnet CONV4 4176.8 355.53 11.75x
Alexnet CONV5 4156.9 282.5 14.71x
Overfeat CONV2 4352 179.26 24.28x
Overfeat CONV3 4245.7 291.72 14.55x
Overfeat CONV4 3993.4 444.94 8.98x
Overfeat CONV5 3990.1 578.66 6.9x
Vgga CONV2 3462.3 128.6 26.92x
Vgga CONV3 3981.4 236.54 16.83x
Vgga CONV4 4084.9 385.46 10.6x
Vgga CONV5 4027.4 381.82 10.55x
Vgga CONV6 4045.4 380.27 10.64x
Vgga CONV7 4053 584.62 6.93x
Vgga CONV8 4049.6 438.54 9.23x

Furthermore, we make a performance comparison of our JIT-based approach of

direct convolution with GEMM formulation of convolution. In case of GEMM formu-

lation, we perform the GEMM computation with Intel MKL single precision BLAS

routines. We compile the code for GEMM formulation with Intel ICC compiler while

turning on -O3 optimization flag. The performance comparison results are over con-

volution layers of AlexNet, Overfeat, and Vgga. Table 4.6 shows the results for back

propagation and Table 4.7 lists the results for weight update. We would like to

mention that we omitted the convolution layers where memory footprint was larger

than the size of on-chip high bandwidth MCDRAM of KNL. As can be seen from the

results, we achieve 7x to 30x speed up for back propagation and 18x to 60x speed

up for weight update. These results support the fact that image flattening operation

(im2col) does have a significant performance penalty.
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Table 4.7 : Weight Update: GEMM Method Comparison

CNN Layers Our Approach
(GFLOPs)

GEMM Method
with -O3
(GFLOPs)

Improvement Fac-
tor

Alexnet CONV2 3920.7 101.77 38.53x
Alexnet CONV3 2494.6 78.709 31.69x
Alexnet CONV4 2708 86.041 31.47x
Alexnet CONV5 2646.2 84.775 31.21x
Overfeat CONV2 4082.1 113.41 35.99x
Overfeat CONV3 3486.3 72.76 47.92x
Overfeat CONV4 3693.4 75.014 49.24x
Overfeat CONV5 3710.9 63.372 58.56x
Vgga CONV2 2504 122.05 20.52x
Vgga CONV3 2575 138.13 18.64x
Vgga CONV4 2553.8 139.29 18.33x
Vgga CONV5 2494.2 132.79 18.78x
Vgga CONV6 2520.1 133.11 18.93x
Vgga CONV7 3235.4 133.57 24.22x
Vgga CONV8 3224 81.161 39.72x
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Chapter 5

Related Work

There exists a variety of high-level deep learning frameworks with the goal of improv-

ing the productivity of data scientists by abstracting away implementation details.

CNTK [6], THEANO [7], TensorFlow [3], Torch [8], and Ca↵e [4] are the popular

ones. They more or less represent neural networks as computation graphs where each

node represents some operation on n-dimensional arrays or tensors. So, a convolution

layer is represented as a node with convolution operation over n-dimensional tensor.

When aiming for performance, most of these frameworks resort to library based ap-

proaches, i.e., they use cuDNN [13] on GPUs and use Intel Math Kernel Library [22]

on CPUs under the hood. Our runtime code specialization techniques for convolution

layers are complementary to the high-level frameworks and can be easily integrated

into them.

5.1 GEMM Based Approach

There are two kinds of parallelism when performing convolutions in CNNs with a

GEMM based approach. One is to perform the GEMM for the whole mini-batch

using widely available parallel-GEMM strategies. The other one is to perform GEMM

for each image in parallel. The advantage of the first approach is that we have

highly optimized parallel-GEMM implementations readily available to be used in our

applications. So, it saves a lot of e↵ort in optimizing GEMM part of the computation.

For this reason, deep learning frameworks such as THEANO, TensorFlow, Torch,

and Ca↵e uses the first parallelization strategy. Interestingly, di↵erent scheduling
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of the computation can fetch better performance for the parallel-GEMM approach.

Ca↵e con Troll [23] improves the performance of Ca↵e by executing a batch of image

partitions instead of one image partition per core.

5.2 Convolution on GPUs

The cuDNN library [13] is the de facto standard for accelerating deep learning on

NVIDIA GPUs. cuDNN provides e�cient implementations of various layers found

in deep neural networks including convolution layers. To the best of our knowledge,

cuDNN mostly uses matrix-multiply(GEMM) formulation but have also integrated

Winograd implementations [24] for small filter sizes in the recent releases. In the

cuDNN paper [13], the authors state that it is di�cult to achieve performance using

direct convolution across a wide range of parameters and is also not portable across

GPU generations. We debunk this claim for CPUs and show that direct convolution

can yield peak performance. Apart from GEMM or direct convolution approach,

e�cient FFT based strategy for large filter sizes and non-unit stride convolutions has

also been proposed for GPU [25].

5.3 Convolution on Other Hardware Accelerators

Apart from GPU, there have also been some e↵orts on accelerating convolution in

CNNs using FPGAs [26, 27, 28] and ASICs [29, 30]. However, most of these works

focus only on forward propagation phase of CNN computation.

5.4 Convolution on CPUs

Although GPUs are the most prevalent architecture used for deep learning, x86

CPU implementations are on the rise, such as MKL-DNN [31], NNPACK [32], and

ZNN [33]. To the best of our knowledge, NNPACK and ZNN use FFT-based ap-
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proaches and do not support Xeon Phi systems. We used direct convolution approach

and showed how we could achieve peak performance on Xeon Phi.

5.5 JIT Based Approach

Recently, TensorFlow XLA [34] introduced a JIT compiler for TensorFlow which en-

ables aggressive fusion at XLA high-level optimizer. Although Google in its Developer

Summit 2017 [35] showed that they gained significant performance improvement on

GPUs by enabling fusion at runtime, their CPU performance degraded by up to -

600%. This indicates that achieving high performance on x86 architecture is more

challenging and necessitates a more carefully designed fusion strategy to harness per-

formance improvement through data reuse. This might be an interesting area of

future work.

5.6 Distributed CNN Training

Due to the large amount of computation needed to perform training on CNNs, there

are several works which use a cluster of distributed systems with multi-core CPUs.

For example, Google’s DistBelief [36], Microsoft Project Adam [37], and SINGA [38]

exploit massively parallel distributed systems through data parallelism. There are

two core challenges here - scheduling the computation across di↵erent nodes and dis-

tributed update of model parameters. The general strategy is to use several worker

nodes to do the training in parallel on di↵erent subsets of training data and period-

ically synchronize model parameters between di↵erent nodes. Our work focuses on

improving the performance of CNN training on a single node. So, our e↵ort would

improve the throughput of each worker node, and therefore our work may lead to

performance improvement in distributed systems.
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Chapter 6

Conclusion and Future Work

Convolution Neural Networks (CNN) are state-of-the-art Deep Neural Networks for

image recognition applications today. The core of these CNNs is convolution layer,

which performs a large number of small convolutions with irregular dimensions. CNNs

require massive computing power, and it turns out that convolution operation is the

key performance enabler for CNNs. Although training and inference, both are time-

consuming, training, in particular, can take a huge amount of time, extending up to

few weeks. The critical bottleneck in training step is back propagation and weight

update stages which are hard to optimize. So, in this work, we try to address this

challenging problem by optimizing convolutions in back propagation and weight up-

date. Our strategy involves - 1) producing highly optimized code for the innermost

loops at runtime using JIT and 2) parallelizing outermost loops using widely available

threading libraries.

The goal of the first step is to produce vectorized code for the innermost loops while

avoiding branching as much as possible because branch misprediction is very costly

on Intel Knights Landing. As we are addressing only direct convolution, it is possible

for us to make our JIT very lightweight and e�cient using domain knowledge and

reducing generality of application. For example, we use our domain knowledge to de-

cide which dimension is a good candidate for vectorization. We also use our domain

knowledge in the heuristics used for deciding unroll factor and register blocking factor

from the parameter values at runtime. As our JIT is very fast, it adds virtually zero

overhead in execution time, and the optimized code generated by JIT is utilized by
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the outermost loops several times. At runtime, our JIT generates e�cient scheduling

of vector loads and stores along with vector fused-multiply-add instructions for x86

architectures with AVX-512 support. It also handles software prefetching, which is an

important factor for gaining good performance on Intel Knights Landing. Regarding

optimization, we applied standard compiler optimizations, such as register blocking,

cache blocking, and loop unrolling. We also added code generation for low precision

data (16-bit and 8-bit) in our JIT.

The objective of the second step is to separate out fine grain parallelism and low-level

optimization details from coarse grain parallelization strategy. It enables us to track

thread-level parallelism easily. Other than code optimizations, we considered di↵er-

ent data layouts for our input, output, and weight tensors. We give a custom data

layout for our approach which seems to be fitting our computation pattern. Along

with this, we also experimented with TensorFlow data layout.

We demonstrate that e�cient implementation of direct convolution for back propa-

gation and weight update with runtime code specialization can achieve close to peak

performance on Intel Knights Landing processor. Furthermore, we analyze the per-

formance results for state-of-the-art CNNs and gives insight into what brings the

performance and what hinders. We have also shown and discussed the impact of

di↵erent data layouts on performance. In future, we would like to investigate how

much performance improvement can be achieved by tuning the runtime code genera-

tor parameters with an auto-tuner. Also, another interesting topic of future interest

would be looking into performance for Winograd convolutions using our JIT-based

approach.
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