,’_‘-\

d
oot B g hrmecery

Ny S,
I ~ i \\ ’& /
v & / ‘ ,’

o

DATA-DRIVEN TASKS

AND
THEIR IMPLEMENTATION

Fork/Join graphs constraint ||-ism

Fork/Join models restrict task graphs to be series-parallel
Can not describe §—>§->§ without hampering ||-ism
$5¢
Fork/Join models constrain control and data dependences

Tasks can only be created after all data dependences satisfied

Necessitates ordering task creation to conform to that
restriction

May hamper performance

Macro-dataflow for intuitive [[-ism

=>Taska=> =>Taskg=>

Kernel based programming § S >Task§c->

Build a task graph of kernel instantiations

=> main ——>TaskA_>TaskB\
Taskc=

E\TaSkéB 2 »TaskéA/ 2

Restrict dependences to true dependences

race-freedom, determinism \ﬁr@f-assignment data

Provides productivity

Futures [Baker & Hewitt 1977]

future = (storage, resolvingProcess, waiting Tasks)

addressr Taskr Taskc Taskn Task

\

Future F = {stmt,;..; return v;}

\ 4

task g = {stmt; F.get();..;}

Data-Driven Futures (DDFs) &
Data-Driven Tasks (DDTs)

DataDrivenFuture = (storage, waitingTasks)

Creation
Create an empty Data-Driven Future (DDF) object
Resolution (put) (resolvingProcess)
Resolve what value a DDF is referring to
Data-Driven Tasks (DDTs) (async await(..))
A task provides a consumer list of DDFs on declaration

A task can only read DDFs that it is registered to

Difference from futures:

Creation of container (DDF) and computation (DDT) are
separate events

DDF/DDT Code Sample

DataDrivenFuture left = new DataDrivenFuture ();

DataDrivenFuture right = new DataDrivenFuture();
finish {

async await (left) useLeftChild(left); // Task,
async await (right) useRightChild(right); // Task,
async await (left, right) useBothChildren(left, right); // Task,
async left.put(leftChildCreator()); // Task,
. async right.put(rightChildCreator()); // Task;

} Tasks —> Task
; \'[as k3 ;
Tasks — Taskz

2~ - 2

DDTs provide

Non-series-parallel task
dependence graph support

Less restricted parallelism
Better scheduling opportunities

DDTa
DDTs <« é\ DTc

é\ Soor
~DDF \é/

DDTDg
DDTe

Single assignment (SA)

Race-freedom on DDF
accesses

Determinism if all shared data
is expressed as DDFs

SA-value lifetime restriction
Smaller than graph lifetime

DDF creator:

Provides DDF reference to
producers and consumers

DDF lifetime depends on
Creator lifetime
Resolver lifetime

Consumers’ lifetimes

Data-Driven Scheduling

Steps register self to items wrapped into DDFs

i’lach/b,-l obdarie

DDFie:

Task;

X

<

Tasks

S

Taskc _ DDFleft = new DDF();
DDF right = new DDF();
2)

DDFiett

v

\Z

DDFiett

DDFright

async await (left) use(left); // Tasl><I

async await (right) use(right); // Tas}k2

ready queue

rnnn

async await (left,right) use(left,right); / Tasd<3
async builder(left);

I Task,

) async builder(right); // Task,

Tadksk4

DDFright

PIa‘éalhle}lglerrigI.t

vV
DDFright Comnne

Taska

Task,

Taskg

Task, | <=

ye Hamaﬁdeft

Mapping Macro-Dataflow to Task-Parallelism

Control & data dependences as first level constructs

Task-parallel frameworks have them coupled e.g., OpenMP, Cilk

Kernel instantiations may have multiple predecessors
Need to wait for all

Staged readiness concepts

Created (control dependence satisfied)

Data dependences satisfied
Schedulable / Ready

DDTs provide a natural implementation for Macro-
Dataflow
Every kernel instantiation is a DDT

Data dependences between DDTs are expressed through DDFs

Provides race freedom

Experimental Results

Compared DDT implementation with four macro-
data schedulers from past work

that used Concurrent Collections (CnC)

CnC uses global data collections to synchronize tasks

DDT/DDF results obtained at task-parallel level

without allocating global data collections

CnC can be automatically translated to DDFs (ongoing
work)

Blocking Schedulers

Use Java wait/notify for premature data access

Blocking granularity
Instance level vs Collection level (fine-grain vs. coarse-

grain)

A blocked task blocks an entire worker thread
Need to create more worker threads to avoid deadlock

ltemCollectiong

key ,

value ,

key B

value 4

Worker -
Get (key,)
step, = >
wait
<7
notify

time Workerp

Put(key_value,)
< step,

Delayed async Scheduling

Every kernel instantiation is a guarded execution
Guard condition is the availability of input data
Task can be created eagerly before input data is available

Promoted to ready when data provided

pop Popped Task
Value left = new Value (); asyne, \/
Value right = new Value ();
' async, Delayed?
finish { B Nol %es
async when (Ic?ft.is.Ready()) useLe.ftChiId.(Ieft.); /1 Task, async, Schedule B
async when (right.isReady()) useRightChild(right); // Task, guard
async when (right.isReady() && left.isReady()) async, Yes ‘7
useBothChildren(left, right); // Task, : ,
async left.put(leftChildCreator()); // Task, |_25/NCs : Is true?
async right.put(rightChildCreator()); // Tasks - No

} Work Sharing Ready Task Queue Requeue

Data Driven Rollback & Replay

Throw exception to

unwind Insert step, to waitlist,
Worker ltemCollectiong Workerp
Get (key,)
step, - = > key. value,
key,, value,
SE=e key. value,
_ Get (key,) < Put(key value)) step,

step, Get (key,)

N’

—>
‘Ae-execute steps in waitlist, on Put()

step, — 2 X

Experimental Setup

4-socket Xeon quad-core Intel E7730 2.4 GHz
Shared 3MB L2 cache per pair of cores.

Main memory 32 GBs.
#worker threads: 16

8-way SMT 8-core Niagara Sun UltraSPARC T2
Shared 4MB L2 cache
#worker threads: 64

32-bit Sun Hotspot |DK 1.6 [VM
GCC 4.1.2 for NI

30 runs for statistical soundness
Read ‘Serial’ as single-threaded execution of || code

Cholesky decomposition

12,000 “ Serial " Parallel
10,081 10,010 10,305 10,309

10,000 -
" 8,748
v
)
(7]
.1 8,000
E
£ 6,000 -
c
o
5
3 4000
%
i 2,472

2,000 -

- .7 979 853 790
0 .
Coarse Grain Fine Grain Delayed Async Data Driven Data Driven
Blocking Blocking Rollback&Replay Tasks

Average execution times and 90% confidence interval of 30 runs of single threaded and |6-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on |16-core Xeon with input matrix size 2000 x 2000 and with tile size 125 x |25

Black-Scholes formula (PARSEC)

40,000 “ Serial ' Parallel
33,871 33,966 3431 | 34,121 34,729

35,000

30,000 -

N
w
o
o
o

20,000 -

15,000 -

10,000 -

Execution in milli-secs

5,061

5,000 -

Coarse Grain Fine Grain Delayed Async Data Driven Data Driven
Blocking Blocking Rollback&Replay Tasks

Average execution times and 90% confidence interval of 30 runs of single threaded and
| 6-threaded executions for blocked Black-Scholes CnC application with Habanero-Java
steps on |6-core Xeon with input size 1,000,000 and with tile size 62,500

Rician Denoising (Medical Imaging)

R E——
erial Parallel

498,776 499,666 483,770

500,000 -

400,000 -
349,051

300,000 -

200,000 -

Execution in milli-secs

100,000 -

0 -
Coarse Grain Blocking *Fine Grain Blocking * Delayed Async * Data Driven Tasks
Average execution times and 90% confidence interval of 30 runs of single threaded and | 6-threaded
executions for blocked Rician Denoising CnC application with Habanero-Java steps on Xeon with
input image size 2937 x 3872 and with tile size 267 x 484
* Explicit memory management required for non-DDT schedules to avoid out-of-memory exception

[lteration,
'I
! Steps
Step| ‘72 ‘s .
.’ .~ Steps Steps
\\ ¢1 -----) §’s
. ," “~~ Ste
s Steps o7 A A Ltepio.
. P ’ ’
A ’ ’ 2 '
StePZ ',7 . l <]
. ’ ’ .
s’f "I 'I 'l
-~ /4 4
*._Steps,’ Stepy,’ Steps,’
s* 'l ll "
L

Heart Wall Tracking Dependence Graph

(lterationj+
Steps
Stepl ‘7 ‘s
Pt Te.) Stepe Steps
\\ '1 2 """ > §~~
\‘ Step4 R ;‘ ;‘ ~,AStePI(zl
*2 .’ " "I 2 .,
SteP2 n4 'I l, '{
2 ">, Steps,’ Step7" Steps,’
*2 oo > 2 ’ 2 K4

i

.~*

Execution in milli-secs

Heart Wall Tracking (Rodinia)

180,000

160,000 -

140,000 -

120,000 -

100,000 -

80,000 -

60,000 -

40,000 -

20,000 -

0 -

162,248

Delayed Async

“ Serial ' Parallel
157,554 156,159

9,897

Data Driven Rollback&Replay Data Driven Tasks

Minimum execution times of |3 runs of single threaded and |6-threaded executions for
Heart Wall Tracking CnC application with C steps on Xeon with 104 frames

Related VWork

Futures
Can build arbitrary task graphs
get()/force() is usually a blocking operation

future task creation is bound to container at creation time

Dataflow

Typically blocks on one datum (lvar) at a time, unlike async await (...)

Nabbit (Cilk library)

Can build arbitrary task graphs, more explicit than DDTs

No garbage collection and unwinding of task graph

Concurrent Collections (CnC)

Globalized data collections and general tags (keys) makes memory
management challenging

DDTs can be used to obtain more efficient implementations of CnC

Conclusions

Data-Driven Futures and Data-Driven Tasks

help build arbitrary task graphs and extend task-parallel
frameworks

introduce the more-intuitive macro-dataflow to
programmers on task-parallel frameworks

support Data-Driven scheduling that outperforms alternative
schedulers in both execution time and memory
requirements

help to implement blocking in tasks without blocking
workers

Future Work

Compile Concurrent Collections down to DDTs

Compiler optimizations to move DDF allocations to
further reduce lifetimes

Hierarchical DDTs for granularity optimizations
Work-stealing support for DDTs

Use DDTs to implement all blocking synchronizations
without blocking worker, i.e. replace each waiting
continuation as a DDT

Locality aware scheduling with DDTs

For a hands-on trial, visit http://habanero.rice.edu/hj

http://habanero.rice.edu/cnc

