
DATA-DRIVEN TASKS ���
AND���

THEIR IMPLEMENTATION	

SAĞNAK TAŞIRLAR, VIVEK SARKAR

DEPARTMENT OF COMPUTER SCIENCE. RICE UNIVERSITY

1	

Fork/Join graphs constraint ||-ism	

2	

  Fork/Join models restrict task graphs to be series-parallel	

  Can not describe without hampering ||-ism	

  Fork/Join models constrain control and data dependences	

  Tasks can only be created after all data dependences satisfied	

  Necessitates ordering task creation to conform to that
restriction	

  May hamper performance	

Macro-dataflow for intuitive ||-ism	

3	

  Kernel based programming	

  Build a task graph of kernel instantiations	

  Restrict dependences to true dependences	

 race-freedom, determinism	

  Provides productivity	

TaskA	

 TaskB	

TaskA	

 TaskB	

TaskA	

TaskC	

main	

TaskB	

TaskC	

single-assignment data	

Futures [Baker & Hewitt 1977] 	

4	

  future = (storage, resolvingProcess, waitingTasks)	

Future F = {stmt1;…; return v;}!

 ! ! ! !task g = {stmt; F.get();…;}!

TaskF	

addressF	

 TaskG	

 TaskH	

 TaskJ	

  Creation 	

 Create an empty Data-Driven Future (DDF) object	

  Resolution (put)	

 Resolve what value a DDF is referring to	

  Data-Driven Tasks (DDTs) (async await(…))	

 A task provides a consumer list of DDFs on declaration	

 A task can only read DDFs that it is registered to	

  Difference from futures: 	

 Creation of container (DDF) and computation (DDT) are

separate events	

Data-Driven Futures (DDFs) &���
Data-Driven Tasks (DDTs)	

5	

DataDrivenFuture = (storage, waitingTasks)	

 (resolvingProcess)	

DDF/DDT Code Sample	

6	

DataDrivenFuture left = new DataDrivenFuture ();	

DataDrivenFuture right = new DataDrivenFuture();	

finish {	

 async await (left) useLeftChild(left); // Task1	

 async await (right) useRightChild(right); // Task2	

 async await (left, right) useBothChildren(left, right); // Task3 	

 async left.put(leftChildCreator()); // Task4	

 async right.put(rightChildCreator()); // Task5	

}	

Task5	

Task4	

Task2	

Task1	

Task3	

DDTs provide	

  Non-series-parallel task
dependence graph support	

  Less restricted parallelism	

  Better scheduling opportunities	

  Single assignment (SA)	

  Race-freedom on DDF

accesses	

  Determinism if all shared data
is expressed as DDFs	

  SA-value lifetime restriction	

  Smaller than graph lifetime	

  DDF creator: 	

  Provides DDF reference to

producers and consumers	

  DDF lifetime depends on	

  Creator lifetime	

  Resolver lifetime	

  Consumers’ lifetimes	

7	

DDTA	

DDTC	

DDTD	

DDTB	

DDTE	

DDTF	

DDF	

Data-Driven Scheduling	

8	

  Steps register self to items wrapped into DDFs	

PlaceHolderleft	

DDFleft	

 Task1	

DDFleft	

DDFright	

Valueright	

Task3	

DDFleft	

 DDFright	

✕	

DDF left = new DDF(); 	

DDF right = new DDF(); 	

TaskC	

async await (left) use(left); // Task1 	

async await (right) use(right); // Task2 	

async builder(right); // Task5	

PlaceHolderright	

✕	

Task4	

resolve DDFleft 	

async await (left,right) use(left,right); // Task3 	

async builder(left); // Task4 	

Task4	

ready queue	

Valueleft	

Task2	

DDFright	

Task5	

Task5	

resolve DDFright	

Task1	

Task3	

 Task2	

Mapping Macro-Dataflow to Task-Parallelism	

9	

  Control & data dependences as first level constructs	

  Task-parallel frameworks have them coupled e.g., OpenMP, Cilk	

  Kernel instantiations may have multiple predecessors	

  Need to wait for all	

  Staged readiness concepts	

  Created (control dependence satisfied)	

  Data dependences satisfied	

  Schedulable / Ready	

  DDTs provide a natural implementation for Macro-
Dataflow	

  Every kernel instantiation is a DDT 	

  Data dependences between DDTs are expressed through DDFs	

  Provides race freedom 	

Experimental Results	

10	

  Compared DDT implementation with four macro-
data schedulers from past work	

  that used Concurrent Collections (CnC) 	

 CnC uses global data collections to synchronize tasks	

  DDT/DDF results obtained at task-parallel level 	

 without allocating global data collections	

 CnC can be automatically translated to DDFs (ongoing
work)	

  Use Java wait/notify for premature data access	

  Blocking granularity	

  Instance level vs Collection level (fine-grain vs. coarse-
grain)	

  A blocked task blocks an entire worker thread	

 Need to create more worker threads to avoid deadlock	

Blocking Schedulers	

11	

WorkerC	

step1	

Get (keyc)	

ItemCollectionΘ	

keyα	

keyβ	

 valueβ	

valueα	

wait	

WorkerD	

step2	

Put(keyc,valuec)	

notify	

time	

  Every kernel instantiation is a guarded execution	

 Guard condition is the availability of input data 	

 Task can be created eagerly before input data is available	

  Promoted to ready when data provided	

Delayed async Scheduling	

12	

Value left = new Value ();	

Value right = new Value ();	

finish {	

 async when (left.isReady()) useLeftChild(left); // Task1	

 async when (right.isReady()) useRightChild(right); // Task2	

 async when (right.isReady() && left.isReady()) 	

 useBothChildren(left, right); // Task3 	

 async left.put(leftChildCreator()); // Task4	

 async right.put(rightChildCreator()); // Task5	

}	

 Work Sharing Ready Task Queue	

push	

async1	

async2	

async5	

Schedule	

Yes	

No	

Evaluate
guard	

Is true?	

Yes	

Requeue	

No	

async3	

async4	

pop	

 Popped Task	

Delayed?	

Data Driven Rollback & Replay	

13	

WorkerC	

step1	

Get (keyc)	

ItemCollectionΘ	

keya	

keyb	

 valueb	

valuea	

WorkerD	

step2	

Put(keyc,valuec)	

waitlista	

waitlistb	

keyc	

 empty	

 waitlistc	

Insert step1 to waitlistc 	

Throw exception to
unwind	

step3	

Re-execute steps in waitlistc on Put()	

step1	

Get (keyc)	

Get (keyd)	

valuec	

step1	

 ✕	

Experimental Setup	

14	

  4-socket Xeon quad-core Intel E7730 2.4 GHz 	

  Shared 3MB L2 cache per pair of cores. 	

 Main memory 32 GBs. 	

  #worker threads:16	

  8-way SMT 8-core Niagara Sun UltraSPARC T2	

  Shared 4MB L2 cache	

  #worker threads: 64	

  32-bit Sun Hotspot JDK 1.6 JVM 	

 GCC 4.1.2 for JNI	

  30 runs for statistical soundness	

  Read ‘Serial’ as single-threaded execution of || code	

Cholesky decomposition	

15	

10,081	

 10,010	

 10,305	

 10,309	

8,748	

2,472	

1,197	

 979	

 853	

 790	

0	

2,000	

4,000	

6,000	

8,000	

10,000	

12,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	

 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

Serial	

 Parallel	

Average execution times and 90% confidence interval of 30 runs of single threaded and 16-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on 16-core Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	

Tasks	

Black-Scholes formula (PARSEC)	

16	

33,871	

 33,966	

 34,311	

 34,121	

 34,729	

4,300	

 4,309	

 4,279	

5,061	

2,353	

0	

5,000	

10,000	

15,000	

20,000	

25,000	

30,000	

35,000	

40,000	

Coarse Grain
Blocking	

Fine Grain
Blocking	

Delayed Async	

 Data Driven
Rollback&Replay	

Data Driven
Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

Serial	

 Parallel	

Average execution times and 90% confidence interval of 30 runs of single threaded and
16-threaded executions for blocked Black-Scholes CnC application with Habanero-Java
steps on 16-core Xeon with input size 1,000,000 and with tile size 62,500	

Tasks	

Rician Denoising (Medical Imaging)	

17	

498,776	

 499,666	

 483,770	

349,051	

81,502	

58,313	

 53,569	

 53,817	

0	

100,000	

200,000	

300,000	

400,000	

500,000	

Coarse Grain Blocking *	

Fine Grain Blocking *	

 Delayed Async *	

 Data Driven Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

Serial	

 Parallel	

Average execution times and 90% confidence interval of 30 runs of single threaded and 16-threaded
executions for blocked Rician Denoising CnC application with Habanero-Java steps on Xeon with
input image size 2937 × 3872 and with tile size 267 × 484	

Tasks	

* Explicit memory management required for non-DDT schedules to avoid out-of-memory exception 	

Heart Wall Tracking Dependence Graph	

18	

Step1

Step3

Step4

Step5

Step6

Step7

Step8

Step9

Step10

Step2

Step1

Step3

Step4

Step5

Step6

Step7

Step8

Step9

Step10

Step2

IterationJ IterationJ+1

Heart Wall Tracking (Rodinia)	

19	

162,248	

 157,554	

 156,159	

47,989	

11,076	

 9,897	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

160,000	

180,000	

Delayed Async	

 Data Driven Rollback&Replay	

 Data Driven Futures	

E
xe

cu
ti

o
n

 i
n

 m
il

li
-s

e
cs
	

Serial	

 Parallel	

Minimum execution times of 13 runs of single threaded and 16-threaded executions for
Heart Wall Tracking CnC application with C steps on Xeon with 104 frames	

Tasks	

Related Work	

20	

  Futures	

  Can build arbitrary task graphs 	

  get()/force() is usually a blocking operation	

  future task creation is bound to container at creation time	

  Dataflow	

  Typically blocks on one datum (Ivar) at a time, unlike async await (…)	

  Nabbit (Cilk library)	

  Can build arbitrary task graphs, more explicit than DDTs	

  No garbage collection and unwinding of task graph	

  Concurrent Collections (CnC)	

  Globalized data collections and general tags (keys) makes memory

management challenging	

  DDTs can be used to obtain more efficient implementations of CnC	

Conclusions	

21	

 Data-Driven Futures and Data-Driven Tasks	

  help build arbitrary task graphs and extend task-parallel
frameworks 	

  introduce the more-intuitive macro-dataflow to
programmers on task-parallel frameworks	

  support Data-Driven scheduling that outperforms alternative
schedulers in both execution time and memory
requirements	

  help to implement blocking in tasks without blocking
workers	

  Compile Concurrent Collections down to DDTs	

  Compiler optimizations to move DDF allocations to
further reduce lifetimes	

  Hierarchical DDTs for granularity optimizations	

  Work-stealing support for DDTs	

  Use DDTs to implement all blocking synchronizations
without blocking worker, i.e. replace each waiting
continuation as a DDT	

  Locality aware scheduling with DDTs	

Future Work	

22	

For a hands-on trial, visit 	

http://habanero.rice.edu/hj	

	

 	

 	

 	

 	

http://habanero.rice.edu/cnc	

