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Fork/Join graphs constraint ||-ism	
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  Fork/Join models restrict task graphs to be series-parallel	



  Can not describe                    without hampering ||-ism	



  Fork/Join models constrain control and data dependences	



  Tasks can only be created after all data dependences satisfied	



  Necessitates ordering task creation to conform to that 
restriction	



  May hamper performance	





Macro-dataflow for intuitive ||-ism	
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  Kernel based programming	



  Build a task graph of kernel instantiations	



  Restrict dependences to true dependences	


 race-freedom, determinism	



  Provides productivity	
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Futures [Baker & Hewitt 1977] 	
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  future = (storage, resolvingProcess, waitingTasks)	



Future F = {stmt1;…; return v;}!

 ! ! ! !task g = {stmt; F.get();…;}!

TaskF	

addressF	

 TaskG	

 TaskH	

 TaskJ	





  Creation 	


 Create an empty Data-Driven Future (DDF) object	



  Resolution ( put )	


 Resolve what value a DDF is referring to	



  Data-Driven Tasks (DDTs) ( async await(…) )	


 A task provides a consumer list of DDFs on declaration	


 A task can only read DDFs that it is registered to	



  Difference from futures: 	


 Creation of container (DDF) and computation (DDT) are 

separate events	



Data-Driven Futures (DDFs) &���
Data-Driven Tasks (DDTs)	
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DataDrivenFuture = (storage, waitingTasks)	



 (resolvingProcess)	





DDF/DDT Code Sample	
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DataDrivenFuture left = new DataDrivenFuture ();	



DataDrivenFuture right = new DataDrivenFuture();	


finish {	



    async await ( left ) useLeftChild(left); // Task1	



    async await ( right ) useRightChild(right); // Task2	



    async await ( left, right ) useBothChildren( left, right ); // Task3 	



    async left.put(leftChildCreator()); // Task4	



    async right.put(rightChildCreator()); // Task5	



}	
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DDTs provide	



  Non-series-parallel task 
dependence graph support	


  Less restricted parallelism	


  Better scheduling opportunities	



  Single assignment (SA)	


  Race-freedom on DDF 

accesses	



  Determinism if all shared data 
is expressed as DDFs	



  SA-value lifetime restriction	



  Smaller than graph lifetime	



  DDF creator: 	


  Provides DDF reference to 

producers and consumers	



  DDF lifetime depends on	


  Creator lifetime	



  Resolver lifetime	



  Consumers’ lifetimes	
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Data-Driven Scheduling	
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  Steps register self to items wrapped into DDFs	



PlaceHolderleft	
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DDF left = new DDF(); 	


DDF right = new DDF(); 	



TaskC	



async await (left) use(left);  // Task1 	


async await (right) use(right); // Task2 	



async builder(right);  // Task5	



PlaceHolderright	


✕	



Task4	



resolve DDFleft 	


async await (left,right) use(left,right); // Task3  	


async builder(left);    // Task4 	



Task4	



ready queue	
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Mapping Macro-Dataflow to Task-Parallelism	
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  Control & data dependences as first level constructs	


  Task-parallel frameworks have them coupled e.g., OpenMP, Cilk	



  Kernel instantiations may have multiple predecessors	


  Need to wait for all	



  Staged readiness concepts	


  Created ( control dependence satisfied )	



  Data dependences satisfied	



  Schedulable / Ready	



  DDTs provide a natural implementation for Macro-
Dataflow	


  Every kernel instantiation is a DDT 	



  Data dependences between DDTs are expressed through DDFs	



  Provides race freedom 	





Experimental Results	
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  Compared DDT implementation with four macro-
data schedulers from past work	



  that used Concurrent Collections (CnC) 	



 CnC uses global data collections to synchronize tasks	



  DDT/DDF results obtained at task-parallel level 	



 without allocating global data collections	



 CnC can be automatically translated to DDFs (ongoing 
work)	





  Use Java wait/notify for premature data access	


  Blocking granularity	



  Instance level vs Collection level (fine-grain vs. coarse-
grain)	



  A blocked task blocks an entire worker thread	


 Need to create more worker threads to avoid deadlock	



Blocking Schedulers	
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  Every kernel instantiation is a guarded execution	


 Guard condition is the availability of input data 	



 Task can be created eagerly before input data is available	


  Promoted to ready when data provided	



Delayed async Scheduling	
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Value left = new Value ();	


Value right = new Value ();	


finish {	


   async when ( left.isReady() ) useLeftChild(left); // Task1	



   async when ( right.isReady()) useRightChild(right); // Task2	



   async when ( right.isReady() && left.isReady() ) 	


      useBothChildren( left, right ); // Task3 	


   async left.put(leftChildCreator()); // Task4	



   async right.put(rightChildCreator()); // Task5	



}	
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Data Driven Rollback & Replay	
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 ✕	





Experimental Setup	
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  4-socket Xeon quad-core Intel E7730 2.4 GHz 	


  Shared 3MB L2 cache per pair of cores. 	


 Main memory 32 GBs. 	


  #worker threads:16	



  8-way SMT 8-core Niagara Sun UltraSPARC T2	


  Shared 4MB L2 cache	


  #worker threads: 64	



  32-bit Sun Hotspot JDK 1.6 JVM 	


 GCC 4.1.2 for JNI	



  30 runs for statistical soundness	


  Read ‘Serial’ as single-threaded execution of || code	





Cholesky decomposition	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 16-
threaded executions for blocked Cholesky decomposition CnC application with Habanero-
Java steps on 16-core Xeon with input matrix size 2000 × 2000 and with tile size 125 × 125	
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Black-Scholes formula ( PARSEC )	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 
16-threaded executions for blocked Black-Scholes CnC application with Habanero-Java 
steps on 16-core Xeon with input size 1,000,000 and with tile size 62,500	
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Rician Denoising ( Medical Imaging )	
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Average execution times and 90% confidence interval of 30 runs of single threaded and 16-threaded 
executions for blocked Rician Denoising CnC application with Habanero-Java steps on Xeon with 
input image size 2937 × 3872 and with tile size 267 × 484	
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* Explicit memory management required for non-DDT schedules to avoid out-of-memory exception 	





Heart Wall Tracking Dependence Graph	
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Heart Wall Tracking ( Rodinia )	
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Minimum execution times of 13 runs of single threaded and 16-threaded executions for 
Heart Wall Tracking CnC application with C steps on Xeon with 104 frames	
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Related Work	
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  Futures	


  Can build arbitrary task graphs 	



  get()/force() is usually a blocking operation	



  future task creation is bound to container at creation time	



  Dataflow	


  Typically blocks on one datum (Ivar) at a time, unlike async await (…)	



  Nabbit ( Cilk library )	


  Can build arbitrary task graphs, more explicit than DDTs	



  No garbage collection and unwinding of task graph	



  Concurrent Collections ( CnC )	


  Globalized data collections and general tags (keys) makes memory 

management challenging	



  DDTs can be used to obtain more efficient implementations of CnC	





Conclusions	
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 Data-Driven Futures and Data-Driven Tasks	



  help build arbitrary task graphs and extend task-parallel 
frameworks 	



  introduce the more-intuitive macro-dataflow to 
programmers on task-parallel frameworks	



  support Data-Driven scheduling that outperforms alternative 
schedulers in both execution time and memory 
requirements	



  help to implement blocking in tasks without blocking 
workers	





  Compile Concurrent Collections down to DDTs	



  Compiler optimizations to move DDF allocations to 
further reduce lifetimes	



  Hierarchical DDTs for granularity optimizations	



  Work-stealing support for DDTs	



  Use DDTs to implement all blocking synchronizations 
without blocking worker, i.e. replace each waiting 
continuation as a DDT	



  Locality aware scheduling with DDTs	



Future Work	
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For a hands-on trial, visit 	

http://habanero.rice.edu/hj	



	

 	

 	

 	

 	

http://habanero.rice.edu/cnc	




