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Abstract—In this paper, we propose the flexible preconditions
model for macro-dataflow execution. Our approach unifies two
current approaches for managing task dependences, eager exe-
cution vs. strict preconditions. When one of the two outperforms
the other, flexible preconditions can always attain, and possibly
surpass, the performance of the better approach.

This work focuses on the performance of parallel program-
ming models based on macro-dataflow, in which applications are
composed of tasks and inter-task dependences. Data-flow models
usually make a choice between specifying the task dependences
before task creation (as strict preconditions), or during task
execution, when they are actually needed (eager execution). This
paper shows how the choice between eager execution and strict
preconditions affects the performance, memory consumption and
expressiveness of macro-dataflow applications.

The flexible preconditions model is sufficiently flexible to
support both eager execution and strict preconditions, as well as
hybrid combinations thereof. This capability enables program-
mers and future auto-tuning systems to pick the precondition
combination that yields the best performance for a given appli-
cation. The experimental evaluation was performed on a 32-core
SMP, and is based on a new macro-dataflow implementation,
QtCnC, that supports eager execution, strict preconditions and
flexible preconditions in a single framework. (QtCnC is an
implementation of the CnC model on the QThreads library.) For
applications where all dependences are known ahead of time,
flexible and strict preconditions execute up to 56% faster than
eager execution (for the benchmarks and platform used in our
study). On the other hand, for applications where the complete
set of per-task dependences is determined after the tasks are
spawned, flexible preconditions and eager execution perform up
to 38% better than strict preconditions.

I. INTRODUCTION

Many programming models typically limit the available
parallelism to that exploitable from domain decomposition.
In contrast, the dataflow model [1] is capable of exposing
far greater levels of parallelism across statements, loops and
procedures. Macro-dataflow models [2], [3] further extend this
promise by supporting dataflow tasks expressed at granularities
suitable for modern machines.

Macro-dataflow models usually consist of parallel tasks
and some mechanisms for dataflow communication and syn-
chronization among them. When implemented for multicore
architectures, macro-dataflow models usually rely on a thread-
ing library (such as Pthreads, used in TFlux [4]), a task
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library (such as Intel Threading Building Blocks, used in Intel
Concurrent Collections [5]) or a language that can express
parallelism (such as Cilk, used in Nabbit [6] or Habanero
Java [7]], and Habanero-C [8] used in Habanero Concurrent
Collections [5]).

The schedulers used in many of these models are work
stealing schedulers [9] that offer good load balancing and the-
oretical time and space bounds for fork-join parallelism [10].
However, using these schedulers for macro-dataflow programs
can be sub-optimal because unoptimized implementations of
the dataflow model can easily overwhelm the resources of the
machine [[11].

The solution we propose consists of a new model — flex-
ible preconditions — that generally matches the performance
of the better of the two most widely used approaches for
macro-dataflow execution, even though each performs better
on specific types of applications. We present a performance
evaluation of these approaches and flexible preconditions. We
show when each of the previous models is better than the other
and explain why flexible-preconditions can perform as well as
the better of them in each case.

The rest of the paper is organized as follows. Section [I]
summarizes past approaches for eager execution and strict
preconditions. Section [III| introduces the flexible preconditions
model. Sections [IV] and [V] present the design and imple-
mentation of the flexible preconditions model in the QtCnC
framework. Section discusses experimental results for a
set of dataflow benchmarks, and Section [VII] contains our
conclusions.

II. BACKGROUND

The active parallelism and resource usage in a macro-
dataflow program execution is determined by the precise
timing of task creation in the scheduler. Tasks that are not yet
expressed to the scheduler consume no resources other than
the space needed to store the task closure. The task spawning
mechanisms of a given dataflow implementation determine
the costs and trade-offs involved, which in turn affects the
performance tuning of a dataflow program. The following
subsections describe two common approaches used in today’s
data-flow task schedulers.

A. Eager execution

The first option is to use an eager approach, in which tasks
are spawned as soon as the necessity for them is recognized, in-
dependent of whether their dataflow dependences are available.
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The tasks optimistically start executing, but may have to wait
if their dataflow dependences are unavailable when needed.
For thread-pool based schedulers (which include work-sharing
and work-stealing policies [9], [12]]), eager implementations
must provide a mechanism for worker threads to recover from
missing dependences and continue executing other work. This
mechanism may span the range from blocking on the missing
dependence to deferring the execution of the remainder of the
task via a continuation or re-execution.

The main advantage of the eager model is that it is
easy to understand and offers full flexibility for describing
applications. Another advantage is that, if a task starts with
a computation that doesn’t require dataflow dependences (or
needs only some of them), that part of the task can execute
without waiting for all input data to be produced. Such an
example is an AND-reduction, where an eagerly spawned task
may be able to finish execution using only a few of the inputs
available, without the need to wait for all data to become ready.

A common problem with eager task creation approaches is
that the memory and other resources needed by the tasks to
execute must be allocated as soon as the task is produced, and
may not be released when the task is deferred. This resource
allocation puts pressure on the memory and runtime systems.

B. Strict preconditions

An alternative to eager spawning is to use the strict
preconditions model in which tasks are spawned only when all
their dataflow dependences are satisfied. We call this approach
strict preconditions because the availability of inputs becomes
a precondition to running tasks, while strict refers to the
fact that all input data must be available before a task starts
executing.

For this approach, dependences must be known a priori;
this restricts the expressiveness of the programming model and
has implications on the API exposed to the user. For example,
optional or data-dependent inputs are usually forbidden with
strict preconditions, and have to be implemented by spawning
data-dependent continuations as new tasks. Applications that
rely on short-circuit reduction as a performance optimization
may not be expressible in this model. Additionally, these
models need a model to determine when all a task’s inputs are
available these models need a mechanism to determine when
a task is ready to be scheduled. For example, this support
can be provided [3], [6] by maintaining one task-descriptor
per task, each with an atomic counter whose value decreases
when each dependence is satisfied. When the counter reaches
zero, the corresponding task can safely be spawned. These
counter decrements are a source of overhead and possible
contention. Strict preconditions offer better performance than
eager execution if the overhead of deferring and re-executing
tasks in the eager runtime is larger than that of this atomic-
counter based synchronization.

A second advantage is that, since all inputs are known to
be available, data can be accessed without the possibility of
blocking during task execution, thus avoiding the synchroniza-
tion overhead for accessing those inputs. Another argument for
using strict preconditions is its lower memory consumption.
With all inputs known a priori, tasks can never suspend and,

as a result, there is no additional memory requirement to save
their intermediate state.

C. Dependency handling in previous work

This section surveys existing projects and shows that
each model chooses either eager execution or strict precon-
ditions. Some projects make the choice depending on project
specific goals (such as the need to support heterogeneous
CPU-+accelerator execution [8]], [[13]]), but each model has its
own advantages and disadvantages which makes them perform
better on different classes of applications. One of the goals of
this paper is to shine light on the performance and memory
implications of the choice between the two, so that future
projects can make a more informed decision.

Many models that evolved from task parallelism as opposed
to dataflow tend to prefer eager semantics for task creation
[10]. For example, both versions of Nabbit (for static and
dynamic graphs, respectively) [[6] use eager task creation.
TFLux [4] also uses eager task creation. For this reason neither
of these systems need to know the dependences of a task at task
creation time. In contrast, the SMPSs [14]] and Habanero data-
driven-task [3] models both use strict preconditions resulting
in a straightforward API for specifying preconditions. (One
difference between the two is that SMPSs requires that a
default sequential execution be provided, but the Habanero
DDT model does not have that constraint.) Kaapi [15] is
another model which opts for strict preconditions, proposing
a model suitable for cluster execution as well; it builds upon
Athapascan [|16] which takes the same approach.

The Intel Concurrent Collections (CnC) implementation [5]]
offers both an eager approach and a preconditions based ap-
proach using the abort-and-restart mechanism. An alternative
implementation of the CnC model, CnC-HJ [17]], allows the
programmer to pick between eager task creation (with different
runtimes supporting continuations, blocking and abort-and-
restart) and strict preconditions. CnC-HC [8] takes a similar
approach by offering two alternative runtimes (strict precondi-
tions and eager task creation), but also targets heterogeneous
platforms. CnC-HC motivates the need for strict preconditions
for heterogeneous computing by showing that, for GPUs, the
high cost of communication can be made more efficient by
grouping all dataflow dependences in a single data transfer
performed before the task is started.

III. FLEXIBLE PRECONDITIONS

We propose the flexible preconditions model which is a
combination of the eager task creation and the strict precondi-
tions models: tasks do not start until the items listed as precon-
ditions are available, but are able to wait for additional dataflow
inputs that are identified during task execution. This results in
behavior identical to the eager model if the preconditions list
is empty and identical to the strict model when the list includes
all dataflow dependences. It also opens up the possibility of
supporting a wide set of intermediate behaviors not covered
by either model.

In the flexible preconditions model, tasks go through the
following states:

prescribed tasks are those whose creation has been requested
but whose preconditions are not yet satisfied.
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ready tasks are those whose preconditions are satisfied, but
have not yet been scheduled to run.

running tasks are those currently executing.

blocked tasks are those that have previously been running and
have attempted to read an input that was not listed as a
precondition and that input was not available.

finished tasks are those that have completed execution.

The state transition diagram in Figure [I] visually compares
the flexible preconditions model (Figure with eager task
creation (Figure [Ta) and strict preconditions (Figure [Ib). The
extra state that the flexible model has compared to the eager
model is the prescribed state, in which tasks are waiting for
preconditions. Strict preconditions do not have a blocked state
as tasks never need to wait.

We will use an AND-reduction example to illustrate the
flexible preconditions model. This example is a fragment of
an image processing application, in which an input image is
split into multiple tiles indexed by iteration-number and tile-
id. Tiles are updated independently by different tasks which
produce new tiles used in the next iteration of the algorithm.
Then, a reduction task checks if all tiles pass a convergence
condition. If a tile is found that does not respect the condition,
a new iteration is started. When such an input tile is found, any
other tiles not tested need not be read. This access pattern is
typical for AND-reductions. The pseudo-code for the reduction
task is shown in Listing [T} The main program (Listing [2)) for
the AND-reduction creates the initial set of tiles and starts
the first reduction task (line 4). In the pseudo-code, calls to
get perform reads of dataflow dependences, while put calls
produce them. The behavior of these access functions will vary
depending on the macro-dataflow execution model used.

In an eager implementation, any instance of the get
call on line 4 of Listing [[] may block waiting for the tile
parameter to be produced by UpdateTileTask. When the
UpdateTileTask instance performs a put on that tile, the
reduction task will become unblocked and continue execution
until it blocks again on another unavailable tile.

Getting strict precondition behavior requires the user
to write additional code, such as in the pseudocode in

——

1 function ReductionTask (iteration)

2 1i=0

3 boolVar = false

4 while( !boolVar )

5 crtTile = get( tile [iteration, 1] )

6 boolVar = ConvergenceCheck (crtTile)

7 i=1+ 1

8 if (boolVar)

9 spawn new ReductionTask (iteration+1)

0 for i from 0 to N

1 spawn new UpdateTileTask ([iteration,i])

Listing 1: Pseudocode for AND reduction for eager execution

1 iteration = 0;

2 for i from 0 to N

3 put ( tile [iteration, i] )
4 spawn new ReductionTask (iteration)

Listing 2: Pseudocode for starting the execution of an AND-
Reduction

Listing The function declare-get, once called from
ReductionTask-dependences (iteration) registers the
value of its parameter as a dataflow dependence for the
ReductionTask with the same iteration number. Notice
that all the tiles that could possibly be accessed by the
ReductionTask are marked as dependences - this is a re-
quirement of the strict preconditions model. Strict tasks will
only be spawned when all the dependences (tiles 1 to N
of each iteration) have been put. If a task only reads a
few tiles, waiting on all of them to be produced would lead
to unnecessarily delaying the start of the next iteration and
performance degradation.

The flexible preconditions model enables a partial specifi-
cation of preconditions, so that the choice of which tiles are
required can be made by taking advantage of the programmer’s
knowledge about the application. Ideally we want to list as
preconditions only the last items to be produced that will
definitely be needed by the task. This minimizes the overhead
of managing the preconditions by minimizing their number and
does not introduce artificial latency by waiting for unneeded
items. In general though, because of parallelism, there is no
single dataflow dependence guaranteed to be the last one to
be produced in any possible schedule. These problems make
choosing an efficient preconditions list challenging. For our
AND-reduction example, all instances of ReductionTask
will read tile[iteration, 01, so having only this tile as a
precondition will not lead to any artificial delays (as opposed
to the strict preconditions model) and also decreases the man-
agement overhead for the preconditions list from N to 1. Let us
look now at how flexible preconditions compares to the eager
approach. By specifying a subset of dataflow dependences as
preconditions we decrease the maximum number of blocking
operations required for task execution because the task will
not need to block on the inputs listed as preconditions. From
a memory consumption point of view, we are able to postpone

lfunction ReductionTask-dependences (iteration)
2 for i from 0 to N

3 declare—-get ( tile [iteration, 1] )

Listing 3: Pseudocode for specification of preconditions for
AND-reduction in the strict preconditions model



the allocation of task memory by keeping the task in the pre-
scribed state as opposed to marking it as ready from the start.
In the AND-reduction application, the eager execution will
allocate memory before tile[iteration, 0]s is available;
flexible preconditions (with the tile[iteration, 0] as
precondition) may still need to block, but only for tiles 1 to N,
so the wait for tile[iteration, 0] will be done without
unnecessarily consuming memory.

As most data-flow models have an implementation similar
to the pseudocode presented here, we note that the task code
from Listing [T] remains unchanged in the flexible preconditions
implementation, making it straight-forward to port eager/strict
applications to the flexible preconditions model.

Flexible preconditions are useful for several types of ap-
plications. In these applications a partial specification of the
dependences can be used to choose between the behavior of
either eager task creation or strict preconditions, depending on
which performs best for each application. In addition, the use
of flexible preconditions opens up a number of intermediate
behaviors to pick from; if one model is better for performance
and the other is better for memory we may need a balanced
choice between the two. We give examples, results, and discuss
characteristics of these applications in Section [VI]

IV. QTCNC DESIGN

To compare the flexible preconditions model with the eager
task creation and strict preconditions we needed a runtime
framework that would subsume all three approaches. We chose
to extend an existing macro-dataflow model called Concurrent
Collections (CnC) [5]. The main reasons for choosing CnC is
its generality (it does not specify the behavior as corresponding
to either the strict or the eager models) and the ease of
separating the specification of the preconditions from the task
logic. Our implementation of CnC is a C++ library built on
the Qthreads [18] runtime, similar in interface to the Intel
CnC distribution [[19]. The following two subsections give an
overview of the CnC model and of the additions we propose
to support the three macro-dataflow models.

A. The Concurrent Collections Model

CnC applications consist of collections which encapsu-
late tasks (step collections), control of tasks (control col-
lections) and values (item collections) [5]. Item collec-
tions enable communication among tasks. They can be
thought of as repositories for dynamic-single-assignment val-
ues that are indexed by keys. For example, to perform
a read of a value from item collection ic, given its key
[it, i], one would use ic.get ([it, i]); to produce that
value, another task will need to perform a put operation:
ic.put ([it, 1], new Tile(...)).

The CnC runtime has two main responsibilities:

o enforcing the dynamic single assignment rule by throwing
a runtime error if two different put operations are per-
formed on the same item collection with the same key.
This ensures datarace-freedom for CnC programs.

e implementing the dataflow dependences between items
and tasks. If a task performs a get on an item with
a particular key, that task will not proceed until the

—
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lint Reduce::execute(const int & it, ... ) {

2 for(int k = 0; k < N ; k++) {

3 Tile =crt;

4 tile_item_collection.get (pair(k, it), =crt);
5 ...

6 reduce_control_collection.put (it+1);

7 return CnC::CNC_Success;

8}

Listing 4: QtCnC code for AND-reduction.

laligned_t+** Reduce::get_dependences (
const int & it, int & no ) {

aligned_t«** preconds;

read = malloc( Nxsizeof (aligned_tx) );

for(int k = 0; k < N; k++) {

tile_item collection.wait_on (

pair(k, it),
& (preconds [k]) );

}

return read;

11}

Listing 5: Specification of preconditions in QtCnC.

item with that key has been produced. This makes CnC
programs deterministic by default.

As an example, Listing ] shows part of the QtCnC step
collection code for the reduction tasks in AND-reduction. The
execute method is the code that is called for each put on
the reduce_control_collection. It receives as parameter
the tag, in this case the iteration number for which the reduce
should be performed. On line 6 the call to get is performed
to access a tile with key [k, it]; on return, its second parameter
(crt) contains a pointer to the tile. On line 11, the next
reduction task is started by calling put on the appropriate
control collection with it+1 as tag.

B. Strict, eager and flexible models in QtCnC

As described in the previous subsection, QtCnC can sup-
port the eager task creation model. To express strict and
flexible preconditions we enhanced it with additional APIs.

To specify preconditions in QtCnC, one needs to implement
a get_dependences function for each step collection. Listing
B] shows such an implementation for the strict preconditions
model in AND-reduction. On line 5, an array is allocated with
one entry for each precondition; then, on line 7, it is filled in
by calling the runtime function wait_on and specifying two
parameters: the key of the item that will be a precondition and
the array position in which to put this precondition. The array
is then returned on line 10.

To use the flexible model as opposed to the strict precon-
ditions one, there is no additional API needed - one just needs
to write a smaller list of items as preconditions and compile
with a flag specifying that flexible preconditions behavior is
desired.

V. QTCNC IMPLEMENTATION

The QtCnC runtime is an open-source runtimeﬂ built on
top of the Qthreads tasking library [18] which we use for

Uhttps://code.google.com/p/qthreads/wiki/qtCnC
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task scheduling and synchronization support. The precon-
ditioned tasks and the full-empty memory mechanisms of
Qthreads are well suited for enforcing the preconditions in
preconditions-based models. Preconditioned tasks have the
advantage that stacks are assigned only after the task has
its preconditions available and is scheduled to run. They are
spawned by calling the gthread_fork_precond function
and providing a pointer parameter to an array of memory
words on which to wait. Only when these words have been
marked as full will the task be spawned. The words can
be marked full by using the full-empty mechanism API call
gthread_fill (aligned_t* word).

New APIs in the QtCnC runtime include the
get_dependences () and wait_on () public functions,
which are used for specifying preconditions. The following
paragraphs discuss the implementation of these functions.

To track item availability, shadow state is maintained for
each item, consisting of a single memory word; this state
is abstracted away from the user through the item collec-
tion classes and the ic.wait_on API, which writes into
its second parameter a pointer to this shadow state. When
ic.put (key, value) is called, it records the availability of
the item by marking the shadow word for that item as full
(through a gthread_fill call).

The user function get_dependences fills the array
preconds with pointers to shadow words and then returns
it to its caller. The QtCnC runtime performs a call to this
function before spawning a task, to obtain the preconditions
it needs before running. It sends the array of preconditions
to Qthreads when it performs the spawn through a call to
gthread_fork_precond.

An additional optimization we performed in the strict
preconditions model involved the spawning of stackless tasks
(called “simple tasks” in Qthreads). These tasks use the stacks
of the thread they are scheduled on, instead of allocating
their own and are prevented from performing any blocking
synchronization operations.

Shadow word management is made more complex be-
cause the words have to be created by the first of following
three APIs that is called: ic.get, ic.put or ic.wait_on.
This management is performed by the item collections. Item
collections are implemented in QtCnc via a C++ template
class that wraps a concurrent hashtable indexed by item keys.
The concurrent hashtable ensures that concurrent calls to the
previously mentioned three functions do not cause dataraces.
We built the split-ordered-list concurrent hashtable described
in [20] with dynamic resizing. This concurrent hash table is
now included in the latest Qthreads distribution.

VI. EVALUATION
A. Experimental Setup

Our results were obtained on a 4 socket 32 core Intel
Nehalem X7550 system with 512GB memory. All tests have
been performed using the default Qthreads scheduler, with
—-03 optimization and a stack size of 2MB. The stack size
was chosen in accordance with the stack size used by default
by Pthreads (2MB), with the reasoning that it is suitable for
most applications, and is considered in previous literature to

be a value that is easy to exceed [21]. The results listed are
averages of 10 runs; where appropriate, we include error bars
on graphs that correspond to the largest and smallest values
obtained during the runs.

To measure the actual memory footprint of the programs
we used the /usr/bin/time tool, for which the —v param-
eter outputs the maximum resident set size of the program. The
memory and performance numbers were collected as averages
of the same 10 runs.

B. Benchmarks

To test the performance of the precondition-based models,
we use the following benchmarks. Unless specified otherwise,
these benchmarks have been implemented in all three models.
A summary of the results is in Table [l and the results are
discussed in detail in the next subsections.

Blackscholes is a financial application that computes stock
values. We use the implementation from Intel CnC [[19]
to analyze the overhead of the three models. The input
size is 1,500,000 and granularity 100.

Cholesky Factorization is the non-MKL version of the linear
algebra benchmark from the Intel CnC distribution [19].
It decomposes a matrix into a lower triangular matrix and
its transpose. The input matrix size used is 4000 x 4000
and tiles are 125x125.

Matrix Inverse is a benchmark from the Intel CnC distribu-
tion [[19]. The input matrix size is 2048 x 2048 and the
tile size is 64 x 64.

File Concatenation is a benchmark that concatenates a set of
files by performing the least number of concatenations.
It builds a balanced binary tree in which the inputs
are leaves and each node represents a concatenation
operation. This application illustrates a situation when
strict preconditions cannot be directly applied, so only
the flexible preconditions and eager versions are used.
The number of input files is 32768.

Reduction is the kernel of the Rician Denoising [22]] applica-
tion that we use to assess the performance of the runtimes
for cases where some gets are optional, such as in short-
circuit reductions. The input size consists of 16 tiles of
10x 10 size and the algorithm performs 16 iterations.

C. Blackscholes

In Blackscholes, tasks perform a single get of inputs
produced by the environment, so tasks never block. Because of
this, there is no memory footprint difference between flexible
preconditions and eager, as seen in Figure As expected,
the strict preconditions memory footprint is almost constant
because strict preconditions tasks are stackless. For flexible
preconditions and eager execution, tasks may still block on
inputs that are not listed as preconditions, which means tasks
need to be paused and their state (such as their stack or a
closure) must be saved. Because the ability of tasks to block
is not used in this benchmark (all inputs are available from the
start), the footprint difference is equal to the size of the task
stack multiplied by the number of tasks running concurrently,
which is equal to the number of worker threads.

If we look at the performance comparisons from Figure [2a]
we see that the three runtimes have similar scalability. This is
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to be expected, as all items are available from the start (so no
task ever blocks).

D. Cholesky Factorization

The performance results for Cholesky, Figure show
a performance difference of up to 56% between the eager
approach and strict and flexible preconditions. For the eager
runtime, the speedup reaches a maximum at around 16 threads
versus more than 32 in the other models. The reason for this
is visible in Figure [3b} In the eager runtime, because the
application spawns all tasks in the beginning and many of them
block, their allocated stacks must be stored; the maximum
memory pressure is a lot worse than for preconditions based
models, where the use of preconditions lowers the memory
requirements by 62% because tasks never block.

We theorized that the lack of performance of the eager
runtime is caused by additional time spent during concurrent
allocations and we built a Pthreads-based micro-benchmark to
verify our assumptions. The microbenchmark performs similar
allocations from parallel threads and suffered from the same
lack of scalability. The Cholesky application was the original
motivating application for our work, as the high memory usage
prevented us from running the application on larger inputs
using a machine with only 2GB of memory; this happens
because in the eager model, task memory is much larger than
the application data.

For Cholesky, all dataflow item accesses are known in ad-
vance, so the preconditions list was complete even for flexible
preconditions and the runtimes show the same performance.

E. Matrix Inverse

For MatrixInverse, (Figures [a] and [4b) the eager approach
is consistently worse (up to 44%) than both flexible and strict
preconditions, while the difference between the precondition
based approaches is small. The precondition-based approaches
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are so similar because all dataflow task preconditions for
the application are known in advance; the difference is the
overhead of the get calls, just as in Cholesky, and remains
under 2% even at 32 threads. The memory consumption shows
the footprint of the eager approach is 3.6 x larger than that
of strict preconditions.

F. File Concatenation Benchmark

The File Concatenation benchmark cannot be run on the
strict preconditions model, because the preconditions of each
task depend on one another’s value (data-dependent gets). Note
that this is not a characteristic of the runtime or model, but of
the way the application is written: some applications written
for the eager model cannot be converted to run in a strict
preconditions model without a considerable increase in the
number of tasks.

In this benchmark, tasks perform get operations to obtain
the two operating system inode structures representing the
input files. These structures contain the tags of the blocks
that need to be concatenated. Because this information is not
known until the inodes are read, it cannot be added to the list
of preconditions.

As we see in Figure [5b] even though the memory con-
sumption difference between flexible and eager is small (less
than 0.6%), in absolute value it reaches 383MB. Compared to
eager execution, flexible preconditions are up to 28% faster
and allow scaling up to 16 cores instead of only just 4 in the
case of eager execution (see Figure [5a).

Using the file concatenation benchmark we analyzed the
performance difference between an eager implementation and
a flexible preconditions one, but the performance of the strict
runtime was not included because porting the file concatena-
tion tasks to a strict model is very time-consuming. The Porting
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Fig. 6: Porting microbenchmark performance

benchmark takes a systematic look at the performance impli-
cations of porting applications from the eager/flexible runtimes
to strict preconditions, which would enable applications with
data-dependent gets to run on the strict runtime. In this micro-
benchmark, tasks perform data-dependent gets — gets whose
keys are values of previous gets. This is not allowed in strict
preconditions models because item values are not known at the
time the preconditions are specified; for a strict implementation
to be used, such tasks need to be split into sub-tasks, one
for each of such data-dependent gets. Figure [6] shows the
performance of the two runtimes in such a case. On the X axis,
we have the number of data dependent gets per task, which is
also the number of subtasks in which tasks are split. Flexible
preconditions have better performance when such gets are few
and the difference increases when there are more. This happens
because with more subtasks, their spawning overhead dwarfs
the useful work they perform. In fact, even for a single data-
dependent get, flexible preconditions offer better performance
for this microbenchmark. Of course, in a real application the
difference between the performance of the two runtimes will
depend on the granularity of the work performed in each task,
relative to the overhead of task creation.

G. AND-Reduction Benchmark

Reductions are a common pattern in many applications. An
interesting variation is short-circuit reductions, in which not
all inputs may be read. This is the case in image processing
applications such as the Rician Denoising application on which
this benchmark is based. Here, the reduction is a convergence
criteria tested before starting the next denoising iteration:
if a tile is found not to respect the convergence criteria,
the following tiles need not be read. Eager execution will
wait for each tile as and when it is needed and flexible
preconditions allow the programmer the freedom to choose
which tiles should be waited on before spawning the reduction
task (in our implementation, we list only the first tile as a
precondition). Strict preconditions need to declare all input
tiles as preconditions and wait for the availability of them
all; this behavior is a problem because, even if it does not
compromise correctness, it may compromise performance, by
waiting for a larger set of preconditions than are actually
needed.

Figure [7a] shows that the eager model and flexible pre-
conditions offer significantly better performance. As far as
memory consumption is concerned, as shown in Figure all
runtimes have almost the same footprint for this application,
with flexible preconditions being in the middle.
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Fig. 7: Reduction benchmark results (strict execution used N
preconditions, flexible used 1).

Flexible Precond

. Time A Time Memory A Memory

Benchmark Runtime ©) (%) (MB) (%)
strict 1.384 -1.7 71.78 -49.7

Blackscholes eager 1.408 0.1 105.96 -1.4
flexible 1.407 0.0 107.46 0.0

strict 0.810 3.0 274.78 0.7

Cholesky eager 1.814 56.7 717.84 62.0
flexible 0.786 0.0 272.89 0.0

strict 0.880 -3.4 127.63 -3.0

Matrix Invert eager 1.648 44.8 461.39 71.5
flexible 0.910 0.0 131.44 0.0

strict N/A N/A N/A N/A

File Concatenation | eager 37.786 28.5 64.41 0.6
flexible 27.030 0.0 64.03 0.0

strict 2.193 38.0 2143.12 0.3

Reduction eager 1.329 -2.4 2124.89 -0.5
flexible 1.361 0.0 2135.92 0.0

TABLE I: Summary of results for execution on 32 threads. A
values show the relative improvement of flexible preconditions
over the other two runtimes.

H. Discussion of the findings

The cause for the poor performance shown by eager task
spawning may be contention in the memory allocator [23],
but the problem is worse in our case, due to the quantity of
memory allocated. Allocating many tasks with 2MB stacks
quickly exhausts all allocation arenas and allocations are
forced to call into the kernel (via sbrk () or similar) to
enlarge the process’s available memory. These kernel calls are
likely serialized, given that they’re all modifying the single
kernel-level memory map for the process.

In light of these results, we believe that a good solution
is instead to opt for models based on preconditions. For ap-
plications whose performance is extremely critical and whose
design allows all dependences to be known at task creation
time, strict preconditions may be suitable.

A disadvantage of the strict preconditions model is that
it has performance issues when some of the items that are
read in some corner case are often not read, such as in the
AND-reduction example. Using strict preconditions for such
applications leads to considerable performance loss compared
to flexible preconditions.

A second problem with the strict preconditions model is
that for some applications it is a programmability impediment.
One characteristic of applications not easily expressible in the
strict model is the existence of data-dependent gets, which
are get operations whose keys are derived from the value of
an item obtained through a previous get. Such accesses are
used mostly for convenience in applications built for the eager
model, in cases where tasks follow the natural structure of the
program data (for example, in File Concatenation, reading a



file’s inode is followed by reading the blocks listed in the inode
structure to access the file data). Similarly, in another applica-
tion, Routing simulation [22f], tasks that represent routers in a
network with link failures need to read the network topology
to find their neighbors and then they read the routing tables of
those neighbors. The network topology and routing tables of
the neighbors should be preconditions, but the neighbor routing
tables cannot be strict preconditions because we do not know
which will be read until the topology is obtained. One solution
is to add the tables of all nodes as preconditions, but that slows
down the computation just as in the AND-reduction case.

Another characteristic of applications that are not easily
expressed in a strict preconditions model is that these appli-
cations often perform a variable number of gets, depending
on conditions identified in the task computation. The best
example is the AND-reduction discussed in Section and
File Concatenation, where the inode of a long file contains the
id of an extra block that must be read.

Our experimental results showed that the proposed flexible
preconditions model performs on par with the best of the
strict preconditions or eager models, while maintaining the
expressiveness of the eager model making it a good alternative
to both models.

VII. CONCLUSIONS

In this paper, we analyzed the performance of two widely
used models for macro-dataflow execution (eager tasks and
strict preconditions) and found that their performance and
scalability are highly sensitive to application behavior and
algorithm design. We proposed a new model — flexible
preconditions — that can always match the performance of
the better of the two models. On applications where all depen-
dences are known ahead of time, strict preconditions are 38%
faster than eager execution and flexible preconditions match
the strict model. On the other hand, for applications where
the complete set of per-task dependences is determined after
the tasks are spawned, eager execution performs 57% better
than strict preconditions and flexible preconditions match this
model. This improvement is achieved by enabling program-
mers to to pick the preconditions combination that yields the
best performance for each application. As future work, we
plan to build an auto-tuning system that can automatically
pick the best preconditions by analyzing task behavior at
runtime, and also extend the scope of our work to encompass
task cancellation and demand-driven evaluation as additional
scheduling options.
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