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ABSTRACT

Integrating Stream Parallelism and Task Parallelism in a Dataflow Programming

Model

by

Dragoş Dumitru Sb̂ırlea

As multicore computing becomes the norm, exploiting parallelism in applications

becomes a requirement for all software. Many applications exhibit different kinds of

parallelism, but most parallel programming languages are biased towards a specific

paradigm, of which two common ones are task and streaming parallelism. This results

in a dilemma for programmers who would prefer to use the same language to exploit

different paradigms for different applications. Our thesis is an integration of stream-

parallel and task-parallel paradigms can be achieved in a single language with high

programmability and high resource efficiency, when a general dataflow programming

model is used as the foundation.

The dataflow model used in this thesis is Intel’s Concurrent Collections (CnC).

While CnC is general enough to express both task-parallel and stream-parallel paradigms,

all current implementations of CnC use task-based runtime systems that do not de-

liver the resource efficiency expected from stream-parallel programs. For streaming

programs, this use of a task-based runtime system is wasteful of computing cycles

and makes memory management more difficult than it needs to be.

We propose Streaming Concurrent Collections (SCnC), a streaming system that

can execute a subset of applications supported by Concurrent Collections, a general



macro data-flow coordination language. Integration of streaming and task models

allows application developers to benefit from the efficiency of stream parallelism as

well as the generality of task parallelism, all in the context of an easy-to-use and

general dataflow programming model.

To achieve this integration, we formally define streaming access patterns that,

if respected, allow CnC task based applications to be executed using the streaming

model. We specify conditions under which an application can run safely, meaning

with identical result and without deadlocks using the streaming runtime. A static

analysis that verifies if an application respects these patterns is proposed and we

describe algorithmic transformations to bring a larger set of CnC applications to a

form that can be run using the streaming runtime.

To take advantage of dynamic parallelism opportunities inside streaming applica-

tions, we propose a simple tuning annotation for streaming applications, that have

traditionally been considered with fixed parallelism. Our dynamic parallelism con-

struct, the dynamic splitter, which allows fission of stateful filters with little guidance

from the programmer is based on the idea of different places where computations are

distributed.

Finally, performance results show that transitioning from the task parallel runtime

to streaming runtime leads to a throughput increase of up to 40×.

In summary, this thesis shows that stream-parallel and task-parallel paradigms can

be integrated in a single language when a dataflow model is used as the foundation,

and that this integration can be achieved with high programmability and high resource

efficiency. Integration of these models allows application developers to benefit from

the efficiency of stream parallelism as well as the generality of task parallelism, all in

the context of an easy-to-use dataflow programming model.
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Chapter 1

Introduction

As modern processors hit the power and frequency walls, multicore architectures

are the solution to allow future processors to continue scaling. For the software

developer to take advantage of the new various types of processing power available,

new programming models are needed, that can the express the multiple types of

parallelism that an application might have.

Two common paradigms for parallelism are task parallelism and stream paral-

lelism. There is a large family of task-parallel programming languages and libraries

currently available including OpenMP 3.0[1], Java Concurrency, Intel Threading

Building Blocks[2], .Net Parallel Extensions[3], Cilk[4], and Habanero-Java[5]. Like-

wise, a number of stream-parallel programming languages have been proposed in

the past, with StreamIt[6] being the most recent exemplar for the stream-parallel

paradigm.

Applications for the streaming paradigm are common and becoming more and

more prevalent. Up to 37% of Internet traffic is done by streaming video and have

been estimated to take up to 90% of compute cycles as early as 2000s[7]. DSP ap-

plications, cell phone network call processing, database and classification algorithms,

media streaming, HDTV video and audio processing and other compute-intensive

applications are candidates for efficient parallel implementation using streaming lan-

guages. However, the expressiveness of streaming languages and programming models

is usually limited to streaming parallelism and they are unable to express other forms
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of parallelism easily.

Macro dataflow programming languages such as the Intel Concurrent Collections

(CnC)[8] are well suited for multicore execution of tasks because they separate the

definition of the tasks from their scheduling, thereby making exploitation of different

types of parallelism easier. The current CnC implementations only take advantage of

the task based parallelism, like many other parallel programming models. As a result,

the performance of applications following the streaming parallelism patterns suffers

greatly if written in standard CnC. Integration of the two models would provide the

best of both worlds: the generality and ease of use of task-based programming models,

together with the performance streaming can offer to particular kinds of applications.

The Streaming CnC extensions introduced in this thesis bring the benefits of stream-

ing parallelism with some of the flexibility of task based parallelism through a dynamic

split-join parallel construct; this construct allows dynamic creation of streaming filters

in certain situations, bringing the parallelism to higher values to potentially match

the parallelism of the machine.

Many previous streaming languages or frameworks do not offer either determinism

or deadlock-freedom guarantees. This work preserves the determinism guarantees of

CnC and provides an algorithm that can statically adjust the size of the buffers to

ensure a deadlock equivalence between the streaming and task based execution: no

extra deadlocks can happen with streaming compared to task based and if task based

is deadlock free, so is the streaming execution.

The structure of the thesis is as follows. Chapter 2 looks at previous work on

which this thesis builds, including streaming languages, the Concurrent Collections

language and the Habanero Java language which is used to build both the task based

and streaming runtime proposed. Chapter 3 describes the design and features of
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Streaming CnC, the CnC subset that can be run using the streaming runtime. It

describes interesting patterns that can be streaming-optimized and shows the dynamic

parallelism feature that we propose. Chapter 4 describes how we can identify through

analysis if an application conforms to the streaming restrictions and how we can obtain

deadlock freedom guarantees if this is the case.

Chapter 5 and 6 describe the implementation of the streaming runtime and the

performance results obtained on the set of benchmarks. In Chapter 7 we discuss and

compare the related works and we conclude in Chapter 8 with future work directions.
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Chapter 2

Previous Work

This work builds on past work on streaming languages (Section 2.1) and Habanero

Concurrent Collections(Section 2.2), Habanero Java ( Section 2.3), phasers, accumula-

tors and streaming phasers (Sections 2.4 and 2.5). Streaming Concurrent Collections,

the streaming system proposed in this thesis is related to streaming languages; as a

notable example of such languages, StreamIt, has provided a rich source of streaming

applications to test our work on.

2.1 Streaming Languages

Streaming parallelism is a type of parallelism encountered for applications that work

over data that is structured as a “stream”. Characteristics of such applications have

been suggested [6], and the most important are:

• Processing large streams of data. The application has to execute operations

on a large dataset, viewed as a sequence of data items that might not have a

specific end point (unbounded size). However, each item must have a limited

lifetime.

• Stream filters process the input sequence through specific operations that allow

reading input items from the input stream and producing items to an out-

put stream. The filters are connected to each other through the streams they

process: the output stream of one filter can be the input to another, thereby
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forming the streaming graph. Filters are relatively independent with few com-

munications between them outside of the streams.

• The streaming graph structure does not change often.

The StreamIt language was designed to better express and take advantage of the

structure of these applications. The original paper [6] allowed for static flow rates

through single input and single output filters with special split and join nodes. It

supported three main constructs that, combined, could allow concise descriptions of

stream applications: the pipeline, split-join and feedback loop patterns. Listing 2.1

shows a StreamIt pipeline with 3 filters (lines 20-22), one of which is a finite impulse

response filter (FIR Filter), defined through a class with an initialization function

(lines 4-9) and a work function (lines 10-17). The processing of the filter is done

in the work function, but the initialization is needed to set members to their initial

values and also describe the type of data items contained by the stream.

1 c l a s s FIRFi l te r extends F i l t e r {

2 f l o a t [ ] we ights ;

3 i n t N;

4 void i n i t ( f l o a t [ ] we ights ) {

5 s e t Input ( Float .TYPE) ; setOutput ( Float .TYPE) ;

6 setPush (N) ; setPop (1) ; setPeek (N) ;

7 t h i s . we ights = weights ;

8 t h i s .N = weights . l ength ;

9 }

10 void work ( ) {

11 f l o a t sum = 0 ;

12 f o r ( i n t i =0; i<N; i++)

13 sum += input . peek ( i ) ∗weights [ i ] ;

14 input . pop ( ) ;
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15 output . push (sum) ;

16 }

17 }

18 c l a s s Main extends P ip e l i n e {

19 void i n i t ( ) {

20 add (new DataSource ( ) ) ;

21 add (new FIRFi l te r (N) ) ;

22 add (new Display ( ) ) ;

23 }

24 }

Listing 2.1: Example of a StreamIt filter and its use when building a simple pipeline

based application

An example of connecting filters using split and join nodes is shown in Listing

2.2. The filter presented consists of a splitter node that duplicates its input so that

each child branch gets the same items (line 3) followed by a delay on each of the

two branches (lines 4 and 5). The two delay filters feed into a join filter that takes

input alternatively from the two branches (line 6). Together, the round robin join

and delays with different amounts create an echo effect.

1 c l a s s EchoEf fect extends Sp l i t J o i n {

2 void i n i t ( ) {

3 s e t S p l i t t e r ( Dupl i cate ( ) ) ;

4 add (new Delay (100) ) ;

5 add (new Delay (0 ) ) ;

6 s e t J o i n e r (RoundRobin ( ) ) ;

7 }

8 }

Listing 2.2: Connecting stream filters through a split-join pattern
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Listing 2.3 shows the use of the feedback loop pattern in building a Fibonacci

string. The filter result stream is duplicated (line 15) after computing the sum of the

previous values(line 12) and the value fed to its round robin join node that outputs

only items from the feedback loop: 0 from the the normal edge, 1 from feedback (line

4).

1 c l a s s Fibonacc i extends FeedbackLoop {

2 void i n i t ( ) {

3 setDelay (2 ) ;

4 s e t J o i n e r (RoundRobin (0 , 1 ) ) ;

5 setBody (new F i l t e r ( ) {

6 void i n i t ( ) {

7 s e t Input ( In t eg e r .TYPE) ;

8 setOutput ( In t eg e r .TYPE) ;

9 setPush (1 ) ; setPop (1) ; setPeek (2 ) ;

10 }

11 void work ( ) {

12 output . push ( input . peek (0 )+input . peek (1 ) ) ;

13 input . pop ( ) ;

14 }}) ;

15 s e t S p l i t t e r ( Dupl i cate ( ) ) ;

16 }

17

18 i n t in i tPath ( i n t index ) {

19 re turn index ;

20 }

21 }

Listing 2.3: Building a Fibonnacci string with feedback loop in StreamIt
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2.2 The Concurrent Collections Model

The Concurrent Collections(CnC) programming model[8] is a macro dataflow parallel

programming system that uses components of three types to model programs: item

collections, control collections and step collections. These collections and their rela-

tionship are defined statically for each application in a CnC specification file and the

code of the application, split in tasks-like steps, can be written in any one of multiple

languages for which there is a CnC runtime available.

Step collections are procedures in today’s programming languages. Control col-

lections drive the control flow of the program, by executing a procedure corresponding

to a step collection when a control tag is ”put” in the control collection(prescribed).

The task that is executed is called step instance and receives the control tag as pa-

rameter. The step instance can then cause other step instances to run by putting

new control tags in control collections.

Item collections play the role of variables in other programming languages and

are sets of key-value pairs. Each item represents a value, which is put in an item

collection with an assigned tag once during the execution of a program, respecting a

single assignment rule. The tag can later be used to access that item (by the same

step, or by another). The only restriction is that the step has to be registered as a

producer on the control or item collection to which it puts tags.

Tag collections, also called control collections are the data that characterize

the control flow of a step. A put into a tag collection leads to a step instance being

prescribed. A prescribed step can start executing, but cannot finish executing until

the items it reads become available through put operations performed by other step

instances.

The CnC graph is a textual representation of the static relationship between the



9

item, control and step collections in a CnC application. It is used by the runtime to

ensure the access of the steps to the correct values in item collections, the execution of

the correct steps when a tag is put into a control collection; the graph is also useful for

the programmer, as an execution model that shifts the complexity of synchronization

and communication between tasks from the programmer to the system,

The CnC graph is a directed graph whose nodes belong to the union of envi-

ronment node, item, tag and step collections and edges consist of item-put edges

(source: step, destination: item collection) representing producer relationship, item-

get (source: item collection, destination: step) representing consumer relationship,

tag-put (source: step, destination: control collection) representing control relation-

ship, prescription edges (source : control collection, destination: step collection) and

environment edges (from the environment node).

In this work, the following restrictions are implied for a CnC graph to be valid:

1. At least one tag collection is produced by the environment (There is at least an

edge X− > T where X is the environment node and T a control collection).

2. For each step collection , there is at least a possible execution that contains the

execution of a step instance in that step collection.

Definition 2.1 The CnC control graph is the CnC subgraph restricted to only the

environment node and control collections and step collections nodes and the tag-put

and prescription edges.

Theorem 2.1

There is a path in the CnC control graph from the environment to any step collection.

Proof 2.1 Proof by contradiction. Presume there is a step collection SC0 for which

there no path from the environment. According to the second restriction stated above,
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Edge name Source Destination Meaning

Item Put Step Collection Item Collection At least one instance of the source

step collection may put an item in

the destination item collection

Tag Put Step Collection Tag Collection At least one instance of the source

step collection may put an tag in

the destination control collection

Item Get Item Collection Step Collection At least one instance of the desti-

nation step collection may get an

item from the source item collec-

tion

Prescription Control Collection Step Collection Any tag put into the source con-

trol collection leads to the execu-

tion of a step instance from the

destination step collection.

Table 2.1 : Types of edges in a CnC graph
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at least one step instance from that step collection has to be able to execute. For

this to take place, there has to be another step collection SC1 that produces tags to

execute steps in SC0 and has a path from the environment, so that it is executable.

Thus, we discovered the path Env → ... → SC1 → SC0, which contradicts our

hypothesis. 2

Theorem 2.2

The CnC control graph is weakly connected.

Proof 2.2 A directed graph is weakly connected if by replacing all its directed edges

with undirected ones, the resulting (undirected) graph is connected. Proof by con-

tradiction. I presume there is a step collection V and there is no path from it

to another step collection T. But we know from Theorem 2.1 that for any node

there is a path to the environment. For step collection V, this path would be:

Env → N1→ N2→ ....→ V and for T, the path is: Env →M1→M2→ ...→ T .

Thus, if we consider an undirected graph, V and T must be connected via Env, which

contradicts our hypothesis. 2

2.3 Habanero Java

The Habanero Java (HJ) [9] language is a programming language derived from X10

and developed in the Habanero Multicore research group which offers primitives for

productive parallel programming. The base unit for parallel programming are tasks

called asyncs, that are accompanied by a finish termination construct. Habanero

Java supports a superset of Cilk’s [10] spawn-sync parallelism. It eliminates the Cilk

requirement that parallel computations should be fully strict: in HJ, join edges don’t

have to go to the parent in the spawn tree [11].
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2.4 Phasers

Phasers [12] are Habanero Java synchronization constructs that unify for point to

point and collective synchronization for a dynamically variable number of tasks. The

phaser registration mode models the type of synchronization required: signal-only

and wait-only modes for producer and consumer synchronization patterns and signal-

wait for barrier synchronization. In our work, we mainly use the producer consumer

synchronization and only use collective synchronization (barriers) for the dynamic

parallelism feature.

The Habanero Java implementation of phasers works by registering the phaser

in the desired mode to each async that will use it. For the purposes of this work,

one async will be the producer and one the consumer, so the code looks as shown in

Listing 2.4. The producer task (line 5-8) creates an item (line 7) and then signals

(line 9) the consumer task. The consumer task can then proceed past the wait call

in line 15 on the same phaser used by the producer for signalling. Notice the phaser

registrations that accompany the task creations(lines 6 and 13): signal mode for the

producer and wait mode for the consumer.

An important detail is that this use of phasers - with explicit wait and signal

operations - is, in general, not deadlock free. This desirable properly is offered by

only using special next operations. Next operations are expanded to a sequence

of signal and wait and in the absence of other signal and wait operations cannot

deadlock [12] . Our choice of having multiple input streams per filter meant we have

to wait for a variable number of times on each phaser, which is incompatible with the

next operation.

The choice of using phasers for synchronization in this work was also supported by

their ability of accommodate a dynamically varying number of tasks, unlike normal
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barriers. Their particular speed obtained by busy waiting in certain specific scenarios

and have proved very efficient on current multicore processors.

1

2 f i n a l Item item = new ProducerConsumerItem ( ) ;

3 // phaser dec l a r ed with both s i g n a l and wait c a p a b i l i t i e s

4 f i n a l phaser ph1 = new phaser ( phaserMode . SIG WAIT) ;

5

6 // the producer task i s r e g i s t e r e d in s i g n a l mode

7 async phased (ph1<phaserMode . SIG>) {

8 item . produce ( ) ;

9 // s i g n a l mode r e g i s t r a t i o n a l l ows the s i g n a l opera t i on

10 ph1 . s i g n a l ( ) ;

11 }

12

13 // and the consumer in wait mode

14 async phased (ph1<phaserMode .WAIT>) {

15 // wait mode enab l e s the c a l l to phaser . wait

16 ph1 . wait ( ) ;

17 // the consumer i s blocked at the wait c a l l

18 // un t i l the s i g n a l l e r performs the s i g n a l opera t i on

19 item . consumer ( ) ;

20 }

Listing 2.4: Phasers used for producer-consumer synchronization
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2.5 Phaser accumulators and streaming phasers

Phaser accumulators [13] are a reduction construct built over the synchronization

capabilities of Habanero phasers. Each producer (which is registered in signal mode)

sends a value to be reduced in the current phase and then, when all producers have

signalled to the phaser, the consumer (which is registered in wait mode) can be

unblocked and use the reduced value, as shown in Listing 2.5. An accumulator is

associated with a phaser (ph) and needs to know the type of the values it is reducing

(int) and what is the reduction operation (SUM). The consumers can send their

values and then signal the phaser. The producer will get unblocked from its wait call

after all signals have been received and it can access the reduced value through the

accumulator result call.

1 f i n a l phaser ph1 = new phaser ( phaserMode . SIG WAIT) ;

2 accumulator acc = new accumulator (ph , i n t . c l a s s , SUM) ;

3 // mul t ip l e producers which reduce t h e i r produce va lue s

4 f o r ( i n t i =0; i< N; i++)

5 async phased (ph1<phaserMode . SIG>) {

6 i n t va l = produce ( ) ;

7 acc . send ( va l ) ;

8 ph1 . s i g n a l ( ) ;

9 }

10

11 async phased (ph1<phaserMode .WAIT>) {

12 ph1 . wait ( ) ;

13 i n t reducedValue = acc . r e s u l t ( ) ;

14 }

Listing 2.5: Usage of accumulators for reduction
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We use an extension of accumulators and phasers that is useful for streaming,

called bounded phasers or phaser beams [14]. This extension eases the use

of these constructs for streaming programs by adding support for bounded buffer

synchronization in phasers and accumulators.

A bounded phaser is created with a given bound, k. In our work the bound is

1000. For phasers, the producer can proceed at most k phases ahead of the consumer.

A bounded accumulator contains an internal circular buffer whose size matches the

bound k that is used to store the additional items before they are consumed. Access

to previously consumed elements is permitted, in the limits of the internal buffer, by

providing an additional parameter to the result() call. The parameter is used as an

offset from the current position in the buffer. These primitives provide the means for

implementing our streaming runtime.
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Chapter 3

Streaming extensions for Concurrent Collections

3.1 Streaming CnC

In this chapter, we introduce Streaming CnC (SCnC) as a subset of the CnC model

(graph specifications, corresponding code generator and runtime library) that al-

lows implementation and runtime support for building CnC applications that exploit

streaming parallelism as opposed to task parallelism.

To make this possible, we need a mapping between CnC concepts and streaming

concepts.We identified this mapping and it is shown in table 3.1. A subset of the

CnC graphs where this mapping is valid and can be implemented efficiently has to be

found. Theoretical characterization of this subset is presented in section 3.2 and the

engineering considerations behind our choice is presented in section 5.1. A comparison

between CnC, its SCnC subset and streaming graph shapes can be found in Section

3.3.

3.2 Well-formed Streaming CnC graphs

Only a subset of the graphs that are legal CnC graphs can be used as input for

SCnC. This is because of the nature of streaming (not any application is a stream-

ing application) and because of implementation considerations (underlying phaser

beams reduction restriction). This section describes this subset in detail, but does

not describe the restrictions on what item gets and puts are legal in SCnC.
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The conceptual requirement on the shape of the CnC graph is that the CnC graph

is well formed and its the CnC control graph is a directed tree. The analysis of the

shape of this graph will prove useful when we try and formalize the requirements of

streaming applications, specifically when we loop at streaming access patterns.

Definition A well formed CnC graph respects the following conditions:

1. Control collections have only one producing step collection and one prescribed

step collection.

2. Item collections have only one producing and one consuming step collections.

3. The environment only puts tags into a single tag collection and has no other

put edge (to any other tag or item collection). This tag collection whose tags

are supplied by the environment is the root of the tree and has a single child,

the entry step of the graph.

The data is provided through the control tags that get put from the environment;

each tag can store also a data point of the stream.

Theorem 3.1

The CnC control graph of a well formed graph is a directed tree.

Proof 3.1 A directed tree is a directed graph with no cycles. We know from Th 2.2

the CnC control graph is weakly connected, need to prove the absence of cycles. As

both step and tag collections have only one predecessor and at the same time the

environment has none and it is connected to all nodes, this conclusion is obvious. No

cycles and weak connectivity limply the desired conclusion. 2

The root of the CnC control graph could be considered to be the environment.

For uniformity, as the environment is not a standard step and because it is restricted
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to a single child, we can consider the root of the tree to be the sole child of the

environment: the control collection of the entry node .

Theorem 3.2

The CnC control graph with the entry control collection as its root is an arborescence.

An arborescence is a directed, rooted tree in which all edges point away from the

root. The CnC control graph with entry control collection as root is a directed tree,

as Theorem 3.1 showed. We know that there is a directed path from the environment

to each step collection (Theorem 2.1). As the entry control collection is the singular

child of the environment all paths pass through it, so there must be a path from the

entry control collection to every node.

The paths starting from the root start from tag collection and end in control

collections, which is the correct orientation of the prescription edges in the CnC

control graph, or they might go from step collection to tag collection, which is the

correct orientation for control put edges. There is no other type of edges in the control

graph.

3.3 Comparing SCnC to streaming and to CnC

The design of Streaming CnC started from the observation that some CnC concepts

map naturally to streaming concepts: item collections can be viewed as streaming

queues and steps as filters. Of course, there are differences such as the explicit

control flow in CnC and the formalization of the environment. The mapping between

streaming constructs and SCnC constructs is in table 3.1

Control collections support just a subset of the item collections operations (”put

last” and ”get first” instead of ”put anywhere” and ”get from anywhere”). The

restriction on their operations compared to item collections comes from the fact that
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CnC name Streaming name

Item collection Queue between filters

Control collection No exact match in streaming as control flow is not explicit.

Step collection Filter

Environment Not formalized (input stream)

Table 3.1 : Mapping between CnC concepts and streaming concepts

SCnC concept name Number of consumers Number of producers

CnC SCnC CnC SCnC

Item collection N 1(N) N 1(N)

Control collection 1 1 1 1

Environment N 1 - -

Table 3.2 : Comparison between CnC and SCnC: the number of producers and con-
sumers supported by different building blocks

in streaming applications there is a specific order in which the filters process data:

the order in which the items are put. Realizing that control collections for streaming

applications are in fact queues too queues,we mapped hem to the same primitives as

item collections which are item queues.

A comparison of the number of producer / consumer edges supported by the

different component types of SCnC and streaming and CnC is found in tables 3.2 and

3.3. Note that the number of consumers and producers of item collections is limited

to 1 in SCnC. The restriction on multiple consumers of an item collection relaxed for

dynamic parallelism; there, the consumers are ”synchronized” consuming the same

items in the same order and and are prescribed the same number of times.
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SCnC concept name Number of consumers Number of producers

Streaming SCnC Streaming SCnC

Item collection N 1(N) N 1(N)

Control collection - 1 - 1

Table 3.3 : Comparison between Streaming and Streaming CnC: number of producers
and consumers supported by different building blocks

SCnC concept name Number of consumers Number of producers

Streaming SCnC Streaming SCnC

Step collection 1 N 1 N

Table 3.4 : Comparison between Streaming and Streaming CnC: number of input
and output streams for a step

The single consumer restriction for item collections does not necessarily decrease

the number of programs that can be expressed, it just makes the distributions/du-

plications explicit in the SCnC graphs by split and join nodes. Distribution and

collection (join operation) - the patterns of communication affected by the change

- are actually operations themselves, it is natural for them to be explicit in a CnC

based model. These operations are discussed in detail in Section 4.1.

Having join operations as explicit steps helps solve the determinism problems that

might happen in a multiple producer/consumer scenarios otherwise, because the join

step explicitly states the order of the gets and puts. Furthermore, a single SCnC step

can operate on a number of inputs and output collections larger than one, as opposed

to the limitation of StreamIt to a single input and output, as seen in Table 3.4.

The semantics of the item collection and streaming queues are similar, as Table 3.5
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Table 3.5 : Comparison between Streaming and Streaming CnC item get semantics
SCnC

operation

Streaming

operation
Description Semantic difference

collection.get(0) pop() remove the next element

in the stream, and return

it

none

collection.get(x) peek(x) get(x) returns the ele-

ment that has been re-

turn by the x previous

get(0) call; peek(k) re-

turn the item at offset k

in the stream

get(x) is a reverse peek:

item = peek(x); pop();

pop(); pop(); ...; item2 =

pop()

=> item == item2;

item3 = get(0); get(0);

get(0);... item4 = get(x)

=> item3 == item4
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Item CollectionStep Collection

Control 
Collection

Figure 3.1 : A CnC Step-local item collection with its corresponding step collection

shows, with get(0) corresponding to a pop() operation (remove the first element in the

stream). The peek operation is usually used to obtain read access to an item without

removing it from the top of the queue (popping it). If the purpose of the operation is

control flow related (control a different step collection), the CnC programmer would

do a get(0) and send the value as tag to the step that needs it. If the purpose of

peek is to allow reuse of the value in different step of the same collection, then the

programmer can use the get(M), M > 0 operation provided by item collections. Get

with a parameter different than 0 is similar to a ”reverse peek” operation that allows

access to the element obtained M pop operations ago.

3.4 Step-local collections

In many applications, one pattern that appears in the graph is the item collection -

step collection cycle, as shown in Figure 3.1. This means that a single step collection

is both producer and consumer of an item collection and for well formed graph the

step collection, being the single producer and consumer, is the single entity to interact

with the item collection. Such item collections are thus step-local item collections.

We have identified the cause of this pattern to be the restriction of CnC that the

steps are stateless (that is, there is no state information preserved between different

step instance executions). If the application access pattern is streaming, these collec-
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tions can be transformed back to step-local variables as state is permitted in SCnC.

The definition of streaming access pattern will be covered in Chapter 4.

3.5 Dynamic Parallelism support

Changing the structure of a streaming graph is rarely required by the semantics

of streaming applications [6]. It might, however, be a feature that allows better

performance for many applications, due to the dynamic adaptation. Streaming CnC

offers a way of expressing a limited type of such changes through dynamic split-join

nodes. This optimization is similar to the StreamIt fission optimization[15], only that

in our case it is dynamic: the number of parallel branches of a split node can vary

dynamically. In fact initially tehre does not need to be a split node.

We based the dynamic parallelism approach on the notion of places in X10 and

HJ. A change to the meaning of CnC tags was performed: when a control tag is put,

there one can supply an additional dimension for the tag, a place id. The code of a

single filter runs in different places in parallel. When a new place id is used for the

first time, the corresponding instance instance of the filter is instantiated and inserted

in the graph with the same connections as the filter being prescribed , thus forming

a dynamic split-join node. Each of the nodes maintain their own local data fields

whose values can be used between iterations. This approach works well for situations

when the programmer is aware of the additional parallelism, but does not need to

write any low level synchronization or task management code. It proved useful for

situations such as clustering applications or load balancing, as the Facility Location

and Sieve applications described in sections 6.3.6 and 6.3.4 show.

For steps that do not use local state between step instances, we describe a com-

piler transformation that would make the parallelism transparent to the code inside



24

the step for steps. In combination with adding automatic place distribution in the

runtime, this approach has the potential of obtaining performance gains without the

need for programmer-managed parallelism. As the algorithm involves knowledge of

the implementation details, specifically of some phaser restrictions, it is presented

later, in Section 5.2.
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Chapter 4

Towards automatic conversion of Macro-dataflow

Programs to Streaming Programs

This chapter deals with automatic transformation of a CnC application that follows

the classic model to one that runs on the Streaming CnC runtime, when legal to do so.

The process should be similar for any transformation of a macro dataflow application

to exploit streaming parallelism. In order to implement such a transformation, we

considered three major steps as illustrated in Figure 4.1.

The first step is transforming the graph shape of the CnC application to a form

that can be supported by theSCnC model - this transformation might not even be

possible and for this step the ”success in converting” will return ”No”. The algorithm

and detailed description for this step are located in Section 4.1 .

Then, we need to check the streaming access patterns, which filters out additional

non-streaming applications. We show how to do this in Section 4.2. The approach

assumes the availability of functions that identify the tags (keys) for item operations

performed by steps. They are under development in the Habanero CNC system, but

until their implementation is complete, the contents of this chapter remains in the

algorithmic realm.

As a last step, we need to convert the tags of the collections from CnC to SCnC;

our approach is described in Section 4.5. This is an integral step in the mapping from

the CnC API to the streaming API;our implementation is discussed later.
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CnC application

Is the graph 
well formed?

Convert graph to well formed shape
(Section 8)

Success in 
converting?

Check streaming 
access pattern

(Section9)

Map to HJ & streaming phasers
(Section 12)

Streaming 
CnC application

Yes

YesNo

Ok

Fail

No

Map to task based runtime

Task based 
CnC application

Identify deadlock safety bounds
(Section 10)

Figure 4.1 : The workflow of converting a CnC application to Streaming CnC
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4.1 Transforming a CnC graph to a well formed shape

4.1.1 Possibility and Profitability of a CnC to SCnC transformation

Some programs written for the classic CnC runtime do not respect the restrictions of

SCnC mentioned in the previous chapter on interaction with the environment, on the

number of producers and consumers and the number of step collections prescribed

by a control collection. If they were rewritten to a SCnC conforming (well formed)

shape and found to respect some runtime behaviour restrictions, as the next sections

show, some of these programs could run on the streaming runtime.

In some cases, it might not be profitable to run a CnC program using the stream-

ing runtime if the graph needed alteration in order to conform to the well-formed

shape. Although the overhead of streaming is less than the overhead of task based

runtimes and there are memory management advantages too, the parallelism of the

streaming runtime is usually fixed to the number of filters in the program, whereas

the parallelism in task based runtimes can potentially approach the number of dy-

namic tasks in the program. We offer a solution for the limited parallelism exploited

by classic streaming applications by the dynamic parallelism extension presented in

later sections, but the parallelism in the classic CnC model could still be higher. At

what point does the lower overhead become less profitable than simply using more

parallelism is a matter of experience and practice. All our test applications benefit

greatly from the streaming runtime, but it might not be always the case, depending

on the parallelism available in the target hardware.
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4.1.2 Algorithm for converting a CnC graph to well formed shape

The steps through which a CnC graph specification is rewritten to adhere to Stream-

ing CnC well-formed shapes are the following:

1. Rewrite the graph by adding a new step collection and control collection for

interaction with the environment. The instances of this new entry collection

serve as sources for the items that would have been put from the environment

before transformation. To perform the transformation, redirect all starting

points of item put-edges from the environment to instead start from the entry

node step collection. Redirect all the put-edges from the environment to end

at this node and add a control-put edge from the environment to the control

collection of entry step collection. Figure 4.2 illustrates this transformation.

2. Rewrite the graph by adding new control collections where there are multi-

prescription control collections. Do this by replacing the control collection with

N prescribed step collections with N control collections. Add prescription edges

from each of the new control collections to one of the step collections and edges

from the producer of the initial control collection to the new control collec-

tions.Figure 4.3 illustrates this transformation.

3. Reshape the graph to eliminate any multiple producer item collections. This

is done by splitting the item collection and adding a step prescribed by one of

the producer steps that functions as a custom join step: it gets items from all

split collections and puts them into a single result collection. All the put-edges

should be redirected to this step. Add a put-edge from the step to the item

collection. This transformation requires also code to be inserted in the new step

to perform the correct puts in the correct order, so as to obtain a custom join
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Figure 4.2 : Conversion of environment from multiple producer to single producer by
adding an additional step
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Figure 4.3 : Conversion of a control collection with multiple prescribed step collections
to a control collections that prescribes a single step collection
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that assures determinism. Figure 4.4 illustrates this transformation.

4. Duplicate any multiple consumer item collections such that they become single

consumer, by duplicating the put-edges that produce items to each clone of the

collection, and keeping a different single get-edge from each clone to a consumer.

Figure 4.5 illustrates this transformation.

The pseudocode for the transformation algorithm follows.

1 I f ( environment i s mult ip le−producer ) {

2 i n s e r t new step EntryStep and p r e s c r i p t i o n c o l l e c t i o n EntryTags

3 add p r e s c r i p t i o n edge EntryTags −> EntryStep

4 r e d i r e c t edges s t a r t i n g from environment to s t a r t from EntryStep

5 add producer edge from the environment to EntryTags

6 }

7 // c o r r e c t the c on t r o l c o l l e c t i o n s f i r s t

8 i n s e r t a l l c on t r o l c o l l e c t i o n s in the wo rk l i s t

9 whi le ( wo rk l i s t not empty ) {

10 pop con t r o l c o l l e c t i o n c r t from the wo rk l i s t

11 i f ( c r t i s mu l t ip l e p r e s c r i p t i o n ) {

12 add n con t r o l c o l l e c t i o n s

13 add a edges from one c o l l e c t i o n to one o f the s tep c o l l e c t i o n s

14 add edge from producer o f c r t to each new c o l l e c t i o n

15 remove c r t and i t s edges

16 }

17 }

18 I n s e r t a l l item c o l l e c t i o n s in the wo rk l i s t

19 whi le ( wo rk l i s t not empty ) {

20 pop item c o l l e c t i o n c r t from work l i s t

21 I f ( c r t has mu l t ip l e producers ) {

22 add an item c o l l e c t i o n Ci f o r each producer edge
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single producer
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23 r e d i r e c t each edge to one o f the item c o l l e c t i o n s

24 add c o l l e c t i o n s Ci to wo rk l i s t

25 add tag c o l l e c t i o n TJ and j o i n s tep c o l l e c t i o n SJ

26 add p r e s c r i p t i o n edge TJ− > SJ

27 add item consumer edges from each Ci to SJCi− > SJ

28 add item producer edge from SJ to c r t SJ− > crt

29 }

30 I f ( c r t has mu l t ip l e consumers ) {

31 // c r t has a s i n g l e producer now

32 remove c r t

33 add an item c o l l e c t i o n Cj f o r each consumer c r t had

34 add each Cj to the wo rk l i s t

35 add item consumer edges from each Cj to a consumer

36 add item producer edges from the producer s tep or c r t P to each Cj

37 }

38 }

4.1.3 Algorithm analysis

In this section, we analyze the complexity of the transformed graph relative to the

input graph. Of course, if the input graph is already well formed,, then no further

transformation is needed.

The addition of nodes and edges in the course of the transformations mentioned

could lead to two sources of overhead: additional memory consumption because of

the new item collections added and additional synchronization from the additional

edges added. For example, a conversion from a multiple producer item collection to

single producer adds N item collections, one for each separate producer, and a new

step collection with associated control collections. The space requirements grows N+1
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times (N item collections + 1 control collection), though this space requirement may

be reduced in a later transformation when item collections are replaced with bounded

buffers.

Synchronization requirements cannot be easily compared because the CnC syn-

chronization is different from SCnC one. Let us assume that synchronization overhead

is proportional to the number of edges (in SCnC, a pair of edges results in the use of

a phaser; in CnC depending on the runtime, synchronization mechanisms vary, but

the synchronization overhead remains proportional to the number of collections ).

For the same example of multiple to single producer transformation for item col-

lections, the number of edges in the figure increases from 4 to 9. In the general case

of N producers, the number of edges increases from N to 2*N+2+1 edges, which leads

to a doubling in the number of buffers.

Another limitation, caused by our use of explicit join nodes as opposed to implicit

joins, is the inability of performing optimizations based on the relative flow rates as

these are hidden inside user code. We considered the option of having the puts and

joins of a step be part of its signature, but we chose not to do so - we would lose the

flexibility of variable input output rates and thus not been able to support all well

formed SCnC graphs.

4.2 Identifying streaming patterns in a well formed CnC

graph

The Concurrent Collections model allows for the distinction between the domain ex-

pert (who writes the CnC graph and maybe the step code) and the tuning expert

(who optimizes the application for best performance, by setting CnC scheduling pa-
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rameters, adding scheduling restrictions and optimizing the step code).

As the streaming runtime is more restrictive than the task based one, additional

checks have to be made before using it. First, the expert has to determine if the

application can be rewritten to a streaming shape. To do this, we proposed in Section

4.1 an algorithm that can check for the structural graph requirements of the streaming

parallel model. The current section deals with the required checks for the streaming

access patterns on a well-formed graph, as in the output of the algorithm presented

in Section 4.1.2. In this section, we take the well-formed shape of the application

graph as a given and use the theorems 3.1 and 3.2 to support our analysis.

The proposed algorithm has two phases: graph analysis (computing auxiliary

information) and streaming checks. The second phase can throw errors indicating

that the application cannot be transformed to streaming form using our algorithm.

Any step that requires the computation of a function that cannot be solved (func-

tion does not exist) will fail and lead to early termination of the algorithm with an

output of FALSE (application cannot be converted to streaming form using simple

rewrite rules).

The graph analysis phase consists of the following steps:

1. Require the tags of the EntryStep collection (the Env− > EntryTags edge)

to be consecutive integers starting from 0 and the tags of all other control

collections to be integers. It is possible to relax this restriction by allowing tags

that contain an integer component.

2. Annotate each item-put edge (between a step T and an item collection O) with

at least one put-function with domain the possible step prescription tags for

step T and codomain the tags of the items that are put. There should be a
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put-function for each tag that can possibly correspond to an item put by the

step. If a step instance puts at least k items, there have to be at least k put-

functions, to model the relationship between the tag of the step and the tag of

the items produced.

3. Annotate each tag-put relationship with (at least one) function f i
tagPut with the

same eaning as in the previous step.

4. Annotate each item-get relationship with (at least one) function f i
itemGet similar

to the previous functions, but for item get operations.

5. Label each prescription edge with the identity function ftagGet(x) = x.

6. Do a traversal of the CnC control graph (which, for a well formed CnC graph,

is an arborescence according to Theorem 3.2), labelling each step collection

and attached item collection with the result of the composition of the func-

tions through which the path from the root of the tree passes to reach that

particular step. We call this label function a producer function for that step.

fn
p = fn(fn−1(fn−2(...f1)))) where the path from root EntryStep to Stepn passes

though Steps n-1, n-2, ...., 1 and Step1 is EntryStep. The identify functions can

safely be folded away in this chain. The traversal is easily done in a preorder

traversal of the CnC control graph, thus incurring only a linear complexity cost.

At each step collection node in the graph, label it with the same producer func-

tions of its parent tag collection. At each tag collection node, label it with the

composition of the producer functions of the parent and its incoming tag-put

function. The producer functions for each step collection there will result in

an associated set of producer functions, as control collections can have multiple

incoming tag-put functions, depending on the producing step collection code.
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Figure 4.6 : The SCnC graph for the 2 branches of the FilterBank application, anno-
tated with item-put, item-get and tag-put and tag-get functions (after step 5 of the
algorithm)
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7. For each item collection, label it with a consumer-function fc by composing

the get function f i
itemGet of the item collection outward edge with the producer

function of the consumer step.

8. For each item collection, label it with (at least one) producer-function by com-

posing the get function f i
itemGet of the item collection producer edge with the

producer function of the producer step. Both steps are made possible because

the CnC graph we are working on has previously been reshaped to a well formed

shape.

9. For each step compute the minimum consumer function, defined as the minimum

of the values of all the consumer functions for each pair of (step, consumed item

collection), fcmin(y) = minx(fcx(y)),∀y.

All these functions will be used in the testing phase to ensure that the application

access patterns are streaming. Note that, according to Theorem 3.2 if there are

functions for steps 2 to 5, then the composition of functions required for step 6 exists

(the set of producer functions that are attached to each node will have at least one

element). The only way this algorithm can fail is if steps 2-4 in the testing phase fail

to find a function.

The purpose of the test phase is to test the fact that the graph functions respect

the streaming access restrictions to items. It consists of the following steps:

1. Using the consumer-functions and producer-functions of the item collections, we

can test if the application is streaming or not. There may be multiple producer

functions and multiple consumer functions for a single item collection and they

will all have to be taken into consideration. Producer functions have to output

consecutive increasing values for consecutive increasing inputs.
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2. Test that the producer functions inverse and consumer functions for all item

collections respect the following three conditions:

a. “producer precedence” constraint, expressed through the following equation:

f−1p (y) ≤ f−1c (y),∀y ≥ 0. If there is no inverse for either producer or consumer

functions for any item collection or if the previous relationship does not hold,

the application is not a SCnC streaming application.

b. “bounded buffer” constraint: there exists a constant N such that for any pair

of consumer functions fc1 and fc2 of a step collection, the difference between the

value of the consumer functions is smaller than N. The constraint is expressed

though the equation where x the time iterations/sequence numbers put from

the environment as tags in step 1 of the analysis phase: |(fc1 − fc2)(x)| <

N,∀x and ∀fc1 and ∀fc2 consumer-functions of a single step collection.

This is a restriction of the more general streaming requirement that once item

i with tag t has been accessed, one can only access items with tags higher than

t-N.

c. “sliding window” constraint: For a single step collection, but different con-

secutive step instances tagged y and y+1, the minimum value of the tag that

can be consumed by that step tagged y+1 is not lower than the minimum value

that can be consumed by step instance tagged y. fcmin(y) ≤ fcmin(y + 1)

The bounded buffer and sliding window constraints guarantee that we will never

need a buffer size larger than N for an item collection.

d. “bounded lifetime” constraint: For any item tagged t, produced in iteration

t1 and consumed in iteration t2, there is N2 constant such that t2 − t1 < N2

Bounded buffer, sliding window and bounded lifetime assure that we will not
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need a buffer size larger than N1 or N2 to satisfy get calls on an item collection.

e. “unique timestep” constraint: Each step instance performs no more than a

single put in each of its output control collections. This constrain assures us

that, for a given step collection there will never be more than one step instance

with the same iteration number (started by a single ancestor).

If the functions of all item collections respect the previous constraints, then the algo-

rithm outputs TRUE. Otherwise it outputs FALSE.

Theorem 4.1

For an application with a well formed CnC graph, if the producer and consumer func-

tions exist and respect the bounded buffer, producer precedence and sliding window

rules and the CnC application terminates (with no suspended steps/deadlocks), then

the corresponding SCnC application, if it terminates, terminates with the exact same

state than the CnC application. The state of the CnC application consists of the

items it has produced in each of the item collections.

Proof 4.1 In order to have item collections with the same items, the same steps should

run and steps must have the same inputs and must produce the same outputs.

The first condition for this to happen is for the desired inputs to be available; the

proof for this is as follows. The “bounded buffer” and “sliding window” constraints

prohibit the access to items that are not in the streaming buffer of size N: bounded

buffer means that a single step execution will need to access more items than the

buffer has space for (accesses max N elements) and the sliding window rule shows

that no step will need access to items that have already been removed (they can only

access items that are “newer” than the oldest item consumed by the previous step).

If neither the execution of a single step nor the sequence of two step executions lead
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to accessing an item that will not correspond to the CnC one, then, by induction,

any execution will not lead to this situation.

The second condition is that the steps executed are the same in both SCnC and

CnCand have identical inputs and outputs. They are, as no code changes are needed

for well formed graphs, except the conversion of tags, but that transformation affects

only the the tag keys, not the values accessed by them. Steps are executed on the

same input identified as a subset from the codomain of the item put functions, by

the step code, whose control flow is governed by the control tags which are explicitly

and identically sent through the corresponding stream. As proved in the previous

paragraph, the selected items are available. As the control flow is identical, then the

items produced are identical. 2

4.3 Deadlock

The question remains: can the SCnC version “hang” when the CnC application does

not? We show that the SCnC application hangs only because of insufficient buffer-size

problems that are common to all streaming programs.

First, let’s look at when a CnC application can hang. A CnC application can hang

if a step hangs. A step hangs if an item that is the target of a get is not produced

in a finite amount of time. This can happen if the producer step hangs(reducing

the problem to a previous step) or the producer step is not run because it is never

prescribed. If we presume the CnC application does not hang, then none of these

problems appear for the SCnC implementation.

A SCnC application can hang for any of the causes that a CnC application can

hang, plus the following:

1. if a step blocks on a get on an item that cannot be produced because it requires
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the current step to complete (because of the implicit serial execution of step

iterations).

2. if a step performs a get on an item that is no longer in the streaming buffer.

3. the full-empty buffer problem [?, ?]. Lets say one of the streaming buffer queues

(called A) becomes full, blocking the producer and thus prevents him from

producing items in another queue (B). If the consumer will block too waiting on

B because of this (and cannot unblock A), then there is a deadlock. We describe

a technique that finds a sufficiently large bound for the streaming buffers so that

they never fill up. Note that the “bounded buffer” rule is not sufficient in this

case, as the rule looks only at a single step and its data requirement from one

item collection, whereas in this case the problem is inherently related to at least

two item collections and the relative ordering of puts and gets from two steps.

For situation 1, we express the problem in terms of producer functions. The

first point where the program hangs, some item could not be available because its

producer did not complete and cannot complete, as it is waiting for some item that

would only be produced later. If the producer function inverse value (representing an

iteration number) is smaller than the consumer function inverse for that particular

item, then we know that the producer can run independently from the consumer :

if f−1p (itemtag) = n, the item will be produced after tags 1,2,3...,n are produced by

the environment. The consumer, with f−1c (itemtag) = m will run after some more

tags are produced by the environment 1, 2, 3, ...,n, n+1,..., m, thus it cannot hang

because the item was not produced. The ”producer precedence” rule assures us that

either m > n which is sufficient, or m=n.

We still need to prove that if the inverses of the producer and consumer functions
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of an item collection are equal for an item, the SCnC program execution cannot hang.

If the inverses are equal, then producer and consumer definitely reach the prescription

stage. To hang, they each would have to hang on an item produced by the other (if

we presume only one hangs, the other will finish, thus will produce the item which

will allow the first one to continue). If they both hang waiting for an item produced

by the other one, it means both of them block on get calls followed at some point by

put calls that would unblock the other one. This situation would block the normal

CnC implementation too, as any parallel execution of the producer and consumer

steps would block, not just the streaming execution. The same argument applies

identically for cycles of length more then two.

For situation 2, the “bounded buffer” rule ensures this does not happen. Situation

3 is dealt with in the following section.

4.4 Deadlock freedom

In order for SCnC to become a safe optimization to perform to CnC applications,

we still need to make sure there is no possibility of deadlock. We first characterize

the conditions that lead to deadlocks for SCnC applications and then present the

restrictions that need to be respected in order for the application to be deadlock -

free on the SCnC runtime.

First, it is important to notice that a program having only control flow (Control

Collections and Step Collections) cannot deadlock, as the control graph is always a

tree and there can be no other edges in this case (deadlocks appear as a cycle in the

wait-for graph of the program). So, the deadlocks can appear as cycles that contain

item get/put edges or both item/put edges and control edges.

We now express the restrictions needed for the SCnC execution to be deadlock free.
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A step can block if an input buffer is empty or an output buffer is full. Deadlock for

streaming applications can only occur after the full-buffer state is reached for at least

one buffer. For a non-deadlocking(no suspended steps at the end) CnC application,

a single empty buffer is not sufficient to cause deadlock in the SCnC version.

Let us look at the item collection buffers that can potentially be involved in a

deadlock. For an item tag t produced with the restrictions of a well formed CnC

application we have the equation: t = f i
p(t1) = f j

c (t2) that shows the producer step

instance that puts the item is tagged t1 and the consumer is tagged t2. If there

are multiple possible producer and consumer functions, all combinations must be

considered and the final buffer size should be the maximum of those identified through

the following computation.

The required buffer size for item t is (t2 − t1) ∗ itemrate(producer). Where the

item rate is the number of items produced in an iteration of the producer step,which

is bounded above by a limit R, where R is less or equal to the the cardinality of the

set of put functions corresponding to the producer and item collection.

Also, for most streaming applications (including all of those we tested) there is an

integer constant k fixed such that t2−t1 < k which means that the items consumed by

a step are at most produced a fixed number of timesteps before. Note that the t2− t1

difference is always positive , as a restriction of SCnC. This does not mean there are

no feedback loops in program; it is a restriction affecting the iteration numbers and

not the structure of the graph.

The item collection buffer size is thus bounded above by L = (t2− t1)∗R = k ∗R.

If the actual buffer size of the item collection buffer is larger than L, the buffer will

never fill thus the producer and consumer edges cannot participate in a deadlock

cycle.
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The previous condition is not sufficient to guarantee deadlock freedom as, even

though there is space in the item buffer, there might not be space in the control

collection buffers somewhere on the path between the producer and the consumer (as

shown previously, the control graph is a tree, so there is only one such path). To

find an upper bound for the size of the buffers on this path, we should consider that

each step can produce at most one control tag per iteration per destination control

collection (otherwise, there will be multiple steps with the same timestep label). The

maximum number of tags that need storage is thus M = t2− t1 but this limit applies

for all control collections on the path between the producer and consumer steps. As

for the item buffer size, we need to consider all pairs t1 and t2 that can produce,

respectively consume any item tagged t and take the maximum of the different M

values obtained.

The combination of using sufficiently large buffers for item collections (L) and

control buffers (M) insures that the SCnC program introduces no more deadlocks

than the CnC one had. The additional restrictions imposed, except those implied

by the previous chapter on streaming pattern identification, are: the existence of

a constant k as outlined above and the single control-put per iteration per control

collection.

4.5 Converting CnC tags to Streaming CnC tags

This section describes the conversion of item and control tags from CnC to SCnC.

Tags used for item puts disappear completely, as streaming item collections allow

puts only to the top of the buffer. Tags used for item gets have to refer to offsets

instead of absolute tag values.

For item tag values, we present an algorithm only for consecutive integer tags(1, 2, 3, ...),
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as these map to streaming application implementation naturally. For a get call, the

offset from the top of the stack of the desired item will be the difference between the

CnC tag t and the number of distinct items previously obtained from the stream.

The CnC tag t will turn into t′ = t − |
⋃consumerFunction−1(t)

i=0 |. If t > 0, as the im-

plementation does not offer a classic peek operation, but a reverse peek one (access

previously accessed items again), we have to do t′ get operations without arguments

and access the last obtained value. If it is less than 0, one can use t as a tag, offering

it as parameter for the get function call.

For put calls, presuming a single monotonously increasing put function, the CnC

tag parameter can safely be ignored. If there are multiple put functions, we will need

dynamic checks that the streaming restriction holds, and small buffer to rearrange

the put items efore they are sent in the correct order to the streaming phaser buffers.



49

Chapter 5

Efficient Implementation of SCnC

5.1 Use of streaming phasers

The implementation of streaming item and control collections is based on the stream-

ing extensions to phaser accumulators, as discussed in Section 2.5. Each item or

control collection has a phaser and accumulator pair that allow synchronization and

communication between the producer and consumer for item collections and controller

and for control collections.

The code generator creates a class with these two members. The generated col-

lections also contains an init function that serves as source for item collections that

are produced by the environment, as opposed to being produced by some CnC step

collection. For ease of use, it is legal in our implementation to populate more than

one item collection from their init functions, if they do not have a producer step

within the graph. Because of the generation of environment produced streams inside

the item collection classes, it becomes feasible to generate both the graph and the

main program for the CnC application, which can be modified by the user.

The difference from the classic CnC semantics are in the put and get operations on

item collections. Put operations always put the the next item in the item collection

(stream) and get operations take as parameter, instead of a tag, an offset relative to

the position of the item produced by the last wait operation on the phaser of the item

collection. Access to elements not produced yet is not permitted except by waiting
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for each element up to the desired one.

The essential operations of the functions are found in listing 5.1
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1 pub l i c ab s t r a c t c l a s s SCnCObjectItemCollection

2 {

3 pub l i c phaser ph ;

4 pub l i c accumulator a ;

5

6 pub l i c SCnCObjectItemCollection ( )

7 {

8 ph = new phaser (m, c f g ) ;

9 a = accumulator . f a c t o r y . accumulator ( accumulator . Operator .ANY,

Object . c l a s s , ph ) ;

10 }

11

12 pub l i c Object Get ( i n t no ) {

13 Object va lue = nu l l ;

14 i f ( no == 0) {

15 ph . doWait ( ) ;

16 value = a . ob jResu l t ( ) ;

17 }

18 e l s e {

19 value = a . ob jResu l t ( no ) ;

20 }

21 re turn value ;

22 }

23

24 pub l i c void Put ( Object p) {

25 a . send (p) ;

26 ph . s i g n a l ( ) ;

27 }

28

29 }

Listing 5.1: Item collection implementation code fragment
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As described in Section 2.4, the phaser synchronization construct needs to be

registered on the task that uses it. In our Habanero Java implementation, a step

collection is modelled as a single async task containing a loop, whose iterations corre-

spond to step instances. The implementation detail is hidden from the user through

autogenerated code by the using object oriented class hierarchy. The translator cre-

ates a base abstract class for each step collection and the template for the actual user

step class. The user only works with the user step class, in which he inserts code in

only one function, as shown in Listing 5.2 and 5.3.
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1 . . .

2 pub l i c void s t a r t (WrappedInt tag ) {

3 f i n a l Tag f t ag = tag ;

4 async phased (

5 p r e s c r i b i n gCon t r o lCo l l e c t i o n . ph<phaserMode .WAIT>,

6 producedItemCol l ect ion1 . ph<phaserMode . SIG> ,

7 producedContro lCo l l ec t ion1 . ph<phaserMode . SIG> ) {

8 run ( f t ag ) ;

9 }

10 }

11 pub l i c void run (WrappedInt ptag ) {

12 WrappedInt tag = nu l l ;

13 // i f the s tep was s t a r t ed with an i n i t i a l c on t r o l tag ,

14 // use that , o therw i se

15 // get a new tag

16 // from the p r e s c r i b i n g con t r o l c o l l e c t i o n

17 i f ( ptag != nu l l )

18 tag = ptag ;

19 e l s e {

20 tag = p r e s c r i b i n gCon t r o lCo l l e c t i o n . Get ( ) ;

21 }

22 whi le ( tag . va lue != p r e s c r i b i n gCon t r o lCo l l e c t i o n . endStream ) {

23 // the step func t i on i s wr i t t en by the user

24 s tep ( tag ) ;

25 // get the next c on t r o l tag used in the next i t e r a t i o n

26 tag = p r e s c r i b i n gCon t r o lCo l l e c t i o n . Get ( ) ;

27 }

28 }

Listing 5.2: Code fragment of the abstract base class for a step
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1 import Co l l e c t i o n s . ∗ ;

2 pub l i c c l a s s ConcreteStep extends AStep {

3 ConcreteStep ( Sour c e IdCo l l e c t i on p r e s c r i b i ngCon t r o lCo l l e c t i on ,

SCnCIntTagCollection producedContro lCo l l ec t ion ,

SCnCDoubleItemCollection producedItemCol l ect ion ) {

4 super ( p r e s c r i b i ngCon t r o lCo l l e c t i on , producedContro lCo l l ect ion ,

producedItemCol l ect ion ) ;

5 }

6

7 pub l i c void s tep ( WrappedInt tag ) {

8 // the code in t h i s func t i on i s wr i t t en by the user

9 }

10 }

Listing 5.3: User editable class for a step

5.2 Implementation of Dynamic Parallelism

In traditional streaming models, multiple iterations of a single filter do not execute

in parallel. This limitation might reduce the performance unnecessarily if there are

more processors available than filters. We have extended the streaming model towards

an integration of streaming with task parallelism by enabling a filter to dynamically

create new filters so as to allow each step to have multiple iterations executing in

parallel. This behaviour is controlled through a “place” dimension of the control tags,

which now become pairs of the form (placeId, old tag value). The implementation

then creates a separate async for each placeId of a given control collection. As before,

each of these async tasks has a loop that does the actual step computation and each

of them receives all tags. The dynamic nature of phasers is helpful here, as phasers
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allow the number of tasks waiting at a barrier to vary dynamically. However, phasers

also have the restriction that, if multiple tasks are registered as producers (signal

mode), in order for the consumer to unblock from its wait state, all the producers

must perform the signal call, which complicates the code generation.

Let us consider the case in which there are only 2 placeIds, 0 and 1. When there

are 3 control tags (in order 1, 2 and 3), if all are assigned to a placeId 0 with tag pairs

(0,1), (0,2) and (0,3), their steps will execute serially. If instead tag 2 is assigned to

place 1 with tag pairs (0, 1), (1,2), (0,3), the get operation for the filter with tag 2

will succeed before the iteration corresponding to tag 1 is finished and will execute

in parallel with it. Any item produced by siblings filters in different places will wait

for corresponding signals from its siblings before being accessible to the consumer

steps, as the underlying accumulator reduction operation needs to know all reduced

items. Because the tag place id is read by all siblings and they realize that the

placeid is different and the computation does not belong to them, the siblings will

just signal, without computing or producing any value. This approach allows us to

overcome the requirement that in a multiple producer situation, for an item to be

available for consumption all producers must produce some item and the final result

is the reduction of all items produced. In our case, because only one actual item

is produced and the rest of the siblings produce null items, the reduction result is

always trivially equal to the single item. This process is shown in Figure 5.2.

This would allow the reduction operation on the produced item to complete and

the item to be consumed by its consumer step. Figure 5.2 shows how the situation

would look in this case, with an initial step collection split into two sibling syncs, each

processing step instances with different placeIds, but both having the same phaser

registrations. Listings 5.4 and 5.5 show the structure of the SCnC step code for the
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cases without and with dynamic parallelism.

To better understand how the dynamic parallelism implementation works , consid-

ering that items get produced only after all asyncs registered on the phaser perform

the signal, we can analyse figure 5.2. The fake steps mentioned are obtained from the

user step code by replacing the get and put with similar functions that do not perform

the accumulator.put call and by removing the actual work of the step, while keeping

the control flow in place, so the puts get performed only if the real user written code

performs them too. These version of the step code can be automatically generated,

but currently we rely on the user writing the code himself.
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1 . . .

2 While ( ! end )

3 {

4 phT1 . doWait ( ) ;

5 tag t = accT1 . get ( ) ;

6

7 // ∗∗∗ USER STEP CODE ∗∗∗

8 item i1 = phI1 . get ( ) ;

9 r e s u l t r = DoCondition ( i 1 ) ;

10 i f ( cond ( r ) )

11 {

12 DoWork( ) ;

13 acc I2 . put ( ) ;

14 phI2 . s i g n a l ( ) ;

15 }

16 // ∗∗∗ END USER CODE ∗∗∗

17 }

Listing 5.4: Example code for execution of a step collection. The part between the

comments is written by the user in SCnC non-dynamically parallel application. The

next figure will show the additional code that will need to be generated for dynamic

parallelism.
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1

2 whi le ( ! end ) {

3 phT1 . doWait ( ) ;

4 tag t = accT1 . get ( ) ;

5 i f ( t . spaceTag==MySpacetag ) {

6 // ∗∗∗ USER CODE ∗∗∗

7 item i1 = phI1 . get ( ) ;

8 r e s u l t r = DoCondition ( i 1 ) ;

9 i f ( cond ( r ) ) {

10 DoWork( ) ;

11 acc I2 . put ( ) ;

12 phI2 . s i g n a l ( ) ;

13 }

14 // ∗∗∗ END USER CODE ∗∗∗

15 }

16 e l s e {

17 // ∗∗∗ GENERATED CODE AFTER USER CODE ∗∗∗

18 // DO the reads

19 item i1 = phI1 . get ( ) ;

20 r e s u l t r = DoCondition ( i 1 ) ;

21 i f ( cond ( r ) ) {

22 // DO NOT do work , DO NOT put anything

23 phI2 . s i g n a l ( ) ;

24 }

25 }

26 }

Listing 5.5: Example code for execution of a step collection in a dynamically parallel

SCnC application. The initial tag comparison and the code in the else branch are

needed for dynamic parallelism support.
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In the current implementation, the place 0 async is responsible with cloning itself

to create the new async places, whenever it gets a tag whose placeId it did not

previously see.

In an ideal model, the user shouldn’t need to take into consideration the paral-

lelism between the step instances that execute in different places; he could write the

code ignoring the control placeIds and the compiler would do generation of the proper

code for each place. This requires analysis and transformation on the step code simi-

lar but more complicated than dead code elimination, as we need to keep the feature

that each step might have a variable number of produced items. The analysis would

consist of labelling the code that computes the value of the items and tags produced

by a step with the label COMPUTATION and identifying the code required to de-

cide if the put operations will be performed and labelling it with CONTROL. The

transformation phase would remove the code that is labelled COMPUTATION but

is not labelled CONTROL and replace the put operations with signal operations.

Furthermore, to maintain support for local step fields whose value is accessed

between iterations, it would be required to also label with CONTROL any code that

decides the execution of instructions that update fields; synchronization for the fields

would have to be added.

Right now, the implementation supports explicit place management: steps that

support places have to make sure they do not execute work that is assigned to steps

in other places (that happens if the placeId of the input tag does not correspond to

the placeId of the step) and they have to make sure they signal to the proper output

collection when this happens. Note that new tasks are spawned automatically when

a new placeId is encountered.

A further extension to the model would be automatic tag generation: the runtime
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could detect that cores are underutilized and assigned placeIds automatically to take

advantage of the possible parallelism.
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Chapter 6

Results

6.1 Implementation status

The complete workflow for a CnC programer who wants to take advantage of SCnC

is presented in Figure 6.1. The initial CnC graph has to be transformed to the SCnC

well formed shape, generating a SCnC graph description. The CnC code has to be

adapted to the semantics of SCnC get and put operations, thereby obtaining SCnC

step code. Both these transformation steps, corresponding to algorithms presented

in this thesis, have not been implemented as yet and were performed manually to

obtain the results in this thesis. Their output is the complete SCnC application.

After compiling the hand-transformed code, we can run the application using the

Habanero Java infrastructure and the SCnC runtime. The runtime, as well as the

code generator from an SCnC graph and SCnC runtime were implemented as part of

this thesis.

6.2 Testing methodology

The SCnC translator and runtime have been tested on three of the applications from

the StreamIt project, in particular BeamFormer, FilterBank and FMRadio, as well as

a clustering application, FacilityLocation and the well known mathematical algorithm

Sieve of Eratosthenes algorithm.

The initial implementation of the applications was done in CnC. Transferring this
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Figure 6.1 : The workflow for using a CnC application for SCnC. The only manual
transformations are marked with a star, the rest are automatic.
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implementation to SCnC helped to validate our algorithm for transforming a CnC

graph to a SCnC graph, and to test if the resulting graph satisfies the constraints of

a streaming application. The experimental results have been encouraging for SCnC,

with increases in throughput of up to 40× compared to the CnC performance. In

addition, SCnC showed it can support larger problem sizes compared to the CnC

implementation. The Habanero Java implementation for CnC used a work sharing

scheduling policy, and the number of workers for all CnC results was set to match the

numer of cores of the machine. The performance results were also helpful in evaluating

the performance overhead of the SCnC wrapper over the optimized streaming phasers

implementation, which are included in the performance comparisons as well.

The tests have been performed on 2 different systems: a dual core Intel i5 2.6GHz

system with 4GB RAM, and a system with 4 quadcore Xeon processors and 16GB

RAM. The performance analysis focuses on throughput comparison of SCnC and

CnC.

6.3 Applications

6.3.1 FilterBank

The FilterBank application implements a filter bank for signal processing [6]. On each

parallel branch, delay, filter, and downsample steps are performed and followed by

upsample, delay, and filter steps, but the implemented versions merged many of the

individual components in higher level tasks. The application needed no modification

of the CnC graph to be applied in order to run on the streaming runtime and offer

increased performance. A partial graphical representation of the graph is in Figure

6.3.1 (some names have been omitted for lack of space). As seen in Table 6.1, on
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Figure 6.2 : The SCnC graph for the FilterBank application is identical for SCnC

the i5, the throughput increase compared to CnC is around 4.89x and the overhead

compared to streaming phasers is under 3x. On the Xeon, the throughput increase

compared to CnC is 10x but the streaming phasers throughput is 18 times better.

6.3.2 BeamFormer

The BeamFormer application performs beam forming on a set of inputs[6]. The

version we implemented has deterministic output ordering and 4 parallel beams. For
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Input size Model Execution Time (s) Throughput (items/s)

50,000 CnC 45 1111

1,000,000 CnC OOM OOM

1,000,000 SCnC 184 5434

1,000,000 Streaming phasers 76 13157

Table 6.1 : SCnC, CnC and streaming phasers performance for FilterBank (Core i5)

Input size Model Execution Time (s) Throughput (items/s)

50,000 CnC 44 1136

50,000 SCnC 9 5555

5,000,000 CnC OOM OOM

5,000,000 SCnC 400 12500

5,000,000 Streaming phasers 34 147058

Table 6.2 : SCnC, CnC and streaming phasers performance for FilterBank (Xeon)
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Figure 6.3 : The CnC graph for BeamFormer application

the conversion to streaming, we had to make changes to the environment, because

it interacted with the graph using more than one tag collection. Also, local data

collections from the CnC implementation, which had been modelled in the StreamIt

version with local filter state, were returned to local step state, as Figure 6.3.2 and

6.3.2 show (some names have been omitted for lack of space).

The performance results on Xeon (Table 6.3) showed an increase in throughput

of 75x compared to CnC and a 2.4x slowdown of throughput compared to streaming
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Figure 6.4 : The StreamingCnC graph for BeamFormer application



70

Input size Model Execution Time (s) Throughput (items/s)

30,000 CnC 60 500

30,000 SCnC 11 2727

3,000,000 CnC OOM OOM

3,000,000 SCnC 140 20270

3,000,000 Streaming phasers 51 58823

Table 6.3 : SCnC, CnC and streaming phasers performance for Beamformer (Xeon)

Input size Model Execution Time (s) Throughput (items/s)

30,000 CnC 67 447

3,000,000 CnC OOM OOM

3,000,000 SCnC 215 1395

3,000,000 Streaming phasers 41 7317

Table 6.4 : SCnC, CnC and streaming phasers performance for Beamformer (Core
i5)

phasers.

6.3.3 FMRadio

The FMRadio application is another application from the StreamIt benchmark suite.

The SCnC performance results on the Xeon machine for this application are shown

in Table 6.5.
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Input size Model Execution Time (s) Throughput (items/s)

100,000 CnC 102 980

100,000 SCnC 3.4 29411

1,000,000 CnC OOM OOM

1,000,000 SCnC 29 34482

1,000,000 Stream phasers 5 200000

Table 6.5 : SCnC, CnC and streaming phasers performance for FMRadio (Xeon)

6.3.4 Facility Location without dynamic parallelism

The facility location application is a clustering application that solves the problem of

optimum placement of production and supply facilities depending on an input stream

of customer locations.

Formally[16], we are given a metric space and a facility cost for each node as well

as a stream of demand points. The problem is finding the minimum number and

positioning of nodes such that it minimizes a metric space expression dependent on

which demand points are assigned to a node. This problem occurs in several fields

such as strategic placement of production facilities, networking and communication,

document classification.

For example, consider the creation of a network, where servers have to be pur-

chased and clients assigned to the servers in the order they arrive by purchasing

cables. Once the demand gets too high, new servers have to be purchased and at the

same time the costs should be kept as close to the minimum as possible. A similar

example is the webpage clustering problem: pages can have to be assigned to clus-

ters according to some attributes. As the web grows rapidly, new pages have to be
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classified and servers brought in to handle the load.

As the problem is relevant to many fields, different formulations and approaches

for solving it exist: two level [17], various hierarchical approaches [18], online and

incremental [19]. There is also an offline formulation of the FacilityLocation prob-

lem [20]. Both these versions are in fact streaming problems because of their dynamic

nature in which new data arrives constantly (online) a working solution is expected

at every point in time (incremental).

The online, incremental (streaming) approaches to solving this problem do not

find an optimal solution, but instead offer at any point in time a solution that is

at most a constant factor worse than the best one when points come in random

order, guarantee due to probabilistic reasoning. Against an adversarial opponent, no

online solution can be O(1) away from the optimum [16]. We have implemented the

randomized algorithm in [16] for its simplicity. Our implementation takes advantage

of the dynamic parallelism feature of SCnC in the sense that each place represents a

cluster and the async corresponding to a place updates the metrics for points assigned

only to that cluster only.

The results on the Core i5 system are summarized in Table 6.6 and show through-

put increases of 5x compared to CnC. On the 16 core Xeon, Table 6.7 shows that the

speedup obtained is 3.6x of the CnC performance. For higher CnC input sizes the

garbage collection time starts to dominate the execution time, so the speedup listed

is expected to increase on larger inputs. Also, buffer sizes for these experiments have

been kept under 1/1000 of the input size(1000) and the speedup grows as the buffer

size increases.
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Input size Model Execution Time (s) Throughput (items/s)

30,000 CnC 71 8450

3,000,000 CnC OOM OOM

3,000,000 SCnC 69 43478

3,000,000 Streaming phasers 21 142854

Table 6.6 : SCnC, CnC and streaming phasers performance for Facility Location
(Core i5 system)

Input size Model Execution Time (s) Throughput (items/s)

300,000 CnC 54 5454

3,000,000 CnC OOM OOM

3,000,000 SCnC 150 20000

3,000,000 Streaming phasers 65 46154

Table 6.7 : SCnC, CnC and streaming phasers performance for Facility Location
(Xeon)
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6.3.5 Facility Location with dynamic parallelism

The facility location application is interesting because if shows the potential for dy-

namic parallelism. We created a SCnC implementation to take advantage of this

feature and we studied the speedup that we obtained as a result.

As a academic benchmark, we did not add any code that computes per cluster

statistics such as a real world application might (total length of cabling needed for a

server, total cost of cabling, average distance of consumers from the server, etc). Be-

cause of this, the clustering time is similar to the statistics computation time. In such

a producer/consumer example, speedup by running multiple consumers in parallel is

not possible, as they would block waiting for input to consume. We modelled the

computation of such statistics by adding artificial wait times for consumers: several

runs were performed with increasing time intervals up to 1ms of delay added to every

12th point of the input stream. The additional time is small, but it is enough to show

some scalability of the parallel implementation of FacilityLocation. Higher values

might correspond better to real world implementation but we decided to be conserva-

tive in our analysis. The results for input of size 10,000,000 on the 16 core Xeon are

presented in Table 6.8 and get us an additional speedup of 3.4 for a consumer delay

of 0.83 ms on average.

6.3.6 Sieve of Eratosthenes with dynamic parallelism

The Sieve of Eratosthenes is an algorithm for finding the prime numbers, attributed

to the ancient Greek mathematician Eratosthenes. Our implementation is a dynamic

split-join with feedback loop. There is one producer that streams in consecutive

number starting at 2; the numbers are then sent to several parallel filters that check

if the number is divisible with any of the prime numbers that each filter stores. If a
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Delay SCnC time (s) SCnC dynamic Speedup

parallelism time (s)

none 90 94 0.95

1ms every 50th 212 101 2.1

1ms every 25th 414 131 3.16

1ms every 12th 857 250 3.4

Table 6.8 : SCnC dynamic parallelism execution time, compared to the SCnC imple-
mentation, 16 core Xeon

Variant SCnC time (s) SCnC Dynamic parallelism time (s) Speedup

M=N 238 40 5.95

M=2*N 863 80 10.78

Table 6.9 : SCnC dynamic parallelism execution time compared to SCnC without
dynamic parallelism on the 16 core Xeon system, N= 1,000,000

filter finds a divisor, it sends to the join node a 1, if not, it sends 0. The join node

performs an accumulator reduction with the operation SUM on the results and if the

result is 0, the number is prime. It then sends back to the filters the id of the filter

that should add the newly discovered prime number to its prime number store. The

CnC graph of the application is in Figure 6.3.6.

If in Facility Location the algorithm decides how many clusters there are, for Sieve

we can tune the number of dynamic filters to the number of cores in the machine.

Performance results are found in Table 6.9 for the 16 core Xeon machine, 15 filters

and a cyclic distribution of primes to the filters.

Another possible implementation is the dynamic pipeline, shown in figure 6.3.6, in
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which filters are connected serially to one another. Each filter accumulates numbers

that are not divisible with any prime number in its store up to a maximum, after

that it spawns another filter that attaches to the end of the pipeline and from the on

receives all numbers that are prime relative tot he numbers stored by the previous

filters. This approach has a dynamic parallelism that is not easily controlled for an

unknown number of primes: if we want to never have more stages in the pipeline

than cores and an equal distribution of primes to asyncs, there is no easy way to

accomplish this even if the cyclic distribution in the dynamic split-join case does this

naturally. Crude control can be had through the constant that controls the maximum

number of primes per filter.

However, SCnC is not able to express pipeline dynamic parallelism, as only dy-

namic split-joins are supported. This version offers simpler implementation with only

a single wait call per input, compared to for the split-join implementation that needs

one wait to get the input, one to receive the answer if it should add the number to

the store or not. This lower latency of the filter should lead to an increased through-

put compared to the split-join implementation. Comparing the two is difficult in the

general case, as the pipeline length might not be in the parallelism sweet-spot of the

machine( ie equal to the number of cores). On the other hand, when there are few

primes already discovered, the split-join might not have enough work to justify the

existence of all filters, and furthermore the latency should be higher.

We compared the two implementations, both using handcoded streaming phasers.

We also implemented an extension of the Sieve that not only finds the prime numbers

up to N, but also counts the numbers between N and M that are not divisible by any

prime number less than N. This extension allows us to analyse the speedup of the

split-join pattern without the overhead of variable granularity and added feedback
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synchronization. The results, published in [14] confirm that the speedup for the

pipeline version of Sieve are consistently better than the split-join, specially if using

the extension (it reaches 9.8× when compared to a optimized sequential execution).

This motivates us to continue this work by incorporating support for dynamic pipline

execution, that would offer complete dynamic parallelism support for both streaming

basic blocks.

The speedup of the SCnC split-join implementation on the 16 core Xeon obtained

for M = 2*N, N = 1,000,000 increases up to 10.8x, when compared to the streaming

SCnC version without dynamic parallelism and overhead under 10%. For this appli-

cation the overhead is smaller as the there was no need for a separate control tag

stream, as opposed to the other applications. It is a good result, but, considering

the behaviour of the streaming phasers implementation, we are confident the pipeline

implementation will offer more in the future.
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Chapter 7

Related work

StreamIt [15, 21] is the most notable recent exemplar of streaming languages. Its

contribution was an efficient implementation of streaming for programs that can be

expressed using a simple set of streaming primitives. StreamIt is a compelling alter-

native for writing streaming applications that were otherwise written using general

purpose programming languages such as C: it replaced the error-prone low level time

expensive programming process with an efficient portable readable and robust higher

level streaming language. The project lead to the publication of a streaming bench-

mark set and a characterization of the streaming applications identified during the

research [22].

StreamIt programs use basic operations push, pop, peek that are also available

in SCnC (put, get, get(k)), but lack a meta-description of tasks as in the CnC spec-

ification; thus, StreamIt lacks the ability to execute applications that are partially

streaming. Note that streaming parallelism in general is a combination of pipeline,

data and task parallelism, so StreamIt does take advantage of task parallelism in

structures such as split-join, but there are no features that can express task paral-

lelism in which data does not respect the streaming paradigm that value only have a

lifetime; CnC and SCnC offer the same model for task-parallel and streaming applica-

tions. In fuuture work we plan to integrate both runtimes so that the task parallel and

streaming components can run on the joint CnC and SCnC runtime. The same lack

of meta-description of task interaction might make larger Streamit programs difficult
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to understand. The likely appeal for SCnC by programmers is that by learning one

language (CnC), they can implement both streaming and non-streaming applications.

As mentioned in Section 3.3, the split-join distributions in SCnC are more general

than StreamIt, which only offers round robin, weighted round-robin and duplicate/-

combine as distributions and join operations. This makes sense, as StreamIt expects

filters to have a fixed input/output rate and such fixed distributions are sufficient.

In SCnC, we allow variable flow rate and join and split nodes are explicit filters

themselves and are able to perform any custom join or distribute operation.

As we decouple the control and data dependencies in control tag (control collec-

tion) streams and data (item collection) streams, we can more easily express some

streaming shapes that StreamIt does not allow. We relax the restriction that filters

have one input stream through the existence of both control and data streams and

through our ability of receiving multiple data streams as input for any filter. The

decoupling between the data and control can be used to emulate StreamIt’s message

passing [23], by making the signaler the control producer of the filter.

The StreamIt approach is based on static analysis and program transformation,

whereas SCnC is runtime based. The SCnC implementation does not contain any of

the static analysis/optimizations that StreamIt performs such as granularity coars-

ening, data parallelism exploitation and software pipelining- though SCnC has other

features that perform similar roles.

We rely on the batching optimizations performed by the streaming phasers prim-

itive instead of doing a StreamIt-like scheduling optimization. Our dynamic paral-

lelism feature has the same goal as StreamIt filter fission, but the StreamIt approach

allows only for a fixed number of branches for spit joins. If we know the number of

available cores in the system ahead of time, the StreamIt approach is sufficient. How-



81

ever, the StremIt approach does not work well statically, because the same executable

may be invoked on different machines. Also, the StreamIt approach only allows par-

allelization of stateless filters, whereas SCnC allows parallel copies of stateful filters

to keep individual state.

StreamIt’s orchestration of filters is performed using greedy scheduling algorithms

that are guaranteed to be deadlock-free [24]. More recent work by Manjunath Kudlur

[25] shows integer linear programming might be an effective alternative to greedy

schedulers.

Other projects work towards adjusting the streaming model to work with new

architectural features or accelerators: GPUs [26] and FPGAs [27]. Scratchpad

memories and their use in streaming is the subject of [28] where the authors use

integer linear programming to balance computation. Implementations of StreamIt for

the Cell BE processor have been shown to be efficient [29]. For multicore, software

pipelineing is used to generate streaming-like programs [30]. Efficient usage of the

task, data and pipeline parallelism models on multicore architectures by means of

streaming is shown in recent work by Michael Gordon [31].

Brook [32, 33] takes a different approach to managing granularity: if StreamIt uses

fission and fusion to get to a steady schedule starting from fine grained operations,

Brook exposes only coarse grained multi-dimensional data structures (called streams)

to the programmer who is expected to process them through predefined operators.

Using stream shape analysis they end up performing kernel fusion and optimizations

similar to loop interchange. They target both multiprocessors and GPU systems.

The integration between the streaming model and architectures sometimes reached

the point in which architectures are built for particular streaming applications. The

tool proposed by Nikolaos Bellas et al[34] automatically generates the design of ac-
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celerators used in conjunction with system on chips to run streaming applications.

The problem of finding a better task mapping for stream programs has been

tackled for years [35]. Static mapping together with dynamic adjustments for load

balancing have been implemented and have shown good performance on a Cell BE

system [36]. Recently, dynamic approaches have become possible because of work

performed on execution time prediction for streaming tasks. The dynamic parallelism

approach we propose complements several projects that aim to offer tailored load

balancing for streaming applications. Farhana Aleen et al. [37] use taint analysis

and simulation to identify pipeline delays as a function of input data. They could

add dynamic split-join patterns to complement their analysis to get dynamic load

balancing optimization. The difficulty in such orchestration of streaming programs is

maintaining accuracy while keeping a low overhead,but the results are encouraging

— an improvement of up to 38% with dynamic load balancing compared to static

load balancing. At least for large graphs, Sardar Farhad was able to show [38]

that approximate algorithms might offer better performance compared to integer

linear programming techniques for large graphs. Machine learning techniques hve

also shown good results for partitioning streaming graphs [39].

The technique of sending special messages through the streams is used in other

projects, to obtain deadlock freedom. A current area of research is lowering the

overhead of such messages by identifying the frequency or moments when they should

be sent, as Pend Li et al.[40] show.

Comparing the dataflow model performance with streaming, and comparing the

performance of using the streaming versus task based implementations of dataflow

was started in [41]. Their work relies on a special language and the comparison

with data-flow can only be taken as a guideline, as their dataflow implementation is
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not not based on a special streaming or data-driven implementation, relying on the

general Cilk model for short-lived tasks. For a single synthetic benchmark, their use of

different input language representations shows there is a lot of room for improvement.

Furthermore, the results for the benchmark they propose are not entirely positive for

their system. With SCnC, we show that consistently better results are possible for

a larger number of real applications, even without using a custom-built language,

compiler and intermediate representation while retaining a determinism guarantee.

Furthermore, we start with the general CnC model with a task-based implementation

that can offer best-of-breed performance [42].

Automatic “streamization” is usually used in projects targeting new architectures

such as GPUs or scientific stream processors, such as FT64 [43]. Steps towards

our goal of automatic streamization of programs for multicore processors have been

taken by GCC [44] by ”transforming loops into concurrent pipelines of concurrent

tasks that use streams to communicate and synchronize”. The differences between

this work and our project include their compiler based approach, their restrictive use

cases and finer granularity and their approach of using serial code as input compared

to parallel code.

Recent extensions to the OpenMP model show how some programs, such as BZip

are difficult to parallelize efficiently using a task based model [45], unless exploit-

ing pipeline parallelism. Using additional annotations to allow the communication

through FIFO queues between tasks, the performance can be drastically improved

for several programs [46], providing yet another motivation for integrating streaming

with task parallelism.
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Chapter 8

Conclusion and future work

8.1 Conclusion

This work has established that integrating task and streaming parallelism by using

the same high level modelling language, such as Concurrent Collections, is both pos-

sible and profitable in both time and space. The results show good speedup for the

applications studied, as well as reductions in memory footprint.

We also show that converting task based parallelism to streaming need not be

difficult (when a solution exists) and we give an algorithm that can help with this

task, both at the graph level (CnC specification) and at the implementation level

(get/put parameters).

We also propose using places for dynamic parallelism in slit-join nodes, as an

additional way to obtain performance, while maintaining an abstraction level close to

the Concurrent Collections model.

8.2 Future Work

In addition to the current SCnC model, it would be interesting to add support for

dynamic pipeline parallelism. Offering both split-join and pipeline parallelism would

complete our dynamic parallelism work for the streaming model. This possible ex-

tension is needed to better implement applications such as the Sieve of Eratosthenes

which offers even better performance for pipeline implementations.
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The integration of the task based and streaming runtimes inside a single com-

mon runtime that can adaptively decide which approach to use for which program

component is an interesting direction of research: we can imagine algorithms that

automatically analyse a CnC specification, detect if parts of it can be converted to

streaming parallelism and if it is profitable to do such a conversion. This integration

would lead to faster programs and less worry for the performance expert who tunes

the application.

Extensions of the algorithms that identify if an application can be used with

the streaming runtime would help streaming reach more applications. Right now

some streaming patterns are not accepted (such as multiple consumers when all the

consumers consume the same data). There are subtle conditions here that may cause

deadlocks in the streaming case that would not appear in a task based implementation,

thereby requiring that we avoid those conditions.

Implementing more applications and auto-generating the dynamic parallelism run-

time code are other notable directions for future work.
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