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ABSTRACT

With the shift to exascale computer systems, the importance of pro-
ductive programming models for distributed systems is increasing.
Partitioned Global Address Space (PGAS) programming models aim
to reduce the complexity of writing distributed-memory parallel
programs by introducing global operations on distributed arrays,
distributed task parallelism, directed synchronization, and mutual
exclusion. However, a key challenge in the application of PGAS
programming models is the improvement of compilers and runtime
systems. In particular, one open question is how runtime systems
meet the requirement of exascale systems, where a large number
of asynchronous tasks are executed.

While there are various tasking runtimes such as Qthreads, OCR,
and HClib, there is no existing comparative study on PGAS task-
ing/threading runtime systems. To explore runtime systems for
PGAS programming languages, we have implemented OCR-based
and HClib-based Chapel runtimes and evaluated them with an ini-
tial focus on tasking and synchronization implementations. The
results show that our OCR and HClib-based implementations can
improve the performance of PGAS programs compared to the ex-
isting Qthreads backend of Chapel.
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1 INTRODUCTION

While conventional message-passing programming models such
as MPI [13] can greatly accelerate distributed-memory programs,
the tuning effort required with message-passing APIs imposes addi-
tional burden on programmers. To improve software productivity
and portability, a more efficient approach would be to provide a
high-level programming model for distributed systems.

PGAS (Partitioned Global Address Space) programming lan-
guages such as Chapel, Co-array Fortran, Habanero-C, Unified
Parallel C (UPC), UPC++, and X10 [5, 7, 8, 11, 21, 26] are examples
of highly productive programming models. PGAS programming
languages aim to reduce the complexity of writing distributed-
memory parallel programs by introducing a set of high-level paral-
lel language constructs that support globally accessible data, task
parallelism, synchronization, and mutual exclusion.

A key challenge in the development and use of PGAS program-
ming models is the improvement of compilers and runtime systems.
Because PGAS languages can be dynamic or used for dynamic ap-
plications, it is likely that a large number of asynchronous tasks are
executed. Hence, the tasking and threading mechanisms used by
PGAS runtime systems are essential components that greatly affect
performance. Important features of these runtime systems in exist-
ing literature include lightweight task creation/termination [25],
efficient synchronization [23], and efficient task scheduling includ-
ing work-stealing [3, 17].

There have been several tasking runtime systems designed for
PGAS languages. For example, Qthreads [25] is a threading library
for spawning and managing lightweight threads, which has been
used for Chapel’s tasking runtime over the years. The Open Com-
munity Runtime (OCR) [19] was designed to meet the needs of
extreme-scale computing through an event-driven programming
model with event-driven tasks (EDTs) and data blocks. HClib is
a library-based tasking runtime and API, which is semantically
derived from X10 [7] and focuses on lightweight task creation/ter-
mination and flexible synchronization.

While several tasking and threading runtimes have been de-
signed for or co-designed with PGAS programming models, there
is no comparative study on PGAS tasking/threading runtime sys-
tems using modern PGAS applications. To study and explore fu-
ture runtime systems for PGAS languages, we have implemented
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1 // begin construct

2 begin {

3 task(); // spawns a task executing task()

4 }

5 // cobegin construct

6 cobegin {

7 taskA(); // spawns a task executing taskA()
8 taskB(); // spawns a task executing taskB()
9 }

10 // coforall construct

11 coforall i in 1..N {

12 // spawns a separate task for each iteration
13 task(i);

14 }

15 // forall construct

16 forall i in 1..N {

17 // may use an arbitrary number of tasks

18 task(i);

19 }

Figure 1: Task parallelism constructs in Chapel.

OCR-based and HClib-based tasking/threading Chapel runtimes
and conducted performance evaluations using various Chapel pro-
grams.

This paper makes the following contributions:

(1) Implementation of new tasking/threading runtime systems
for Chapel using the following runtimes:
e Open Community Runtime: An asynchronous event-driven
runtime.
e Habanero C/C++ Library (HClib): A compiler-free light-
weight tasking runtime.
(2) Performance evaluations and analyses using numerical com-
puting, graph analytics, physical simulation, and machine
learning applications written in Chapel.

2 CHAPEL LANGUAGE

2.1 Chapel Overview

Chapel is an object-oriented PGAS language developed by Cray Inc.
Development of the Chapel language was initiated as part of the
DARPA High Productivity Computing Systems program (HPCS).
The HPCS program sponsored new work in highly productive lan-
guages for next-generation supercomputers. This section briefly
summarizes key features of the Chapel language, compiler, and
runtime.

2.2 Chapel Language Features

Chapel is classified as an APGAS (Asynchronous + PGAS) program-
ming language, where each node can run multiple tasks in parallel
and create new local or remote tasks. Also, Chapel supports mul-
tiple parallel programming paradigms including a global-view
model and a local-view model. Thus, programmers can choose
their programming model depending on their situation.
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1 var sy$: sync int; // value = 0, state = empty
2 begin {

3 // 1. blocked until the state of sy$ is full
4 // 2. read the value of sy$

5 // 3. the state of sy$ is set to empty

6 var sy = sy$; // equivalent to sy$.readFE();
7 writeln("new task spawned");

8 writeln("sy = ", sy);

9

10 }

11 // 1. blocked until the state of sy$ is empty
12 // 2. write 1 to the value of sy$

13 // 3. the state of sy$ is set to FULL

14 sy$ = 1; // equivalent to sy$.writeEF(1);

Figure 2: Sync variables in Chapel.

Dynamic Task Creation: Chapel has several parallel constructs
related to dynamic lightweight task creation. The list below sum-
marizes those constructs. Figure 1 illustrates examples of their use.

e begin: spawns a task running independently from the main
thread of execution. (Line 2-4 in Figure 1)

e cobegin: spawns a block of tasks, one for each statement.
The current (main) thread is blocked until all the tasks within
the cobegin are complete. (Line 6-9 in Figure 1)

e coforall: spawns a separate task for each iteration. The
current (main) thread is blocked until every iteration is com-
plete. (Line 11-13 in in Figure 1)

e forall: similar to coforall, but Chapel may choose to use
an arbitrary number of tasks to execute the loop (e.g., by
loop chunking). (Line 16-19 in Figure 1)

Synchronization: Chapel uses synchronization variables (sync
variables) to support flexible synchronization between tasks. A
sync variable has a logical state and a value. The logical state can
be either full or empty. When writing/reading a sync variable, the
execution can be blocked depending on the state of the sync variable.
For example, the read of sy$ (Line 6 in Figure 2) is blocked until
the state is set to full (Line 14 in Figure 2). Then, the state of sy$ is
set to empty after the read. Conversely, the write of sy$ (Line 14 in
Figure 2) is blocked until the state is empty. In this case, note that
the initial state of sy$ is empty. After the write, the state is set to
full, resulting in unblocking the read of sy$ in Line 6. It is worth
noting that the name of sync variables ends in $ by convention.

Normal reads and writes of sy$ are equivalent to sy$.readFE()
and sy$.writeEF () respectively. These functions are defined in the
Chapel sync variable API, which offers more control in operating
on sync variables. For example, sy$.readEF () is blocked until
the state is empty, and the state is set to full after the read. The
sync variable APIs also support sy$.writeFE(), sy$.readfFF(),
sy$.writeFF () and so on. More details can be found in the Chapel
specification [5].
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Figure 3: Chapel Runtime API
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1 // Chapel code with the begin construct

2 begin {

3 task(); // spawns a task executing task()
4 }

5

6 // C code generated by the Chapel compiler
7 void task() { ... J};

8 fid = ...; // get a function id of task()
9 chpl_task_addToTaskList(fid, ...);

10

11 // Chapel runtime: Chapel Tasking API

12 void chpl_task_addToTaskList(fid, ...) {
13 // getting a function pointer to the task
14 chpl_fn_p fptr = chpl_ftable[fid];

15 if (serial_state == true) {

16 //directly invoke the function

17 fptr(...)

18 } else {

19 // spawn a task
20 spawn(fptr) // Discussed in Section 4
21 }
22 3}

Figure 4: Code generation and runtime implementation for
begin

3 CHAPEL’S TASKING LAYER
3.1 Chapel Compiler and Runtime

The Chapel compiler is written in C++ and generates C code which
can then be compiled by any C compiler. The C code contains
API function calls defined in the Chapel runtime for enabling com-
munication, dynamic tasking, memory allocation, I/O, and so on
(Figure 3). In the runtime, those API functions are actually wrap-
per calls to third-party libraries, enabling users to choose between
concrete implementations of runtime capabilities by setting envi-
ronment variables depending on their configurations and platforms.
This also helps runtime designers to integrate a new library into
the Chapel runtime.

3.2 Chapel Tasking/Threading API

For dynamic tasking and synchronization between tasks, the Chapel
runtime defines 9 synchronization functions, 23 tasking functions,
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1 // Chapel code with sync variables

2 var sy$: sync int;

3 begin { var sy = sy$; ... }

4 sy$ = 1;

5

6 // C code generated by the Chapel compiler
7 void task() {

8 chpl_sync_waitFullAndLock();

9 int sy = sy$;

10 chpl_sync_markAndSignalEmpty();

11 }

12 fid = ...; // get a function id of task()
13 chpl_task_addToTaskList(fid, ...); // creating a task
14

15 chpl_sync_waitEmptyAndLock();

16 sy$ = 1;

17 chpl_sync_markAndSignalFull();

18

19 // Chapel runtime:
20 // Discussed in Section 4

Figure 5: Code generation and runtime implementation for
sync variables.

and 5 threading functions. In other words, adding a new task-
ing model requires implementing these functions on a new task-
ing/threading library. Table 1 summarizes the important Chapel
Tasking/Threading API functions. This section provides a brief
overview of dynamic task creation and synchronization using code
examples (Figure 4 and Figure 5). More detailed discussions of the
implementation of these APIs with Qthreads, OCR, and HClib can
be found in Section 4.

Dynamic Task Creation: The Chapel runtime firstly creates a
main task that runs the compiler-generated main function of a
Chapel program. Then, the main task dynamically creates asynchro-
nous tasks as it encounters Chapel tasking/threading API functions
derived from begin, cobegin, coforall, and forall constructs.
Based on our profiling, we have identified that the following two
API functions are essential:

o chpl_task_callMain():Create a task that runs the compiler-
generated main function and then execute it.
e chpl_task_addToTaskList(): Create a task and execute it.

Figure 4 shows code generation and Chapel Tasking API imple-
mentations for the begin construct. The begin construct is com-
piled to the chpl_task_addToTaskList() API and passed the ID
of the function being executed as an asynchronous task. In the run-
time, chpl_task_addToTaskList() first gets a function pointer
to the specified function. Based on whether serial execution is
enabled, this API executes the task either synchronously by directly
invoking the function-pointer or asynchronously by spawning a
task. When serial execution is not enabled, it packs all the re-
quired parameters into a struct and passes it to the spawned task.
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Kind | API Description
chpl_task_init(); Call before executing the main function (Initialization).
chpl_task_callMain(); Create a task that runs main and then execute it.
chpl_task_exit(); Called when exiting.
chpl_task_yield(); Yield the execution to another thread (e.g., by calling sched_yield()).
chpl_task_addToTaskList(); Create a task and execute it (e.g., begin, cobegin, coforall, and forall).
chpl_task_executeTasksInList(); | Do nothing in most of the available tasking models (e.g., Qthreads, OCR, and HCLib).
chpl_task_getId(); Returns the ID of thread.

Task | chpl_task_get/setSerial(); Usually getSerial returns false - i.e., create tasks.
chpl_task_getMaxPar(); Returns the number of workers in the node.
chpl_task_getCallStackSize(); Returns the size of call stack size in the node.
chpl_task_createCommTask(); Create a dedicated task for communication (For multi-locale execution).

Create a task that runs a function specified with function table indices
chpl_task_taskCallFTable(); and then execute it (For multi-locale execution).

Create a task that runs the logical continuation of some other task
chpl_task_startMovedTask(); and then execute it on a different node (For multi-locale execution).
chpl_sync_lock(sync_var s); Acquire a lock on the specified sync variable.
chpl_sync_unlock(sync_var s); Release a lock on the specified sync variable.
chpl_sync_initAux(); Initialize meta-information associated with a sync var.

Syne chpl_sync_destory(); Destroy meta-information associated with a sync var.
chpl_sync_waitFullAndLock(); Block until the specific sync variable is FULL.
chpl_sync_waitEmptyAndLock(); Block until the specific sync variable is EMPTY.
chpl_sync_markAndSignalFull(); | Set the specific sync variable to FULL.
chpl_sync_markAndSignalEmpty(); | Set the specific sync variable to EMPTY.

Table 1: Important Chapel Tasking API (14 tasking and 8 synchronization functions based on profile.)

Interestingly, all the begin, cobegin, coforall, and forall con-
structs eventually call chpl_task_addToTaskList() APIfunction,
meaning that the runtime does not differentiate each construct.
This emphasizes the importance of lightweight task creation in the
Chapel runtime.

Synchronization: Briefly, Chapel’s sync variables are implemented
using the following four functions:

e chpl_sync_waitFullAndLock(s): Block until the specific
sync variable s is full.

e chpl_sync_waitEmptyAndLock(s): Block until the specific
sync variable s is empty.

e chpl_sync_markAndSignalFull(s): Atomically set the state
of the specific sync variable s to full.

e chpl_sync_markAndSignalEmpty(s): Atomically set the state
of the specific sync variable s to empty

Figure 5 illustrates the code generated and Chapel Tasking API
implementation for sync variables. The read of the sync variable
(Line 3 in Figure 5) is compiled to 1) chpl_sync_waitFullAndLock(s),
2) the read of the value of the sync variable, and 3) chpl_sync_mark
AndSignalEmpty(s). Similarly, the write of the sync variable (Line
4 in Figure 5) is compiled to 1) chpl_sync_waitEmptyAndLock(s),
which is unblocked immediately since the initial value of the sync
variable is empty, 2) the write of the value of the sync variable, and 3)
chpl_sync_markAndSignalFull(s) that unblocks the execution
of the spawned task.

4 IMPLEMENTING TASKING RUNTIMES

This section discusses the detailed implementation of Chapel Task-
ing/Threading API with Qthreads, the Open Community Runtime
(OCR), and the Habanero C/C++ Library (HClib) [12]. While the
Qthreads implementation is not a part of our contributions, it is
worth describing it as the baseline of the three runtime systems.

4.1 Qthreads

4.1.1 Summary. Qthreads [25] is designed for executing and
managing a large number of threads and is Chapel’s default tasking
runtime (CHPL_TASKS=qthreads). Threads of Qthreads are created
with small stacks (4k-8k) and are entirely in user-space. In the
following section, we will give a brief summary of how the Qthreads
API is used in implementing the Chapel runtime.

4.1.2  Dynamic Task Creation. The current Qthreads implemen-
tation uses the qthreads_fork_copyargs() API to spawn a new
thread when a serial task is not requested. As of this writing,
nemesis is the default thread scheduler used for Chapel, which was
originally developed for a communication subsystem for MPICH2.
It employs lock-free FIFO queues using atomic swap and compare-
and-swap. It is worth mentioning that the nemesis scheduler does
not perform any work-stealing.

4.1.3  Synchronization. For synchronization between threads,
Qthreads provides full/empty bits (FEBs), where a thread can wait
on the state of a specific word of memory. Interestingly, Qthreads’
synchronization API is analogous to Chapel’s sync variable APT and
the implementation of sync variable with Qthreads is straightfor-
ward. For example, qthread_readFE() and qthread_writeEF()
have the same semantics as the Chapel APIs sy$.readFE() and
sy$.writeEF () discussed in Section 2, and are used for implement-
ing reads/writes of sync variables.

4.2 Open Community Runtime

4.2.1  Summary. The Open Community Runtime (OCR) [19] is a
community-led effort to develop a runtime system for extreme scale
computing. The OCR execution model is based on performing com-
putation using dynamic tasks named event driven tasks(EDT) which
are synchronized using events. To help with data management, OCR
includes the concept of a data-block, which is a relocatable chunk
of memory.
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Each EDT contains one or more pre-slots and one post slot, each
of which can have an event attached to it. An EDT is scheduled
for execution when all the events attached to pre-slots have been
satisfied. Once the EDT finishes execution, it satisfies the event
attached to its post-slot. There is also a special type of EDT called
finish EDT which satisfies its post-slot only after all EDTs launched
within its scope (i.e., all successor EDTs) have completed execution.

4.2.2  Dynamic Task Creation. As mentioned in Section 3, to en-
able dynamic task creation, we need to support the chpl_task_add
ToTaskList() APIin the tasking layer. When a serial task is not
requested, the OCR tasking layer implementation creates an EDT
using the ocrEdtCreate() API and passes all its parameters by
packing them into a struct.

To enable the chpl_task_callMain() API, which eventually
invokes the compiler generated main() function, we use a finish
EDT, which returns an event on which the runtime can wait for all
successor tasks to complete. After the event becomes satisfied, the
Chapel runtime invokes a finalization routine. Because the OCR
specification does not directly allow blocking within a task, an
ideal way to combine chpl_task_callMain() with the runtime
finalization would be to create an EDT which waits on the output
event of chpl_task_callMain() and then performs the finaliza-
tion. However, this would involve making changes outside the
Chapel tasking layer. To keep our changes to within the tasking
layer, we used an OCR extension API to perform a blocking wait
until chpl_task_callMain() is completed.

4.2.3  Synchronization. Because OCR does not directly support
synchronization within an EDT, we used pthread_mutex and
pthread_condition_variables in similar ways it is used in other
pthread-based tasking layer implementations in Chapel. The chpl
_sync_lock() and chpl_sync_unlock API functions in the task-
ing layer are mapped to pthread_mutex_lock() and pthread
_mutex_unlock().

chpl_sync_waitFullAndLock () waits on a condition variable
for the state to be set as full. chpl_sync_markAndSignalFull() is
the corresponding signaling call which sets the state to full and sig-
nals the condition variable. chpl_sync_waitEmptyAndLock() and
chpl_sync_markAndSignalEmplty() performs similar operations
when the state is empty instead of full.

4.2.4  Validation. To validate the correctness of our tasking layer
implementation, we ran the parallel section from the test-suite
provided in the Chapel repository. It includes 251 tests out of which
we successfully passed 229 tests. In the 22 failed test cases, one case
was due to the fact that we do not set the call-stack size given as a
command line parameter. The test was setting the call-stack size to
a very small value and expected the test to fail, whereas in our case
it passed since we ignored that parameter. The remaining 21 failures
were due to deadlock introduced by the pthread condition variable
used to implement sync variables. When the number of tasks trying
to access a sync variable exceeds the number of OCR workers, all
the workers just remain to wait for the signal. However, since OCR
is not aware of the wait performed by the condition variable, it
cannot move the task out of execution and schedule another one.
Therefore, all workers remain deadlocked.
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4.3 HClib

4.3.1 Summary. HClib is a lightweight, work-stealing, task-
based programming model and runtime that focuses on offering
simple tasking APIs with low overhead task creation. Similar to
Qthreads, HClib is entirely library-based (i.e. does not require a
custom compiler, as is the case for Chapel) and supports both a C
and C++ APL HClib’s runtime consists of a static thread pool, across
which tasks are load balanced using lock-free concurrent deques.
Like Qthreads, HClib also uses runtime-managed, user-level call
stacks to allow suspension of tasks without blocking CPU cores.
Locality is a first-class citizen in the HClib runtime, which uses
hierarchical place trees (HPTs) to encourage load balancing with
nearby threads.

At the user-facing API level, HClib exposes several useful pro-
gramming constructs. A brief summary of the relevant APIs is
below:

(1) hclib_async: Dynamic, asynchronous task creation.

(2) hclib_forasync: Dynamic, bulk, asynchronous task cre-
ation (i.e. parallel loops).

(3) hclib_finish: Bulk, nested task synchronization. Waits on
all tasks spawned within a given scope.

(4) hclib_future and promise: Standard single-assignment fu-
ture and promise objects. Waiting on a future causes a task to
suspend, but does not block the underlying runtime thread.

(5) hclib_launch: Initialize the HClib runtime, including spawn-
ing runtime threads.

4.3.2  Dynamic Task Creation. Supporting dynamic Chapel task
creation on the HClib tasking backend via the chpl_task_add
ToTaskList API is relatively straightforward. If a serial task is
requested, we naturally short-circuit to a direct function call. Other-
wise, the closure for the Chapel task is copied to a newly allocated
buffer on the heap and passed to the hclib_async task creation API,
which then immediately schedules the task on the HClib runtime.

The main entrypoint to the Chapel program must also be wrapped
in a call to hclib_launch so as to initialize the HClib runtime be-
fore any tasks are spawned. hclib_launch implicitly waits for all
tasks spawned in the runtime, so no additional synchronization is
necessary. This requires a very small change to the Chapel runtime
(~5LOC).

4.3.3  Synchronization. The primary constructs used for point-
to-point synchronization in HClib are futures and promises, so
it was natural to focus on them when mapping the Chapel full-
empty synchronization APIs on to HClib. HClib futures also have
the desirable property of not blocking OS threads during blocking
synchronization through their use of runtime-managed call stacks.
In this section we present our initial implementation of the Chapel
synchronization APIs on promises and futures, and then describe
additional optimizations done on top of that initial implementation.
Promises and Futures: A wait or signal on a Chapel sync variable
eventually maps to a call to chpl_sync_lock or chpl_sync_unlock
in the tasking layer, both of which accept a chpl_sync_aux_t data
structure representing the sync variable being synchronized on.

In this initial implementation of the synchronization APIs on
HClIib promises and futures, we add a queue of hclib_promise_t
objects to the chpl_sync_aux_t data structure. When a Chapel
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task waits on a synchronization variable, it allocates a promise,
adds that promise to the end of the queue for that sync variable,
and immediately waits on the future object associated with that
promise.

When signalling on a Chapel sync variable, the calling task
simply removes the head of the promise queue associated with that
sync variable and puts into it, waking up the next waiting HClib
task.

We use pthread mutexes to protect these promise lists from

concurrent access by multiple Chapel tasks. While this design is
attractive in its simplicity, the use of a single pthread mutex per
sync variable is naturally a source of concern in the scalability of
this implementation.
Additional Optimizations using Ticket Locks: To address pos-
sible scalability issues with the initial implementation of Chapel
synchronization APIs on HClib, we explored the extension of ticket
locks [20] for managing concurrent accesses to sync variables. To
be more specific, the ticket locks were used for implementing the
chpl_sync_lock or chpl_sync_unlock API functions.

Ticket locks maintain the FIFO guarantees of our initial imple-
mentation. We use two stages of inter-task coordination in our
ticket lock-based sync variable implementation. In the first stage,
we use a spin wait with a timeout to gain access to the sync variable.
This offers lighter weight synchronization and waiting than mu-
texes, particularly in the face of little contention for sync variables.
However, a spin wait has the downside of consuming CPU cycles.
Therefore, if the spin wait timeout is reached, we switch to an ap-
proach that is similar to our initial promise-based implementation
which allows us to give up the current OS thread.

4.3.4  Validation. To validate the correctness of our implementa-
tion, we ran the parallel section from the test-suite provided in the
Chapel repository. It includes 251 tests out of which we successfully
passed 230 tests. In the 21 failed test cases, one case was due to
the fact that we do not set the call-stack size given as a command
line parameter as in OCR. The remaining 20 failures were due to
deadlock introduced when the number of tasks trying to acquire
a sync variable is more than the number of workers. During this
case, all the workers just spins trying to acquire the sync variable,
thereby starving the task which was supposed to release the sync
variable.

5 PRELIMINARY EVALUATION
5.1 Experimental Protocol

Purpose: The goal of this performance evaluation is to validate
our Chapel tasking implementation on OCR and HClib and to
conduct a comparative performance evaluation. For that purpose,
we benchmark the performance of PGAS programs on different
Chapel’s tasking/threading runtimes.

Machine: We present the performance results on a Cray XC30™
supercomputer. The platform has multiple Intel E5 nodes connected
over the Cray Aries interconnect with Dragonfly topology with
23.7 TB/s global bandwidth. Each node has two 12-core Intel Xeon
E5-2695 v2 CPUs at 2.40GHz and 64GB of RAM. Also, only a single
node of the platform was used to evaluate this work.

A. Hayashi et al.

Benchmarks: Table 2 lists five Chapel benchmarks that were used
in these experiments. We chose these benchmarks as they use stan-
dard parallel constructs including begin, forall, forall with an
intent (reduce), and coforall. UTS [22] is an unbalanced tree
search benchmark that simulates different types of load imbalance.
Stream is a simple vector kernel. Label Propagation is an algo-
rithm that identifies communities of users [1]. KMeans is a well-
established, unsupervised machine learning algorihm that divides
data samples into k clusters. CoMD [15] is DoE proxy application
that performs molecular dynamics simulations. All the benchmarks
except CoMD [9, 15] can be found in the Chapel repository [4].
Experimental variants: Each benchmark was evaluated by com-
paring the following runtimes:

e Qthreads: Chapel’s default tasking runtime based
on the Qthreads library, configured by setting
CHPL_TASKS=qthreads.

e OCR (Open Community Runtime): We used two
OCR-based runtimes that were configured by setting
CHPL_TASKS=ocr.

— OCR-REF: A reference OCR implementation by Intel [16].

— OCR-VSM: An alternative OCR implementation on top of
Intel Threading Building Blocks [10] by the University of
Vienna. OCR-VSM, which is for shared-memory systems
only, was used for the evaluation.

e HClib: Our HClib-based runtime that was configured by
setting CHPL_TASKS=hclib.

For all the variants, we used the Chapel compiler 1.14.0 with
the --fast option. The Chapel runtimes were built using the In-
tel Compiler 17.0.2 unless otherwise indicated. For the Qthreads
variant, the Chapel runtime uses Qthreads 1.11. For OCR variants,
the OCR-REF variant is based on Intel’s OCR 1.1.0, and the OCR-
VSM variant is based on Intel TBB 2017 Update 7. For fair and clear
performance comparisons, all the variants were executed within a
single socket of the platform, meaning that 12-cores were used for
the evaluation to avoid inter-socket communication. Performance
was measured in terms of elapsed milliseconds from the start of
parallel computation(s) to their completion. We ran each variant
five times and reported the median value.

5.2 Preliminary Performance Results

Figure 6 shows absolute performance numbers for each variant. In
general, the results show that 1) the HCIib variants are the fastest
due to the efficient task creation and scheduler, 2) the OCR-VSM
variants are faster than the OCR-REF variants because the TBB-
based implementation is better than the reference implementation,
and 3) the Qthreads variants are in some cases faster, in some cases
slower than the other variants.

A key difference between the Qthreads variants and the others
is work-stealing (see Section 4.1), which can affect the performance
of irregular applications such as UTS and KMeans. For UTS, the
Qthreads variant is the slowest due to the lack of work-stealing.
Based on our profiling with the Linux profiler perf, the Qthreads’s
scheduler (qt_scheduler_get_thread) is a major performance
bottleneck whereas the other variants focus on the main computa-
tion (shal_compile). Conversely, for KMeans, the Qthreads variant
is the fastest. Additional experiments with Qthreads confirmed that
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Benchmark Applicagion Field Description Data Size Constructs Used
UTS [22] Tree Search Unstructured Tree Seach (Deque) T1 Tree (4M nodes) begin
Stream Numerical Computing A Simple Vector Kernel n = 2% forall
Labelprop [1] Graph Analytics An Analysis of Tweets on Twitter nUsers=10%, nTweets=10° forall
KMeans Machine Learning K-Means Clustering n=10",k =30,dim=3 reduce
CoMD [15] Simulation Molecular Dynamics Simulation | Cu, Lennard-Jones, Grid = 20 X 20 X 20 coforall
Table 2: Benchmarks used in our evaluation.
B Qthreads OCR-REF OCR-VSM BHClib
8 Lower is better 1.53
Qc 15
ENEr
g E Q 1 e
g2 037 =
<g 05 0.170.16 0.14 0.13 19,,0-24 029
o 0 777ZANSS = %k\\\\E A:\ ==
Stream Labelprop Kmeans CoMD
Figure 6: Overall Performance Numbers on the Cray XC30™ supercomputer.
o 0.2 16.85% BQthreads-nemesis (FEBs) BQthreads-sherwood (FEBs)
'E BHClib (Promise/Futures) BHClib (Promises/Futures + Ticket Locks)
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Figure 7: The percentage of tasking overhead (UTS).

the performance of UTS improves and that of Kmeans degrades
when the sherwood scheduler with work-stealing is enabled.

For CoMD, we demonstrated that OCR-VSM can be slower than
the other variants in a case where many tasks are spawned at the
same time with the coforall construct. Based on our analysis with
a synthetic coforall program, task creation overheads of OCR-
VSM can be larger if many tasks are spawned in a short period.

Additionally, Figure 7 shows the percentage of tasking overhead
out of the overall execution time and the results show that HClib
is more light weight than Qthreads. These numbers are obtained
by calculating (T1 — Tseq)/Tseq, Where Tseq is the execution time
of sequential UTS and Tj is the single-thread execution time of
parallel UTS. Note that the OCR overhead is not reported because
T; can not be easily measured for OCR.

5.3 The Impact of Sync Variable
Implementation

While Chapel’s sync variables provide flexible synchronization
between tasks, their implementation can significantly affect per-
formance. To explore different sync variable implementations, we
benchmark their performance on top of Full/Empty Bits (FEBs)
in Qthreads, Promises/Futures in HClib, and the optimized Ticket
Lock-based version on HClib discussed in Section 4. To that end, we
used another version of UTS, UTS-REC, which is a recursive ver-
sion that makes extensive use of sync variables. In this experiment,
the Chapel runtimes were built by the GNU compiler collection

Figure 8: The impact of sync variable optimization using a
Ticket Lock (UTS-REC).

(GCC) 6.3.0 due to some errors in supporting atomic intrinsics in
the Intel Compiler.

Figure 8 shows absolute performance numbers for each variant.
For fair comparison, we provide the performance of the sherwood
scheduler as well as the nemesis scheduler to show the impact
of work-stealing. The Qthreads variants are faster than the HClib
variant with Promises/Futures. However, the optimized version of
HClib outperforms the Qthreads variants. The results emphasizes
the importance of an optimized sync variable implemenation.

6 RELATED WORK

There is an extensive body of literature on PGAS programming
models and task-based runtime systems.

6.1 PGAS + Tasking

X10 [7] provides a async-finish parallel programming model. Like
Chapel, X10 relies on compiler transformation to provide dynamic
tasking capabilities and uses a work-stealing scheduler for load
balancing of the dynamically spawned asynchronous tasks.
Co-Array Fortran [21] is an SPMD-style PGAS programming
model, which was integrated into Fortran 2008 standard. UPC++[26]
is a compiler-free PGAS library that provides a PGAS programming
model with C++ templates. OpenSHMEM [6] is a low-latency com-
munication library for PGAS programming that focuses on small- to
medium-sized packets. In terms of task parallelism, these program-
ming models normally rely on well-established threading models
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such as OpenMP and pthreads, but do not intrinsically support
dynamic task parallelism.

Habanero-UPC++ [18] extends UPC++ to support a tight inte-
gration of intra-node and inter-node dynamic task parallelism by
providing C+11 lambda-based user interfaces. Similarly, Async-
SHMEM [14] integrates the existing OpenSHMEM reference im-
plementation with a thread-pool-based, intra-node, work-stealing
runtime based on HClib.

6.2 Pluggable Parallel Runtimes

There is a smaller body of work exploring the ability to plug dif-
ferent parallel or tasking runtimes into the backend of higher level
programming system, largely as a result of higher level program-
ming systems either 1) lacking a well-defined, compartmentalized
tasking layer, or 2) making subtle assumptions about the tasking
runtime they sit on top of.

For example, while Legion [2] has a well-defined tasking API
there are no published results to-date on any runtime other than
the Realm [24] runtime released with it. However, work to support
Legion on top of OCR is in-progress.

7 CONCLUSIONS

In this paper, we implemented OCR and HClib-based Chapel run-
time systems to explore tasking runtime systems for PGAS pro-
grams. To do so, we first identified an important subset of the Chapel
tasking API and implemented those API functions on top of the OCR
and HClib libraries. We conducted performance evaluations using
numerical computing, graph analytics, physical simulation, and
machine learning applications written in Chapel. The results show
that our OCR and HClib-based implementations can improve the
performance of PGAS programs compared to the exisiting Qthreads-
based implementation. In particular, we identified that 1) optimizing
dynamic task creation, 2) optimizing sync variable implementation,
and 3) optimizing work-stealing schedulers are essential for further
performance improvements of PGAS programs.

For future work, we plan to conduct a comparable performance
evaluation for distributed Chapel programs.

Another direction of this work is to add more flexibility in sup-
porting high level constructs to Chapel’s tasking layer because the
current implementation (including Qthreads implementation) does
not differentiate each construct. One example would be introducing
a divide and conquer strategy (e.g., cilk_for) for executing forall
and coforall constructs.
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