Auto-Grading for Parallel Programs

Maha Aziz
Department of Computer
Science, Rice University

Heng Chi
Department of Computer
Science, Rice University

Anant Tibrewal
Department of Computer
Science, Rice University

6100 Main St 6100 Main St 6100 Main St
Houston, TX Houston, TX Houston, TX
mta2@rice.edu hc23@rice.edu avt3@rice.edu

Max Grossman
Department of Computer
Science, Rice University

6100 Main St

~ Houston, TX

jmg3@rice.edu

ABSTRACT

Fundamentals of Parallel Programming (COMP 322) is a re-
quired course for all Computer Science majors at Rice Uni-
versity. It introduces students to several basic concepts of
parallel programming and parallel algorithms and follows a
“pedagogic approach that exposes students to intellectual
challenges in parallel software without enmeshing them in
jargon and lower-level details of today’s parallel systems”.
The material from COMP 322 has also been used in related
courses at other universities including Harvey Mudd College
and Brigham Young University.

Currently, programming assignments in this class are man-
ually graded by teaching assistants (TAs) for correctness,
performance, style, and documentation. Students receive
limited feedback as they progress through the assignment
because TAs grade their homework only after the submis-
sion of a final version. Auto-graders are a common solution
to this problem: they allow students to receive feedback as
they work on their assignments rather than only after they
have completed them. This results in higher quality sub-
missions by allowing students to learn from mistakes as they
make them, rather than days or weeks later. It also prevents
the development of bad habits or mislearned knowledge by
addressing mistakes early.

Web-CAT is an advanced, customizable, and comprehensive
automated grading system developed at Virginia Tech. It
supports many models for program grading, assessment, and
feedback generation. This paper describes our work on ex-
tending Web-CAT to address the requirements of Rice Uni-
versity’s introductory parallel programming course, thereby
creating infrastructure that can be used for similar courses

Vivek Sarkar
Department of Computer
Science, Rice University

6100 Main St
Houston, TX
vsarkar@rice.edu

at other universities and in online courses.

Keywords
Parallel programming, Auto-grading, Habanero Java, Web-
CAT

1. BACKGROUND
1.1 Motivation

All undergraduate Computer Science students at Rice Uni-
versity are required to take the Fundamentals of Parallel
Programming course (COMP 322) to introduce them to ba-
sic parallel programming concepts. Currently, programming
assignments in this class are manually graded by teaching as-
sistants (TAs) for correctness, performance, style, and doc-
umentation. This approach to grading becomes challenging
for the TAs, in the face of the current rapid increase in the
number of CS majors. At the same time, students receive
limited feedback as they progress through the assignment
because TAs grade their homework only after the submis-
sion of a final version.

Auto-graders are a common solution to this problem: they
allow students to receive feedback as they work on their as-
signments rather than only after they have completed them.
This results in higher quality submissions by allowing stu-
dents to learn from mistakes as they make them, rather than
days or weeks later. It also prevents the development of
bad habits or mislearned knowledge by addressing mistakes
early. Further, auto-grading can enable TAs to focus on
providing important high-level subjective feedback on the
submissions, while lower-level objective feedback on the cor-
rectness and performance of the submissions can be provided
more promptly by the auto-grading system.

1.2 Overview of Habanero Java

The programming component of COMP 322 is carried out
using homework and labs. In these, students gain practi-
cal knowledge of implementing parallel programs and al-
gorithms using Habanero-Java (HJ). HJ is a parallel pro-
gramming model developed at Rice University. HJ is based
around four core concepts [12]:

// launches the code to be run by Habanero runtime
launchHabaneroApp(() —> {
// waits for all nested asynchronous tasks before exiting
finish(() —> {
// chunks data to give to cores
for (int chunk = 0; chunk < nchunks; chunk++) {
final int mychunk = chunk;
// creates an asynchronous task to process mychunk
asyne(() —> {

Figure 1: HJlib sample program

1. Lightweight dynamic task creation and termination us-
ing async, finish, future, forall, forasync, ateach con-
structs

2. Collective and point-to-point synchronization using
phasers

3. Mutual exclusion and isolation

4. Locality control using the ”place” abstraction.

The Habanero-Java library [2] (HJlib) is a library imple-
mentation of the HJ model in Java 8. HJlib is a paral-
lel programming library that combines several parallel pro-
gramming concepts. HJIib is utilized in the Fundamentals
of Parallel Programming course at Rice University (COMP
322) to teach students about introductory parallel program-
ming concepts [11]. Figure 1 shows an HJlib sample pro-
gram. This program is designed to split a large input data
into nchunks asynchronous tasks.

1.3 Current Grading Process

The current grading process in COMP 322 is defined by a
detailed rubric distributed to all graders. Performance and
correctness tests are run using scripts which submit batch
jobs to a compute cluster. These scripts output files which
are then automatically committed to a shared Subversion
(SVN) repository. Graders check out the results from SVN
and manually inspect each output file. They then assign the
submission a grade based on the rubric, the output of the
tests, and a student-provided report.

This process is inefficient, tedious, error-prone, and opaque
to students. It relies on human graders to manually and
consistently assign scores across many student submissions.
Each grader may have different styles and opinions in their
grading and scoring, causing assignments to not be graded
uniformly. They may also make mistakes in their grading
due to human errors, which could even include misreading
the rubric. In addition, manual grading takes a significant
amount of time, which 1) increases the latency between a
homework being submitted and being returned with feed-
back, thus resulting in students repeating the same mistakes
in labs and subsequent assignments, and 2) reduces the time
the teaching staff can spend on mentoring students. In this

work, we address these shortcomings by extending the Web-
CAT auto-grading tool to support performance and correct-
ness testing of parallel programs. Our approach promotes a
multi-phased grading process where each phase focuses on
individual facets of the assignment. This work enables:

e A more transparent grading process for the students

e A faster and simpler grading process with a tighter
feedback loop

e Automated performance evaluation of student-submitted
parallel programs

e Helpful feedback to students about their code

e Enablement of future offerings of COMP 322 modules
as massive open online courses (MOOCs) on parallel
programming, thanks to a scalable grading process

1.4 Course Requirements

In response to the problems currently present in the COMP
322 grading process, we have implemented several features
in the auto-grader that address these issues. These features
fulfill the goals outlined in Section 1.3 by automating the
majority of the grading process, increasing feedback given
to students, and allowing the course to potentially support
larger class sizes in the future.

Correctness grading of HJlib programs. As a first pass,
the auto-grader checks if the student submissions function
correctly on a limited set of tests. These are quick correct-
ness tests and are run with a single runtime thread so that
they don’t take up all the cores in the Web-CAT host. Rel-
ative to manual grading, performing correctness testing in
Web-CAT increases the speed of the grading and reduces
the number of errors in the grading. In addition, it ensures
that the grading is always done in a consistent and defined
process which increases grading transparency. This feature
paves the way for a potential creation of a MOOC because
the grading of assignments is significantly faster and more
automated. With manual grading, a MOOC would be in-
feasible as graders would not be able to keep up with the
number of submissions.

Performance grading of multi-threaded HJlib programs.
This feature allows the auto-grader to evaluate the efficiency

of the student submissions by measuring the performance

and scalability of student submissions across multiple test

inputs on a remote compute cluster. The benefits of this

feature similar to those for the correctness grading feature.

Manual grading of performance testing is difficult, so adding

an automated step for grading assignments on performance

tests that are executed on the same platform makes the en-

tire grading process more consistent and less error-prone.

Disaster recovery mechanism. To prevent an accidental
loss of student submissions or results, a backup feature has
been added to our auto-grading process. Student submis-
sions are backed up in a quick and reliable manner using

a standard version control tool. Students’ original code is
saved to the version control tool before grading, just in case
Web-CAT crashes or another unexpected issue occurs, and
the code and results are then saved after grading.

Static analysis tools. The use of static code analysis tools
has also been incorporated in our auto-grader to provide
students with additional feedback about their code. The
kinds of feedback provided range from style suggestions to
potential bugs in the code. Students can use this feedback to
improve their code, knowledge, and possibly increase their
grades.

Profiling. Performance profiling provides useful feedback
to students, helping students optimize their parallel algo-
rithm and implementation. In this work, we inform stu-
dents where the hotspots of their program are to facilitate
code optimization. This information would be difficult for
students to obtain otherwise and can be a valuable resource
for them, quickly pointing out the parts of their programs
that have the most potential for optimization.

Leaderboard. The leaderboard offers a real-time, anonymized

view of student submission performance across the entire
class. Students no longer have to guess at their performance
relative to others in the class, offering a more organic an-
swer to the question “how fast should my code be?”. The
students can view the top scores from each performance test
in a user-friendly webpage and see how well their code is do-
ing in relation to their peers.

2. EXISTING AUTO-GRADING
APPROACHES

Several auto-grading methods and programs exist already.
In this section we summarize past work on auto-grading, in-
cluding Mooshak [3], Marmoset [7], JavaBrat [8], Codewebs
[5], and built-from-scratch auto-grading systems, as well as
their limitations. In the next section, we describe the auto-
grading system that we’ve developed (based on Web-CAT)
to address many of these limitations.

2.1 Mooshak

Mooshak is an auto-grading program originally created to
host programming contests online. It has been used in pro-
gramming courses because it provides instant feedback for
assignments. It has a simple configuration and requires
Linux, Apache, and Tcl. Mooshak’s Ul is outdated and
unattractive, thereby increasing friction to its adoption by
students.

2.2 Marmoset

Marmoset was developed at the University of Maryland for
use in programming courses. Students submit their

projects along with unit tests which Marmoset uses to grade
the code. Students can then view the results of their sub-
mission on a webpage. Students are given a limited number
of “tokens” with which they can submit their programs, forc-
ing them to look over their code carefully before submitting.

Past experiences with Marmoset in our research group indi-
cated that it was complex to configure, install, and maintain,
in part due to lack of support.

2.3 JavaBrat

JavaBrat is an auto-grading system that allows students to
practice Java and Scala. It builds on the existing Labrat
Java grader and WebLabrat web interfaces. JavaBrat pro-
vides a more comprehensive and intuitive user interface than
WebLabrat and allows users to view the entire problem set.
It also allows users to easily add their own programming
problems to the problem set through the web interface. Ad-
ditionally, JavaBrat integrates with some online learning
platforms, such as Moodle. However, JavaBrat has an out-
dated user interface and requires many complex configura-
tions for homework, thereby making it too complicated to
serve as a foundation for the autograding tool that we aim
to build.

2.4 Codewebs

Codewebs is designed for massive open online courses
(MOOCs) and emphasizes efficient grading and searching of
student programs. It applies a method for indexing code
using “code phrases”, which reasons about the behavior of
code within their specific contexts. Student submissions are
treated as strings which are then parsed into abstract syntax
trees, allowing Codewebs to analyze the code without hav-
ing to actually run it. In a process known as probabilistic
semantic equivalence, it links the semantic meaning of code
with syntax to compare differing code so that it can de-
termine what the code is doing. In doing this, Codewebs is
also able to discern bugs in the code and provide feedback to
the students. Codewebs has demonstrated its effectiveness
by being successfully implemented in Stanford University’s
Machine Learning MOOC, which has over 120,000 students.
However, the requirements for its grading method include
the mechanism for parsing source code into an abstract syn-
tax tree and the manipulation of the nodes that will repre-
sent statements, identifiers or constants. However, this level
of investment is too complicated and expensive for us to un-
dertake in developing an autograding tool for our parallel
programming class.

2.5 Building a new auto-grading system

One option for our needs was, of course, to build a new
auto-grading system from scratch. We decided not to pur-
sue this option because of the added time and maintenance
costs. Using an existing system allows us to bypass creating
the core architecture of the system and much of the user
interface. While the requirements of COMP 322 are some-
what unique and not satisfied by any existing solution out
of the box, extending an existing auto-grader with sufficient
flexibility allows us to construct a system that fulfills our re-
quirements without building something completely new from
scratch.

3. OVERVIEW OF Web-CAT

Web-CAT is an auto-grading program designed to serve as
a shared infrastructure for computer science instructors and
students to assign, submit, and grade programming assign-
ments. It has several advantages:

e Extensibility Web-CAT’s design and architecture em-
phasizes extensibility, pluggability and flexibility. It
has an ANT-based automated build for Java projects
and supports arbitrary package structures. It uses
different plugins to test and score programs in differ-
ent programming languages. Web-CAT generates con-
crete, directed, and timely feedback to help the student
learn and improve.

e Portability Web-CAT’s core code is written in Java
and is stored as a WAR file. It runs on any standard
J2EE servlet container. The Web-CAT user interface
is accessed via the browser and contains all the nec-
essary tools and information for students and instruc-
tors. This structure allows Web-CAT to be portable
and easy to access.

e Usability Web-CAT is able to perform a wide vari-
ety of tasks. Students can submit assignments and
view feedback through the web interface. Additionally,
instructors can administer classes, assignments, and
grading plugins. The intuitive user interface makes it
easy for students, instructors, and administrators to
use Web-CAT and to configure system behavior.

Web-CAT Plugins. While the core Web-CAT code is not
trivially modifiable, the plugins that carry out the actual
testing, grading, and scoring of student submissions are de-
signed to be customizable. This allows instructors to tailor
Web-CAT to the specific needs of their courses. Instruc-
tors can either create new plugins from scratch or modify
existing plugins provided by Web-CAT. The Java plugin
that is included with Web-CAT already includes several fea-
tures, including “ANT-based compilation, JUnit processing
of student-written tests, support for instructor-written refer-
ence tests, PMD and Checkstyle analysis, and Clover-based
tracking of code coverage during student testing.” [1] Plu-
gin behavior is defined using a combination of Perl scripts
and configuration files. Many features of Web-CAT plugins
can be modified; for example, instructors can specify style
errors they want Checkstyle to search for, change the hints
that students receive for failed tests and errors in their code,
and adjust the scoring scheme for assignments. In this work,
we extend the existing Web-CAT Java plugin to fulfill the
specific requirements of the introductory parallel program-
ming course at Rice University, COMP 322.

4. HJlib PLUGIN FOR Web-CAT

Figure 2 shows our system diagram. The box labeled Web-
CAT is the central Web-CAT installation that orchestrates
the grading process. It is hosted on a Linux machine that
also stores the assignment information, submissions, and re-
sults data. The box labeled Version Control represents an
off-site repository that serves as a disaster recovery and con-
tent distribution mechanism. The box labeled Remote Clus-
ter represents a large, remote computing center that accepts
batch jobs. The Leaderboard is a separate Linux web server
that tracks the results of all student submissions and dis-
plays the anonymized results to students in the class. This
allows students to compare their own results with their peers
and understand where they stand in relation to their class-
mates.

Student

Homework
Submission

Student view of
Leaderboard

‘Web-CAT

Post request
for new
submissions

Student files
Student
files and Performance
performance and profiling

tests test results

Version Control Remote Cluster Leaderboard

Figure 2: Architecture of our Web-CAT extension.

The following is the typical auto-grading process:

1. Students submit a zip file through the Web-CAT UL
Our plugin commits their submission to the SVN repos-
itory, which acts as a backup for student submissions
in the case of hardware failure on the Web-CAT host.
This also prevents TAs or students from having to
manually upload each submission to SVN.

2. Web-CAT transfers all student-provided source code
and instructor-provided tests to a remote cluster and
uses Maven to compile the code there. The reason we
choose Maven over ant is because the existing COMP
322 infrastructure makes use of Maven and so we aim
to support the existing assignment structure with min-
imal modifications to the assignments themselves. How-
ever, our tool can support the use of Ant as well, in
case that is preferred by other institutions that may
want to use this infrastructure.

3. After compiling the student code, our plugin submits
a batch job to the remote cluster that runs all per-
formance tests on the student submission and outputs
the results to a text file. Additional runs of each per-
formance test are executed using the Lightweight Java
Profiler [4] to identify hotspots in the program. The
results of the profiler are saved in text files as well.
Once the batch job completes, our plugin transfers all
output files back from the remote cluster to the Web-
CAT host and adds them to SVN.

4. Our plugin then runs a series of correctness and static
analysis tests on the student submission from within
the Web-CAT host machine. First, lightweight cor-
rectness tests provided by the instructor are run with
a single core. Next, our plugin runs the FindBugs [6]
program on the compiled student code. The Check-
style [13] tool is also run on the code, using configu-
ration and scoring files to determine what style errors
to look for and how many points to deduct for each
specific error.

5. After the grading process is completed, Web-CAT sends
an HTTP POST to the Leaderboard, informing the
Leaderboard that there has been a new submission.
The Leaderboard fetches the submission results from
SVN and saves them in its database. The Leaderboard
is accessible via a web browser, showing the scores for
each performance test. All data on the webpage is kept
anonymous so students can see how their submission
compares to their peers without knowing who received
the scores.

6. The results of these performance, correctness, and static
analysis tests are aggregated together and formatted as
HTML for display to the user.

The following sections will go into further detail on the im-
plementation of each of the components in Figure 2.

4.1 Correctness Grading of HJlib Programs
Web-CAT comes with a plugin for evaluating submissions
in the Java programming language. This plugin uses JUnit
testing methods to evaluate whether the submission func-
tions correctly and delivers the correct outputs for the in-
puts. However, the plugin cannot immediately grade COMP
322 assignments out of the box. Therefore, the plugin was
modified to be better suited for the requirements of COMP
322, which uses HJlib to teach parallel programming. The
Java plugin was modified to be compatible with HJlib by
adding the required classpath and Java agents for the library.
To ensure that these tests don’t take over all the cores in
the Web-CAT machine, these correctness tests are run with
a single runtime thread. The HJlib cooperative runtime en-
ables running single-threaded versions of programs irrespec-
tive of the synchronization constraints used. Being able to
run single-threaded versions allows using standard off-the-
shelf machines (including local machines) for this phase of
grading.

4.2 SVN Backup

To prepare for the (rare) possibility of data corruption in
Web-CAT, it is necessary for us to backup all students’ sub-
missions before the grading process begins. For this, we
have added an SVN plugin to Web-CAT. Our SVN plugin
uploads students’ submissions to the SVN repository before
Web-CAT begins the grading process. This ensures persis-
tent backup of student submissions in case of data loss on
the Web-CAT host. Backups are also taken of test outputs.
Additionally, because the Leaderboard uses SVN to get the
student results, SVN acts as a communication channel or
document store between Web-CAT and the Leaderboard, as
well as between Web-CAT and the course graders.

4.3 Static Analysis

Web-CAT includes the Checkstyle tool, which is useful for
improving code readability and structure. However, it does
not help students with debugging and ensuring correctness.
When writing large programs it is often time consuming and
difficult to identify and locate small bugs in the code. One
can easily fail to spot these mistakes due to the immense
amount of code and the complexity of the program. This
can cause students to lose many points in their grade be-
cause of minor errors. To assist students and reduce the

impact of minor bugs, our plugin was also extended to sup-
port the FindBugs program. FindBugs, developed at the
University of Maryland, is a static analysis tool that detects
possible bugs in Java programs. Similar to Checkstyle, Find-
Bugs outputs a bug location along with a brief description
of the bug. To incorporate it into Web-CAT, it is installed
onto the server in which Web-CAT runs and a command
to run it is added to the Perl script that is responsible for
running the testing of student code. The results are then
collected and displayed to the user in the results page. By
adding FindBugs to Web-CAT, students automatically re-
ceive information to help debug their programs in a conve-
nient location.

4.4 Performance Grading

In COMP 322, an important aspect of parallel program
grading is performance. Programs must use parallelism ef-
fectively in order to use resources properly and be efficient.
In order to have a clear view of students’ performance of
their code, we have added performance grading process to
the plugin. There students’ code is graded by measuring the
speedup of the program as the number of cores the program
is given access to is increased. Multiple tests are run on
the program, and the program is given a different number
of cores in each test. The time it takes to run each test
and the number of cores given are recorded. Looking at
these results, one can determine if the program is using the
cores efficiently and effectively using parallel programming
concepts.

The steps to achieve remote performance grading of student
submissions are as follows:

1. Build folder structure on the remote cluster
2. Send student code to the remote cluster

3. Send all performance tests given by the instructor to
the remote cluster

4. Copy performance tests to the designated location ac-
cording to the created folder structure

5. Use Maven to compile Java code
6. Send packaged jar file back to original server

7. Send Java execution script to the remote cluster; the
Java execution script detects and executes all Java test
classes

8. A batch job is submitted to the cluster which calls the
Java execution script.

9. Performance and profiling results generated on the clus-
ter are transferred back to the Web-CAT host

10. The results of the performance and profiling tests are
committed to SVN

One of the most common issues that auto-graders have to
deal with is long-running student submissions hogging grad-
ing resources. To ensure the fairness of grading resource
allocation, there are several timeouts in Web-CAT and our
plugin:

Tables

EXECUTION_TIME Performance

Show 10 ¢ entries Sei
TEST NAME EXECUTION TIME (milliseconds) SUBMISSION # CORES Customer # SUBMISSION TIME
testd 6344 46 1 143 2015-09-07 20:42:40
testd 3470 46 2 143 2015-09-07 20:42:40
test4 900 456 4 143 2015-08-07 20:42:40
test4 307 46 8 143 2015-08-07 20:42:40
test4 9992 4 1 004 2015-09-07 20:42:53
test4 7120 4 2 004 2015-09-07 20:42:53
test4 740 4 4 004 2015-09-07 20:42:53
test4 233 4 8 004 2015-09-07 20:42:53

Figure 3: Sample Leaderboard table of performance test
execution time with varying cores

Figure 4: Sample Leaderboard histogram of performance
test execution time with one core

e Web-CAT total grading timeout: This is a configurable
Web-CAT timeout for all actions taken as part of grad-
ing a single student submission. When this timeout
occurs, an internal error is shown in the Web-CAT UL

e Batch job timeout: This is a time limit specified by
the batch job configuration, limiting how long the per-
formance tests may take on the remote cluster. When
this timeout occurs, a timeout error is shown in the
Web-CAT UL

4.5 Leaderboard

In COMP 322, students are often concerned about how well
they are doing compared to their peers. For example, a
student may wish to know what the average speedup is to
see whether they need to optimize their code further. To

address these concerns, we have created the Leaderboard so
students can view the results that the entire class is receiving
for an assignment.

After the grading process finishes, our Web-CAT plugin no-
tifies the Leaderboard that a new submission has completed
by transmitting the student ID and submission ID to it. The
Leaderboard updates an internal database with the results
and displays them in an HT'ML table on the Leaderboard
webpage. All scores data goes to the Postgres [10] database
and the database is connected to the webpage using Flask [9]
and Psycopg2 [14]. We have created a table on the webpage
containing the unique ID, test name, execution time, number
of cores used, and submission date and time so students can
see how their scores compare with others anonymously. Fig-
ure 3 shows the table of ranked submissions in the Leader-
board webpage. Each student receives a unique ID so that
they can find their scores on the Leaderboard. The Leader-
board displays the test name, the execution time of the sub-
mission, the submission number, the core count, and the
time of the submission. We also have included graphs and
additional statistics (mean, median, etc.) for each test so
students can utilize this information when analyzing their
performance. Figure 4 displays the bar graphs and their
data. It displays the execution time distribution among all
students. The y-axis shows how many students are in a cer-
tain range on the x-axis. For example, for test two running
on four cores, there are ten students who have run times
from 0 to 1000 milliseconds.

4.6 Profiling

In COMP 322, program efficiency and optimization is an
important factor in grading students’ assignments. While
performance tests tell students how well their code is per-
forming, they don’t explain why. For this, the Lightweight
Java Profiler [4] was incorporated into our plugin to allow
students to see which methods in their programs took the
most time. As the program is running, this profiler repeat-

~ Profiling Results

edu.rice.comp322.CryptReferencePerfTest profiler results
Hot methods:
326 edu.rice.comp322.1DEATest.lambdas$cipher_idea$o(IDEATest java:283)
16 edu.rice.hj.continuation.Stack pushMethodAndReserveSpace(Stack java:89)
7 edu.rice.comp322.1DEATest$$Lambda$2.1640309385.apply(UnknownFile:-1)
6 edu.rice.comp322.Crypt.validate(Crypt java:25)
4.(:25)
4 edu.rice.comp322.1DEATest.buildTestData(IDEATest java:133)
3 edu.rice.comp322.1DEATest . buildTestData(IDEATest java:04)
2 java.lang.ClassLoader.defineClassi(ClassLoader java:-1)
2 edu.rice.comp322.1DEATest. buildTestData(IDEATest. java:03)
2 edu.rice.comp322.1DEATest. buildTestData(IDEATest java:92)
Figure 5: Sample profiler output in the Web-CAT UI

edly samples stack traces of all threads at fixed intervals.
It compiles a list of the “hot methods” where the program
spends the most time. In our evaluation, the Lightweight
Java Profiler demonstrated minimal overhead. The profiler
is run on all performance tests on the same dedicated com-
pute node. The results are saved and parsed for the relevant
data and then displayed to the user in the results page in
Web-CAT. Students can then view the “hot methods” and
take steps to optimize their code.

Figure 5 shows an example of the student profiling view.
The first line specifies the test that was run. Each line from
the third line onward lists the number of times a sample was
taken of the program stack that included a given method.
The profile in Figure 5 informs the student that most of the
time was spent in the lambda in line 283 of the IDEAT-
est.java file.

S. FUTURE WORK

While the system implemented in this work meets the re-
quirements of COMP 322, there are many possible exten-
sions to it. First, we would like to include more features
in the Leadboard (e.g. statistics on how many students are
passing a given test) to give feedback on the relative dif-
ficulty of different tests. We might improve the security of
the Leaderboard by implementing student ID authentication
so only students in the class can view the performance test
results, even though they are anonymized. We also want
to add a scalability property to the Leaderboard to show
the scalability of each student submission on each test, as a
function of CPU cores used. Second, we also plan to write
documentation on Web-CAT for students and instructors
to use. Furthermore, we also are interested in establish-
ing a peer review system in COMP 322, possibly through
Web-CAT. Finally, we are very interested in adding new de-
bugging tools for data race detection, determinism checking,
and deadlock detection.

6. CONCLUSIONS

Through Web-CAT and our custom HJlib plugin, we have
created a system that efficiently and transparently auto-
mates the grading of student assignments in the Funda-
mentals of Parallel Programming course at Rice University.
We have extended Web-CAT to be compatible with the Ha-
banero Java library, allowing it to grade parallel programs
for correctness. Additionally, our plugin grades the sub-

missions’ performance by sending them to a remote com-
pute cluster and testing them there. This process eliminates
manual grading completely, creating a tight, fast feedback
loop for students. Students get detailed information on their
grades and results which increases the level of transparency
in the grading. This system also helps the course’s teaching
staff, reducing their grading burden and thereby increasing
the time that they can spend on teaching.

Our plugin implements a number of features that had not
been present previously in the course to help students im-
prove their programs. Students automatically receive Check-
style and FindBugs static code analysis reports to assist
them with their code styling and help them spot potential
bugs in their code. When the submissions are sent to the
remote cluster for performance grading, they are also run
using the Lightweight Java Profiler that informs students
of where to optimize and parallelize their code. Finally,
the Leaderboard offers students valuable insight into how
the rest of the class submissions are performing, further im-
proving transparency. With the necessary modifications, we
believe that this auto-grading system can be an asset to any
parallel programming course, including related courses at
Harvey Mudd College and Brigham Young University.

7. ACKNOWLEDGMENTS

This work was supported by the Habanero Extreme Scale
Research group at Rice University and the Department of
Computer Science. It was also supported in part by the
Cyberinfrastructure for Computational Research funded by
NSF under Grant CNS-0821727 and Rice University.

8. REFERENCES

[1] S. H. Edwards. Web-cat wiki.
http://wiki.web-cat.org/WCWiki/JavaTddPlugin.

[2] S. Imam and V. Sarkar. Habanero-java library: a java
8 framework for multicore programming. In
Proceedings of the 2014 International Conference on
Principles and Practices of Programming on the Java
Platform Virtual Machines, Languages, and Tools,
pages 75-86. ACM DL, 2014.

[3] J. P. Leal. Mooshak.
https://mooshak.dcc.fc.up.pt/.

[4] J. Manson. Lightweight java profiiler. https:
//code.google.com/p/lightweight-java-profiler/.

[5] A. Nguyen, C. Piech, J. Huang, and L. Guibas.
Codewebs: Scalable homework search for massive
open online programming courses. In Proceedings of
the 23rd international conference on World Wide
Web, pages 491-502. ACM DL, 2014.

[6] U. of Maryland. Findbugs - find bugs in java
programs. http://findbugs.sourceforge.net/.

[7] U. of Maryland. The marmoset project.
http://marmoset.cs.umd.edu/index.shtml.

[8] A. Patil. Automatic grading of programming
assignments. Master’s thesis, San Jose State
University, 5 2010.

[9] Pocoo. Flask (a python microframework).
http://flask.pocoo.org/.

[10] PostgreSQL Global Development Group. PostgreSQL.
http://wuw.postgresql.org, 2008.
[11] V. Sarkar. Comp 322: Fundamentals of parallel

programming wiki. https://wiki.rice.edu/
confluence/display/PARPROG/COMP322/.

[12] V. Sarkar. Habanero-java wiki. https://wiki.rice.
edu/confluence/display/HABANERO/Habanero-Java.

[13] C. D. Team. Checkstyle.
http://checkstyle.sourceforge.net/.

[14] D. Varrazzo. Psycopg. http://initd.org/psycopg/.

