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The AndroidA operating system builds upon already well-established
permission systems but complements them by allowing application
components to be reused within and across applications through a
single communication mechanism, called the Intent mechanism. In
this paper, we describe techniques that we developed for statically
detecting Android application vulnerability to attacks that obtain
unauthorized access to permission-protected information. We
address three kinds of such attacks, known as confused deputy,
permission collusion, and Intent spoofing. We show that application
vulnerability to these attacks can be detected using taint analysis.
Based on this technique, we developed PermissionFlow, a tool
for discovering vulnerabilities in the byte code and configuration
of Android applications. To enable PermissionFlow analysis,
we developed a static technique for automatic identification of
permission-protected information sources in permission-based
systems. This technique identifies application programming
interfaces (APIs) whose execution leads to permission checking
and considers these APIs to be sources of taint. Based on this
approach, we developed Permission Mapper, a component of
PermissionFlow that improves on previous work by performing fully
automatic identification of such APIs for Android JavaA code. Our
automated analysis of popular applications found that 56% of the
most popular 313 Android applications actively use intercomponent
information flows. Among the tested applications, PermissionFlow
found four exploitable vulnerabilities. By helping ensure the absence
of inter-application permission leaks, we believe that the proposed
analysis will be highly beneficial to the Android ecosystem and other
mobile platforms that may use similar analyses in the future.

Introduction
USERS of modern smartphones can install third-party
applications from markets that host hundreds of thousands
of applications [1, 2] and even more from outside of official
markets. To protect sensitive user information from these
potentially malicious applications, most operating systems
use permission-based access-control models (Android** [3],
Windows Phone** 7 [4], Meego** [5], and Symbian** [6]).
Permissions are a well-known and powerful security

mechanism, but as with any new operating system, there

is the possibility that Android-specific features may reduce
the guarantees of the classic permissions model. One such
feature is the new communication mechanism (called Intent),
which can be used to exchange information between
components (called Activity classes) of the same application
or of different applications.
One type of attack that exploits Intents for malicious

purposes is permission collusion. In this attack, an
application that individually only has access to harmless
permissions augments its capabilities by invoking a
collaborating application through sending and receiving
Intents. To stage this attack, malevolent developers could
trick users into installing such cooperating malicious
applications that covertly compromise privacy.
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A second type of attack using Intents is the confused
deputy attack. Confused deputy attacks rely on
misconfigured applications; components that interact with
other applications are invoked by unauthorized callers
and allow them to perform protected actions or access
permission-protected information.
A third type of attack, Intent spoofing [7], is an

Android-specific form of the confused deputy attack: it
affects applications not meant to communicate with other
applications. Even if a developer’s intention was to disallow
external invocation of internal Activity classes, other
applications may be able to invoke them if the application
does not have the necessary configuration. This is possible
because Intents can be used for inter-application invocations
as well as intra-application invocations.
In this paper, we focus on the use of the above types of

attacks to obtain unauthorized access to permission-protected
information via exploiting the Intent mechanism. We call
these attacks permission-leak attacks.
Tested on 313 popular Android Market applications,

our tool, PermissionFlow, identified that 56% of them
use intercomponent information flows that may require
permissions. Four exploitable vulnerabilities were found.
Our contributions are as follows:

• We describe a static analysis-based technique that detects
permission-leaking Intent vulnerabilities in Android
applications. Based on this technique, we developed
PermissionFlow, a tool for discovering vulnerabilities in
the byte code and configuration of Android applications.

• We propose a static analysis-based technique for
automatic identification of permission-protected
information sources in permission-based systems. Our
approach consists of identifying APIs whose execution
leads to permission-checking and considering these
APIs to be sources of taint. Based on this approach,
we developed Permission Mapper, a component of
PermissionFlow that improves on previous work by
performing fully automatic identification of such APIs
for Android Java code.

• We evaluate PermissionFlow on leading Android
applications and show that a majority (177 out of 313) of

applications tested use Intents to invoke Activity
classes that return information. These applications
could benefit from PermissionFlow to ensure that the use
of this feature is secure. PermissionFlow found three
permission-protected leaks in widely used applications
and an additional vulnerability that allows leaking of
information that should be protected by custom
permissions.

Background
The vulnerabilities we identify involve knowledge about
the Android development model, the Android interprocess
communication mechanism, and its permissions system.
These components are the focus of the following
subsections.

Android development
Android applications are typically written in Java using both
standard Java libraries and Android-specific libraries. On
Android devices, the Java code does not run on a standard
Java Virtual Machine (JVM) but is compiled to a different
register-based set of byte code instructions and is executed on
a custom virtual machine [Dalvik virtual machine (DVM)].
Android application packages (or BAPKs,[ after their file
extension) are actually ZIP archives containing the Dalvik
byte code compiled classes, their associated resources such
as images, and the application manifest file.
The application manifest is an XML configuration

file (AndroidManifest.xml) used to declare the various
components of an application, their encapsulation
(public or private), and the permissions required by
each of them.
Android APIs offer programmatic access to mobile

device-specific features such as GPS, vibrator, address
book, data connection, calling, SMS, and camera.
These APIs are usually protected by permissions.
Consider the Vibrator class as an example; to use the
android:os:Vibrator:vibrateðlong millisecondsÞ
function, which starts the phone vibrator for
a number of milliseconds, the permission
android:permission:VIBRATE must be declared in the
application manifest, as seen on line 2 of Listing 1.

Listing 1 An Activity declaration in AndroidManifest.xml with declarations of used permissions and an intent-filter.
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Application signing is a prerequisite for inclusion in the
official Android Market. Most developers use self-signed
certificates that they can generate themselves, which do not
imply any validation of the identity of the developer. Instead,
they enable seamless updates to applications and enable
data reuse among sibling applications created by the same
developer. Sibling applications are defined by adding a
sharedUid attribute in the application manifest of both,
as seen in line 1 of Listing 1.

Activity classes
The Android libraries include a set of graphical user interface
(GUI) components built specifically for the interfaces of
mobile devices, which have small screens and low power
consumption. One type of such component is called Activity
classes, which are windows on which all visual elements
reside. An Activity can be a list of contacts from which the
user can select one, or the camera preview screen from which
he can take a picture, or the browser window, etc.

Intents
To spawn a new Activity, programmers use Intents and
specify the name of the target class, as shown in the
following snippet:

Intent i ¼ newIntent ðÞ;
i:setClassNameðthis; ‘‘package:CalleeActivity’’Þ;
startActivity ðiÞ;

Usually the parent Activity needs to receive data from
the child Activity. This is possible through the use of Intents
with return values. The parent spawns a child by using
startActivityForResultðÞ instead of startActivityðÞ
and is notified when the child returns through a callback
(the onActivityResultðÞ function), as shown in Listing 2.
This allows the parent to read the return code and any
additional data returned by the child Activity.
As shown in Listing 3, the child Activity needs to call

the setResult function, specifying its return status. If
additional data should be returned to the parent, the child can
attach an Intent along with the result code and supply extra
key/value pairs, where the keys are Java Strings and the

values are instances of Parcelable types, which are similar
to Java Serializable classes and include Strings, arrays, and
value types.
Sending Intents to explicitly named Activity classes,

as described above, is called explicit Intent usage. Android
also allows creation of Intents specifying a triple (action,
data type, category) and any Activity registered to receive
those attributes through an intent filter will be able to
receive the Intent. If there are multiple Activity classes
that can receive the Intent, the user will be asked to
select one.
The explicit Intent feature is mostly used in

intra-application communication, as described in the
following section, but can be useful for inter-application
communication as well, and its existence is the root cause
of the vulnerabilities discovered by us.

Inter-application Intents and data security

Interprocess communication with Intents
Intents can be used for communication between Activity
classes of the same application or for inter-application
communication. In the second case, Intents are actually
interprocess message-passing primitives. To specify a subset
of Intents that an Activity answers to, developers add to
the application manifest an intent filter associated with
the Activity. The intent filter in Listing 1 specifies that
MyActivity can be invoked by sending an Intent with action
com:zxing:SCAN; such an Intent is called an implicit Intent
because it does not specify a particular Activity to be
invoked. Implicit Intents are created using the single
parameter constructor new IntentðStringÞ.

Listing 2 Code snippet showing how a caller accesses information returned by a child Activity.

Listing 3 Code snippet showing how child Activity
classes can return data to their caller.
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Component encapsulation
Developers enable or disable inter-application invocation
of their Activity classes by setting the value of the Boolean
exported attribute of each Activity in the application
manifest. The behavior of this attribute is a detail that may
be a source of confusion, as the meaning depends on the
presence of another XML element, the intent filter:

• If an intent filter is declared and the exported attribute
is not explicitly set to true or false, its default value
is true, which makes the Activity accessible by any
application.

• If an intent filter is not declared and the exported attribute
is not set, by default the Activity is only accessible
through Intents whose source is the same application.

An exception to the above rules is allowed if the developer
specifies the attribute sharedUid in the manifest file. In that
case, another application may run in the same process and
with the same Linux user ID as the current application.
This addition changes the behavior of Activity classes that
are not exported: they can be invoked not only from the same
application, but also from the sibling application with the
same user ID. Listing 1 shows the use of the sharedUserId
attribute.
It is important to realize that the intent-filter mechanism

does not provide any security guarantees and is meant only as
a loose binding between Activity classes and Intents; any
Activity with an intent filter can still be sent an explicit
Intent, in which case the intent filter is ignored. The presence
of this attribute, however, changes the behavior of the
security-related exported attribute, as detailed above. We
found that many developers overlook the security-related
implications when using intent filters.

Attacks on permission-protected information
All Android applications with a GUI contain at least one
Activity, which means vulnerabilities related to Activity
classes can affect most applications. All the vulnerabilities
that we identify have in common the existence of information
flows that are meant to allow child Activity classes to

communicate with authorized parents but can instead be
used by unauthorized applications to access sensitive
information without explicitly declaring the corresponding
permission.
We consider three different attack scenarios, which

are discussed in the following paragraphs; our tool,
PermissionFlow, identifies the flow vulnerabilities that
enable all of them. PermissionFlow validation can be used
as a prerequisite for applications before being listed in
Android Market and by developers to ensure the security
of their applications or by users.
Note that other operating systems run applications in a

Bsandbox[ mode and do not offer a mechanism for direct
inter-application communication; in spite of this, some
of these attacks are still possible. For example, in iOS,
the colluding applications attack can be performed through
URL Schemes [8]. For these attacks to be possible, certain
misconfigurations have to exist. These misconfigurations
consist of a combination of implicitly public Activity classes
(callable by unexpected callers) and misconfiguration of
Activity permissions, which consists of failure to enforce
the ownership of permissions on callers for Activity classes
that return permission-protected information (previous work
considered implicitly public Activity classes but did not
test whether those Activity classes check for permissions
of their callers, leading to some trustworthy applications
being considered vulnerable (false positives).]

Misconfigured applications
Attacks on misconfigured applications occur when an
attacker application installed on the device can exploit the
flows of a misconfigured application. If an application has
any one of the configuration parameter combinations listed
in Table 1 as high risk, then any application on the device
can spawn it.
If in the application manifest an Activity is listed with an

intent filter and is not accompanied by a exported ¼ ‘‘false’’
attribute, any other application on the system can invoke
it. Then, in the absence of declarative or dynamic permission
checking by the developer, information returned to the
caller through the Intent result may compromise

Table 1 Different configurations lead to different levels of vulnerability.
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permission-protected information, as no permission
is required of the caller.
In the example from Figure 1 (left), the user installed

malevolent Application B (a music streaming app) with
permission to access the Internet. Application B can
exploit the honest but misconfigured contact manager
Application A by invoking Activity A2 that returns the
contacts; Application B can then send the contacts to a
remote server. If A2 is built to reply to external requests and
it simply failed to check that Application B has the proper
permission, then the attack is a classic confused deputy
attack. However, because in Android, Intents are also
used as an internal (intra-application) communication
mechanism, it is possible that A2 is not built for
communicating with another application and is only
misconfigured. This Intent spoofing is a more powerful
attack than confused deputy for two reasons. First, it targets
internal APIs, not just public entry points. These internal
APIs are generally not regarded as vulnerable to a confused
deputy attack and so they are not secured against it. By
increasing the number of APIs that can be targeted, this
attack increases the likelihood that the returned information
is permission-protected. (Protected information tends to
flow between internal components such as A1 and A2,
even when it does not leave the application.) Second, the
problem in this attack is not that the deputy performs a
protected operation, but that it sends protected information
to the callee.
For Activity classes that are designed to be invoked by

unknown applications, developers can ensure that callers
own a set of permissions in one of two ways: declaratively
(in the manifest file, using the permission attribute of
the Activity) or dynamically [by calling the function
checkCallingPermissionðStringpermissionÞ]. Note
that the permission attribute can only be used to enforce a
single permission and is different from the uses-permission

node in Listing 1, which controls what permissions the
application needs in order to function.
The safest approach is to completely disable outside

access to internal Activity classes that may leak protected
information. Table 1 shows the combinations of
configuration parameters that may lead to information leaks.

Collusion
Collusion attacks obtain permission-protected information
without requesting the permission, by exploiting the
combination of assignment of Android permissions on a
per-application basis and the exchange of applications
information without making this explicit to the user.
In Figure 1 (right), we show a scenario in which a user is

tricked by a malevolent developer MD into installing two
separate applications that seem to have little risk associated
with them. For example, a camera application that does not
require Internet permission seems safe, as it cannot upload
the pictures to the Internet. Likewise, a music streaming
application that does not request camera permission would be
acceptable. However, if the two applications are malicious,
the music streaming application can invoke the camera
application and send the pictures obtained from it remotely.
The Android security system does not inform the user of
this application collusion risk.

Applications sharing the user ID
We have not yet discussed an additional type of attack that
our approach can recognize but that is improbable in practice
because of its narrow applicability. This type of attack is
on sibling applications.
The vulnerability in this case allows an attacker to access

the permission-protected information of applications sharing
the user ID with the already compromised application N.
If N is configured to have the same user ID as application M
(as shown in Figure 1 center), it can then obtain the

Figure 1

Possible attacks: internal Activity invocation or confused deputy, application sharing user ID with a compromised application (center) and permission
collusion by malevolent applications (right).
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information from M. To set up this attack, an attacker would
need to control application N of developer D, N should
have any exfiltration permission (sending short messages,
accessing the Internet, etc.), and N should share user ID with
an application by D that returns permission-protected
information. Then, N can invoke most Activity classes of M,
even if M is configured according to the rows with low
risk level in Table 1. PermissionFlow can detect this
vulnerability as well.

PermissionFlow system
PermissionFlow has two main parts. The first one is a
general, reusable taint analysis framework; the second
consists of all other components, which are Android-specific.
To analyze real Android Market applications, whose

source code is usually not available, we support input in the
form of Android binary application packages (APK files).
This means that PermissionFlow can also be used by Android
users, developers, and security professionals.
The system design shown in Figure 2 consists of the

following components:

• The Permission Mapper (labeled 1 in the Figure 2) builds
a list of method calls in the Android API that require
the caller to own permissions. Its inputs are Android
classes obtained by building the Android source code,
with any modifications or additions performed by

the device manufacturer. Having the complete system
code as input allows the mapper to extract all the
permissions-protected APIs that will be present on
the device. It builds a permissions map, which maps
permission-protected methods to their required
permissions.

• The permissions map is passed to the Rule Generator,
which builds the taint analysis rules relating the sources
in the map with their corresponding sinks. In our case,
the only sink is the Activity.setResult method with an
Intent parameter.

• Our taint analysis engine (labeled 3) reads the generated
rules and any extra rules manually added for detecting
application-dependent private information. It outputs the
flows that take the protected information from sources
to sinks. For this, it needs access to the application classes
and the Android library classes. The taint analysis engine
also needs access to the Android library, in order to
track flows that go through it, for example, callbacks that
get registered and Intents that get passed to the system.

• The dex2jar decompiler [9] (labeled 4) is used to extract
from the application APK a JAR archive containing
the application byte code.

• To extract the binary application manifest from
the application package, we use the ApkTool [11]
(labeled 5); the decompilation step needed to get
the textual XML representation is performed by
AXMLPrinter2 [10] (labeled 6).

• The taint analysis engine outputs the flows from sources
to sinks if there are any, but the presence of flows does
not in itself imply that the application is vulnerable.
The Decision Maker (labeled 7) looks for the patterns
identified in Table 1 in the application manifest file;
these patterns correspond to misconfigurations that
allow successful attacks to take place. If an application
contains a vulnerable information flow and is improperly
configured, only then is it vulnerable. It is improperly
configured if it is public (as shown in Table 1) and fails
to enforce on its callers the permissions protecting the
information it returns.

Permission Mapper
The Permission Mapper matches function calls used for
permission enforcement in the Android libraries to Android
library functions that use these calls. In short, it uses static
analysis to identify permission-protected methods and to
map them to their required permissions; this analysis is
independent of any application analysis and needs to be
performed only once for each input Android configuration.
Identifying sources of permission-protected information

could also be attempted by crawling the documentation.
However, it is incomplete even for public, documented
classes and does not include public, but non-documented
methods and does not account for Java reflection on

Figure 2

The components of PermissionFlow.
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non-public methods. It also does not account for any
modifications and additions to the Android API performed
by the phone manufacturer. Felt et al. [12] showed that it
is possible to identify which API calls require permissions
through a combination of automated testing and manual
analysis, but they use techniques that allow false negatives,
need partial manual analysis and do not handle the version
and feature fragmentation [13] of Android well. For these
reasons, we built the Permissions Mapper, a reliable and
automatic tool for identifying permission-protected APIs and
their required permissions.
Most Android permissions are enforced through

calls to the checkPermission function of the
Context and PackageManager classes or the
checkCallingOrSelfPermission function of the
Context class; our work targets complete coverage of
APIs enforced through this mechanism, which includes
the majority of Android permissions. Other APIs are
enforced through native code or Linux users, which we
do not consider.
To illustrate how permission checks work, we can use,

for example, the VIBRATE permission. To use the phone
vibrator, an application needs to own the VIBRATE
permission; all functions that require this permission
check for it.
When this function is called, the Android API forwards

the call to a system service. The service process is the one
that makes the actual permission checks, before performing
any protected operation, as shown in Listing 4. The proxy
for the service performs the interprocess communication,
and because of this, it appears as a leaf in the call graph.
In our analysis, we automatically fill in the missing edges
between proxies and their corresponding services (relying on
the name correspondence between the two, which is enforced
by the Android AIDL code generation).
The interprocedural dataflow analysis is built

using IBM WALA [14] and starts by building the
call graph of the Android libraries, including all
methods as entry points. All call chains containing a
Context:checkPermissionðStringÞ method call are
then identified. To find the actual permission string that
is used at a checkPermission call site, we follow the
definition-use (def-use) chain of the string parameter. Once

found, we label all callers upstream in the call chain as
requiring that permission. Note that different call sites
of checkPermission will have different permission
strings. Each such string needs to be propagated correctly
upstream, building a set of required permissions for each
function.
For the vibrateðÞ example, the permission enforcement

call chain is in Figure 3. The string value of the vibrate
permission is located by following the def-use chain of the
checkPermission parameter (dashed lines) until the source
String constant is found. Once the constant is found, we
need to identify which functions on the call chain need this
permission. We start by labeling the function that contains
the first (Bmost downstream[) call site through which the
def-use chain flows. In our case, the def-use chain goes first
through the call site of checkCallingAndSelfPermission
in IVibratorService:vibrate (line 3 in Figure 3),
where the VIBRATE variable is specified as a parameter,
so IVibratorService is labeled with
Bandroid:permission:VIBRATE.[
After labeling IVibratorService:vibrate, the same

label must be propagated to callers of that function, but in
our case there are no callers except the proxy stub.
Because the communication between Android proxy stubs

and their corresponding services (shown as dotted edges in
Figure 3) is done through message passing, it does not appear

Listing 4 Code snippet showing how services check the permissions of applications.

Figure 3

Permission analysis exemplified for the vibrate() call. The call graph
edge from the proxy to its corresponding service is automatically added
before the analysis.
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in the actual call chain built by WALA. To work around
this problem, we add the permissions labels of the service
methods to the corresponding proxies; the labels are then
propagated to any callers of those methods.

Taint analysis engine
For the taint analysis engine, we used Andromeda [15],
which is highly scalable and precise as well as sound; it
builds on IBM WALA [14]. Andromeda uses, as input, rules
composed of two sets: sources and sinks. The sources are
parameters and return values of functions that are the origin
of tainted data and the sinks are security-critical methods.
The engine tracks data flow from the source through
assignments, method calls, and other instructions, until the
data reaches a sink method. If the taint analysis engine
discovers that tainted data reaches a sink method, the flow
is included in the taint analysis engine output. We discuss the
soundness of the complete PermissionFlow analysis in the
section BEvaluation of PermissionFlow[).

Experimental results

Evaluation of the permissions map
We evaluated the Android API Permissions Mapper
by directly comparing its output permissions map with
that of Felt et al. [12], based on automated and manual
testing. To perform the comparison with the work by
Felt et al., we eliminated permissions from their map
that are enforced through mechanisms other than
the checkPermissions calls, because our analysis only
targets checkPermissions-enforced permissions.
Comparing the size of their reference map (which includes

1,311 calls that require permissions) with ours (4,361 calls
with permissions) shows that our tool finds more functions
that require permissions. The larger size of our map is
partly explained by the lack of false negatives for the
analyzed Java APIs. However, a direct comparison is not
possible, because the input classes on which Felt et al.
ran their analysis is not specified in their paper.
Through manual comparison, we identified one false

negative in their map (probably due to the automated
testing not generating a test and the subsequent
analysis not detecting the omission). The function is
MountService:shutdown, which usually needs the
SHUTDOWN permission, but if the media is shared, it also
needs the MOUNT UNMOUNT FILESYSTEMS permission.
The existence of missing permissions in the testing-based
methods shows that testing methods, even if party automated
and enhanced by manual analysis, cannot offer guarantees
with respect to false negatives.
Another reason for the higher number of methods found

in our map is the existence of false positives: permissions
that are reported as required but are not. We have identified
the following sources of false positives, all of which are

known weaknesses of static taint analysis:

• Checking for redundant permissions. For example,
checking for ACCESS FINE LOCATION or
ACCESS COARSE LOCATION in
TelephonyManager:getCellLocationðÞ, where either
one is sufficient for enforcement; our method reports
both, because it is oblivious to control flow.

• Data-dependent checks. For example, a check for the
VIBRATE permissions depends on the value of a
parameter such as in NotificationManager:notifyðÞ.

• Android provides the pair of functions clearIdentity
and restoreIdentity that are used to change all checks
so that they are performed on the service instead of the
application using the service.

Another advantage of testing-based analysis is that it
can cover areas, such as the permissions enforced in
native code, which static analysis does not target (such
as RECORD AUDIO).
To perform a more detailed comparison of our approach

with the work by Felt et al., we compared results obtained for
a simple security analysis, identification of overprivileged
applications, based on the permission map. This analysis
consists of identifying Android applications that request
in their manifest more permissions than they actually need
to perform their functions. The results are used to reduce
the attack surface of applications by removing unused
permissions from the manifest. To perform this analysis,
we built another static analysis tool based on IBM WALA,
which records the API calls that can be performed by an
application and computes, based on the permissions map,
the permissions required by that application. The set of
discovered permissions is then compared to the set of
declared permissions.
We used both permission maps as input for the analysis

of the Top Android Market Free Applications (crawled in
December 2011) that were compatible with Android 2.3 and
available in the United States (354 applications). For a fair
comparison, we removed from Felt et al.’s reference map
the parts that relates content provider databases to their
permissions, as these were outside the scope of our work.
After eliminating applications that crashed the dex2jar [9]
decompiler or generated incorrect byte code, we were left
with 313 applications. Of these, both our analysis and theirs
found 116 to be overprivileged. No permissions identified
as unused by us were identified as used by Felt et al., which
is consistent with the lack of false negatives expected from
a static analysis approach. However, 47 permissions were
identified as used by us and as unused by Felt et al., which is
a false-positive rate of 4.8%.
PScout [16] is a permission mapper built through static

analysis based on Soot. The number of overprivileged
applications found by PScout is consistent with both
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Felt et al. and our tool. If we compare the number of entries
in the map, PScout finds 17,218 APIs, we find 4,361, and
Felt et al. list 1,311. This inconsistency comes from four
sources. First, different versions of Android are analyzed
by each. Second, different subsets of classes may be selected
as input from the Android code. Third, the tools have
different levels of false positives (Felt has none, because it is
a dynamic analysis, but PScout and our mapper may have
some). Fourth, there are different levels of false negatives
(Felt et al. may have missing permissions listed because of
incomplete coverage). PScout reports a false-positive rate
of 7% on real applications, whereas we have a rate of 4.8%
(the false-positive rate is not a clear indicator, as the input
applications used for the two systems were not the same,
but it is consistent with the difference in the map sizes). As in
our analysis, this tool omits permissions enforced through
non-Java mechanisms. It includes permissions required for
ContentProvider access, which we do not consider in our
mapper (the following subsection explains how to include
ContentProviders and Services in the PermissionFlow
analysis).
The technical report [17] contains a comparison of the

Permission Mapper to a similar tool by Bartel et al. [18].

Evaluation of PermissionFlow
We tested PermissionFlow on the same applications used
to evaluate the permission map. To confirm the correctness
of the results we manually inspected all applications. Out
of the 313 applications, 177 use the Activity.setResult with
an Intent parameter to communicate between components
(both internal and external). These 56% of applications may
be vulnerable if they also contain flows from taint sources
to sinks and are not configured properly. They can use
PermissionFlow to check that they are secure.
To check for correctness, we ran PermissionFlow with our

permissions map and the one produced by Felt. Using the
map from Felt et al., PermissionFlow correctly identified two
applications as vulnerable and had no false positives. With
the permissions map built by our analysis, PermissionFlow
outputs a larger set of vulnerable applications, but the
additional applications are all false positives. As we saw in
the previous section, both permissions maps are incomplete:
ours does not track permissions enforced through non-Java
mechanisms and Felt et al.’s allows the possibility of missing
permission checks. Choosing one of the two maps amounts
to either using a possibly incomplete map (Felt et al.)
and finding no false positives, or identifying the complete
set of Java-based flows and accepting some false positives
but missing flows based on native code or Linux permissions
checks.
Our analysis is sound with respect to the subset of Android

that we consider, which includes Activity classes. To
maintain soundness with respect to chains of communicating
Activity classes (from the same or different applications),

we taint the information returned by the Intent:getExtra
family of calls with the set of permissions owned by the
current application. If the invoked Activity is from a different
application, that application is assumed to be validated
with PermissionFlow, so that it enforces the correct
permissions on the current (caller) application. We need
to guarantee that the incorporation of other Android
components does not break the soundness of our analysis.
To ensure security, these components should individually
maintain the following invariant: if any information protected
by permission P flows into the component, then the
component must enforce permission P through its manifest,
on any components that read that information. This invariant
can be checked in the same manner that PermissionFlow
checks Activity classes (on each component individually).
To support Services, more sinks need to be considered
other than Activity:setResultðÞ. For inter-application
ContentProviders, we need access to the manifest that
declares them, but we still do not need to analyze the source
code of both simultaneously (PermissionFlow already
batches applications. This would be sufficient for a safe
ContentProvider analysis). None of these changes alters
the dataflow analysis itself, only its input and output. Thus,
we maintain soundness when using a sound taint analysis
engine such as Andromeda.
Out of the set of 313 applications, we found that three

are vulnerable to permission-protected information leaks:
Adobe Photoshop Express, SoundTracking, and Sygic GPS.
Adobe Photoshop Express and SoundTracking allow any
application to send Intents to components that return
permission-protected information, so their risk is high.
Sygic can only leak such information to applications with
the same user ID, so the risk level is low. The permission
information compromised is the user contacts (Adobe
Photoshop Express), the location (SoundTracking), and the
camera pictures (Sygic). All of the vulnerabilities lead to a
window being displayed to the user, corresponding to the
invoked Activity from the callee application. If the user
performs some activity in the window (selecting a contact,
taking a picture), that information will leak. The window
that pops up is familiar and belongs to a trusted application,
so the user may unwittingly cooperate. Further, even though
we did not find any, there may be other applications for
which attacks do not require user intervention. See the
technical report [17] for more details.
As examples of confidentiality violations that

PermissionFlow identifies when provided with
application-specific sources of taints, the GO SMS and
GO Locker applications leak the lockscreen password.
Since they have an identical pattern, we consider these GO
applications to be the fourth vulnerability identified by the
PermissionFlow tool. More information about the specific
information flows that lead to these vulnerabilities can be
found in the technical report [17].
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Related work
Privilege escalation attacks on Android applications
have been previously mentioned in the literature [19].
However, such attacks require usage of native code, careful
identification of buffer overflow vulnerabilities and high
expertise. We focus only on vulnerabilities specific to
Android and help protect the information before such
attacks happen.
Grace et al. [20] focused on static analysis of stock

Android firmware and identified confused deputy attacks
that enable the use of permission-protected capabilities.
Our analysis is complementary in that it identifies not actions
that are performed, but information that flows to attackers.
In addition, we focus not on stock applications, but
third-party applications.
TaintDroid [21] uses dynamic taint tracking to identify

information flows that reach network communication sinks.
Both PermissionFlow and TaintDroid can potentially support
other sinks, and their dynamic approach is complementary
to our static approach because it can better handle control
flow (e.g., paths that are never taken in practice are reported
as possible flows by our tool). It can also enforce only
safe use of vulnerable applications by denying users the
capability to externalize their sensitive information.
SCanDroid [22] is the first static analysis tool for Android

and can detect information flow violations. The tool needs
to have access to both the vulnerable application and
the exploitable application. To the best of our knowledge,
SCanDroid is not easily extensible with new taint
propagation rules.
CHEX [23], a system developed concurrently with our

work, relies on static analysis to discover permission leaks
in Android applications. CHEX uses an IR similar to the one
used by WALA but does not use WALA dataflow analysis.
For efficiency, they use a graph reachability analysis.
Andromeda, our taint analysis engine, achieves efficiency
through use of a demand-driven taint analysis. CHEX
detects several types of vulnerabilities affecting Android
applications, including permission-protected information
leaks. However, CHEX does not check the application
manifest to identify if Activity classes are exported or if
Activity classes use the manifest to enforce permissions from
their callers. CHEX requires a permissions map as input,
in that it does not automatically generate it.
ComDroid [7] is a tool that analyses inter-application

communication in Android. ComDroid does not track
permission-leak vulnerabilities. None of the vulnerabilities
described pertains to permission-protected information.
ComDroid does emit misconfiguration warnings, but these
are not necessarily vulnerabilities (some applications offer
public services that need no checking). Permission-leak
attacks are a special case of Intent spoofs in that they imply
permission-protected information flow, not only control
flow and misconfiguration. Contributions such as automatic

rule generation and automatic permission map building
separate our work from theirs.
Kirin [24, 25] is a tool based on a formal representation

of the Android security model that checks if applications
meet security policies. It can check for confused deputy
vulnerabilities (Bunchecked interface[), Intent spoofing
(Bintent origin[), and other attacks by using a powerful
Prolog-based security policy enforcement mechanism,
which takes into consideration the set of applications
already installed on a device. The authors point out several
difficulties with creating information flow policies in Android
and discuss the future possibility of including source code
analysis to make information flow policies for Android
practical. If we consider the PermissionFlow rules as
information flow security policies, then PermissionFlow
is a step in the right direction for such a tool. It would solve
the problem they mention of information flowing into any
application with a user interface.
Felt et al. [12] perform a similar analysis to our

PermissionMapper. Their work is based on automated testing
rather than static analysis, which means incomplete coverage
and the possibility of false negatives in the permissions
map. They do not use the map to check for information
flow-based vulnerabilities in applications. Their work was
discussed earlier in this paper.
As discussed in this paper, PScout [16] builds a permission

mapper through static analysis based on Soot.
Kantola et al. [26] propose to modify Android

configuration semantics to implicitly mark fewer Activity
classes as public. Their heuristic-based approach fixes most
vulnerabilities and maintains backwards compatibility with
applications written for the current Android semantics.
The cost is the continuing reliance on heuristics, and
vulnerabilities are still possible. A cleaner approach would
be to disallow inter-application invocations if the caller
does not own the permissions required by the callee.
Such an approach prevents these vulnerabilities by
correctly configuring applications, but breaks backwards
compatibility. Another solution is to emit warnings
based on the configuration and static analysis, which
PermissionFlow would be well-suited for. In the technical
report [17] we provide recommended practices for safe
application configurations for security-aware Android
developers.
Hornyack et al. [27] describe a tool that can be used to

complement ours.
Mann and Starostin [28] propose a wider analysis based

on typing rules that can discover flow vulnerabilities.
We discuss both papers in the technical report.

Conclusion
This paper describes an automated solution for the problem
of checking for leaks of permission-protected information;
this is an important security problem for mobile devices,
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as such leaks compromise users’ privacy. We demonstrate
the benefits of this analysis on Android, and identify
the Intent mechanism as a source of permission leaks in this
operating system. We found that permissions can leak to
other applications even from components that are meant to
be private, i.e., accessed only from inside the application.
Our automated analysis of popular applications found

that 56% of the top 313 Android applications actively
use inter-component information flows. Among the tested
applications, PermissionFlow found four exploitable
vulnerabilities. Because of the large scale usage of
these flows, PermissionFlow is a valuable tool for
security-aware developers, for security professionals and
for privacy-conscious users. Our approach extends beyond
Android, to permission-based systems that allow any type of
inter-application communication or remote communication
(such as Internet access). Most mobile operating systems
are included in this category and can benefit from the
proposed new application of taint analysis. By helping
ensure the absence of inter-application permission leaks,
we believe that the proposed analysis will be highly
beneficial to the Android ecosystem and other mobile
platforms that may use similar analyses in the future.

**Trademark, service mark, or registered trademark of Google, Inc.,
Microsoft Corporation, Linus Torvalds, Symbian Software, Sun
Microsystems, Linus Torvalds, or Apple, Inc., or Adobe Systems, Inc.,
in the United States, other countries, or both.
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