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Background

= As parallel programming enters the mainstream,

the focus of programming models is primarily in
multicore CPUs

» Many advantages to using heterogeneous
hardware
* Performance

= Power consumption per FLOP
* Price per FLOP

* Tradeoff: application performance vs. learning
curve
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Background

= GPUs are a promising Multiple GPU processors

example of heterogeneous
hardware

= Hundreds of cores, split
among stream
multiprocessors (SMs)

= High memory bandwidth to
global memory

= Low power consumption

Streaming Multiprocessor
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Figure source: David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2010. N\
§
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Background

= NVIDIA's CUDA makes st e

general purpose m___.‘""
programming on GPUs g
possible, but not simple w3
= Explicit/static device memory il 3
management oy

» Understanding of the |
underlying hardware
necessary for evaluating
performance tradeoffs

= Static thread pool within a
device kernel
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Problem

» Parallel programmers are more familiar with
dynamic task parallelism on multicore CPUs
than static data parallelism of GPUs

[ Master Master ]

= But many applications could benefit from the use
of GPUs
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Solution

= Build a hybrid work sharing/stealing runtime on a
single device

= Use this runtime to facilitate:
= Dynamic task parallelism
= Automatic device memory management

* |ncreased programmability
= Transparent multi-GPU execution




Design

= Persistent runtime kernel on the device

= Host pushes new tasks to the device through a
work sharing deque shared among SMs on the
device

= SMs on the same device share tasks through a
work stealing deque assigned to each SM
» Batched steals
» | oad balancing is done at the thread block

granularity, so tasks execute on worker blocks
rather than worker threads
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CPU

GPU Tasks

Work Sharing Deque of incoming tasks
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Work Stealing
deques of
GPU tasks
maintained
by worker
on each SM
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Design

= Runtime API provides simpler access to device
» insert task(...)
» get data(...)
* init runtime(...)
» finish device()




Evaluation

= Evaluation was performed using a variety of
benchmarks to study different properties
= Crypt (Java Grande Forum Benchmark Suite)
» Series (Java Grande Forum Benchmark Suite)

» Dijkstra (Lastras-Montano et. al., “Dynamic Work
Scheduling for GPU Systems”™)

= Nqueens (BOTS)
= Unbalanced Tree Search (OSU)

= Code comparison
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Data Parallel Performance Evaluation
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Load Balance Evaluation
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Task Parallel Performance Evaluation
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Code Comparison

g

CUDA

cudaMalloc((void **)&d_Z, sizeof(int) * 52);
cudaMalloc((void **)&d DK, sizeof(int) * 52);
cudaMalloc((void **)&d plain, mem_size);
cudaMalloc((void **)&d_crypt, mem_size);
cudaMemcpy(d_crypt, crypt, mem_size,
cudaMemcpyHostToDevice);
cudaMemcpy(d_plain, plainl, mem_size,
cudaMemcpyHostToDevice);
cudaMemcpy(d_zZ, Z, sizeof(int) * 52,
cudaMemcpyHostToDevice);
cudaMemcpy(d_DK, DK, sizeof(int) * 52,
cudaMemcpyHostToDevice);

cryptCUDAKernel<<<threads_per_block,
blocks_per_grid>>>(d_plain, d_Z, d_crypt,
mem_size);

cryptCUDAKernel<<<threads_per_block,
blocks_per_grid>>>(d_crypt, d_DK,
d_plain, mem_size);

cudaMemcpy(crypt, d_crypt, mem_size,
cudaMemcpyDeviceToHost);

cudaMemcpy(plain2, d_plain, mem_size,
cudaMemcpyDeviceToHost) ;

o RICE

15

Runtime

InitRuntime(...)
. Task construction code ..
for(i = @0; i < n_tasks; i++) {
insert_task(tasks+i);

}
for(i = @0; i < n_tasks; i++) {
get_data(plain2+(i * mem_per_task));

}

finish_device_tasks();

« Simpler code to
autogenerate when
paired with a parallel
compiler




Conclusions

= GPU work stealing runtime which supports
dynamic task parallelism, on hardware intended
for data parallelism

= Demonstrated effectiveness of work stealing
deques in dynamically distributing work
between SMs

= Enabled task parallel applications on GPUs

= Demonstrated reasonable (though not stellar)
performance for both data parallel and task
parallel applications
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Future Work

» |[nvestigate bottlenecks of the runtime or of task

parallel applications using the runtime (i.e. UTS,
NQueens)

» Integrate this runtime with the Habanero C and
Concurrent Collections (CnC) programming
systems under development at Rice University

* The GPU work-stealing runtime is a standalone tool
which can be integrated with a programming model

» Facilitate programmer access to heterogeneous
hardware

* Hand coded integration has already been
demonstrated
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Future Work

» The GPU work-stealing runtime is a standalone
tool which can be integrated with a programming
model in order to provide a user friendly
interface

» Tag puts analogous to insert_task on the
device

» Facilitate programmer access to heterogeneous
hardware

» Hand coded integration has already been
demonstrated, with the next step being auto
generation
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Questions?
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