4y George R. Bruwn
School of Engine
Computer Sci

Dynamic Task Parallelism with a GPU
Work-Stealing Runtime System

Sanjay Chatterjee, Max Grossman,
Alina Sbirlea, and Vivek Sarkar

Department of Computer Science
Rice University

Background

= As parallel programming enters the mainstream,

the focus of programming models is primarily in
multicore CPUs

» Many advantages to using heterogeneous
hardware
* Performance

= Power consumption per FLOP
* Price per FLOP

* Tradeoff: application performance vs. learning
curve

%‘RICE 3

Background

= GPUs are a promising Multiple GPU processors

example of heterogeneous
hardware

= Hundreds of cores, split
among stream
multiprocessors (SMs)

= High memory bandwidth to
global memory

= Low power consumption

Streaming Multiprocessor

™
o

Au

Figure source: David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2010. N\
§

%‘RICE 4

Background

= NVIDIA's CUDA makes st e

general purpose m___.‘""
programming on GPUs g
possible, but not simple w3
= Explicit/static device memory il 3
management oy

» Understanding of the |
underlying hardware
necessary for evaluating
performance tradeoffs

= Static thread pool within a
device kernel

NRICE -

Plack (L, 1)

4

2
S

Problem

» Parallel programmers are more familiar with
dynamic task parallelism on multicore CPUs
than static data parallelism of GPUs

[Master Master]

= But many applications could benefit from the use
of GPUs

% RICE 5

Solution

= Build a hybrid work sharing/stealing runtime on a
single device

= Use this runtime to facilitate:
= Dynamic task parallelism
= Automatic device memory management

* |ncreased programmability
= Transparent multi-GPU execution

Design

= Persistent runtime kernel on the device

= Host pushes new tasks to the device through a
work sharing deque shared among SMs on the
device

= SMs on the same device share tasks through a
work stealing deque assigned to each SM
» Batched steals
» | oad balancing is done at the thread block

granularity, so tasks execute on worker blocks
rather than worker threads

%‘RICE 8

CPU

GPU Tasks

Work Sharing Deque of incoming tasks

of Ky | o | K

Push I

K

Work Stealing
deques of
GPU tasks
maintained
by worker
on each SM

—

Steals

(R

Design

= Runtime API provides simpler access to device
» insert task(...)
» get data(...)
* init runtime(...)
» finish device()

Evaluation

= Evaluation was performed using a variety of
benchmarks to study different properties
= Crypt (Java Grande Forum Benchmark Suite)
» Series (Java Grande Forum Benchmark Suite)

» Dijkstra (Lastras-Montano et. al., “Dynamic Work
Scheduling for GPU Systems”™)

= Nqueens (BOTS)
= Unbalanced Tree Search (OSU)

= Code comparison

%' RICE y

Data Parallel Performance Evaluation

2.3

g 15 F
1k

05 |

Crypt Speedup

Hand coded DHENE
Runtime (1 Devices)
Runtime (2 Devices!

il

F'ruhltm Size

% RICE

12

1&

14 F

0.e [

0.e |

04 F

0.2 F

Series Speedup
T T
Hend coded N
Funtime (1 Devices) 2223
Funtime (2 Devices!
oM
Problem Size

Load Balance Evaluation

NQu=ens Load Balancing Dijkestra Load Balancing
000D 2500
350000 |-
2000 |
00000 -
250000 -
W w1500 -
ﬁ ﬁ
200000 o
-1 -1
® 150000 - ® 1000 -
10000 -
500 |
S0
LH L]

EMD EM1 SMZ SM3 SM4 SME EME SMT SME SMI SMLIOESMIL SMIZ M3

%' RICE .

Task Parallel Performance Evaluation

14

12 |

10 |

UTS Speedup

=] Fd = Ll L]
T T T T

I 1
Serinl N
Host (12 Threads] 3
Auntime (1 Devices]
Runtime (2 Devices] T

14

Nijueens Spesdup

T T
Serial I

Host (12 Thresds) 3 |
Funtime (1 Devices! m

Funtime (2 Devices! o |

Code Comparison

g

CUDA

cudaMalloc((void **)&d_Z, sizeof(int) * 52);
cudaMalloc((void **)&d DK, sizeof(int) * 52);
cudaMalloc((void **)&d plain, mem_size);
cudaMalloc((void **)&d_crypt, mem_size);
cudaMemcpy(d_crypt, crypt, mem_size,
cudaMemcpyHostToDevice);
cudaMemcpy(d_plain, plainl, mem_size,
cudaMemcpyHostToDevice);
cudaMemcpy(d_zZ, Z, sizeof(int) * 52,
cudaMemcpyHostToDevice);
cudaMemcpy(d_DK, DK, sizeof(int) * 52,
cudaMemcpyHostToDevice);

cryptCUDAKernel<<<threads_per_block,
blocks_per_grid>>>(d_plain, d_Z, d_crypt,
mem_size);

cryptCUDAKernel<<<threads_per_block,
blocks_per_grid>>>(d_crypt, d_DK,
d_plain, mem_size);

cudaMemcpy(crypt, d_crypt, mem_size,
cudaMemcpyDeviceToHost);

cudaMemcpy(plain2, d_plain, mem_size,
cudaMemcpyDeviceToHost) ;

o RICE

15

Runtime

InitRuntime(...)
. Task construction code ..
for(i = @0; i < n_tasks; i++) {
insert_task(tasks+i);

}
for(i = @0; i < n_tasks; i++) {
get_data(plain2+(i * mem_per_task));

}

finish_device_tasks();

« Simpler code to
autogenerate when
paired with a parallel
compiler

Conclusions

= GPU work stealing runtime which supports
dynamic task parallelism, on hardware intended
for data parallelism

= Demonstrated effectiveness of work stealing
deques in dynamically distributing work
between SMs

= Enabled task parallel applications on GPUs

= Demonstrated reasonable (though not stellar)
performance for both data parallel and task
parallel applications

%' RICE .

Future Work

» |[nvestigate bottlenecks of the runtime or of task

parallel applications using the runtime (i.e. UTS,
NQueens)

» Integrate this runtime with the Habanero C and
Concurrent Collections (CnC) programming
systems under development at Rice University

* The GPU work-stealing runtime is a standalone tool
which can be integrated with a programming model

» Facilitate programmer access to heterogeneous
hardware

* Hand coded integration has already been
demonstrated

%' RICE .

Future Work

» The GPU work-stealing runtime is a standalone
tool which can be integrated with a programming
model in order to provide a user friendly
interface

» Tag puts analogous to insert_task on the
device

» Facilitate programmer access to heterogeneous
hardware

» Hand coded integration has already been
demonstrated, with the next step being auto
generation

%' RICE .

Questions?

20

