
Dynamic Task Parallelism with a GPU
Work-­Stealing Runtime System

Sanjay Chatterjee, Max Grossman,
Alina Sbîrlea, and Vivek Sarkar

Department of Computer Science

Rice University

3

Background

As parallel programming enters the mainstream,
the focus of programming models is primarily in
multicore CPUs
Many advantages to using heterogeneous
hardware

Performance
Power consumption per FLOP
Price per FLOP

Tradeoff: application performance vs. learning
curve

4

Background

GPUs are a promising
example of heterogeneous
hardware

Hundreds of cores, split
among stream
multiprocessors (SMs)
High memory bandwidth to
global memory
Low power consumption

 Figure source: David B. Kirk and Wen-­mei W. Hwu. Programming Massively Parallel Processors: A Hands-­on

Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2010.

5

Background

general purpose
programming on GPUs
possible, but not simple

Explicit/static device memory
management
Understanding of the
underlying hardware
necessary for evaluating
performance tradeoffs
Static thread pool within a
device kernel

6

Problem

Parallel programmers are more familiar with
dynamic task parallelism on multicore CPUs
than static data parallelism of GPUs

But many applications could benefit from the use
of GPUs

Master

T0

T1

T2

T3

T4
Master

7

Solution

Build a hybrid work sharing/stealing runtime on a
single device
Use this runtime to facilitate:

Dynamic task parallelism
Automatic device memory management
Increased programmability
Transparent multi-GPU execution

8

Design

Persistent runtime kernel on the device
Host pushes new tasks to the device through a
work sharing deque shared among SMs on the
device
SMs on the same device share tasks through a
work stealing deque assigned to each SM

Batched steals
Load balancing is done at the thread block
granularity, so tasks execute on worker blocks
rather than worker threads

9

GPU Tasks

Push

Task

SM1 SM2 SM3 SMN

Work Sharing Deque of incoming tasks

Steals

CPU GPU

Work Stealing
deques of
GPU tasks
maintained
by worker

on each SM

K1 K2 K3 KN

T1

TK

K1

K2

K3

KN

10

Design

Runtime API provides simpler access to device
insert_task(...)
get_data(...)
init_runtime(...)
finish_device()

11

Evaluation

Evaluation was performed using a variety of
benchmarks to study different properties

Crypt (Java Grande Forum Benchmark Suite)
Series (Java Grande Forum Benchmark Suite)
Dijkstra (Lastras-
Scheduling for GPU Systems
Nqueens (BOTS)
Unbalanced Tree Search (OSU)

Code comparison

12

Data Parallel Performance Evaluation

13

Load Balance Evaluation

14

Task Parallel Performance Evaluation

15

Code Comparison
CUDA
cudaMalloc((void **)&d_Z, sizeof(int) * 52);
cudaMalloc((void **)&d_DK, sizeof(int) * 52);
cudaMalloc((void **)&d_plain, mem_size);
cudaMalloc((void **)&d_crypt, mem_size);
cudaMemcpy(d_crypt, crypt, mem_size,
 cudaMemcpyHostToDevice);
cudaMemcpy(d_plain, plain1, mem_size,
 cudaMemcpyHostToDevice);
cudaMemcpy(d_Z, Z, sizeof(int) * 52,
 cudaMemcpyHostToDevice);
cudaMemcpy(d_DK, DK, sizeof(int) * 52,
 cudaMemcpyHostToDevice);

cryptCUDAKernel<<<threads_per_block,
 blocks_per_grid>>>(d_plain, d_Z, d_crypt,
 mem_size);
cryptCUDAKernel<<<threads_per_block,
 blocks_per_grid>>>(d_crypt, d_DK,
 d_plain, mem_size);
cudaMemcpy(crypt, d_crypt, mem_size,
 cudaMemcpyDeviceToHost);
cudaMemcpy(plain2, d_plain, mem_size,
 cudaMemcpyDeviceToHost);

Runtime
InitRuntime(...)
... Task construction code ...
for(i = 0; i < n_tasks; i++) {
 insert_task(tasks+i);
}
for(i = 0; i < n_tasks; i++) {
 get_data(plain2+(i * mem_per_task));
}
finish_device_tasks();

Simpler code to
autogenerate when
paired with a parallel
compiler

16

Conclusions

GPU work stealing runtime which supports
dynamic task parallelism, on hardware intended
for data parallelism
Demonstrated effectiveness of work stealing
deques in dynamically distributing work
between SMs
Enabled task parallel applications on GPUs
Demonstrated reasonable (though not stellar)
performance for both data parallel and task
parallel applications

18

Future Work
Investigate bottlenecks of the runtime or of task
parallel applications using the runtime (i.e. UTS,
NQueens)
Integrate this runtime with the Habanero C and
Concurrent Collections (CnC) programming
systems under development at Rice University

The GPU work-stealing runtime is a standalone tool
which can be integrated with a programming model
Facilitate programmer access to heterogeneous
hardware
Hand coded integration has already been
demonstrated

19

Future Work
The GPU work-stealing runtime is a standalone
tool which can be integrated with a programming
model in order to provide a user friendly
interface
Tag puts analogous to insert_task on the
device
Facilitate programmer access to heterogeneous
hardware
Hand coded integration has already been
demonstrated, with the next step being auto
generation

20

Questions?

