

Experiences Developing Regular

SHMEM and Irregular Applications on OpenSHMEM

- PGAS offers performance and programmability benefits for large-scale applications, more natural extension of shared-memory programming
- OpenSHMEM's symmetric heap offers high-level abstraction and efficient RDMA
- Evaluate effectiveness on a range of regular and irregular benchmarks, explore integrating its use with OpenMP and **AsyncSHMEM** for hybrid parallelism
- See poster titled "Scaling to Exascale: Intra- and Inter-node Asynchronous Tasking in OpenSHMEM" for motivation and implementation of AsyncSHMEM, a framework for combining task parallel programming with OpenSHMEM

AsyncSHMEM Fork-Join vs. Offload Runtime

- Fork-Join: simple integration of task-parallel runtime w/ OpenSHMEM, includes tasking API extensions, no communication permitted in parallel regions
- Offload: offload communication work to communication worker thread, more general combination of OpenSHMEM and parallelism

Evaluation Platform

Titan @ ORNL: 16-core AMD, 32 GB DRAM. No experiments with GPUs.

ISx

- Distributed Integer sort, regular parallelism, weak scaling with 2²⁹ keys/node
- All-to-all to distribute keys among nodes, followed by local sort
- Demonstrate value added by hybrid parallelism on regular applications

Total Execution Time

20 15 10 32 64 128 256 512 1024 Total nodes on Titan (16 cores per node) Flat OpenSHMEM AsyncSHMEM (Fork-Join) OpenSHMEM+OpenMP AsyncSHMEM (Offload)

Total All-to-all Time

UTS

- Unabalanced tree sort, irregular parallelism, strong scaling on T1XXL
- Distributed and shared-memory dynamic load balancing
- Task-parallel programming with hand-coded scalability

Graph 500

- Distributed breadth first search, generally wavefront-based
- OpenSHMEM-based implementation (Concurrent-CRC) demonstrates highest sclability of flat implementations

Max Grossman (jmg3@rice.edu), Vivek Kumar, Zoran Budimlic, Howard Pritchard, Jeff Kuehn, Vivek Sarkar