
Bounded Memory Scheduling of Dynamic Task Graphs

Dragoş Sbîrlea
Rice University

dragos@rice.edu

Zoran Budimlić
Rice University

zoran@rice.edu

Vivek Sarkar
Rice University

vsarkar@rice.edu

ABSTRACT
It is now widely recognized that increased levels of paral-
lelism is a necessary condition for improved application per-
formance on multicore computers. However, as the number
of cores increases, the memory-per-core ratio is expected
to further decrease, making per-core memory efficiency of
parallel programs an even more important concern in fu-
ture systems. For many parallel applications, the memory
requirements can be significantly larger than for their se-
quential counterparts and, more importantly, their memory
utilization depends critically on the schedule used when run-
ning them.

To address this problem we propose bounded memory sche-
duling (BMS) for parallel programs expressed as dynamic
task graphs, in which an upper bound is imposed on the pro-
gram’s peak memory. Using the inspector/executor model,
BMS tailors the set of allowable schedules to either guar-
antee that the program can be executed within the given
memory bound, or throw an error during the inspector phase
without running the computation if no feasible schedule can
be found.

Since solving BMS is NP-hard, we propose an approach
in which we first use our heuristic algorithm, and if it fails
we fall back on a more expensive optimal approach which is
sped up by the best-effort result of the heuristic.

Through evaluation on seven benchmarks, we show that
BMS gracefully spans the spectrum between fully parallel
and serial execution with decreasing memory bounds. Com-
parison with OpenMP shows that BMS-CnC can execute in
53% of the memory required by OpenMP while running at
90% (or more) of OpenMP’s performance.

Keywords
task graphs; task scheduling; inspector/executor

1. INTRODUCTION
Multicore, with its increasing levels of parallelism, has ar-

rived at a time when memory capacity has already stopped

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628090.

scaling [26]. Currently, memory per core is decreasing by
30% every two years [27] and projections state that it will
soon drop to megabytes in extreme scale systems [29]. As ex-
pressed by IBM, this is an important challenge to overcome
for exascale computing, since “our ability to sense, collect,
generate and calculate on data is growing faster than our
ability to to access, manage and even store that data.” [43].
But this problem is not only an obstacle for future super-
computers; for the embedded multicore processors, memory
is already at a premium today.

Unfortunately, parallel execution is known to increase mem-
ory requirements compared to a serial baseline [8]. The
community has been aware of this problem since the 1990s:
“The amount of memory required by a parallel program
may be spectacularly larger than the memory required by
an equivalent sequential program parallel memory re-
quirements may vary from run to run, even with the same
data” [11]. Without mitigation techniques, the increased
memory consumption can lead to an increased occurrence
of out-of-memory errors [16].

Modern programming systems for parallel applications are
not aware of and do not control the peak memory footprint,
making it difficult for programmers to ensure their program
will not run out of memory1. We believe this lack of con-
trol over peak memory usage stems from a more in-depth
challenge: programming systems do not have access to the
dependence structure (task communication and creation re-
lationships) of a program.

In light of these problems, we propose a programming
system that targets the bounded memory scheduling (BMS)
problem: Given a parallel program P with input I and a
memory bound M , can P complete execution in the memory
bound M?

We propose an inspector/executor [35] based model that
enables dynamic program analysis, transformation and op-
timization based on the computation task graph at runtime,
but before running the application. To the best of our knowl-
edge, this work is the first to consider the BMS problem in
the context of dynamic task scheduling. This problem is a
more general case of the register sufficiency problem [20],
which has been well studied due to its importance in com-
piler code generation. In the context of task scheduling,
additional difficulty arises from the fact that, in most pro-
gramming systems, there is insufficient information at the
point when a task is created to decide if it should be de-

1In contrast, embedded applications tend to be memory-
aware but usually offer little flexibility in scheduling and
mapping of individual components.

mailto:dragos@rice.edu
mailto:zoran@rice.edu
mailto:vsarkar@rice.edu

ferred or handed to the scheduler directly in order to main-
tain the memory usage within the desired bound. Without
an oracle to answer this question, the BMS problem be-
comes intractable. We propose a scheduling approach in
which the role of the oracle is performed by the inspector
phase of an inspector/executor [35] system. Our parallel
programming model (see Section 3) enables the inspector
to build the computation graph of compliant applications
without running the internals of computation steps in the
application, thereby revealing both the parent-child rela-
tionships for tasks and the reader-writer relationships for
data. With this knowledge, the inspector can identify sche-
duling restrictions that lead to bounded-memory execution.
These restrictions are then enforced by the executor stage,
when the application runs on a load-balancing work-stealing
scheduler. The result is a hybrid scheduling approach which
obeys a memory bound but retains the advantages of dy-
namic scheduling.

The main contributions of this paper are:

• a heuristic algorithm for BMS based on the inspec-
tor/executor model for identifying a set of schedules
that fit a desired memory bound. The BMS algorithm
is run in the inspector phase and works by imposing
restrictions on the executor phase.

• an optimal algorithm for bounded memory scheduling
based on integer linear programming; as opposed to
the heuristic algorithm, it is optimal in that it ensures
finding a schedule that fits the memory bound if one
such schedule exists. By proposing an efficient ILP
formulation and by using the result of the heuristic
BMS to hot-start the optimal algorithm, our formula-
tion works on graphs that are an order of magnitude
larger than those reported in previous work on ILP-
based register scheduling.

• a schedule reuse technique to amortize the cost of the
BMS inspector across multiple executions by match-
ing new runs to previously computed schedules. This
technique works whenever the runs have the same dy-
namic computation graph, even if their inputs differ
and, to the best of our knowledge, is the first to reuse
inspector-executor results across application runs.

• experimental evaluation on several benchmarks show-
ing that the range of memory bounds and parallel per-
formance delivered by BMS gracefully spans the spec-
trum from serial to fully parallel execution.

2. BACKGROUND:
THE CONCURRENT COLLECTIONS
PROGRAMMING MODEL

The programming model used in this work is an extension
of the Concurrent Collections (CnC) [10] model. CnC appli-
cations consist of tasks (called steps), uniquely identified by
a step collection specifying the code that the task will run,
and a tuple called the step tag identifying a specific instance
of a step. Tasks communicate through dynamic single as-
signment variables called items. Items are grouped together
into item collections which contain logically related items
and are uniquely identified by tuples called keys.

Once a step is spawned, it can read items by calling the
item_collection.get(key) function which returns the item

value. Get calls block until some other step produces the
item with that key, which is performed through item_collec-

tion.put(key, value). As long as the dynamic single as-
signment rule is respected and since gets are blocking 2,
there are no data-races on items. Once steps read their
input items, they perform computation and then may pro-
duce items (through put operations) and/or start new steps
through step_collection.spawn.

Since items are accessed using tuples as keys (rather than
pointer-based references), it is generally not possible to au-
tomatically identify which items are dead and should be
collected. Instead, the number of expected read operations
(called the get-count of the item) is specified as an additional
parameter to item put calls [37].

3. BMS-CNC: AN INSPECTOR/EXECUTOR
PARALLEL PROGRAMMING MODEL

Many analyses of task-parallel programs (such as data
race detection) require understanding the task-parallel struc-
ture of the computation, which is usually unknown at com-
pile time. As a result, many of these analyses build the task
graph dynamically, while the application is running. Unfor-
tunately, this is too late for certain optimizations, such as
bounding the memory consumption of the program.

We propose the use of an inspector/executor programming
model in which an analysis (inspector) phase is performed
before any tasks start executing. The inspector uncovers
the task creation and data communication patterns of the
application without running the internals of computation
steps; the information it uncovers can be used for program
transformations. As soon as the transformation completes,
the executor starts running the transformed program.

Specifically, we introduce BMS-CnC, a CnC variant that
adds programmer-written graph expansion functions, asso-
ciated with each step collection. These functions enable the
inspector to query the input and output items and spawned
steps of each step, without performing a complete step ex-
ecution. The set of keys corresponding to items read by
the step with tag t is returned by the programmer-written
get_inputs(t) function. Similarly, get_outputs(t) and
get_spawns(t) return the keys of items produced by the
step and the tags of steps spawned by it. 3

An additional expansion function deals with those items
that are the output of the whole CnC computation. Before
spawning the first step, programmer needs to identify items
k that are read by the environment after all CnC steps have
finished, through calls to declare_get(k).

BMS-CnC uses a CnC runtime in which tasks do not start
executing until all input items are available (known as strict
preconditions [38]), which means that tasks have only two
states before termination: prescribed (expressed to the run-
time by a spawn call) and running. In the prescribed state,
tasks consume memory consisting of a function pointer and
the tag tuple; during execution, they also use the stack. Be-
cause they never block, there are only as many task stacks

2With the BMS variant of CnC in Section 3, the logic behind
gets remains the same, but since the task does not start until
all input items are available, blocking is not needed anymore.
3Note that tasks can make conditional puts and gets in
BMS-CnC, the only requirement is that these must also be
expressed in the corresponding graph expansion function, so
any such condition has to be a pure function of the step tag.
See subsection 3.2 for a discussion.

as there are workers. Since task stacks are fixed-size4, the
stack memory consumption is constant during execution.

3.1 Programming model characteristics
useful for BMS

Several features make CnC an ideal candidate for BMS:

• CnC makes it easy to separate data and computa-
tion, simplifying the implementation of the inspector-
executor approach and reducing the inspector over-
head.

• Assuming there are no data-races, CnC programs are
deterministic [10], enabling BMS schedule reuse across
multiple runs (Section 7).

• CnC tasks only wait on items, before running [38].
This minimizes the number of task states, making the
memory accounting easier than in other models.

• CnC steps finish without waiting for their spawned
children to finish and do not use stack variables to
communicate with other tasks. This behavior is differ-
ent from spawn-sync models where parent stack cannot
be reclaimed until all children have finished. In BMS-
CnC, there will only be as many task stacks as there
are worker threads (a constant amount of memory).

• The dynamic single assignment property implies that
there are no anti and output dependences between
steps, which increases parallelism and gives BMS the
maximum flexibility in reordering tasks.

• CnC items are usually tiles, and steps are medium-
grained (“macro-dataflow”) keeping the graph of the
computation at a manageable size and decreasing the
overhead of the inspector phase.

3.2 Independent control and data
as a requirement for BMS

Since BMS-CnC relies on the programmer to separate the
computation graph from the internals of the computation
through expansion functions, an important question arises:
Is it always possible to separate the computation structure
from the computation itself? In general, the answer is no.

The problem can be illustrated with step_collection.

get_inputs(t) in the case when the step reads two items.
If the key of the second item depends on the value of the first
item (not only on the tag of the step) then it is impossible to
obtain the key of this second item without actually executing
the step that produces the first item. This example is an
instance of an application pattern called “data-dependent
gets”. A related pattern is that of “conditional gets’,’ in
which the read operation on an item is conditional on the
value of a previously read item and leads to the same issue.
Similar issues happen for puts and can be worked-around by
putting empty items instead of doing conditional puts.

If the keys of items read and written and tags of steps
spawned are only a function of the current step tag, then
the application has independent control and data, which is
needed to accurately model an application using BMS. If the

4We allocate fixed-size stacks for each task. If more stack
space is needed for activation frames, the task can create
additional child tasks; if it needs more space for stack data,
it can create CnC items instead.

keys and tags depend on the values of items, we say that the
application has coupled control and data.

When faced with an application with coupled control and
data, one possible solution is to include more of the com-
putation itself in the graph expansion functions. In the
extreme case, by including all the computation in the ex-
pansion functions, we would be able to obtain an accurate
dynamic task graph. Unfortunately, in the worst case, the
computation would be performed twice, once for the expan-
sion and once for the actual execution. However, our expe-
rience is that many application contain independent control
and data, thereby supporting the BMS approach. For case
studies and a discussion on the problems and benefits of
independent control and data, see Sb̂ırlea et al. [38].

4. BUILDING THE COMPUTATION GRAPH
This section describes the computation graph used by the

algorithm; Section 5 describes our heuristic BMS algorithm
and Section 6 presents the optimal approach. Section 7 de-
scribes the technique for reusing the schedules.

The inspector builds a dynamic computation graph: items
and tasks are nodes and the producer-consumer relation-
ships are edges. Because of the dynamic single assignment
nature of items, item nodes can only have a single producer,
but may have multiple consumer tasks. Tasks can also
spawn (prescribe) other tasks and each task has a unique
parent.

The graph construction process starts from the node that
models interactions with the parts of the program that are
outside of CnC. The environment-in node produces initial
items and spawns initial steps. After the computation com-
pletes, the environment-out node reads the outputs.

The tasks spawned by the environment-in node are added
to a worklist of tasks that are expanded serially, by calling
the graph expansion functions. For a single task, the process
consists of the following steps:

• Call get_inputs(t) and add edges from the node of
each consumed item to the task node.

• Call get_outputs(t) and add edges from the task node
to each output item node.

• Call get_spawns(t) and add edges from the current
task to the child tasks. Add children to the worklist.

The process finishes when all tasks have been expanded5.
The environment-out node is added and connected to the
output items of the computation (declared by using the
function item_collection.declare_get(k)) As an exam-
ple, the computation graph obtained for Cholesky factoriza-
tion, is shown in Figure 1.

5. THE HEURISTIC BMS ALGORITHM
After generating the computation graph, the inspector at-

tempts to find bounded memory schedules using the heuris-
tic BMS algorithm, which takes as input the computation
graph and a memory bound M . BMS outputs an augmented
partial order of tasks such that if a schedule respects the
partial order, it will use at most M memory.

5During the expansion process, nodes are created when they
are referenced for the first time.

Figure 1: The BMS-CnC computation graph for
Cholesky factorization tiled 2×2. Data items are rep-
resented as rectangles and Circles represent steps.
Nodes are labeled with the collection name followed
by the key or tag. Item colors are assigned by the
BMS algorithm (Section 5).

Even with substantial simplification, the BMS problem is
NP-hard, since the register sufficiency problem [20] which
is well-known to be NP-Complete can be reduced to BMS6.
Furthermore, the size of the computation graph is an order
of magnitude larger than the basic block length (which de-
termines the graph size in local register sufficiency). Thus,
trying to find a heuristic solution before attempting a more
expensive solution is essential. We propose a best effort ap-
proach in which, if a set of schedules that execute in less
than M memory is found, the program is executed follow-
ing a dynamically chosen schedule from the set. This leads
to the following approximation of the BMS problem: Given
a parallel program P with input I and a computing system
with memory size M , find an additional partial task order-
ing TO such that any schedule of P that also respects TO
uses at most M peak memory. If no schedule is found, BMS
returns false (even though such a schedule may still exist).

In this initial description items are assumed to be of a
fixed size and task memory is ignored. Section 8 extends
the algorithm to address these simplifications.

Intuitively, given a serial schedule S (i.e., a total order)
of the task graph, the BMS algorithm can test if it respects
the memory bound by dividing the memory into item-sized
slots (called colors) and checking that the number of avail-
able colors is larger than the maximum number of items
live in the sequential schedule. The task graph can then be
run in parallel if items assigned to the same color have non-
overlapping lifetimes (to ensure that the memory bound is
respected). This is enforced by adding ordering edges be-
tween the consumers of the item previously assigned to a
color and the producer of the next item assigned to that
color. To ensure adding ordering edges does not introduce
deadlocks, we only add ordering edges that follow the same
sequence of creation and collection as in the serial schedule
S (since S is a valid topological sort of the graph, this cannot
cause cycles).

The pseudocode, shown in Algorithm 1, follows the gen-
eral list scheduling pattern. It picks a serial ordering of tasks

6The BMS problem has additional constraints not found in
the register sufficiency problem that increase its complexity,
such as items of different sizes, tasks that produce multiple
items, the fact that inputs and outputs of a task (instruction
in the register sufficiency case) are live at the same time.

Algorithm 1 The BMS Algorithm.

1: function BMS(G, M, α)
2: . G is the computation graph
3: . M is the desired memory bound
4: . α affects the task priority queue (see Section 5.1)
5: noColors←M/G.itemsize
6: freeColors← InitializeSet(noColors)
7: freeTasks← PriorityQueue(α)
8: push(freeTasks,G.env)
9: while freeTasks 6= ∅ do

10: crtTask ← Pop(freeTasks)
11: for all crtItem ∈ ProducedItems(crtTask) do
12: MarkAsProduced(crtItem)
13: color ← Pop(freeColors, crtItem)
14: if color = null then
15: return false . Failed to find BMS schedule
16: else
17: prevItem← GetStoredItem(color)
18: for prev ∈ ConsumersOf(prevItem) do
19: AddEdge(prev, crtTask)

20: for all cTask ∈ ConsumersOf(prevItem) do
21: MarkInputAvailable(cTask, crtItem)
22: if ReadyToRun(cTask) then
23: Push(freeTasks, cTask)

24: SetStoredItem(color, crtItem)

25: for all crtItem ∈ ConsumedItems(crtTask) do
26: if UnexecutedConsumers(crtItem) == 0 then
27: availableColor ← ColorOf(crtItem)
28: freeColors← freeColors ∪ availableColor
29: for all spawn ∈ SpawnedTasks(crtTask) do
30: MarkPrescribed(spawn)

31: return true . Found BMS schedule
32: end function

in the main loop, lines 9 - 30 (by default we use a breadth-
first schedule). In each iteration, it extracts one task from
the priority queue of “ready to run” tasks (line 10), which is
initialized with the only task ready to run at the start: the
input environment node (line 8).

We propose two techniques that help the algorithm cope
with the different requirements of the bounded memory sche-
duling problem. These techniques are: successive relaxation
of schedules and color assignment for minimum serialization.
They are discussed in the next sections.

5.1 Successive relaxation of schedules
If the desired memory bound is small, it is possible that

the serial schedule chosen by BMS will not fit the memory
bound. It is essential to find a heuristic that enables us to
identify a schedule which fits the memory bound and the ap-
proach must also be fast, since the executor cannot start be-
fore the inspector finishes. Our approach, called successive
relaxation of schedules, is to sample schedules in a way that
trades parallelism for lower memory requirements. We do
this by varying the ranking function used to prioritize ready
to run tasks in the BMS algorithm. The ranking function
varies from the breadth-first (default) to depth first, since
we found that breadth-first schedules usually lead to more
parallelism/more memory, while depth-first leads to less par-
allelism/less memory. 7 This choice of different schedules is
done by varying α (line 7) from 1 (breath-first) to 0 (depth-

7 Depth-first and breath-first ordering of tasks are done on
a graph where items are treated as direct edges from pro-
ducer to consumer. The breadth-first ranking of a node is
one larger than its lowest ranking predecessor node. For
depth-first, a queue of ready tasks is maintained and nodes

first) which is then used by the priority queue comparison
function (lines 12-16) in which the available tasks are stored.
If the depth first schedule (α = 0) does not fit the bound,
we abort the scheduling operation (line 8).

Algorithm 2 Successive relaxation of schedules.

1: function Schedule(G, M)
2: α← 1
3: while α 6= 0 do
4: success← BMS(G,M,α)
5: if success then
6: return true
7: α← α−∆α
8: return false
9: end function

10:
11: . Used for the task priority queue:
12: function PriorityQueue.Compare(task1, task2)
13: rank1 ← α×RankBF(task1) + (1−α)×RankDF(task1)
14: rank2 ← α×RankBF(task2) + (1−α)×RankDF(task2)
15: return rank1 − rank2
16: end function

5.2 Color assignment
The color assignment is important because it drives the

insertion of serialization edges, which in turn can affect per-
formance: inserting too many edges increases overhead and
bad placement can decrease parallelism. Moreover, a slow
coloring heuristic delays the start of the executor stage slow-
ing down the completion of the execution.

Since many steps are already ordered by producer-consumer
and step spawning relationships, not all edges inserted by
BMS in line 19 of Algorithm 1 actually restrict parallelism.
We call these edges transitive edges, whereas those that re-
strict the parallelism are serialization edges and need to be
enforced during execution. As described below, this distinc-
tion is also important for color assignment.

How can one quantify the parallelism decrease caused by
coloring? Remember that the resulting schedule runs on
a dynamic work stealing scheduler with provable perfor-
mance guarantees [40] as long as the parallel slack assump-
tion holds. This assumption holds as long as the critical
path is not increased too much, so we attempt to insert se-
rialization edges in such a way as to not increase the critical
path.

Theorem 5.1. Assuming unit-length tasks and a breadth-
first schedule, BMS will increase the critical path length with
at most the number of serialization edges it inserts.

Proof. Since tasks are processed in breadth-first order
and the tail of serialization edges is a task that has already
been allocated, a serialization edge whose head task is at
level k, must start at level k− i, with i ≥ 0 thereby the edge
can increase the critical path with at most one.

Algorithm 3 shows our greedy minimum-serialization heuris-
tic: for each item, we pick the color that leads to the inser-
tion of the fewest serialization edges from steps with breadth
first level smaller than the current task. Only if no such
edges exist we consider serialization edges that start from

are numbered in the order in which they are removed from
this queue. Nodes are added to the queue when their pre-
decessors have been numbered.

Variable Name Meaning
issue[task id] In which cycle is task task issued?
death[item] In which cycle can item item be

collected?
color[item] To which color is item item as-

signed?

indicators
Auxiliary binary variables for dis-
junction support.
At most 5×NO ITEMS2 variables.

Table 1: Variables used in the ILP formulation.

Constraint name Maximum number
of constraints

1. Define time of item death NO GETS
2. Data dependence NO GETS

3. Color assignment 5 × NO ITEMS2

4. Max bandwidth NO ITEMS
5. Earliest start time NO TASKS
6. Latest start time NO TASKS

Table 2: Constraints used in the ILP formulation.

the current breadth-first level, since that increases the crit-
ical path. If the source of an edge that would be added by
BMS is already a predecessor of the destination, then the
edge is transitive and is not counted as a serialization.

Algorithm 3 Assigns item colors.

1: function POP(freeColors, crtItem)
2: producer ← GetProducer(crtItem)
3: minColor ← null
4: minEdges← MAX INT
5: for color ∈ freeColors do
6: prevItem← GetStoredItem(color)
7: edges← 0
8: for consum ∈ ConsumersOf(prevItem) do
9: if !IsPredecessor(consum, producer) then

10: if BFRank(prod) ≥ BFRank(consum) then
11: edges← edges+ ConsumersCount(prevItem)

12: edges← edges+ 1

13: if edges < minEdges then
14: minEdges← edges
15: minColor ← color
16: return minColor
17: end function

6. OPTIMAL BMS THROUGH
INTEGER LINEAR PROGRAMMING

Heuristic BMS is fast, but offers no guarantees regard-
ing how much memory reduction it can achieve. If it fails
to find a schedule that fits the desired memory bound, we
apply an integer linear programming formulation that guar-
antees finding a schedule for any input memory bound if
such a schedule exists. The challenge in using integer lin-
ear programming is to formulate the problem in a time and
memory-efficient way, so that it can be used for large com-
putation graphs. The formulation and optimizations are de-
scribed in Section 6.1. Section 6.2 proposes specific lower
bounds used to speed up optimal BMS. An additional per-
formance benefit is obtained by using the results of heuristic
BMS to speed-up the optimal BMS, as shown in Section 6.3.

For space reasons, we only describe here the optimizations
for the ILP formulation of the problem that lead to increased

scalability. More details about the formulation can be found
in the technical report version [36] of this paper. We pro-
pose a disjunctive formulation with variables and constraints
shown in Tables 1 and 2.

ILP formulation attempts to find a schedule with the min-
imum memory bound by minimizing the number of colors
used, but interrupts the search as soon as it finds a solu-
tion that fits the user-specified memory bound. As shown
in Section 9, we are able to solve graphs that are an order of
magnitude larger than those in previously published results
for the problem of minimum register scheduling.

6.1 Optimization of color
assignment constraints

We focused our optimization effort on color assignment
constraints because they represent a large majority of the
total number of constraints. Color assignment constraints
enforce that two items assigned to the same color cannot be
live at the same time and could be expressed naively, as the
following if-statement:

if color[item1] == color[item2] then

issue[producer[item1]]>death[item2] or

issue[producer[item2]]>death[item1]

The integer linear programming encoding of this if-statement
is done by replacing the if-condition with two disjuncts:

color[item1] < color[item2] or

color[item1] > color[item2]

We then transform the if statement if A then B into a
disjunction Ā or B.

Then, we apply the technique of using boolean indica-
tor variables (named a,b.c,d) and an additional constraint
to represent disjunctions [46], obtaining the following equa-
tions, in which M and N are big constants:

color [item1] − color [item2] + M × a ≤ M − 1

color [item2] − color [item1] + M × b ≤ M − 1

death[item1] − issue[producer [item2]] + N × c ≤ N − 1

death[item2] − issue[producer [item1]] + N × d ≤ N − 1

a+ b+ c+ d ≥ 1

This set of constraints is correct, but inefficient, adding 4
variables and 5 constraints for each pair of items. Decreas-
ing the number of constraints and variables added is essen-
tial for efficient execution. To do this, we analyze the pos-
sible relations of the lifetime of items as shown in Figure
2. For items that must-overlap, we can elide the third and
fourth constraints and corresponding variables. For items
that may-overlap we elide either the third or fourth con-
straints if there is a path as in Figure 2c. For items that
cannot overlap, we elide all constraints and associated indi-
cator variables.

Another constraint that can be optimized is the one that
defines the time of death (constraint number 2). These con-
straints restrict the time of death of each item to happen
after all the consumers of that item have been issued. In
some cases, consumers of the item are ordered by other data
dependence edges, so we can omit the time of death con-
straints corresponding to all but the last consumer.

(a) Item lifetimes
must overlap.

(b) Item lifetimes
cannot overlap.

(c) Item lifetimes
may overlap, but
one item must be
created first.

Figure 2: Several item patterns enable more efficient
encoding of the color assignment constraint. The
dotted edges are paths in the graph that enforce
the must-overlap, cannot-overlap and may-overlap
relations.

6.2 Tight lower bounds to speed up ILP BMS
Often, the tightest possible schedule is found by heuris-

tic BMS, but the ILP solver takes a long time to prove its
optimality since it needs to search through many schedules
for a possibly better solution. Adding tight lower bounds
on the minimum memory possible is important, since the
search stops if the heuristic BMS solution equals the lower
bound. We propose using two lower bounds, each of which
works best for a different type of graphs.

The first lower bound is the memory requirement of the
step with the largest number of inputs and outputs. In some
cases, this step is the environment-out node and we can im-
prove the bound further by using the following observation:
after all but one of the output items are produced, in or-
der to produce the last item, the inputs from which this
last item is computed must also be live, and included in the
lower bound. For Cholesky factorization, for example, this
bound is equal to the minimum memory footprint of the
application.

The second bound we propose is useful for applications
where, even though each step requires a modest amount of
memory, the total footprint is large. This pattern occurs,
for example, in divide-and-conquer applications where the
memory pressure is proportional to the height of the graph.
To handle these cases, we build a tree that is subsumed by
the computation graph (the tree identification is done by
ignoring all but one of the edges that connect an item to
its consumers), and use the Strahler number8 of the tree as
a lower bound. For applications such as merge sort, this
happens to be the minimum memory footprint of the appli-
cation.

6.3 Hot start ILP: Using heuristic BMS
to speed up ILP BMS

To decrease the time and memory costs associated with
ILP, we combine linear programming with the heuristic ap-
proach presented in Section 5. Since the optimal approach
is only used when the heuristic algorithm does not find a
schedule that fits the desired memory bound, this means
that the minimum footprint schedule found by the heuris-
tic can be used as initial solution for the the ILP solver.
If the heuristic already found the minimum footprint possi-
ble, but the desired footprint is smaller, the ILP will need to
confirm the lack of better solutions by solving the linear pro-

8The Strahler number [18] is the minimum number of reg-
isters required to evaluate an expression tree and can be
computed in linear time.

gramming relaxation and checking that the objective value
matches the one provided by the heuristic. In this case, us-
ing the initial solution, the solver will finish early with the
optimal solution being the heuristic one.

7. SCHEDULE REUSE
Traditional inspector/executor systems amortize the in-

spection cost by reusing the inspector results, for example
by executing multiple times a loop that has been inspected
once. Since the BMS executor runs only once, we amor-
tize the inspector cost across multiple executions of the ap-
plication by caching the inspector results. To the best of
our knowledge, our approach is the first to reuse inspector-
executor results across different runs of an application. The
proposed approach can be applied for even if the input pa-
rameters differ between runs with the same desired memory
bound, as long as the computation graph structure remains
unchanged. This requirement is mitigated our model’s abil-
ity to express applications as serial sequences of parallel ker-
nels that are modeled independently as separate BMS prob-
lems. Because schedule reuse is performed at the kernel
granularity instead of the application granularity, as long
as any kernel has the same computation graph, then that
kernel’s schedule can be reused.

To determine if the BMS schedule of a previous run fits
the current one, one option is to generate the computation
graph and compare it with the graph of the previous execu-
tions; this can be costly in both time and memory. Instead,
we use only a small root set of graph edges and vertices that
uniquely identifies the graph9. This root set contains two
types of edges. First, it contains the edges whose tail ver-
tex is the environment-in node. These edges lead to item
keys produced by the environment and the tags of the tasks
spawned by the environment which uniquely characterize all
the items and tasks that will be spawned during the com-
putation. Second, the root set also includes edges whose
tail is the environment-out node. The tail of these edges
are the keys of items read after the computation completes
(i.e. the application result); they affect the minimum foot-
print of the execution because, for the same computation
graph, more output items lead to larger minimum memory
requirements.

The schedule reuse works as follows. First, we identify the
root set. If it does not match with the root set of a previous
execution, we expand the whole computation graph, run the
BMS algorithm and save the resulting (serialization edges,
root set) pair on disk, in a schedule library, along with a
MD5 hash of the root set. For subsequent runs of the ap-
plication, the inspector will compare the MD5 hashes of the
current root set with the root sets from the schedule library.
If it finds a matching root set, the inspector loads the se-
rialization edges, avoiding the graph expansion and BMS
computation. If there is no match, the only additional work
performed is the hashing, since the root set expansion is
done anyway during the graph expansion.

Because the root set consists of keys and tags only (no
data), matching the root set to the root set of a previous
program is fast. The schedule loading consists of reading
the set of serialization edges from the schedule library.

9This assumes the determinacy of the control flow (step
tags) in the program, since BMS-CnC can only express this
kind of programs.

As an example, take Cholesky factorization, whose 2 × 2
tiling is shown in Figure 1. The root set consists of seven
edges (four starting from the env-in node and three ending
in the env-out node). In general, for Cholesky factorization
tiled k × k, the root set will have an order of k2/2 edges.
Since each vertex is identified by 3 integers, the whole root
set will have 3 × k2 integers. This is much smaller than
the input matrix which is also read from disk. Since the
computation graph depends on the matrix size and tile size
only and the tile size is usually tuned for the machine the
serialization edges can be reused for any input matrix of the
same size. Similarly, for image processing applications, the
input is usually the same size and the schedules should be
reusable all the time.

In applications with irregular graphs, such as the sparse
Cholesky factorization as implemented in HSL [24], the root
set consists of the keys of non-zero tiles, which is still smaller
than the sparse input matrix. The schedule cache consists
of the corresponding serialization edges, whose number is
inversely proportional to the memory bound.

To conclude, the schedule reuse approach relies on the
combination of root sets, hashing and the intrinsic compact-
ness of serialization edges to amortize the inspector overhead
across multiple runs of an application.

8. BMS EXTENSIONS
In this section we describe two extensions to the BMS

algorithm: the first one adds support for different item sizes
and the second one accounts for memory used by waiting
and executing tasks.

8.1 Supporting multiple item sizes
To support items of different sizes, one can use the ap-

proach of allowing items to be allocated at any memory lo-
cation. This results in memory fragmentation that requires
a global compaction phase to reclaim the free space. The
compaction can introduce a barrier during execution of the
parallel program, thereby increasing the computation’s crit-
ical path.

Instead, we observe that applications often have only a
few classes of items, where all items in a class have the same
size (for example the size of the input matrix, the size of a
tile)10. Memory is initially divided into slots the size of the
largest items, each of which can be split into multiple sub-
slots suitable for smaller items. When all sub-slots become
unused, they are merged into a larger slot. We refer to the
colors used for items of the largest size as root colors.

Algorithm 4 shows how colors are assigned to items of
different sizes. The Pop(freeColors) function from the
BMS algorithm is replaced by a PopFromClass(freeColors,

crtItem) function which takes the item that needs space as
an additional parameter. The freeColors parameter now
contains only free root colors. The PopFromClass first iden-
tifies the class (size) of the item (line 3) and looks for an
available color in the list of free colors that is specific to
that item class (line 5). If a color is available, we return it
(line 21); otherwise, we have to split a root color freeColors
into sub-colors of size that matches the current item. The
number of new colors is determined in line 12 and they are

10A similar approach is used by memory allocators of operat-
ing systems which have pools of memory objects of different
sizes.

added to the list of free colors for that class (line 12). Note
that, for each new color, we need to find (line 11) and prop-
agate (line 16) the correct consumers for the item which was
last stored in it — this information is needed when inserting
ordering edges.

To prevent fragmentation, BMS reassembles sub-colors
into root colors. This happens when all sub-colors that are
splinters of a root color become available again; we use the
function AddFreeColorToClass (line 24), which replaces
the union operation on line 28 in the BMS algorithm. When
allocating a new item to a reclaimed root color, we need to
ensure that the lifetimes of the items previously stored in
the sub-colors do not overlap with the item later assigned to
the root color. This is done by adding ordering edges, but
the previously stored items must be recorded by the Set-
StoredItem and GetStoredItem functions which work
with sets of items instead of single items.

Algorithm 4 BMS Extension for items of different sizes.

1: . This function assigns a (sub)color for item crtItem
2: function PopFromClass(freeColors, crtItem)
3: crtClass← GetClass(crtItem)
4: freeSubcolors← GetFreeColors(crtClass)
5: color ← Pop(freeSubcolors, crtItem)
6: if color = null then
7: . Call Pop function from the BMS algorithm
8: pageColor ← Pop(freeColors, crtItem)
9: if pageColor 6= null then

10: prevIt← GetStoredItem(pageColor)
11: prevConsumers← ConsumersOf(prevItem)
12: noSubcolors← rootSize/class.itemSize
13: for i = 1→ noSubcolors do
14: newColor ← newcolor()
15: PushToClass(freeSubcolors, newColor)
16: SetStoredItem(newColor, crtItem)

17: color ← Pop(G, freeColorsInClass, crtItem)

18: if color 6= null then
19: rootColor ← GetRootColor(color)
20: rootColor.uses← rootColor.uses+ 1
21: return color
22: end function
23: . This function reclaims a (sub)color
24: function AddFreeColorToClass(

freeColors, itemColor)
25: crtClass← GetClass(itemColor)
26: rootColor ← GetRootColor(color)
27: rootColor.uses← rootColor.uses− 1
28: if rootColor.uses = 0 then
29: AddFreeColor(freeColors, rootColor)
30: itemsSet← SubColorsOf(rootColor)
31: SetStoredItem(rootColor, itemsSet)

32: end function

8.2 Bounding task memory
In BMS-CnC, tasks have two states: prescribed or ex-

ecuting. This section looks at the memory taken up by
tasks. Executing tasks use the stacks of the worker threads
executing them, so they do not consume additional mem-
ory beyond the worker stack space allocated at the start
of program execution. BMS can consider worker thread
memory starting with a memory bound parameter M1 that
is lower than the total memory M in the system: M1 =
M−no workers∗worker stack size. Note that since BMS-
CnC tasks have fixed-size stacks, large levels of recursion can
only be performed by spawning new tasks.

Prescribed tasks are the tasks that have been spawned but
have not yet started running. In our implementation, these
waiting tasks consist only of the task tag and the task func-
tion pointer, so their size can be computed by the BMS
scheduler. This memory is needed from the moment tasks
are created by a spawn operation to the moment the task
finishes so they are similar to items whose lifetime extends
between the moment they are put up to the moment their
last consumer task finishes execution. The same mechanism
used to handle items of different sizes (described in Section
8.1) also handles prescribed tasks.

9. EVALUATION

9.1 Implementation and experimental setup
The BMS-CnC system was implemented on top of Qt-

CnC [38], an open-source CnC implementation11 based on
the Qthreads task library [44]. The evaluation was per-
formed on an Intel Xeon E7330 system with 32GB RAM
and 16 cores. We instrumented the runtime to keep track
of the item memory allocations and item deallocations per-
formed. Because CnC is implicitly parallel and there is no
separate CnC serial implementation, we obtain serial execu-
tion times by using Qt-CnC (not BMS-CnC) with a single
worker thread.

For each application, we present the BMS executor time
as a function of the memory bound (see Figure 3). To eval-
uate the performance of BMS, we note that the minimum
memory bound for which BMS finds a schedule should at
least match the serial execution memory. When the bound
is large enough to fit a normal (CnC) parallel execution,
BMS should not lead to performance degradation.

An analysis of the actual memory footprint incurred at
each memory bound, is included in the technical report [36]
and omitted here due to space limitations.

9.2 Benchmarks
Applications are usually implemented as sequences of par-

allel computation kernels invoked with different parameters.
To maximize the benefits of schedule reuse for such appli-
cations, it makes sense to model each parallel kernel inde-
pendently as a BMS problem, since this enables schedule
reuse at the kernel granularity instead of the application
granularity. For this reason the evaluation includes several
computational kernels instead of fewer large applications.
By themselves, the kernels reach footprints which can be
satisfied without BMS on today’s machines; they will re-
quire BMS when used in the context of larger applications
containing multiple kernels as well as on future many-core
systems with smaller amounts of available memory per core.
Table 3 contains a short summary of the benchmarks, their
input parameters, computation graph size and conditions for
schedule reuse.

Smith-Waterman is a dense linear algebra kernel from
the Intel CnC distribution. The results in Figure 3a show
that BMS gracefully spans the range between large memory-
high performance to low memory with lower performance.

The results for Blackscholes (in Figure 3b) show that
BMS-CnC is able to control the peak memory from the
largest values obtained with CnC parallel execution, to the
smallest (serial execution).

11https://code.google.com/p/qthreads/wiki/qtCnC

https://code.google.com/p/qthreads/wiki/qtCnC

!"!##

$%&'()#

!"!##

*(&())%)#

+*%",-#

$%&'()#

+*%",-#

*(&())%)#

.#

/.#

0..#

0/.#

1..#

1/.#

2..#

2/.#

3..# 4..# 00..# 02..# 0/..# 03..#

!
"
#
$%
&
'
(
)&
*
#
)+
,-
)

.#*'/0)1'%(2)+.3-)

(a) Smith Waterman

!"!##

$%&'()#

!"!##

*(&())%)#

+*%",-#

$%&'()#

+*%",-#

*(&())%)#

.#

/..#

0..#

1..#

2..#

3..#

4..#

5..#

6..#

5..# 7..# //..# /1..# /3..# /5..# /7..#

!
"
#
$%
&
'
(
)&
*
#
)+
,-
)

.#*'/0)1'%(2)+.3-)

(b) Blackscholes

!"!##

$%&'()#

!"!##

*(&())%)#

+*%",-#

$%&'()#

+*%",-##

*(&())%)#

.#

/.#

0..#

0/.#

1..#

1/.#

2..#

2/.#

3..#

3/.#

/..#

//4# /50# /52# /5/# /56# /54# /60# /62# /6/#

!
"
#
$%
&
'
(
)&
*
#
)+
,-
)

.#*'/0)1'%(2)+.3-)

(c) Cholesky

!"!##

$%&'()#

!"!##

#*(&())%)#

+#

,++#

-++#

.++#

/++#

0++#

1++#

2++#

3++#

4++#

,+++#

0++# 00+# 1++# 10+# 2++# 20+# 3++#

!
"
#
$%
&
'
(
)&
*
#
)+
,-
)

.#*'/0)1'%(2)+.3-)

(d) Gauss-Jordan

!"!##

$%&'()#

!"!##

*(&())%)#

+#

,#

-#

.#

/#

0+#

0,#

+# 1+++# 0++++# 01+++#

!
"
#
$%
&
'
(
)&
*
#
)+
,-
)

.#*'/0)1'%(2)+.3-)

(e) Merge Sort

!"!##

$%&'()#

!"!##

*(&())%)#

+#

,+#

-+#

.+#

/+#

0++#

0,+#

0-+#

0/.+# 0//+# 01++# 01,+# 01-+# 01.+#

!
"
#
$%
&
'
(
)&
*
#
)+
,-
)

.#*'/0)1'%(2)+.3-)

(f) Standard Task Graph (STG) 59

Figure 3: BMS-CnC executor run-time (the red line) as a function of memory bound for each of the bench-
marks. BMS-CnC is able to enforce memory bounds down to the serial execution and even lower for Gauss-
Jordan and STG 59. OpenMP results included where available.

Benchmark Type Graph
vertices

Source Input parameters Schedule reuse conditions

Smith
Waterman

biomedical 5002 in-house
2 sequences of 70000 length
and tile size (2000 × 2000)

identical tile sizes
identical sequence sizes

Blackscholes financial 6730
Intel CnC [25]

Parsec [5]
number of options (25.6M)

and option data
identical number of options

Cholesky dense algebra 41558
Intel CnC [25]

Buttari [12]
input matrix (12000 × 12000)

and tile size (125 × 125)

identical tile sizes
identical matrix

sizes

Gauss-Jordan dense algebra 8450 Intel CnC [25]
input matrix (4096 × 4096)

and tile size (256 × 256)
identical tile sizes

identical matrix sizes
Merge Sort recursive 3582 in-house vector data (225 integers) identical input array sizes

STG
sparse task graph 198 STG [41] graph shape identical graph shape
fpppp task graph 647 STG [41] graph shape identical graph shape
58, 59 task graph 5402 STG [41] graph shape identical graph shape

Table 3: Benchmarks, their inputs, computation graph sizes and the schedule reuse conditions. The corre-
sponding results are shown in Figure 3.

Benchmark
BMS-CnC memory (%)

when Speedup is
90% 50% 10%

Smith-Waterman 48.8 10.6 0.0
Blackscholes 93.2 10.8 1.4
Cholesky 84.6 46.2 0.0
Gauss-Jordan 0.0 0.0 0.0
Merge Sort 12.0 0.9 0.0
STG 58 12.0 0.0 0.0
STG 59 22.2 0.0 0.0

Table 4: Memory consumption for BMS-CnC when
it has 90%, 50% and 10% of the parallel CnC
speedup. Values are percentages of the additional
memory required by parallel execution - 0% means
no increase in footprint, 100 % means maximum in-
crease (same footprint as parallel execution).

The Cholesky factorization (Figure 3c) shows BMS en-
ables a trade-off similar to the one in Smith-Waterman, be-
tween large memory consumption and high performance.

For Gauss-Jordan elimination (see Figure 3d), BMS-
CnC is able to enforce a footprint 18% lower than the serial
footprint of CnC, with minimal loss of parallelism. This
is the result of the abundant parallelism, as well as good
coloring heuristics.

For MergeSort (Figure 3e) we notice an unusual trend
when the desired memory bound is larger than 15MB - the
execution time of BMS-CnC in these cases becomes smaller
than the CnC parallel execution, even though the actual
program footprint is the same. We believe that the per-
formance benefit comes from improved cache locality in the
BMS schedules.

The Standard Task Graph (STG) Set [41] provides a
set of random task graphs from which we picked the largest
(STG 59), shown in Figure 3f. Since STG graphs do not
contain any work, we used a fixed amount of computation
for each task and a fixed size for each item. In both cases,
there is sufficient parallelism to hide the BMS constraints up
to the boundary condition where BMS cannot find a valid
schedule. There is no loss of performance from using BMS
with the tightest memory bound, which is lower than serial
execution memory. For these graphs, BMS is able to offer
the best of both worlds - the footprint of serial execution
with the performance of parallel execution.

In summary, BMS shows the ability to control the trade-
off between parallelism and memory usage. Furthermore,
this trade-off is not linear — there is a ”sweet spot” in the
memory bound space where BMS enables most of the per-
formance of the unbounded memory parallel execution with
only a small increase in memory relative to the serial execu-
tion. To further illustrate this, Table 4, shows the memory
requirements of BMS-CnC when its speedup is 90%, 50%
and 10% of the parallel CnC speedup. The values are per-
centages of the memory difference between parallel and se-
rial executions. For example, 0% means the BMS-CnC pro-
gram does not require more memory than serial execution,
while 100% would mean that the memory use matches the
memory utilization of parallel execution (maximum memory
increase).

9.3 OpenMP comparison
OpenMP results have been included in Figure 3 where ex-

ternal implementations of the same benchmarks were avail-
able. One interesting pattern is that the OpenMP mem-
ory footprint does not vary between the serial and paral-
lel executions because OpenMP encourages programmers to
parallelize computation loops while the memory allocation
and de-allocation are usually performed outside parallel re-
gions. In BMS-CnC, item lifetime is minimized by allocat-
ing items only when needed and by automatically collecting
them after their last use.For Smith-Waterman and Blacksc-
holes, BMS-CnC offers similar performance with OpenMP
while enabling considerable memory savings. For Blacksc-
holes, for example, OpenMP has a performance advantage
of under 10%, but requires twice the memory of CnC, since
it pre-allocates all the memory to reduce overhead.

Because the OpenMP implementation of Cholesky exploits
less parallelism (barrier style versus dataflow) so so it has a
lower memory footprint and lower performance than CnC.

9.4 Minimum memory evaluation
To identify how close the BMS heuristic approach can

be to the absolute minimum memory footprint possible, we
fed the ILP formulation of the problem to the commercial
Gurobi solver which finds find the minimum possible foot-
print. The results are shown in Table 5. For small and
medium problem sizes, both the ILP and BMS approaches
can enforce the minimum memory footprint possible, but
there are some examples, such as Gauss Jordan, where ILP
can obtain a better bound that heuristic BMS.

On larger graphs, the ILP solver may run out of memory
or not finish before the 5 hour cutoff. This happens in cases
where the two lower bounds are much smaller than the ac-
tual feasible minimum memory. We analytically discovered
that in 3 out of 4 cases when this happened, the ILP had
already found the minimum memory schedule, but had not
proved its optimality before running out of time. BMS is
capable of finding a schedule with minimum bound in all
but 4 out of the 18 cases.

9.5 Runtime comparison of
ILP and heuristic BMS

Table 6 shows the run time of the BMS inspector. The ILP
approach can handle graphs of up to tens of thousands of
vertices, but there are some examples where it either runs
out of memory or reaches the 5 hour timeout. However,
the hot start optimization in which we provide the heuristic
BMS schedule as initial solution for the ILP solver along
with the ILP formulation, leads to a considerable speedup
and in some cases, such as Blackscholes for medium and large
inputs, this avoids a timeout. Heuristic BMS is fast for all
graph sizes, but for tight bounds may need to be followed by
the hot ILP execution if it cannot find a suitable schedule.

The most closely related previously published results are
for finding the minimum numbers of registers needed to exe-
cute instruction graphs whose size is in general much smaller
than the computation graph sizes. The only public graph
and ILP solving time we could find is from the work of Chang
et al. [14] and has only 12 vertices. On this graph, their ILP
formulation takes one minute (on their 1997 machine), while
both the heuristic BMS and ILP BMS finish in under a sec-
ond (on our system).

Bench Input Graph
Nodes

Min. mem. Bounds
(MB) (MB)

B
M

S

IL
P

S
tr

a
h
le

r

L
o
c
a
l

Smith
Water-
man

small 52 26.6 26.6 15.2 15.2
med 100 34.2 *34.2 19.0 15.2

large 2452 141.0 *141.0 22.8 15.2

Cholesky
small 315 0.6 0.6 0.1 0.6
med 1907 8.2 8.2 0.2 8.2

large 4555 403.8 NA 1.4 403.8

Black
scholes

small 402 63.2 63.2 1.1 63.2
med 802 125.6 125.6 1.2 125.6

large 1602 250.4 250.4 1.2 250.4

Gauss
Jordan

small 22 62.5 62.5 25.0 62.5
med 65 150.0 125.0 37.5 125.0

large 146 250.0 *225.0 50.0 212.5

Merge
Sort

small 222 0.9 0.9 0.9 0.4
med 7166 1.5 1.5 1.5 0.4

large 14334 1.6 1.6 1.6 0.4

STG
sparse 198 17.6 14.9 1.2 14.9
fpppp 647 57.4 *57.4 1.2 24.9

59 5406 468.0 NA 1.8 83.8

Table 5: The minimum memory with heuristic BMS
and with ILP and the lower bounds fed to ILP. Cells
are marked with * when ILP timeouts.

9.6 Inspector phase time evaluation
The inspector phase consists of building the computation

graph and running the BMS algorithm. Schedule caching
removes the overhead associated with both these stages and
adds some overhead of its own (for hashing the schedules
and loading them from disk). Table 7 shows the execution
time of the inspector relative to the serial execution. For
the BMS runtime we include the smallest and largest time
encountered. The reason for this variation is that BMS may
take more time for tighter bounds, since the first schedules
attempted will fail to observe the memory bound. From the
table, we see that graph construction can take up to 20%
of execution time and the maximum time needed to run the
BMS algorithm can be 3× larger than the serial execution
time. Schedule caching is therefore valuable in amortizing
the potentially large overhead of the inspector.

9.7 Large memory experiment
For systems without support for paging to disk, BMS en-

ables the execution of programs that would otherwise crash
attempting to use more than the available memory, but how
does the paging mechanism affect the BMS results?

We analyze application behavior on workloads that re-
quire disk paging by using a larger input size for the Smith
Waterman application. The results in Figure 4 include the
BMS performance for 270, 280 and 310 tiles of the same
size, and the graphs show interesting changes relative to
Figure 3a. For very tight memory bounds, the BMS-CnC
performance is close to serial, because sequential execution is
needed to reach the desired memory bounds. As the bound
gets larger, performance increases due to more parallelism,
until it reaches a performance sweet-spot. This sweet-spot
is generally close to the physical memory size (32GB), but
its exact location depends on how close the enforced max-

Bench Input
Graph Time (s)
nodes BMS ILP hot ILP

Smith
Waterman

small 52 0.2 1.0 3.6
med 100 0.7 148 189.51

large 2452 3.59 NA NA

Cholesky
small 315 0.0 0.7 0.4
med 1907 0.1 7920 281

large 4555 3.6 NA NA

Blackscholes
small 402 0.1 5403 5
med 802 0.1 NA 16

large 1602 250.4 NA 1189

Gauss
Jordan

small 22 0.0 0.0 0.0
med 65 0.1 155 44

large 146 0.1 NA NA

Merge Sort
small 222 0.1 40 10
med 7166 4.1 336 18.61

large 14334 8.7 NA 28.22

STG
sparse 198 1.1 200 37

fppp 647 2.5 NA NA
59 5406 69.4 NA NA

Table 6: Performance evaluation of heuristic BMS
and ILP with and without hot start. Even with hot
start, the ILP approach cannot handle large graphs.

Benchmark
Graph
creation(%)

BMS Algorithm
Min(%) Max(%)

Smith-
Waterman

0.5 17.8 98.1

Blackscholes 3.3 2.1 29.0
Cholesky 2.9 3.8 99.4
Gauss Jordan 20.3 6.6 94.0
Merge Sort 19.8 20.0 310.2
STG 58 0.5 1.0 109.2
STG 59 0.1 0.7 42.5

Table 7: Timing results for the inspector (graph cre-
ation and BMS scheduling), as percentages of the
serial execution time.

imum memory bound matches the actual memory used at
run-time.

Increasing the memory bound even more leads to a perfor-
mance degradation because disk swapping starts being used.
The last part of the graph shows constant time because the
program has already reached its parallel footprint and giving
a larger bound does not affect the schedule any more. The
sweet-spot enabled by BMS leads to 39% faster execution
compared to parallel CnC, showing that BMS can increase
performance and lower the memory footprint of applications
with large memory requirements.

Comparing the results for the three runs which use inputs
of increasingly large sizes (270, 280 and 310 input tiles),
we notice that all three have similar curves. Interestingly,
the fraction of memory saved by using the BMS sweet-spot
instead of parallel execution increases with the input size.
The memory savings reach 34% for 310 tiles.

10. RELATED WORK
To the best of our knowledge, this work is the first to

tackle the problem of scheduling with a fixed memory bound
in the context of dynamic task scheduling, but there is re-

!"!##$%&'()#

*+,#

!"!##

-(&())%)#

*+,#

!"!#$%&'()##

*.,#

!"!##

-(&())%)##

*.,#

!"!#$%&'()##

/0,#

!"!##

-(&())%)##

/0,#

,#

*,,,#

1,,,#

2,,,#

.,,,#

0,,,,#

0*,,,#

01,,,#

02,,,#

0.,,,#

*3,,,# /,,,,# /3,,,# 1,,,,# 13,,,# 3,,,,# 33,,,#

!
"
#
$%
&
'
(
)&
*
#
)+
,-
)

.#*'/0)1'%(2)+.3-)

Figure 4: Smith-Waterman results on large inputs
(270, 280 and 310 tiles). BMS enables the use of a
sweet-spot with good performance and low footprint
at the same time because it avoids swapping. The
physical memory size is 32 GB and the computation
graph for 310 input tiles has 192,202 nodes.

lated work on amortized analysis of memory consumption
for parallel programs. Burton [11] was the first to propose
bounds on the memory complexity of dynamically scheduled
parallel computations. Simpson and Warren [39] present a
survey of work in this area. Blelloch et al. [7], Narlikar and
Blelloch [32], Blelloch et al. [6] and Fatourou [17] identi-
fied increasingly better bounds. The best memory bounds
obtained are directly proportional to the memory consump-
tion of a particular serial schedule and include at least an
additive factor proportional to the critical path of the com-
putation. In contrast to these approaches in which bounds
are dependent on the memory consumption of the particular
serial order of tasks and on the number of processors avail-
able, BMS-CnC considers the maximum footprint a hard
upper bound for execution. Compared to on-the-fly sched-
ulers with asymptotic memory bounds, we can impose fixed
memory bounds and work around the on-the-fly restriction
by using the inspector-executor model. This enables us
to use the whole computation graph in scheduling, effec-
tively turning the scheduling “offline”. Because of this, BMS
can handle even the worst case (adversary picks worst task
spawn ordering in the input program), that could lead these
schedulers to unnecessarily large footprints. Also, the per-
formance of BMS is independent of the order of task spawn-
ing in the programmer-written schedule. On the other hand,
they can offer performance guarantees and have wider appli-
cability because of their less restrictive programming model,
on-the-fly approach and no inspector overhead. Other
projects [22, 9] analyze the memory consumption of serial
programs. Other projects [22, 9, 23, 13] analyze the memory
consumption of serial programs, but this is a difficult prob-
lem to solve accurately with only static information. The
techniques are expensive, based on linear programming, but
only need to be computed once per application, compared
to the inspector/executor based approach where the valid
schedules to be computed once for each computation graph
encountered.

BMS is a novel application of the inspector/executor sys-
tem proposed by Salz [35] who used it to efficiently paral-

lelize irregular computations. Based on inspector/executor,
Fu and Yang propose the RAPID system for distributed
computation [19] which bounds the memory assigned to copies
of memory on each node, but does not bound the footprint
of the program.

The BMS problem is related to the widely-studied prob-
lems of register sufficiency and combined instruction sche-
duling and register allocation. Barany and Krall [1] propose
a type of code motion to decrease spills by using integer pro-
gramming to identify the schedules that reduce overlapping
lifetimes. Pinter [34] identified the fact that some variables
in the program must have overlapping lifetimes while some
don’t need to which is an opservation that e used in our ILP
optimizations; he builds a parallelizable interference graph
including “may overlap” edges to ensure that his register al-
location does not restrict schedules. In the same context
of register allocation and instruction scheduling, Norris and
Polloc [33] use the parallelizable interference graph and add
data-dependence graph edges (similar to our serialization
edges) to remove possible interference. loops. The CRISP
project [31] introduced an analytical cost model for balanc-
ing register pressure and instruction parallelism goals in a
list scheduler which influenced the schedule relaxation tech-
nique we propose.

Govindarajan et al. [21] perform scheduling to minimize
the number of registers used by a register DDG, an approach
called minimum register instruction sequence (MRIS). BMS
and MRIS have considerable differences:

• different scalability requirements: MRIS has been tar-
geted to basic block DDGs consisting of tens of nodes,
whereas BMS must support tens of thousands of nodes,
so the BMS heuristics trade accuracy for performance.

• different reuse models: Because BMS works on mem-
ory instead of registers, the input and output data of
a task cannot share the same memory slot, so lineages
cannot be formed.

• different objectives: While MRIS simply minimizes the
number of registers, BMS the best schedule for a given
memory bound. The MRIS minimization objective
leads to sacrifices of parallelism that are unnecessary
for BMS. For example, value chains are created by in-
serting sequencing edges that force a particular con-
sumer to execute last; BMS avoids this restriction of
parallelism by using multiple serialization edges.

The URSA project [4] compares various approaches for
combined register allocation. Touati [42] proposes the use
of serialization arcs to decrease the number of required reg-
isters.There are multiple related projects that apply optimal
techniques [45, 2, 28, 3, 30]) for scheduling or register allo-
cation, but a direct comparison is difficult since the objective
and constraints differ.

BMS-CnC is the first system that enables the reuse of in-
spector/executor results across application runs, but there is
related work in the idea of schedule memoization [15]. When
ensuring program correctness through symbolic execution,
the principle of schedule memoization is the following: be-
cause the schedule space is very large, it may be untractable
to test all schedules for correctness. Instead, a few schedules
can be sampled, checked for correctness, memoized and then
subsequent executions can be forced to follow one of them.

11. CONCLUSIONS
This paper proposes a new scheduling technique to find

memory-efficient parallel schedules for programs expressed
as dynamic task graphs. Our technique, called bounded
memory scheduling, enforces user-specified memory bounds
by restricting schedules and trading off parallelism when nec-
essary. The evaluation on several benchmarks illustrates its
ability to accurately control the memory footprint while ex-
ploiting the parallelism allowed by the memory bound.

To make use of an inspector/executor approach in the
context of dynamic task scheduling, we presented an efficient
schedule reuse mechanism. This technique amortizes the
inspector overhead by reusing schedules across executions of
the application that exhibit the same computation graph —
even when the input parameters change.

References
[1] Gergö Barany and Andreas Krall. “Optimal and heuristic

global code motion for minimal spilling”. In: CC. 2013.

[2] Andrzej Bednarski and Christoph Kessler. “VLIW Code
Generation with Integer Programming”. In: EuroPar ’06.

[3] Peter van Beek and Kent D. Wilken.“Fast Optimal Instruc-
tion Scheduling for Single-Issue Processors with Arbitrary
Latencies”. In: CP ’01, pp. 625–639. isbn: 3-540-42863-1.

[4] David A. Berson et al. “Integrated Instruction Scheduling
and Register Allocation Techniques”. In: LCPC. 1999.

[5] Christian Bienia.“Benchmarking Modern Multiprocessors”.
PhD thesis. Princeton University, Jan. 2011.

[6] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias.
“Provably Efficient Scheduling for Languages with Fine-
grained Parallelism”. In: J. ACM (1999).

[7] Guy Blelloch et al. “Space-efficient scheduling of parallelism
with synchronization variables”. In: SPAA ’97.

[8] Robert D. Blumofe and Charles E. Leiserson. “Scheduling
multithreaded computations by work stealing”. In: J. ACM
(1999).

[9] Vı́ctor Braberman et al. “Parametric prediction of heap
memory requirements”. In: ISMM ’08. 2008.

[10] Zoran Budimlić et al. “Concurrent Collections”. In: Scien-
tific Programming (2010).

[11] F. Warren Burton. “Guaranteeing Good Memory Bounds
for Parallel Programs”. In: IEEE Trans. Softw. Eng. (1996).

[12] Alfredo Buttari et al. “A Class of Parallel Tiled Linear Al-
gebra Algorithms for Multicore Architectures”. In: Parallel
Comput. 35.1 (Jan. 2009), pp. 38–53. issn: 0167-8191.

[13] Brian Campbell. “Amortised Memory Analysis Using the
Depth of Data Structures”. In: ESOP ’09.

[14] Chia-Ming Chang et al. “Using ILP for instruction sche-
duling and register allocation in multi-issue processors”. In:
Computers and Mathematics with Applications 34.9 (1997).

[15] Heming Cui et al. “Stable Deterministic Multithreading
Through Schedule Memoization”. In: OSDI’10.

[16] I. Dooley et al. “A study of memory-aware scheduling in
message driven parallel programs”. In: HiPC. 2010.

[17] Panagiota Fatourou. “Low-contention depth-first schedu-
ling of parallel computations with write-once synchroniza-
tion variables”. In: SPAA ’01.

[18] P. Flajolet, J.C. Raoult, and J. Vuillemin. “The number of
registers required for evaluating arithmetic expressions”. In:
Theoretical Computer Science 9.1 (1979).

[19] Cong Fu and Tao Yang. “Run-time compilation for parallel
sparse matrix computations”. In: ICS ’96.

[20] Michael R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
1979. isbn: 0716710447.

[21] R. Govindarajan et al. “Minimum Register Instruction Se-
quencing to Reduce Register Spills in Out-of-Order Issue
Superscalar Architectures”. In: IEEE Transactions on Com-
puters (2003).

[22] Martin Hofmann and Steffen Jost.“Static prediction of heap
usage for first-order functional programs”. In: POPL. 2003.

[23] Martin Hofmann and Dulma Rodriguez. “Efficient type-
checking for amortised heap-space analysis”. In: CSL’09 /
EACSL’09. 2009.

[24] The HSL Library. A collection of Fortran codes for large
scale scientific computation. url: http://www.hsl.rl.ac.
uk (visited on 06/25/2014).

[25] Intel Concurrent Collections. url: http://software.intel.
com/en- us/articles/intel- concurrent- collections-
for-cc (visited on 06/25/2014).

[26] Randy Isaac.“Influence of Technology Directions on System
Architecture”. In: PACT 2001 Keynote.

[27] Kevin Lim et al.“Disaggregated Memory for Expansion and
Sharing in Blade Servers”. In: ISCA ’09.

[28] Castañeda Lozano et al. “Constraint-Based Register Allo-
cation and Instruction Scheduling”. In: CP’12.

[29] Yin Lu et al. “Memory-conscious Collective I/O for Ex-
treme Scale HPC Systems”. In: ROSS ’13.

[30] Abid M. Malik, Jim Mcinnes, and Peter van Beek.“Optimal
basic block instruction scheduling for multiple-issue proces-
sors using constraint programming”. In: IJAITS (2008).

[31] Rajeev Motwani et al. Combining Register Allocation and
Instruction Scheduling. Tech. rep. Stanford, CA, USA, 1995.

[32] Girija J. Narlikar and Guy E. Blelloch.“Space-efficient sche-
duling of nested parallelism”. In: TOPLAS (1999).

[33] C. Norris and L.L. Pollock. “A scheduler-sensitive global
register allocator”. In: SC. 1993.

[34] Shlomit S. Pinter.“Register allocation with instruction sche-
duling”. In: PLDI. 1993.

[35] Joel H. Salz et al. “Run-Time Parallelization and Schedu-
ling of Loops”. In: IEEE Trans. Comput. (1991).

[36] Dragoş Sb̂ırlea, Zoran Budimlić, and Vivek Sarkar. BMS-
CnC: Bounded memory scheduling of dynamic task graphs.
Tech. rep. Rice University, Oct. 2013.

[37] Dragoş Sb̂ırlea, Kathleen Knobe, and Vivek Sarkar. “Fold-
ing of tagged single assignment values for memory-efficient
parallelism”. In: Euro-Par’12.

[38] Dragoş Sb̂ırlea et al. “The Flexible Preconditions model for
Macro-Dataflow Execution”. In: DFM. 2013.

[39] David J. Simpson and F. Warren Burton. “Space Efficient
Execution of Deterministic Parallel Programs”. In: IEEE
Trans. Softw. Eng. (1999).

[40] Daniel Spoonhower et al. “Tight Bounds on Work-stealing
Overheads for Parallel Futures”. In: SPAA ’09.

[41] Takao Tobita and Hironori Kasahara. “A standard task
graph set for fair evaluation of multiprocessor scheduling
algorithms”. In: Journal of Scheduling (2002).

[42] Sid Ahmed Ali Touati. “Register Saturation in Superscalar
and VLIW Codes”. In: CC ’01.

[43] David Turek.“The Strategic Future: The Push to Exascale”.
In: IBM Science and Innovation Summit. 2009.

[44] Kyle Wheeler et al. “Qthreads: An API for programming
with millions of lightweight threads”. In: IPDPS. 2008.

[45] Kent Wilken et al. “Optimal Instruction Scheduling Using
Integer Programming”. In: PLDI ’00.

[46] H.P. Williams. Model Building in Mathematical Program-
ming. Wiley, 2013. isbn: 9781118506189.

http://dx.doi.org/10.1007/978-3-642-37051-9_2
http://dx.doi.org/10.1007/978-3-642-37051-9_2
http://dx.doi.org/10.1145/349299.349318
http://dx.doi.org/10.1145/349299.349318
http://dx.doi.org/10.1007/3-540-45578-7_52
http://dx.doi.org/10.1007/3-540-45578-7_52
http://dx.doi.org/10.1007/3-540-45578-7_52
http://dx.doi.org/10.1007/3-540-48319-5_16
http://dx.doi.org/10.1007/3-540-48319-5_16
http://dx.doi.org/10.1145/301970.301974
http://dx.doi.org/10.1145/301970.301974
http://dx.doi.org/10.1145/258492.258494
http://dx.doi.org/10.1145/258492.258494
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1145/1375634.1375655
http://dx.doi.org/10.1145/1375634.1375655
http://dx.doi.org/0.3233/SPR-2011-0305
http://dx.doi.org/10.1109/32.544353
http://dx.doi.org/10.1109/32.544353
http://dx.doi.org/10.1016/j.parco.2008.10.002
http://dx.doi.org/10.1016/j.parco.2008.10.002
http://dx.doi.org/10.1007/978-3-642-00590-9_14
http://dx.doi.org/10.1007/978-3-642-00590-9_14
http://dx.doi.org/10.1016/S0898-1221(97)00184-3
http://dx.doi.org/10.1016/S0898-1221(97)00184-3
http://dl.acm.org/citation.cfm?id=1924943.1924958
http://dl.acm.org/citation.cfm?id=1924943.1924958
http://dx.doi.org/10.1109/HIPC.2010.5713177
http://dx.doi.org/10.1109/HIPC.2010.5713177
http://dx.doi.org/10.1145/378580.378639
http://dx.doi.org/10.1145/378580.378639
http://dx.doi.org/10.1145/378580.378639
http://dx.doi.org/10.1016/0304-3975(79)90009-4
http://dx.doi.org/10.1016/0304-3975(79)90009-4
http://dx.doi.org/10.1145/237578.237609
http://dx.doi.org/10.1145/237578.237609
http://dl.acm.org/citation.cfm?id=574848
http://dl.acm.org/citation.cfm?id=574848
http://dx.doi.org/10.1109/TC.2003.1159750
http://dx.doi.org/10.1109/TC.2003.1159750
http://dx.doi.org/10.1109/TC.2003.1159750
http://dx.doi.org/10.1145/604131.604148
http://dx.doi.org/10.1145/604131.604148
http://dx.doi.org/10.1007/978-3-642-04027-6_24
http://dx.doi.org/10.1007/978-3-642-04027-6_24
http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
http://research.ac.upc.edu/pact01/keynotes/isaac.pdf
http://research.ac.upc.edu/pact01/keynotes/isaac.pdf
http://dx.doi.org/10.1145/1555754.1555789
http://dx.doi.org/10.1145/1555754.1555789
http://dx.doi.org/10.1007/978-3-642-33558-7_54
http://dx.doi.org/10.1007/978-3-642-33558-7_54
http://dx.doi.org/10.1145/2491661.2481430
http://dx.doi.org/10.1145/2491661.2481430
http://dx.doi.org/10.1142/S0218213008003765
http://dx.doi.org/10.1142/S0218213008003765
http://dx.doi.org/10.1142/S0218213008003765
http://dx.doi.org/10.1145/314602.314607
http://dx.doi.org/10.1145/314602.314607
http://dx.doi.org/10.1109/SUPERC.1993.1263538
http://dx.doi.org/10.1109/SUPERC.1993.1263538
http://dx.doi.org/10.1145/155090.155114
http://dx.doi.org/10.1145/155090.155114
http://dx.doi.org/10.1109/12.88484
http://dx.doi.org/10.1109/12.88484
http://dx.doi.org/10.1007/978-3-642-32820-6_60
http://dx.doi.org/10.1007/978-3-642-32820-6_60
http://dx.doi.org/10.1007/978-3-642-32820-6_60
http://dx.doi.org/10.1109/32.824415
http://dx.doi.org/10.1109/32.824415
http://dx.doi.org/10.1145/1583991.1584019
http://dx.doi.org/10.1145/1583991.1584019
http://dx.doi.org/10.1002/jos.116
http://dx.doi.org/10.1002/jos.116
http://dx.doi.org/10.1002/jos.116
http://dx.doi.org/10.1007/3-540-45306-7_15
http://dx.doi.org/10.1007/3-540-45306-7_15
https://www-950.ibm.com/events/wwe/ca/canada.nsf/vLookupPDFs/Dave_Turek/file/DaveTurek.pdf
http://dx.doi.org/10.1109/IPDPS.2008.4536359
http://dx.doi.org/10.1109/IPDPS.2008.4536359
http://dx.doi.org/10.1145/349299.349318
http://dx.doi.org/10.1145/349299.349318
http://dx.doi.org/10.1137/1036082
http://dx.doi.org/10.1137/1036082

	Introduction
	Background: The Concurrent Collections programming model
	BMS-CnC: an inspector/executor parallel programming model
	Programming model characteristics useful for BMS
	Independent control and data as a requirement for BMS

	Building the computation graph
	The heuristic BMS algorithm
	Successive relaxation of schedules
	Color assignment

	Optimal BMS through integer linear programming
	Optimization of color assignment constraints
	Tight lower bounds to speed up ILP BMS
	Hot start ILP: Using heuristic BMS to speed up ILP BMS

	Schedule reuse
	BMS Extensions
	Supporting multiple item sizes
	Bounding task memory

	Evaluation
	Implementation and experimental setup
	Benchmarks
	OpenMP comparison
	Minimum memory evaluation
	Runtime comparison of ILP and heuristic BMS
	Inspector phase time evaluation
	Large memory experiment

	Related work
	Conclusions

