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ABSTRACT

Recently there has been increasing interest in supporting ex-
ecution of Java Virtual Machine (JVM) applications on ac-
celerator architectures, such as GPUs. Unfortunately, there
is a large gap between the features of the JVM and those
commonly supported by accelerators. Examples of impor-
tant JVM features include exceptions, dynamic memory al-
location, use of arbitrary composite objects, file I/O, and
more. Recent work from our research group tackled the first
feature in that list, JVM exception semantics[14]. This pa-
per continues along that path by enabling the acceleration
of JVM parallel regions that include object references and
dynamic memory allocation.

The contributions of this work include 1) serialization and
deserialization of JVM objects using a format that is com-
patible with OpenCL accelerators, 2) advanced code gener-
ation techniques for converting JVM bytecode to OpenCL
kernels when object references and dynamic memory alloca-
tion are used, 3) runtime techniques for supporting dynamic
memory allocation on OpenCL accelerators, and 4) a novel
redundant data movement elimination technique based on
inter-parallel-region dataflow analysis using runtime byte-
code inspection.

Experimental results presented in this paper show per-
formance improvements of up to 18.33x relative to paral-
lel Java Streams for GPU-accelerated parallel regions, even
when those regions include object references and dynamic
memory allocation. In our evaluation, we fully characterize
where accelerators or the JVM see performance wins and
point out opportunities for future work.
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1. MOTIVATION

The Java Virtual Machine (JVM) is arguably the most
common execution platform for managed runtimes. The ab-
stractions, efficiency, security, portability, and other features
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offered by the JVM make it an attractive target for many
high-level languages such as Java, Scala, and Clojure. These
high-level frontends allow domain experts to quickly write
application code that can target a wide range of platforms
with reasonable computational efficiency.

Despite two decades of work investigating and reducing
the performance overheads of running in the JVM, there still
remain limitations on overall JVM performance and perfor-
mance repeatability [22, 2]. Garbage collection (GC) can
introduce overheads and causes jitter in application latency
when GC pauses interfere with application threads. Dy-
namic class loading and method invocation add overheads
to method dispatch. JIT compilation, while beneficial in the
long term, also steals cycles from the user application. In
addition, the abstraction layer of the JVM makes it chal-
lenging for programmers to control data layout.

Despite these limitations, the JVM is increasingly being
used to execute performance-sensitive applications. JVM-
based languages are being used in finance [8], in the natural
sciences [23], in web servers [1], and in many other con-
texts. For many organizations, the portability, programma-
bility, availability, large community, and security of the JVM
make it an attractive target for new application develop-
ment. While the JVM may not utilize hardware resources
as efficiently as an optimized native application, JVM per-
formance and latency is usually considered adequate in light
of the productivity benefits that JVM languages provide.

Because JVM abstractions can make single-threaded op-
timizations challenging, one of the most common optimiza-
tions for JVM-based applications is to move from a single-
threaded to a multi-threaded implementation. Multi-core
architectures are now the standard in all hardware plat-
forms, and many-core architectures are becoming more var-
ied and widely available. Due to this trend, the latest gen-
eration of JVM-based programming models and frameworks
have generally started to include intrinsically parallel op-
erations as first-class citizens (e.g. Apache Spark, Clojure
Futures, Scala Parallel Collections). Even existing JVM lan-
guages have expanded their support for parallelism in recent
revisions, most notably Java 8 with Java Streams.

One academic example of this expanded support for paral-
lelism is the HJlib parallel programming library[16]. HJlib
uses Java 8 lambdas to support a library-based approach
to parallel programming, rather than a language-based one.
For example, an asynchronous parallel task is created using
the following library call:

async((O) > { ... });




rather than using a syntactic language construct as follows|6]:

async { ... }

HJlib executes parallel work on the Habanero Java work-
stealing runtime[5] or the cooperative parallel runtime[15]
while supporting a wide range of parallel constructs, includ-
ing fork-join parallelism, parallel-for loops, actors, and eu-
rekas[17]. HJlib is used as both a research tool, and an edu-
cational tool to introduce students to parallel programming
at the sophomore level[24].

While JVM languages and frameworks now support in-
creased levels of parallelism, and multi-core architectures are
more widely available, one significant hardware domain that
has remained largely beyond the purview of the JVM is ac-
celerators, such as GPUs. Accelerators usually have limited
or no support for disk I/O, network I/O, virtual memory,
complex/dynamic execution, and other basic facilities that
are standard in most computing systems today. As such,
the functionality and efficiency of a full JVM implementa-
tion on accelerators would be limited. However, using the
computational power of accelerators to offload selected par-
allel code regions from a JVM program can help accelerate
JVM applications while offering a simpler and more familiar
programming interface for accelerators.

Today, the most portable programming framework for ac-
celerators is OpenCL. OpenCL is an open standard that de-
fines a universal, data-parallel programming model for work-
ing with a broad range of accelerators. Currently, OpenCL
implementations exist for Graphics Processing Units (GPUs),
Central Processing Units (CPUs), Field Programmable Gate
Arrays (FPGAs), and the Xeon Phi Coprocessor. OpenCL’s
portability among different accelerators mirrors the JVM’s
portability among different, conventional computing plat-
forms. Hence, it is natural to pair the JVM with OpenCL
over other accelerator programming models.

However, while an expert OpenCL developer can pro-
duce an order of magnitude or more performance improve-
ment with the right hardware and the right kernels, OpenCL
is generally considered to be challenging to work with for
most application developers. Using OpenCL requires ex-
plicit memory management on both the host processor (gen-
erally a CPU) as well as one or more attached accelerators.
OpenCL also places the burden of platform management,
runtime kernel compilation, and task dependency declara-
tions on the programmer. The OpenCL kernel language
is syntactically C but with limitations, and OpenCL’s more
complex memory model can be challenging to learn and use.

Due to the relative performance limitations of JVM execu-
tion, the widespread adoption of the JVM as a universal exe-
cution platform, and the lack of programmability in OpenCL
and other accelerator programming models, we believe that
bridging the gap between high-level JVM-based program-
ming languages and accelerators is an important and open
research problem. This problem is complicated by the need
to support legacy JVM code that was written to target the
JVM (i.e., it was not written to use a restricted subset of
the JVM bytecode specification with hardware acceleration
in mind).

In this work, we continue past work on maintaining JVM
semantics when executing parallel regions on an OpenCL
accelerator. Our approach focuses on using code genera-
tion techniques from JVM bytecode to the OpenCL kernel

language to enable the acceleration of user-written compu-
tational kernels in any JVM-based programming language.
Parallel code regions are defined as lambdas passed to the

parallel-for API of the Habanero Java Parallel Library (HJlib) [16],

though this approach can also be applied to the Java Streams
API. In particular, this work makes the following novel con-
tributions:

1. Efficient serialization and deserialization of JVM ob-
jects at runtime to a format amenable to storage on
an OpenCL accelerator.

2. Support for dynamic memory allocation on accelera-
tors using a concurrent heap and kernel retry to handle
out-of-memory errors.

3. Removal of redundant data movement between CPU
cores and accelerators by inspecting the dataflow be-
tween parallel regions in the calling context at runtime.

The rest of the paper is organized as follows: Section 2
discusses past work on this topic, and how this work ex-
tends the existing literature in this area. Section 3 describes
details of the techniques and algorithms used in our ap-
proach. Section 4 presents an experimental evaluation of
the performance improvement from our approach, relative
to the HJlib parallel programming library and parallel Java
Streams. Section 5 discusses limitations of our current ap-
proach, which in turn offer opportunities for future work.
Section 6 wraps up with a summary of contributions, con-
clusions, and future work.

2. PAST WORK

To the best of our knowledge, the earliest known tools to
enable JVM programs to execute on accelerators are Root-
beer [21] and APARAPI [10].

Rootbeer offloads JVM computations to NVIDIA GPUs
by performing static code generation from JVM bytecode to
NVIDIA CUDA kernels, thereby limiting its scope to only
include JVM applications that do not rely on dynamic class
loading. The body of a parallel region is written as a method
inside a user-written class that extends the Rootbeer Kernel
interface. A parallel region is created by invoking Rootbeer-
specific library methods on the user-written Kernel class.
Rootbeer supports limited JVM object references in paral-
lel regions executed on the GPU. The Rootbeer paper [21]
goes into detail on the object storage format used for GPUs.
However, it does not describe the process of serializing and
deserializing JVM objects, a large source of overhead that
we address in detail in this paper. Rootbeer does support
dynamic memory allocation in CUDA but does not support
parallel regions whose memory allocations exceed the GPU’s
physical memory capacity. Because GPUs lack virtual mem-
ory and usually have a smaller memory capacity than their
host systems, this represents a limitation on the applications
that can successfully complete without an OutOfMemoryEx-
ception under Rootbeer. Our approach to dynamic memory
allocation addresses this limitation. Rootbeer also does not
describe any optimization of the transfers performed to and
from the accelerator. The lack of optimization limits the
kernels that can benefit from Rootbeer to only those whose
computational speedup from GPU execution can offset the
serialization and transfer overheads.

APARAPI differs from Rootbeer in many respects. First,
rather than using static code generation at compile-time,



APARAPI dynamically translates JVM bytecode to accel-
erator kernels at runtime. This approach supports dynamic
loading of external classes and ensures it never executes stale
code on the accelerator. APARAPI also targets OpenCL
rather than CUDA, thereby supporting a wider range of ac-
celerators. However, Rootbeer supports a greater subset of
the JVM bytecode specification (e.g., object references, dy-
namic memory allocation). Both Rootbeer and APARAPI
share a similar API, using a special Kernel interface to store
the body of parallel regions that will be executed on an ac-
celerator.

In general, APARAPI and Rootbeer share some limita-
tions. Both rely on using external classes to define the bodies
of parallel regions, thus obfuscating the parallelism within
an application. Both do little in terms of optimizing the exe-
cution of accelerator kernels in the context of the host appli-
cation. Both have little or no support for dynamic memory
allocation, which severely limits the JVM applications and
kernels they can be used for.

Past work by our research group looked at addressing
some inconsistencies between JVM and accelerator execu-
tion. The work in [13] started the development of HJ-
OpenCL by offloading parallel for loops written in the Ha-
banero Java (HJ) parallel programming language to a GPU
by extending the code generation module in APARAPI. This
work included a number of extensions such as more effi-
cient support for multi-dimensional arrays, global barrier
synchronization in parallel regions executing on the acceler-
ator, and avoiding accelerated execution of parallel regions
that may throw Exceptions. [14] extended the work on HJ-
OpenCL by improving support for JVM exception semantics
on accelerators. [12] included work on extending support for
more complex data structures on accelerators, most notably
sparse vectors.

Ongoing work in Project Sumatra [20] is building support
for GPU code generation in to the JVM itself. Working from
inside the JVM may enable optimizations that are not pos-
sible externally and allow for more seamless integration with
existing parallel programming interfaces like Java Streams.
In 2013, AMD demonstrated a prototype based on the Het-
erogeneous System Architecture (HSA) which did not sup-
port dynamic memory allocation or exceptions [9].

In [11], a functional array-based API for GPU program-
ming from the JVM is presented. This API is similar to
Scala Parallel Collections and Java Streams. While our work
focuses on the acceleration of parallel for loops, it would be
a natural and straightforward extension to use a more func-
tional API like the one in [11].

JaBEE [25] accelerates JVM computational kernels in the
J3 JVM using NVIDIA GPUs. JaBEE manipulates JVM-
internal data structures to support object references on the
GPU, including nested object references stored in fields of
other objects. JaBEE also supports dynamic memory allo-
cation on the GPU. However, the performance evaluation
of JaBEE’s object support shows that GPU execution is
slower than the JVM when object references are present.
The support for dynamic memory allocation is limited to
programs whose allocations are smaller than GPU memory
(like Rootbeer), and relies on CUDA’s dynamic memory al-
locator. JaBEE’s construction on CUDA limits its scope to
NVIDIA GPU accelerators, and the use of JVM internals
means it can only execute applications run on the J3 JVM.

The work described in this paper continues the work on
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HJ-OpenCL started by [13] and [14] by addressing the chal-
lenges of supporting accelerated execution of parallel regions
which contain JVM object references. In particular, object
reference support introduces several new challenges:

1. The dynamic allocation of object types on accelerators
that do not natively support dynamic memory alloca-
tion and include only a limited amount of DRAM.

2. The representation of JVM object types in a format
that the accelerator can access and modify.

3. The serialization and deserialization of JVM objects
and arrays of objects.

4. The mitigation of overheads due to JVM object seri-
alization and deserialization.

3. OVERVIEW OF OUR APPROACH

In this section, we detail the contributions of this work.
We start by describing the existing frameworks which this
work builds on. Then, we discuss how JVM objects con-
taining primitive fields are represented as C-style structs
on OpenCL accelerators. Following that, we describe in de-
tail the process of serializing and deserializing JVM objects
using the sun.misc.Unsafe package, as well as optimizations
made to reduce unnecessary data transfers and serialization
between the JVM and accelerator. Finally, we describe the
techniques introduced in this work to support dynamic mem-
ory allocation on OpenCL accelerators when the amount of
physical memory is insufficient to satisfy all threads’ mem-
ory allocation requests.

In this work, we extend APARAPT’s existing support for

OpenCL kernel generation from JVM bytecode. While APARAPI’s

code generation module supports a reasonable subset of the
JVM bytecode specification, many of the JVM’s most com-
monly used features (e.g., object references, the NEW opcode)
are not supported in APARAPIT kernels. This work removes
some of these limitations, while reusing much of the core
code generation framework.

One of the less usable aspects of APARAPI and Rootbeer
is the way in which the body of a parallel region is defined.
Both require the programmer to extend a Kernel interface
similar to Java’s Runnable class. Code generation techniques
are then applied to the run method defined inside. While
this is a common pattern in many legacy Java programs,
it can obfuscate the parallelism in complex parallel JVM
applications. With the introduction of lambda functions in
Java 8, we can more clearly link the sites at which parallelism
is created with the body of the parallel computation. In this
work, we extend the blocking parallel-for construct, forall,
from the Java 8 parallel library HJlib[16] to automatically
offload its computational body to OpenCL accelerators. The
computation of HJlib’s forall API is defined with a Java
lambda as follows:

forall(0, niters - 1, (iter) -> {
. // loop body as a function of iter
b

This work adds the construct forall_acc to HJlib, which
has the same semantics as forall (blocking, all iterations
run in parallel) but executes the body of the lambda on
an OpenCL accelerator. Using Java lambdas maintains the
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clear link between the creation of parallelism and its compu-
tation. Future work could include a unified forall construct
which auto-selects the accelerator based on lambda charac-
teristics and datasize using techniques from past work on
auto-scheduling in [12] or [4].

Additionally, we use The RetroLambda[3] tool at compile
time to convert Java 8 JVM bytecode that uses the new IN-
VOKEDYNAMIC opcode to instead use an inner class to store
the closure for a lambda. This is not visible to the program-
mer, but is necessary for compatibility with APARAPI.

3.1 Storing JVM objects in OpenCL

This work focuses on supporting JVM object references
in accelerated parallel regions, but limits the current scope
of that work to only support references to primitive fields
in those objects, or instance methods which only reference
primitive fields. For example, it would be valid to reference
objects of the type Point defined below so long as those
references only used the methods getX, getY, getZ, or dis-
tance. Note that methods with object references as param-
eters and local variables are supported — the main constraint
is that the method is not permitted to access a non-primitive
field during GPU execution. Hence, use of the methods get-
Closest and distanceToClosest is not supported in accel-
erated parallel regions.

package edu.rice.hj.example.Point;

public class Point {
private float x, y, z;
Point closest;

public Point(float x, float y, float z, Point
closest) {
this.x = x; this.y = y; this.z = z;
this.closest = closest;

}

public float getX() { return x; }

public float getY() { return y; }

public float getZ() { return z; }

public float distance(Point other) {

return (float)Math.sqrt(Math.pow(other.x - x, 2) +

Math.pow(other.y - y, 2) + Math.pow(other.z -
z, 2));

}

public Point getClosest() { return closest; }
public float distanceToClosest() {
return distance(closest);
}
}

The primitive fields of a JVM class referenced from an
accelerated parallel region are represented by a correspond-
ing struct in the automatically generated OpenCL kernel
definition. For each primitive field in the JVM object, a
similarly typed field is created in a struct definition auto-
generated by the modified APARAPI code generator. An
example of the struct generated for the Point class above
is shown below:

typedef struct __attribute__ ((packed))
edu_rice_hj_example_Point_s {
float x;
float y;
float z;
} edu_rice_hj_example_Point;

Note that this conversion is only carried out for object
types which are used in an accelerated parallel region, not
for all classes loaded by an HJlib application. If a refer-
enced object has a superclass whose primitive fields are also
referenced, those fields will be included inline in the gener-
ated struct. One side benefit of this approach is that only
primitive fields are transferred to the accelerator, reducing
data movement relative to approaches that copy the whole
JVM object. Future work could further improve the data
movement efficiency of this approach by only transferring
primitive fields that are referenced from accelerated parallel
regions.

Once the primitive fields of a class and its superclasses
have been identified using Java reflection, it is straightfor-
ward to build a one-to-one mapping from Java primitive
types to OpenCL primitive types. For example, reflection
would tell us that the Point class above has a field named
x whose type descriptor is “F”. The type descriptor “F” can
be converted to the OpenCL primitive type float using a
lookup table.

Using the packed attribute for generated structs simpli-
fies object serialization by guaranteeing that all struct fields
are stored consecutively in memory. Future work could ex-
tend these techniques to support representing nested objects
as inlined structs, when legal to do so.

3.2 Serializing and Deserializing JVM objects

Runtime serialization and deserialization of dynamically
loaded JVM objects is an expensive operation that gen-
erally takes O(N) time, where N is the size of the data to
be serialized. Here we describe our strategy for serializing
and deserializing JVM objects to the format defined by Sec-
tion 3.1, which ensures that the resulting data is consumable
by an OpenCL accelerator. This work does not focus on op-
timizing this process. We rely on the techniques presented
in Section 3.3 to minimize the number of times expensive
serialization and deserialization operations take place.

Data referenced from an accelerated parallel region can
be classified into two categories: 1) local variables in the
method scope enclosing the lambda creation site, and 2)
fields in the class scope enclosing the lambda creation site.
Local variables in the enclosing method are captured as fields
in an anonymous inner class auto-generated by the Retro-
Lambda pass, including this. Fields of the enclosing class
are accessible through the this reference saved in the Retro-
Lambda anonymous class. Both types of data are accessible
from accelerated parallel regions, including fields of the en-
closing this instance.

Prior to launching a parallel loop on an accelerator, we
must iterate over each of these fields that is referenced from
inside that parallel loop and decide how to store them on
the accelerator. To do so, we start by classifying each into
one of four categories: primitive, non-array object, array of
primitives, or array of objects.

Supporting primitives on the accelerator is straightfor-
ward. Primitives are passed by value to the accelerator ker-
nel using OpenCL’s clSetKernelArg API. Their values are
fetched from the JVM using the JNI APIs.

Singleton objects which are shared across all iterations of
a parallel loop may arise in a number of situations, such as
the center object in the following code example:



Point center = new Point(...);
forall(0, P - 1, (iter) -> {
Point mine = points[iter];
float distToCenter = mine.distance(center);

»;

For this code snippet, the center object can be repre-
sented by a single Point struct allocated on the accelerator.
The first step in creating that allocation is to serialize the
JVM object to a byte buffer that matches the layout of the
OpenCL struct. This can be done using the code template
below, which takes as input the object to be transferred to
the accelerator, a byte buffer to write the serialized object
to, and a list of type descriptors and offsets for each field in
the object being transferred. This field metadata is sorted in
the same order as the fields appear in the OpenCL struct
definition. The object to be transferred can be loaded by
name using Java reflection from either the enclosing class or
the RetroLambda-generated closure.

void writeObjectToStream(Object ele,
List<FieldDescriptor> structMemberInfo, ByteBuffer
bb) {
for (FieldDescriptor fieldDesc : structMemberInfo) {
TypeSpec typeDesc = fieldDesc.typ();
long offsetInClass = fieldDesc.offset();

switch (typeDesc) {
case (TypeSpec.I):
bb.putInt (Unsafe.getInt(ele, offsetInClass));
break;
case (TypeSpec.F):
bb.putFloat (Unsafe.getFloat(ele, offsetInClass));
break;

The above code snippet relies on the sun.misc.Unsafe
package to fetch both the offset of a field inside an object as
well as the value of that field. The Unsafe package is used
rather than Java reflection to enable future work on transfer-
ring whole JVM objects to accelerators and accessing fields
by offsets rather than packing them into a struct.

The contents of the generated ByteBuffer can then be
transferred to the accelerator and used to represent this
JVM object. Given that the order of the fields in the struct
and the order of the fields passed to writeObjectToStream
are the same, the packed attribute used in Section 3.1 en-
sures that the ByteBuffer and OpenCL representations are
compatible. The byte[] backing the ByteBuffer can then
be passed through JNI to OpenCL and transferred to the
accelerator. Once on the accelerator, this object can be ref-
erenced using an appropriately typed pointer, such as:

edu_rice_hj_example_Point *ptr;

Public fields in the Point object can be loaded using the
-> operator:

float tmp = ptr->x;

Methods of the Point class are mangled and include this

as an explicit parameter. Thus, a call tomine.distance(center)
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would be transformed to:

static float
edu_rice_hj_example_Point__distance(__global Point
*this, __global Point *other) {

)

float d = edu_rice_hj_example_Point__distance(mine,
center) ;

For consistency, all object references on the accelerator
are represented as __global pointers, pointing to memory
in the accelerator’s global address space. This design choice
will be an important constraint when we discuss serializing
arrays of objects.

Transferring arrays of primitives to an accelerator starts
with passing the array directly through JNI to a native func-
tion. The native code then uses the appropriate JNI API to
extract the buffer backing the Java array. For example, for
an int[] in the JVM the function GetIntArrayElements
would be used to extract an int* pointer to the contents
of the JVM array. The values pointed to by the retrieved
pointer can then be directly transferred to the OpenCL ac-
celerator.

Transferring arrays of objects to an accelerator re-uses
writeObjectToStream by iterating over the elements of the
array and applying writeObjectToStream to each object
with the same output ByteBuffer. This produces a sin-
gle byte buffer that stores the contents of each object in the
object array, consecutively. However, to keep the represen-
tation of object references as __global pointers consistent
across object singletons and object arrays, it is necessary
to allocate an additional array of __global pointers on the
accelerator which represent the array of object references
being serialized on the JVM. The ByteBuffer emitted by
the successive calls to writeObjectToStream stores the data
backing those object references. This additional array of
pointers has the same length as the object array, and ele-
ment i in the pointer array is pre-populated with the address
of element i in the data buffer on the accelerator. This pre-
processing is done in parallel on the accelerator itself after
both buffers have been allocated and the contents of the data
buffer have been transferred to the accelerator, but before
the main computational kernel is launched.

Null pointers in arrays of objects require special treatment
for consistency between the JVM and accelerator. When
serializing an array of objects to the accelerator, an extra
array of bytes is allocated whose length is the same as the
array of objects. If element i in the array of objects is null,
element i in this byte array is set to 1. Otherwise, it is
set to 0. This isNull array is transferred to the accelerator
along with the array of objects and used in a pre-processing
kernel to initialize the __global pointer array described in
the preceding paragraph. If an object reference in the JVM
was null, the corresponding entry in the pointers array is
set to NULL. The extra isNull array is necessary because
the object references themselves are never transferred to or
from the accelerator; only the contents of the pointed-to
objects. The isNull array is necessary to determine whether
each element of the corresponding array-of-pointers on the
accelerator should be set to NULL or to point to an element
in the array-of-structs that stores the object contents.

Transferring singleton objects, primitive arrays, and ar-



rays of objects back from the OpenCL accelerator requires
performing the same operations as described above, in re-
verse.

For objects, the serialized object is transferred back from
the accelerator and the method readObjectFromStream is

used to populate the associated JVM object with any changes.

Note that HJ-OpenCL does not currently support atomic
operations, reduction operations, or synchronized regions
on shared objects inside accelerated parallel regions. If a
field of a singleton object is written from multiple threads,
no guarantees are made as to its state when it is restored in
the JVM.

void readObjectFromStream(Object ele,
List<FieldDescriptor> structMemberInfo, ByteBuffer
bb) {
for (FieldDescriptor fieldDesc : structMemberInfo) {
TypeSpec typeDesc = fieldDesc.typ();
long offsetInClass = fieldDesc.offset();

switch (typeDesc) {
case (TypeSpec.I):
Unsafe.putInt(ele, offsetInClass, bb.getInt)
break;
case (TypeSpec.F):
Unsafe.putFloat(ele, offsetInClass, bb.getFloat)
break;

Arrays of primitives are restored in the JVM by transfer-
ring the accelerator buffer directly into the JVM through a
primitive pointer retrieved from JNI.

For arrays of objects, we first launch a post-processing
accelerator kernel that iterates across the array of pointers
storing the current state of object references on the accelera-
tor. If pointer i no longer points to object i in the associated
data buffer, it must either have been set to null or to point
at a different object on the accelerator. If the former is true,
we mark that object reference as having been nullified in the
isNull array. Otherwise, the contents of object i are up-
dated in the backing array to be the contents of the object
instance pointed to by pointer i on the accelerator. The
object referenced by pointer i may change if it now points
to an object that was constructed on the accelerator, or to
another object of the same type that was transferred from
the JVM. More details on how dynamic object allocation is
supported are available in Section 3.4.

Once the contents of the array of objects have been up-
dated based on changes in the array of pointers, the contents
of the array of objects are transferred out of the accelerator
and used to update the contents of JVM objects by iterating
over the JVM array and updating each object using read-
ObjectFromStream. If an object reference is marked as null
in isNull, the corresponding object reference in the JVM is
also set to null.

This work assumes that no two elements in an array of
object references transferred to the accelerator point to the
same object. We discuss how this restriction could be lifted
in Section 5.

Clearly, the serialization and deserialization of JVM ob-
jects and particularly arrays of JVM objects is an expen-
sive operation. If M is the number of fields in a given type,
serializing or deserializing an object of that type is 0(M).

For an object array of length N that cost increases to 0(NM).
Past work[7] has looked at using GPU parallelism and mem-
ory bandwidth to accelerate re-formatting the data layout of
data structures. Our work could be extended to use similar
techniques to accelerate data serialization.

The next section describes the bytecode analysis tech-
niques used to eliminate redundant data movement between
successive accelerated parallel regions. This optimization
reduces the serialization and deserialization overheads in-
curred from supporting object references in accelerated par-
allel regions.

3.3 Removing Redundant Data Movement Through

Context Inspection

APARAPI supports basic load/store optimizations by an-
alyzing the bodies of parallel regions for read-only and write-
only buffers. If a buffer is detected as read-only, it is only
transferred from the host JVM to the accelerator. If it is
write-only, it is only transferred from the accelerator to the
JVM.

In this work, we extend this capability by loading and in-
specting the bytecode of the method in which this parallel
region is launched and finding local variables or class fields
that are passed to multiple, successive, accelerated paral-
lel regions without being referenced from the JVM between
those parallel regions. At a high level, a buffer (object, prim-
itive array, or object array) will only be transferred back to
the JVM after an accelerated parallel region if it may be read
before the JVM launches another accelerated parallel region
that is passed the same buffer. A buffer is only transferred
to the accelerator prior to an accelerated parallel region if we
find that this buffer may have been written from the JVM
since the last accelerated parallel region that referenced it.

This analysis is currently intra-procedural and context-
insensitive. As a result, when looking for reads following
a parallel region the analysis will transfer a buffer back if
there exists any control flow path from that parallel region
to a method return that does not pass through a parallel
for region that uses this buffer. Likewise, when looking for
writes preceding a parallel region the analysis will transfer
a buffer to the accelerator if there exists any control flow
path from the start of the enclosing method to this parallel
region that does not pass through any other parallel regions
that use this buffer.

This analysis is particularly useful for applications that
exhibit a pipeline of parallel regions. For example, the KMeans
machine learning algorithm consists of a pipeline of two ker-
nels: one kernel that classifies each data point into a cluster,
and a second kernel that recalculates each cluster’s centroid
based on its member points. In this pipeline, we can safely
skip both retrieving the point classifications after the first
kernel and copying them back to the accelerator for the sec-
ond kernel. Our analysis captures this information as long
as 1) both parallel regions are launched in the same func-
tion, and 2) the analysis described below indicates the point
classifications are not read or written from the JVM between
the two parallel regions.

For each buffer used by any accelerated parallel region, the
location in the source code of the last accelerated parallel re-
gion that referenced that buffer is stored by the HJ-OpenCL
runtime. This last referenced location is updated following
the completion of each parallel region for all buffers refer-
enced. To determine if a given buffer must be transferred



to the accelerator prior to launching a parallel region, we
first check that the last referenced location is in the same
method as the current accelerated parallel region. If it is
not, then the transfer must be performed. Otherwise, we
start from the last referenced location and traverse forward
over bytecode instructions to verify that the preceding par-
allel region is post-dominated by the current parallel region
and that the state of the buffer could not have been modi-
fied in the JVM. If any of the following conditions are met,
our analysis indicates that the current buffer may have been
modified and, therefore, must be updated on the accelerator
before the parallel region can be launched:

1. If the current buffer is stored in a local variable slot and
we find a local variable store opcode (e.g. ASTORE_3)
to that slot.

2. If we encounter a return statement. Note that even
though the last referenced location for a buffer is within
the same method it may have been during a different
call to this method. Checking for a return is necessary
to check for this case.

If we encounter an AASTORE opcode.
If we encounter a PUTFIELD opcode.

If we encounter any type of method invocation.

AR AN

If we encounter any opcode that may throw an ex-
ception (e.g. a divide-by-zero exception thrown by an
IDIV instruction)

When deciding whether a buffer must be transferred back
from the accelerator following an accelerated parallel region,
we perform a similar traversal starting at the current paral-
lel region and verify that the current parallel region is post-
dominated by parallel regions that use the same buffer and
that no reads of this buffer may be performed from the JVM
between parallel regions. If any of the following conditions
is met by any of the bytecode instructions following this par-
allel region and before encountering another parallel region
that uses this buffer, the current buffer is transferred back
to the JVM:

1. If the current buffer is stored in a local variable slot
and we find a local variable load opcode (e.g. ALOAD_3)
for that slot.

2. If we encounter a return statement.
If we encounter an AALOAD opcode.
If we encounter a GETFIELD opcode.

If we encounter any type of method invocation.

XIS

If we encounter any opcode that may throw an ex-
ception (e.g. a divide-by-zero exception thrown by an
IDIV instruction)

These transfer decisions are cached for each forall_acc
region. This allows us to only perform this analysis once for
each buffer in each parallel region regardless of how many
times that region is entered, reducing overhead.

One special case is that of an accelerated parallel region
that does not have any buffers that need to be transferred

back to the JVM. That is, all buffers used by this kernel
are also referenced by other accelerated parallel regions that
post-dominate the current parallel region, and none of those
buffers is referenced from the JVM. If this is the case, we can
safely allow the non-producing accelerated parallel region to
execute asynchronously on the accelerator while the host
system continues JVM execution. All accelerated parallel
regions wait for any preceding kernels before starting their
computation.

Buffers are allocated the first time they need to be trans-
ferred to the accelerator and are freed after they are copied
back to the host following the last accelerated parallel region
to reference them. Hence, a buffer may be allocated on the
accelerator even though a currently active parallel region is
not working on it if the active parallel region is between two
regions that do. This may lead to out-of-memory errors even
when the working set for a single parallel region is within the
limits of accelerator memory. Supporting out-of-core data is
beyond the scope of this work.

Future work could extend this analysis to be inter-procedural

and control flow sensitive, which would likely improve the
accuracy of the redundant data movement elimination.

3.4 Dynamic Memory Allocation in Auto-Generated

OpenCL Kernels

While supporting JVM object references on accelerators
helps to expand the domain of applications that can be
transparently offloaded, object references have limited use-
fulness without the ability to dynamically allocate new ob-
jects. However, the OpenCL standard does not include
dynamic memory allocation as a supported operation and
most accelerators have little or no native support for it. In
this section, we describe a technique for supporting dynamic
memory allocation on accelerators by transparently replac-
ing the NEW opcode and object constructors during code gen-
eration.

On the accelerator, there are four global data structures
used to support dynamic memory allocation in our approach:

e heap: A large, shared, byte-array pre-allocated in the
OpenCL __global address space, where it is accessible
to all threads.

e top: A single, shared atomic integer initialized to zero.
When a thread performs a dynamic memory alloca-
tion, it atomically increments this integer by the num-
ber of bytes it is allocating. If the new value of the
integer is less than or equal to the number of bytes
in the __global heap, the allocation has succeeded.
If the old value of the atomic integer were stored in
oldValue, the current thread’s allocation is now avail-
able at (char *)heap + oldValue and is followed by
a contiguous chunk of the requested number of bytes.

e complete: An array of integers whose length is equal
to the number of iterations in the current parallel loop.
Each element in this array is initialized to zero at the
start of processing a parallel region. Element i of this
array is set to one when iteration i of the parallel for
loop completes successfully on the accelerator. An it-
eration can only fail if a dynamic memory allocation
cannot be satisfied by the heap.

e anyFailed: A single integer on the accelerator that is
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initialized to zero and set to one by any thread which
fails a dynamic memory allocation.

Using these data structures (heap, top, complete, any-
Failed), the dynamic memory allocation technique works
as follows from the host application:

1. Buffers for the accelerator data structures described
above are allocated. complete is zeroed.

2. The host application zeroes top and anyFailed and
launches the generated kernel.

3. When the kernel completes, anyFailed is transferred
back to the host. If it is non-zero, we return to step 2
and re-execute with a reset heap. However, iterations
of the parallel loop that have marked themselves as
completed in the complete buffer skip re-execution.
Otherwise, if anyFailed is zero we continue.

This technique supports execution of parallel regions on
accelerators whose dynamic memory allocation requirements
exceed the size of the allocated heap by repeatedly retrying
subsets of iterations in the same accelerated parallel region
until all iterations succeed. This requires an extra alloca-
tion for any output object-typed arrays on the accelerator
to persist the final object stored by a completed thread be-
fore resetting the heap. To support dynamic memory allo-
cation, some extensions to APARAPT’s code generation are
also required.

First, all methods that perform dynamic memory allo-
cation (i.e., use the NEW opcode) are identified, along with
all callers of these methods. A field named allocFailed is
added to the This struct that each thread has a thread-
private copy of. This field is initialized to zero before per-
forming the work for each iteration of the original parallel for
loop. If an allocation fails, allocFailed is set to one and the
memory allocation function returns. All calls to the memory
allocation function as well as any calls that may lead to the
memory allocation function being called are followed by a
check that allocFailed is still zero. If allocFailed is found
to be non-zero, the current function immediately returns as
will all others on the current call stack. For functions with
a non-void return value, a default value is returned based
on its return type (e.g. 0 for int). Below is a code snippet
demonstrating the structure of the generated functions:

__global void #*alloc(..., int *allocFailed) {
__global void *allocation = ...;
if (allocation == NULL) {
*allocFailed = 1;

} else {
*allocFailed = 0;
}
}
void foo(This *this, ...) {
__global void *ptr = alloc(..., &this->allocFailed);

if (this->allocFailed) return;
}
void bar(This *this, ..

foo(this, ...);
if (this->allocFailed) return;
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}

__kernel void run(...) {
This this;
for (int i = tid; i < nthreads; i++) {

bar (&this, ...);

if (this.allocFailed) {
complete[i] = 0;

*anyFailed = 1;

} else {

complete[i] = 1;

This generated code simulates an exception-like mecha-
nism on the accelerator, albeit only for out-of-memory sit-
uations. At the top-level, if allocFailed is found to be
non-zero, the element in complete corresponding to this it-
eration is not set and anyFailed is set to one. When the host
discovers a non-zero value in anyFailed, this kernel will be
rerun but any iterations with a non-zero value in complete
will be skipped.

This technique does not make any guarantees on com-
pletion. With a small heap or large allocations, it is the-
oretically possible for this approach never to converge to
completion. Future work could address this by reducing the
level of parallelism at each re-execution if no progress was
made. Halving the number of threads executing the parallel
region would increase the chance of individual parallel itera-
tions succeeding as contention for the heap decreases. In the
worst case, this would devolve to a single-threaded parallel
region and guarantee completion (but not efficiency) as long
as the allocated heap was sufficiently large to support the
dynamic allocations of each individual thread. If that were
not the case, this condition would be easily detectable and
handled by reverting to JVM execution.

This technique also assumes that the body of a single iter-
ation of the enclosing forall_acc is idempotent: it does not
modify its own input state. If a thread modified some input
state, failed an allocation, and then was retried in a later ker-
nel invocation, it would read partially updated state on the
accelerator. This requirement is not currently enforced dur-
ing code generation, but could be in future work. While this
is a limitation, this assumption is implicitly true in the func-
tional style programming that is common in parallel pro-
gramming frameworks (e.g., Scala parallel collections) and
in current JVM acceleration research[11].

4. EXPERIMENTAL EVALUATION

In this section, we will start by summarizing the experi-
mental setup and applications used to benchmark the HJ-
OpenCL system. We will then begin the performance eval-
uation by comparing HJlib and HJ-OpenCL performance at
the granularity of parallel regions, without any redundant
transfer elimintation. HJ-OpenCL will use a GPU accelera-
tor. After enabling redundant transfer elimination we rerun
all parallel regions and then note and explain any change
in performance. Using this information, we statically select
whether to run each parallel region as a forall (for JVM
execution) or a forall_acc (for native CPU or GPU exe-
cution) and measure overall speedup of HJ-OpenCL using



native threads on the CPU or GPU, comparing against par-
allel Java Streams. Finally, we measure how performance of
one benchmark degrades as the size of the accelerator heap
is artificially reduced.

4.1 Experimental Setup

All benchmarks in this section are run on the same hard-
ware platform, containing a 12-core 2.80GHz Intel X5660
CPU, 48GB of system RAM, and 2 discrete NVIDIA M2050
GPUs each with 2.5GB of global memory. All tests are
run using all 12 CPU cores but only 1 GPU, and with the
maximum heap size of the JVM set to 48GB. All tests are
repeated 30 times inside the same JVM to minimize the im-
pact of random variations and to allow JIT compilation to
improve JVM performance. The median execution time is
reported. All tests are also run across a range of inputs to
quantify where performance is lost or gained using accler-
ated parallel regions. These experiments use the Hotspot
JVM v1.8.0_45 and the NVIDIA OpenCL 1.1 implementa-
tion included with CUDA 6.0.1.

Three benchmarks were used to evaluate HJ-OpenCL:
KMeans, PageRank, and NBody.

KMeans iteratively finds K clusters in an input dataset of
P points. Each iteration of KMeans is a two-stage pipeline:
the first stage classifies each point into a cluster based on a
Euclidean distance measure from each cluster’s centroid to
that point’s location. The second stage computes new clus-
ter centroids based on the point memberships calculated in
the first stage. This pipeline is executed for I iterations or
until the cluster centroids converge to a steady state. In our
experiments we keep I as a constant, 10, but vary the num-
ber of clusters and data points. The first stage is parallelized
across data points and the second stage is parallelized across
clusters. The second stage allocates a new Point object for
each cluster to store the re-calculated cluster centroid.

NBody simulates particle-particle force interactions and
the resulting changes in particle positions. This implemen-
tation of NBody is precise, and does not use grid approxima-
tions to reduce the ratio of computation to communication.
Each time step of an NBody simulation includes a two-stage
pipeline: the first stage updates each particle’s acceleration
and velocity based on the position and mass of all other
particles. The second stage updates each particle’s position
based on its re-computed velocity. In this evaluation we ex-
ecute 20 timesteps and vary the number of points. Both
stages of NBody are parallelized across particles.

PageRank is also an iterative application with a two-stage
pipeline which assigns a rank to each node in a directed
graph based on the ranks of its neighbors with inbound
edges. The first stage in PageRank’s pipeline assigns a
weight to each edge in the graph based on the source node’s
rank and its number of outbound edges. The second stage
uses edge weights to re-compute each nodes’ rank based on
the weights assigned to its inbound edges. We keep the num-
ber of iterations as a constant, 10, but vary the number of
nodes and edges. The first stage of PageRank is parallelized
across edges in the graph and the second stage is parallelized
across nodes.

Table 1 details the characteristics of each benchmark as
they relate to evaluating the contributions of this work. The
first column indicates if any of the parallel regions in the
benchmark contain object references. The second column
indicates if this benchmark contains transfers to or from the

Benchmark || Obj Refs | Copy Elim | Dyn Alloc
KMeans Y Y Y
NBody Y Y N
PageRank Y Y N

Table 1: Characteristics of each benchmark as they
relate to the contributions of this work.

accelerator which our transfer elimination algorithm identi-
fies as redundant. The third column indicates if any dynamic
memory allocations are performed in parallel regions of this
benchmark.

4.2 Kernel Performance With Redundant Trans-

fers

Initially, we compare performance of every parallel region
running as a forall loop and as an accelerated forall_acc
loop on a GPU with no redundant transfer elimination. All
input and output singleton objects, primitive arrays, and
object arrays are transferred to and from the accelerator in
these experiments. The results for each benchmark are listed
in Figures 1, 2, and 3. For each dataset and kernel, either
the forall or forall_acc results are shaded gray to visually
indicate the higher performing execution mode. In many
cases, smaller datasets perform better when running on the
JVM with the HJlib runtime, and larger datasets perform
better when an accelerator is used (e.g. updateClusters in
KMeans and updateRanks in PageRank).

These results show that even with redundant transfers,
sufficiently large datasets which produce enough parallelism
benefit from the accelerated parallel regions implemented
in this work. Note that for improved performance to be
achieved, the computational acceleration must be sufficient
to offset both increased costs from transfers over the PCle
bus as well as costs from data serialization and deserializa-
tion.

Figure 1 shows that KMeans acceleration is primarily a
function of the number of clusters (K) being calculated. K
serves as a multiplier of the amount of work performed for
each data point. Because communication scales by 0(P +
K), computation scales by 0(PK), and P is generally much
larger than K, increasing K increases the chances that the
accelerator will have a measurably positive impact on overall
parallel region execution time.
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Figure 1: Kernel speedup with redundant copies in
the KMeans benchmark.



Figure 2 shows that while accelerated parallel regions in
NBody have an impact at larger datasets for updateVel, up-
datePos always runs faster on the JVM with the HJlib paral-
lel runtime. The updatePos kernel includes a trivial amount
of work but requires transferring and serializing JVM objects
to and from the accelerator. Hence, overheads dominate ac-
celerated execution of updatePos on the accelerator.
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Figure 2: Kernel speedup with redundant copies in
the NBody benchmark.

As we would expect, Figure 3 shows that for small node
counts the updateRanks kernel in PageRank (which is par-
allelized across nodes) does not perform well on the acceler-
ator. Like the kernels of KMeans and updatePos in PageR-
ank, updateRanks is dominated by transfer and serialization
overheads at smaller node counts with little computational
work to accelerate. However, the calcWeights kernel al-
ways performs better on the accelerator than the JVM (for
the data sizes that we studied).
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Figure 3: Kernel speedup with redundant copies in
the PageRank benchmark.

4.3 Kernel Performance Without Redundant
Transfers

Building on the results in Section 4.2, we enable the re-
dundant transfer elimination described in Section 3.3 and
rerun all experiments. For these experiments, we explicitly
force all accelerated parallel regions to block on accelera-
tor computation before returning to the host program. This
simplifies the performance comparison in this section for ker-
nels which have no buffers that must be transferred back to

the JVM on completion and would therefore execute asyn-
chronously.

Eliminating redundant transfers in KMeans does add some
performance benefit. A summary of the results before en-
abling this optimization (copy-all) and after (elim) is pro-
vided in Figure 4. Redundant transfer elimination saves
transferring 50% of data by eliminating all transfers from
the accelerator following classify and to the accelerator be-
fore updateClusters. We can see that for every dataset this
improves execution time. However, for kernels and datasets
where JVM execution was faster than accelerated execu-
tion with redundant transfers (Figure 1), the performance
improvement from redundant transfer elimination is insuffi-
cient to make those execution configurations now faster on
the accelerator.
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Figure 4: Kernel speedup with redundant copy elim-
ination in the KMeans benchmark.

We find that for the NBody updateVel and updatePos
kernels there is no improvement in performance. While our
redundant transfer elimination algorithm keeps the velocity
and position buffers on the accelerator between these two
kernels, our NBody implementation is heavily computation-
bound and so eliminating these transfers does not signifi-
cantly improve the performance of the overall parallel re-
gion. For simulations of 100,000 particles this elimination
reduces bytes transferred to and from the device by 58.8%.

The PageRank results with redundant transfers eliminated
are summarized in Figure 5. Here, eliminating redundant

transfers provides a clear performance benefit across all datasets.

In every case, the optimized version performs better than the
naive, copy-everything version. Redundant transfer elimina-
tion reduces the number of bytes transferred to and from the
accelerator by 50%.

While the results for PageRank are similar to KMeans in
that no kernel and dataset execution configuration which
performed better on the JVM in Figure 3 now performs
better on the accelerator, it is clear the inflection point at
which the accelerator is the better choice has moved down as
a function of L. For example, consider the kernel updateR-
anks for tests with N=4K. Let us fit a quadratic function f (L)
= E to this data where E is the expected execution time for
updateRanks. Without redundant transfer eliminiation, the
fitted equations for forall and forall_acc predict an in-
flection point at L=91. With redundant transfer elimination,
that inflection point reduces to L=84, increasing the number
of datasets that execute faster on the accelerator.



PageRank w/o Redundant Transfers

calcWeights
updateRanks mm=m

25 ~

Speedup
-
o
T
|

0.5 | ~

LRSS LRSS LIRS LRSS
AN AR VRN AR VRSN SRV SNV
) Qo o S Yo o S X o S X % S J"o
N=2K N=4K N=10K N=14K N=18K
Dataset

X

Figure 5: Kernel speedup with redundant copy elim-
ination in the PageRank benchmark.

4.4 Overall Speedup

Using the insights gained in Sections 4.2 and 4.3, this
section measures the overall speedup of whole benchmarks
relative to a parallel implementation using Java Streams.
We choose to compare performance against Java Streams
because it is an industry standard with similar parallel func-
tionality to HJlib’s forall construct. Table 2 lists the ker-
nels we choose to offload to the accelerator; updatePos in
NBody is the only kernel that was not offloaded. Table 3
lists the overall speedup achieved on each benchmark and
each dataset. All speedups are normalized to the execution
time of an implementation that uses parallel Java Streams.
We compare performance of HJlib’s forall running in the
JVM, forall_acc using OpenCL to run on the GPU, and
forall_acc using OpenCL to run on the CPU.

As expected from the results in Sections 4.2 and 4.3, the
GPU-accelerated version of the application generally per-
forms better than Java Streams, forall, and the CPU-
accelerated version as the datasize and parallelism of the
input dataset increases.

The forall and Java Streams versions of each bench-
mark generally outperforms the GPU-accelerated version
on smaller datasets where there is insufficient work for the
GPU’s parallelism to offset the overheads of data serializa-
tion and transfer.

The CPU-accelerated version (i.e., the version in which
OpenCL code is executed on the CPU) of each benchmark
offers an interesting tradeoff compared to the other execu-
tion platforms. Like forall and Java Streams, it executes
on the CPU and therefore handles irregular computation and
memory accesses better than the GPU. The CPU also han-
dles non-coalesced memory accesses better than the GPU,
a common access pattern when referencing arrays-of-structs
rather than structs-of-arrays. Due to the serialization tech-
niques described in Sections 3.1 and 3.2, all of these bench-
marks operate on arrays-of-structs. However, when using
the CPU as an accelerator we incur the same data serializa-
tion overhead that we do on the GPU, but the data trans-
fer overhead is lower because it does not go over the PCle
bus. These results show that for some benchmarks there is
a middle ground where the size of the dataset is sufficiently
large for native CPU execution to demonstrate a perfor-
mance benefit over JVM execution (forall or Java Streams)
despite serialization overheads, but still small enough that

Benchmark Kernel Accelerator?
KMeans updzcl}czséilfl};ters §
NBody apdntePos N
PageRank | (0 o v

Table 2: Kernels selected for acceleration.

the acceleration from GPU execution is insufficient to offset
the transfer overheads. In particular, note the results for
KMeans when K=1K or the PageRank dataset N=4K, L=120.

Automatic runtime identification of the best performing
configuration (JVM, native OpenCL code on CPU, native
OpenCL code on GPU) for a given kernel is a subject for
future work.

4.5 Performance Degradation as Heap Con-
tention Increases

One of the contributions of this paper is support for dy-
namic memory allocation on OpenCL accelerators. The
techniques described in Section 3.4 enable acceleration of
JVM applications where the dynamic memory allocations
exceed the size of the heap that is allocatable on the acceler-
ator. Because these techniques are based on retrying threads
that fail to complete successfully, launching multiple kernels
per parallel region becomes necessary, but naturally intro-
duces overhead. In this section, we study how overhead and
overall execution time of the KMeans benchmark increases
as we artificially constrain the heap size to force allocation
failures.

In KMeans, a new object is allocated on each iteration for
each cluster that stores the new coordinates of that cluster.
In these experiments, we test against the dataset with the
largest K. For K=40,000, KMeans dynamically allocates 12
bytes per cluster (480KB in total).

Tables 4 and 5 show the number of kernel retries and
total execution time for KMeans running on the GPU and
CPU, as a function of the heap size. As we halve the heap
size, the number of retries necessary approximately doubles.
Overall execution time increases sub-linearly because each
successive kernel retry in the same parallel region contains
less work than the preceding one as more parallel iterations
complete successfully. The execution time of Java Streams
on the same KMeans dataset was 70,091 ms. Even with
an artificially small heap size, HJ-OpenCL running on the
GPU and CPU is able to maintain a performance advantage
over Java Streams. The performance of CPU-accelerated
HJ-OpenCL degrades at a slightly slower rate because the
latency to transfer anyFailed from the accelerator to the
JVM to check for failed allocations after every kernel launch
is lower.

5. LIMITATIONS
5.1 JVM Object Support on Accelerators

In this paper, we provide a detailed description of our ap-
proach to supporting JVM object references in accelerated
parallel regions. While allowing some object references in-
creases the scope of JVM acceleration, limitations remain
on the type of objects that can be serialized to OpenCL ac-



Table 3: Speedup of overall execution time for
all benchmarks, relative to parallel Java Streams.
This table compares HJlib’s forall to HJ-OpenCL’s
forall_acc using the GPU or CPU as accelerators.
The fastest performing platform for each test is
grayed in.

Heap Size || Retries GPU
Time | Slowdown
800KB 1 6,202 ms
400KB 2 6,965 ms 1.12x
200KB 3| 8,434 ms 1.36x
100KB 5 | 13,079 ms 2.11x
50KB 10 | 22,682 ms 3.66x

Table 4: Performance degradation of the KMeans
benchmark as the HJ-OpenCL heap size is reduced
on the GPU, tested with 500,000 data points and
40,000 clusters.

Heap Size || Retries CPU
Time | Slowdown
800KB 1| 12,323 ms
Dataset 400KB 2 | 13,210 ms 1.07x
P=500K, K=100 200KB 3 | 16,492 ms 1.34x
P=500K, K=1K 100KB 5 1 23,317 ms 1.89x
P=500K, K=20K 50KB 10 | 37,557 ms 3.05%
P=500K, K=40K
P=1000K, K=100 Table 5: Performance degradation of the KMeans
KMeans P=1000K, K=1K benchmark as the HJ-OpenCL heap size is reduced
P=1000K, K=20K on the CPU, tested with 500,000 data points and
P=1000K, K=40K 40,000 clusters.
P=2000K, K=100
P=2000K, K=1K
P=2000K, K=20K celerators. Most notably, the only object fields that can be
P=2000K, K=40K accessed on the accelerator are those with primitive types.
P=1K This is not an absolute limitation: JaBEE[25] is an exam-
NBody P=10K ple of existing work that supports nested object references.
P=100K However, JaBEE’s results demonstrate that adding this sup-
N=2K, L=40 port cancelled out the performance advantage of accelerator
N=2K, L=80 execution. Not only does indirection complicate the serial-
N=2K, L=120 ization logic, but multiple layers of indirection is not gen-
N=4K, L=40 erally a pattern that fits well with simpler accelerator ar-
N=4K, L=80 chitectures. We chose to focus on kernels that were most
N=4K, L=120 likely to be amenable to acceleration, kernels that operate
N=10K, L=40 on primitive or simple object types. Future work could in-
PageRank || N=10K, L=80 vestigate alternatives to JaBEE’s approach to indirection
N=10K, L=120 that perform better on accelerators.
N=14K, L=40 This brings up a tension between how much of the JVM
N=14K, L=80 bytecode specification can be supported on accelerators and
N=14K, L=120 how much should be supported. The choice to move to accel-
N=18K, L=40 erators is usually made primarily for performance, and sec-
N=18K, L=380 ondly for energy efficiency. We believe the goal of research
N=18K, L=120 like ours should be to investigate how certain portions of

the JVM specification are supportable on the accelerator,
what compromises must be made on performance and/or
energy efficiency, and how those compromises change with
application or dataset characteristics. JaBEE [25] did this
for indirect object references. Previous work in HJ-OpenCL
did this for exceptions [14] and global synchronization [13].
This work does the same for dynamic memory allocation.
Through experimentation the community can converge on
a reasonable subset of the JVM bytecode specification that
can be supported on accelerators without sacrificing perfor-
mance/energy efficiency and retaining enough JVM seman-
tics to remain useful and intuitive for JVM programmers.

For example, a possible future investigation would remove
the requirement that no two object references in an array of
object references transferred to the accelerator be aliased.
This investigation would weigh the benefits of bringing the
semantics of a forall_acc loop in line with regular JVM
semantics against the added performance cost of checking
all object references in an array against all other object ref-
erences at runtime.

5.2 Redundant Transfer Elimination Limita-
tions

The main limitation to the redundant transfer elimina-
tion techniques described in this paper is the simplicity of
the change detection between accelerated parallel regions.
Our work focuses on pipelines of accelerated parallel regions
where the code between one region and the next is primarily
setting up loop bounds, loading local variables, etc. For that



type of parallel application, our implementation of redun-
dant transfer elimination works well. Integrating a modern
alias analysis algorithm for JVM bytecode such as the one in
[19] or integrating this work with the JVM itself would re-
move these limitations but is beyond the scope of this work.

6. CONCLUSIONS

In this paper, we presented techniques towards bridging
the gap between the JVM and modern accelerators. While
the JVM offers portability and high-level programming ab-

stractions, it is not generally considered useful for performance-

critical applications that leverage accelerators.

However, OpenCL offers a portable programming plat-
form for many accelerator architectures which are beyond
the reach of the JVM. In this work, we transparently ac-
celerate the existing forall parallel-for loop construct from
HJlib using OpenCL accelerators, demonstrating significant
performance improvements with minimal code change for
existing HJlib or Java Streams applications. More notably,
we increase the JVM features supported on OpenCL accel-
erators by allowing object references and dynamic memory
allocation in accelerated parallel regions. We also present an
algorithm for redundant transfer elimination based on JVM
bytecode inspection for dataflow dependencies between ac-
celerated parallel regions. Our approach can easily be ex-
tended to support the Java Streams API as input instead of
HJlib forall loops.

There are many possible directions for future work to en-
able more general JVM computation on accelerators. The
object support in this paper could be extended to support a
wider range of object definitions, including nested object ref-
erences. The dynamic memory allocation techniques would
have to be similarly extended, and could be made more
efficient by using OpenCL local memory to satisfy alloca-
tions, thereby reducing heap contention and access latency.
There are also opportunities to adapt garbage collectors and
memory management systems to be better optimized for
accelerator-based execution. The redundant transfer elimi-
nation algorithm could be improved by using techniques in
JVM alias analysis and control flow analysis to make the
analysis more accurate. For example, because the current
approch is not context sensitive and because the tested ap-
plications generally consist of an iterative pipeline of parallel
regions, no transfers to the accelerator can be eliminated for
the first kernel in the pipeline and no transfers from the ac-
celerator can be eliminated for the last kernel in the pipeline.
The algorithm has no way of determining if we are entering
the first kernel as part of the first iteration of the enclosing
loop, or if we will exit the enclosing loop after leaving the last
kernel. This leads to unnecessary transfer and serialization
overheads in the current approach.

Additionally, simple automated data layout transforma-
tions for accelerator kernels would likely be effective in im-
proving the efficiency of individual kernels[18]. Past work][7]
has used the parallelism and memory bandwidth of GPUs
to accelerate data layout transformations. Our work could
be extended to include the techniques from both [18] and [7]
to perform efficient data layout transformations at runtime.
Along the same vein of automated optimization, identifying
data that follows certain access patterns would us to make
more use of special-purpose OpenCL memory regions such
as __constant, texture, or __local memory.

However, despite these limitations in our current approach,

the work reported in this paper significantly broadens the
class of JVM applications that can be offloaded to accelera-
tors.

Implementing the techniques described in this paper within
the JVM itself would allow for an increase in efficiency. Rep-
resenting JVM objects on accelerators would require match-
ing the padding of an auto-generated native struct with that
of the JVM object’s fields, skipping the need for a serializa-
tion or deserialization step but consuming more space on
the accelerator. Access to the full state of the JVM would
simplify optimizing redundant transfer elimination. The dy-
namic allocation techniques presented here could be re-used.

Additionally, ongoing work uses the techniques described
in this paper to accelerate distributed Apache Spark appli-
cations. Spark’s extensive use of lambdas and parallel collec-
tions as an abstraction for distributed execution means that
many of the ideas in this paper apply directly to accelerating
Spark applications.

As a wider range of applications with varied performance
characteristics come under the umbrella of JVM execution,
it is important to give application developers more flexi-
bility in their hardware platform to guarantee applications
can meet new performance requirements. This work makes
progress towards that goal by building on past work and ex-
tending the subset of JVM applications that can be trans-
parently and efficiently executed on OpenCL accelerators.

7. REFERENCES

[1] Apache Tomcat. http://tomcat.apache.org/. Accessed:
2015-06-05.

[2] Everything I Ever Learned About JVM Performance
Tuning. http://bit.ly/QOYhg6. Accessed: 2015-06-04.

[3] RetroLambda.
https://github.com/orfjackal/retrolambda. Accessed:
2015-06-05.

[4] G. K. V. S. Akihiro Hayashi, Kazuaki Ishizaki.
Machine-Learning-based Performance Heuristics for
Runtime CPU/GPU Selection. In 12th International
Conference on the Principles and Practice of
Programming on the Java Platform, PPPJ, 2015.

[5] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar.
Habanero-java: the new adventures of old x10. In
Proceedings of the 9th International Conference on
Principles and Practice of Programming in Java,
pages 51-61. ACM, 2011.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,

A. Kielstra, K. Ebcioglu, C. Von Praun, and

V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. Acm Sigplan Notices,
40(10):519-538, 2005.

[7] S. Che, J. W. Sheaffer, and K. Skadron. Dymaxion:
optimizing memory access patterns for heterogeneous
systems. In Proceedings of 2011 international
conference for high performance computing,
networking, storage and analysis, page 13. ACM, 2011.

[8] R. Coleman, U. Ghattamaneni, M. Logan, and
A. Labouseur. Computational Finance with
Map-Reduce in Scala. In Conference on Parallel and
Distributed Processing (PDPTAGAZ12), CSREA,
2012.

[9] Eric Caspole. AMD’s Prototype HSAIL-enabled JDK8
for the OpenJDK Sumatra Project.



[11]

[12]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

http://www.oracle.com/technetwork/java/
jvmls2013caspole-2013527.pdf, 2013.

G. Frost. APARAPI in AMD Developer Website.

J. J. Fumero, M. Steuwer, and C. Dubach. A
composable array function interface for heterogeneous
computing in java. In Proceedings of ACM SIGPLAN
International Workshop on Libraries, Languages, and
Compilers for Array Programming, page 44. ACM,
2014.

M. Grossman, M. Breternitz, and V. Sarkar.
Hadoopcl2: Motivating the design of a distributed,
heterogeneous programming system with
machine-learning applications. In IEEE Transactions
on Parallel and Distributed Systems.

A. Hayashi, M. Grossman, J. Zhao, J. Shirako, and
V. Sarkar. Accelerating Habanero-Java programs with
OpenCL generation. In Proceedings of the 2013
International Conference on Principles and Practices
of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, pages 124—134.
ACM, 2013.

A. Hayashi, M. Grossman, J. Zhao, J. Shirako, and
V. Sarkar. Speculative execution of parallel programs
with precise exception semantics on gpus. In
Languages and Compilers for Parallel Computing,
pages 342-356. Springer, 2014.

S. Imam and V. Sarkar. Cooperative Scheduling of
Parallel Tasks with General Synchronization Patterns.
In European Conference on Object-Oriented
Programming (ECOOP), pages 618-643. Springer,
2014.

S. Imam and V. Sarkar. Habanero-Java Library: A
Java 8 Framework for Multicore Programming. In 11th
International Conference on the Principles and
Practice of Programming on the Java Platform, PPPJ,
volume 14, 2014.

S. Imam and V. Sarkar. The Eureka Programming
Model for Speculative Task Parallelism. In Furopean
Conference on Object-Oriented Programming
(ECOOP), 2015.

D. Majeti, R. Barik, J. Zhao, M. Grossman, and

V. Sarkar. Compiler-driven data layout transformation
for heterogeneous platforms. In Euro-Par 2013:
Parallel Processing Workshops, pages 188-197.
Springer, 2014.

D. Nikolic and F. Spoto. Definite expression aliasing
analysis for java bytecode. In Theoretical Aspects of
Computing—ICTAC 2012, pages 74-89. Springer, 2012.
OpenJDK. Project Sumatra.
http://openjdk.java.net/projects/sumatra/.

P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch.
Rootbeer: Seamlessly using GPUs from java. In High
Performance Computing and Communication & 2012
IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), 2012 IEEE
14th International Conference on, pages 375-380.
IEEE, 2012.

G. L. Taboada, S. Ramos, R. R. Expdsito, J. Tourifio,
and R. Doallo. Java in the High Performance
Computing arena: Research, practice and experience.
Science of Computer Programming, 78(5):425-444,
2013.

[23] W. VanderHeyden, E. D. Dendy, and

N. Padial-Collins. CartaBlancadATa pure-Java,
component-based systems simulation tool for coupled
nonlinear physics on unstructured gridséATan update.
Concurrency and Computation: Practice and
Ezxperience, 15(3-5):431-458, 2003.

[24] Vivek Sarkar. COMP 322: Introduction to Parallel

Programming. https://wiki.rice.edu/confluence/
display/PARPROG/COMP322.

[25] W. Zaremba, Y. Lin, and V. Grover. Jabee:

framework for object-oriented java bytecode
compilation and execution on graphics processor units.
In Proceedings of the 5th Annual Workshop on
General Purpose Processing with Graphics Processing
Units, pages 74-83. ACM, 2012.



