


ABSTRACT

Dynamic Data Race Detection for Structured Parallelism

by

Raghavan Raman

With the advent of multicore processors and an increased emphasis on parallel

computing, parallel programming has become a fundamental requirement for achiev-

ing available performance. Parallel programming is inherently hard because, to rea-

son about the correctness of a parallel program, programmers have to consider large

numbers of interleavings of statements in different threads in the program. Though

structured parallelism imposes some restrictions on the programmer, it is an attractive

approach because it provides useful guarantees such as deadlock-freedom. However,

data races remain a challenging source of bugs in parallel programs. Data races may

occur only in few of the possible schedules of a parallel program, thereby making

them extremely hard to detect, reproduce, and correct. In the past, dynamic data

race detection algorithms have suffered from at least one of the following limitations:

some algorithms have a worst-case linear space and time overhead [1], some algo-

rithms are dependent on a specific scheduling technique [2], some algorithms generate

false positives and false negatives [3, 4], some have no empirical evaluation as yet [2],

and some require sequential execution of the parallel program [5, 6].

In this thesis, we introduce dynamic data race detection algorithms for structured

parallel programs that overcome past limitations. We present a race detection algo-

rithm called ESP-bags that requires the input program to be executed sequentially



and another algorithm called SPD3 that can execute the program in parallel. While

the ESP-bags algorithm addresses all the above mentioned limitations except sequen-

tial execution, the SPD3 algorithm addresses the issue of sequential execution by

scaling well across highly parallel shared memory multiprocessors. Our algorithms

incur constant space overhead per memory location and time overhead that is in-

dependent of the number of processors on which the programs execute. Our race

detection algorithms support a rich set of parallel constructs (including async, finish,

isolated, and future) that are found in languages such as HJ, X10, and Cilk. Our

algorithms for async, finish, and future are precise and sound for a given input. In

the presence of isolated, our algorithms are precise but not sound. Our experiments

show that our algorithms (for async, finish, and isolated) perform well in practice,

incurring an average slowdown of under 3× over the original execution time on a

suite of 15 benchmarks. SPD3 is the first practical dynamic race detection algorithm

for async-finish parallel programs that can execute the input program in parallel and

use constant space per memory location. This takes us closer to our goal of build-

ing dynamic data race detectors that can be “always-on” when developing parallel

applications.
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1

Chapter 1

Introduction

Parallel processors have become a ubiquitous part of computer technology. Nowadays,

parallel processors are present everywhere, from clusters and servers to tablets and

mobile phones. With the increasing demand for parallelism, parallel processors are

set to dominate the computer industry for the foreseeable future.

To exploit the potential of parallel processors, applications must run in parallel.

While automatic parallelization of existing sequential programs seems an attractive

option from the programmer’s perspective, it is not very effective due to the limi-

tations of dependence analysis of parallel programs. In effect, the gains offered by

automatic parallelization across the spectrum of applications aren’t enough to keep

today’s multicore processors busy. In the future, with processors expected to have

hundreds of cores, it will be more difficult to utilize their full potential with automatic

parallelization.

To address the concerns of automatic parallelization, many solutions have been

proposed where programmers add annotations or pragmas to help the compiler in

the parallelization process. At the other end of the spectrum are explicitly parallel

programming models, which expect the programmer to specify parallelism in the pro-

gram completely using explicit parallel constructs. This technique has great potential

because it places less of a burden on the compiler and is limited only by the ability

of the programmer to unearth and specify parallelism in the application.

Explicit parallel programming models range from low-level frameworks such as
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Pthreads and Java threads, which are unstructured, to high-level languages with struc-

tured parallelism such as Cilk [7], X10 [8] and HabaneroJava (HJ) [9]. Unstructured

low-level frameworks give more power to the programmer than the structured high-

level languages. On the other hand, it is easier to reason about a structured parallel

program than an unstructured one. The main restriction placed on structured par-

allel programs is based on the way tasks can join with other tasks. Despite these

restrictions, structured parallelism is expressive enough for a wide range of applica-

tions. The emergence of structured parallelism to enable better and more productive

parallel programming as compared to the unstructured parallel programming models

is analogous to the emergence of structured programming, a few decades ago, as a

more productive programming paradigm over the unstructured programming using

gotos.

It is often difficult for programmers to write correct and efficient parallel programs

because it requires reasoning about the interleavings of statements in different threads

in the program. The complexity of reasoning about interleavings of statements can

increase exponentially with the number of threads in the program. Data races are

a major cause for this difficulty. Data races may lead to unintended, undesirable,

and non-deterministic behavior in parallel programs. Typically, data races occur

only in some of the possible schedules of a parallel program and hence, it is very

difficult to detect, reproduce, and correct data races. This is especially true in the

case of structured parallelism where programs typically consist of a large number of

lightweight tasks that are executed by a smaller number of worker threads and a data

race between accesses in two tasks does not manifest unless they run on different

worker threads.

Detecting data races correctly and efficiently helps programmers identify bugs in
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their parallel programs quickly and hence, improves their productivity. The impor-

tance of data race detection is evident from the attention this problem has received

in the literature for the past few decades. Data race detectors can be classified into

static and dynamic based on the type of analysis they perform to detect data races.

A static data race detector analyzes the parallel program statically at compile time

to detect data races. In contrast, a dynamic data race detector analyzes an execution

of the program to detect data races at runtime. We focus on dynamic data race

detectors in this thesis.

In the past, dynamic data race detection algorithms have suffered from at least

one of the following limitations: some algorithms have a worst-case linear space and

time overhead [1], some algorithms are dependent on a scheduling technique [2], some

algorithms generate false positives and/or false negatives [3, 4], some have no em-

pirical evaluation as yet [2], and some require sequential execution of the parallel

program [5, 6].

In this thesis, we present efficient and useful dynamic data race detection algo-

rithms for structured parallel programs that overcome past limitations. We present

a race detection algorithm called ESP-bags that requires the input program to be

executed sequentially [10] and another algorithm called SPD3 that can execute the

program in parallel [11]. While the ESP-bags algorithm addresses all the above men-

tioned limitations except sequential execution, the SPD3 algorithm addresses the

issue of sequential execution as well. We also present some static optimizations to

eliminate redundant instrumentation for race detection so as to reduce the overhead

of these algorithms.

We target a rich set of parallel constructs present in today’s structured parallel

programming languages: async, which is used to create tasks that can run in parallel,
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finish, which specifies a join point for a subset of tasks, isolated, that is used for mutual

exclusion, and future, which creates a task with a handle that can be used to wait

for this task specifically. Our experiments show that our algorithms (for async, finish,

and isolated) perform well in practice, incurring an average slowdown of under 3×

over the original execution time on a suite of 15 benchmarks.

Our algorithms for async, finish, and future are precise and sound for a given

input. In the presence of isolated, our algorithms are precise but not sound. Our

algorithms are efficient because they use less space and time as compared to some

state-of-the-art race detection algorithms. Specifically, our algorithms require only

constant space for every memory location that is monitored (for async, finish, and

isolated constructs) as compared to the linear space required for the state-of-the-art

race detector [1]. The time overhead of our algorithms is a characteristic of the

application and is independent of the number of processors (i.e., worker threads) on

which the application executes. Hence our algorithms scale very well in space and time

and are more practical and useful for highly parallel systems than past approaches.

1.1 Thesis Statement

Structured parallelism can enable dynamic data race detection to be per-

formed efficiently in parallel on real-world multiprocessors with constant

space overhead.

1.2 Research Contributions

This dissertation makes the following research contributions:

1. the ESP-bags algorithm, which is a sequential data race detection algorithm
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for programs with async and finish. The ESP-bags algorithm is an adaptation

of the SP-bags algorithm [5] that was designed for data race detection in Cilk

programs. We also extend the ESP-bags algorithm for programs with isolated,

labeled-finish, and a restricted form of futures.

2. the SPD3 algorithm, which is a parallel data race detection algorithm for pro-

grams with async and finish. This algorithm uses a new data structure called

the Dynamic Program Structure Tree (DPST) to maintain parent-child rela-

tionships between async and finish instances during program execution and also

uses a constant-size access summary for every memory location. We also extend

the SPD3 algorithm for programs with isolated and futures.

3. a set of static optimizations to reduce the runtime overhead of dynamic data

race detectors.

4. an implementation of the ESP-bags and the SPD3 algorithms for programs with

async, finish, and isolated. This also includes a technique to relax the atomicity

requirement for parallel updates to a shadow memory location in the SPD3

algorithm. We also present a comprehensive evaluation of our implementation

and a comparison with other dynamic data race detectors.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 describes the background on structured parallel programs, explains

how data race detection for structured parallel programs is different, and also

briefly discusses related work.
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• Chapter 3 describes the ESP-bags algorithm, which is the sequential data race

detection algorithm for async-finish, and also its extensions to isolated, labeled-

finish, and a restricted form of futures.

• Chapter 4 describes the SPD3 algorithm, which is the parallel data race detec-

tion algorithm for async-finish, and also its extensions to isolated and futures.

• Chapter 5 proves the correctness of the ESP-bags and the SPD3 algorithms for

async-finish programs.

• Chapter 6 explains the implementation details of these algorithms and the cor-

responding instrumentation needed to use these algorithms with structured par-

allel programs.

• Chapter 7 describes the static optimizations that can be performed to reduce

the overhead of dynamic data race detection algorithms.

• Chapter 8 presents the evaluation of the ESP-bags and the SPD3 algorithms

on a suite of benchmarks and also gives the implications of these results.

• Chapter 9 discusses the related work from the past and how this thesis compares

with them.

• Chapter 10 presents the conclusions and also discusses some potential topics to

be explored in future.
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Chapter 2

Background

In this chapter, we introduce the topics that form the basis of this dissertation, along

with the motivation for this work. First, we introduce different types of parallel

programming models that are predominantly used in practice. Then, we describe the

HabaneroJava (HJ) programming language and the parallel constructs in HJ which are

the target of the algorithms in this dissertation. Then, we discuss data races, data

race detection algorithms, and the soundness and completeness of these algorithms.

Finally, we discuss about some related past work, along with their limitations, to

motivate the need for better solutions.

2.1 Parallel Programming Models

With the advent of multicore processors, parallel programming has become an inte-

gral part of mainstream software development. Though automatic parallelization is

appealing, it has not as yet shown signs of addressing a wide range of applications. Al-

ternatively, many parallel programming models have been introduced. These models

require that the programmers specify parallelism in their code explicitly.

In this section, we first describe three approaches to parallel programming and

then discuss the difference between structured and unstructured parallel programming

models.
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2.1.1 Three Approaches to Parallel Programming

The parallel programming models can be broadly classified into three categories:

the directives based approach, the library based approach, and the language based

approach.

The directives based approach augments existing sequential programming lan-

guage with directives (e.g., pragmas) and requires that programmers specify these

directives in their programs which will act as hints/directions to the compiler for

parallelizing the program. OpenMP [12] is an example of a directives based parallel

programming model.

The library based approach provides a library that can be used by the program-

mers to specify parallelism in a sequential programming language. Pthreads and Java

threads are examples of library based parallel programming models.

The language based models define a new programming language that include ex-

plicit parallel constructs. Generally, such parallel programming languages define par-

allel constructs on top of a sequential subset of some programming language. Pro-

grammers can use these parallel constructs to specify parallelism explicitly in their

programs. Cilk [13], X10 [8], Habanero Java (HJ) [9], Unified Parallel C (UPC) [14],

Coarray Fortran (CAF) [15] are examples of language based programming models.

Since these programming models require that programmer explicitly specify the par-

allelism in their program, these are also referred to as explicitly parallel programming

models.

The core task-parallel and loop-parallel constructs of these programming models

can be viewed as semantic equivalents of fork and join, i.e., constructs to create

a new task that can run in parallel with the parent and to wait for one or more

tasks to complete. These programming models often include additional constructs
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to augment fork-join parallelism with point-to-point synchronization, barriers, and

mutual exclusion.

2.1.2 Structured and Unstructured Models

Parallel programming models can also be classified into structured and unstructured

parallel programming models. Unstructured models do not impose any restriction

on the structure of parallelism that their programs can generate. Pthreads and Java

threads are examples of unstructured parallel programming models. On the other

hand, structured models impose restrictions on the structure of parallelism that their

programs can generate. Specifically, most of the structured models restrict the way

tasks1 can join with other tasks. For example, one restriction may be that a task can

only wait for its descendants to complete. Such restrictions can help programmers

easily reason about parallel programs. They also have benefits like deadlock freedom

and enable simpler analysis of concurrency.

2.2 Habanero Java: A Structured Parallel Programming

Model

In this section, we describe the HabaneroJava (HJ) programming language which

has structured parallelism integrated in it. The race detection algorithms in this

dissertation target some of the parallel constructs in the HJ language. Note that HJ

started as an extension of X10 v1.5 [8]. Since then, some new constructs that are

not in X10, such as phasers [16], data-driven tasks, and hierarchical places, have been

1Here and elsewhere, we use task/thread to refer to application threads. We use worker threads

explicitly to refer to the lower level system threads that the application executes on.
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added to HJ. We now describe the parallel constructs in HJ which will be the target

of our race detection algorithms.

2.2.1 Parallel Constructs

The core fork-join constructs in both HJ and X10 are async and finish. The async

construct is used to create a new task and the finish construct is used to wait for

a group of tasks to complete. These constructs are similar to fork and join with

additional constraints on which tasks a task can join with, that come with semantic

guarantees such as deadlock freedom. Our data race detection algorithms target these

core constructs, as well as two other constructs; the isolated construct which is used

for mutual exclusion, and the future construct which is used to create a task with a

handle that can be used by other tasks to wait for this task specifically. Some higher-

level constructs (e.g., forall) are translated to these constructs by the HJ compiler.

Now, we provide a brief description of the semantics of the parallel constructs

that our race detection algorithms target. A complete description of all parallel

constructs in HJ can be found in [9]. For formal operational semantics of async and

finish constructs, please refer to [17].

When an HJ program begins execution, the main task starts executing the main

method in the program.

• async: The statement async { s } causes the parent task to create a new child

task to execute s asynchronously (i.e., before, after, or in parallel) with the

remainder of the parent task. In HJ, local variables are private to each task,

whereas static and instance fields may be shared among tasks. An inner async

is allowed to read a local variable declared in an outer scope. The value of the

outer local variable is simply copied on entry to the async. However, an inner
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async is not permitted to modify a local variable declared in an outer scope.

• finish: The statement finish { s } causes the parent task to execute s and then

wait until all async tasks created within s have completed, including transitively

spawned tasks.

• isolated: The statement isolated { s } guarantees that each instance of s will

be performed in mutual exclusion with all other potentially parallel interfering

instances of isolated statements.2 Two instances of isolated statements are said

to interfere with each other if both access the same shared location, such that

at least one of the accesses is a write.

• future: The statement, final future<T> f = async<T> Expr; creates a new child

task to evaluate Expr that is ready to execute immediately. In this case, f

contains a future handle to the newly created task and the operation f.get()

(also known as a force operation) can be performed to obtain the result of the

future task. If the future task has not completed as yet, the task performing the

f.get() operation blocks until the result of Expr becomes available. An important

constraint in HJ is that all variables of type future<T> must be declared with

a final modifier, thereby ensuring that the value of the reference cannot change

after initialization. This rule ensures that no deadlock cycle can be created with

future tasks.

Each dynamic instance TA of an async task A has a unique Immediately Enclosing

Finish (IEF) instance F of a finish statement during program execution, where F is

2As advocated in [18], HJ uses the isolated keyword instead of atomic to make explicit the fact

that the construct supports weak isolation rather than strong atomicity.
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the innermost dynamic finish scope containing A. There is an implicit finish scope

surrounding the body of main() so program execution will terminate only after all

async tasks in the program have completed.

We now define the Computation Graph (CG) of an HJ program execution.

Definition 2.2.1. A Computation Graph (CG)3, Φ(N, E), for a schedule δ of an HJ

program P is a directed acyclic graph (dag) where

1. N is the set of nodes such that each node n ∈ N corresponds to a statement

instance in δ.

2. E is the set of edges that connects the statement instances such that each edge

e ∈ E belongs to one of the following types: continue, async, and join [7, 19].

There is a continue edge from every instance of a statement in a task to the

instance of its next statement in the same task according to the program order.

There is an async edge from every async statement instance to the instance of

the first statement of the new task that it creates. There is a join edge from

the instance of the last statement of every task to the statement instance that

marks the end of its immediately enclosing finish.

Figure 2.1 shows an example HJ program and the computation graph of the pro-

gram for an execution where the for loop in line 5 executes only once. Each circle in

the computation graph represents a statement instance in the program. The number

in each circle indicates the program statement it represents. Each vertical sequence

of circles denotes a task. The computation graph shows the four tasks, T1, T2, T3,

3A computation graph is sometimes also referred to as a dynamic computation graph because it

corresponds to an execution of a program.



13

1 f ina l int [ ] A, B;

2 . . . . . .

3 A[ 0 ] = 10 ;

4 f inish {

5 for ( int i =0; i<s i z e ; i++ ) {

6 f ina l int ind = i ;

7 async {

8 B[ ind ] += ind ;

9 Foo q = new Foo ( ) ;

10 for ( int j =0; j<ind ; j++) {

11 q . x += 1 ;

12 B[ ind ] = A[ j ] + ind ;

13 } // f o r

14 } // async

15 f inish {

16 async {

17 async {

18 B[ ind ] = A[ ind ] ;

19 } // async

20 B[ ind+1] = A[ ind+1] + 5 ;

21 } // async

22 } // f i n i s h

23 } // f o r

24 } // f i n i s h
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Figure 2.1 : An example HJ program and its computation graph. This code is the
body of the main method in the program. The computation graph represents an
execution where the for loop in line 5 executes only once.
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and T4, in the program. The solid edges are the continue edges, the alternate dashed

and dotted edges are the async edges, and the dashed edges are the join edges.

2.2.2 Comparison with Cilk

Cilk is a programming language with integrated support for structured parallelism,

like HJ and X10. The two core constructs in Cilk are spawn and sync. The spawn

keyword can only be attached to a function call. It indicates that the function call

can execute in parallel with the rest of the code in the caller. Sync is a statement that

can be placed anywhere in a function. It indicates that the execution of the function

cannot proceed until all the previously spawned functions complete.

The async-finish constructs of HJ supports a more relaxed concurrency model than

the spawn-sync Cilk computations. The static lexical scope of async-finish subsumes

all of spawn-sync excluding conditional syncs.4 On the other hand, the dynamic

computation graph of async-finish subsumes all of spawn-sync including conditional

syncs. The key semantic relaxation lies in the way a task is allowed to join with other

tasks. In Cilk, at any given (join) point of the task execution, a task must join with all

of its immediate children tasks (and by transitivity, all its recursive descendant tasks)

created in between the start of the task and the join point. The join is accomplished

by executing the statement sync.

Most spawn-sync constructs can be translated to async-finish constructs as follows:

each spawn construct can be directly replaced with an async construct. A Cilk function

with unconditional sync statements can be directly translated to a sequence of finish

blocks, where the start of the finish block is the start of the procedure or the previous

4We refer to a sync that is executed under some condition in a function body as a conditional

sync.
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sync and the end of the finish block is the label of the sync statement. It is not possible

to directly translate the conditional sync to a finish because of the syntactic structure

of finish.

To handle all programs that can be written with spawn and sync, we extend

the HJ language with two keywords (or library calls), beginFinish and endFinish.

The semantics of beginFinish is that it begins a finish block and the semantics of

endFinish is that it completes a finish block. These dynamically specified beginFinish

and endFinish scopes can be nested arbitrarily like the lexical finish construct. These

constructs allow us to define the scope of the finish block dynamically. Note that

while the programmer may use beginFinish and endFinish in an arbitrary order, the

runtime system checks that they are properly nested: any beginFinish eventually

completes with a matching endFinish (in the same task), and no endFinish is issued

without a corresponding beginFinish already started (in the same task). The runtime

system reports an error if they are not properly nested. As a high-level analogy,

the relationship between beginFinish / endFinish and HJ’s lexical finish construct is

akin to that of MonitorEnter / MonitorExit bytecode instructions and Java’s lexical

synchronized statement (though bytecode verification rather than dynamic checking

is used to check the proper nesting of MonitorEnter / MonitorExit instructions).

We can now translate all of the sync constructs of Cilk (including conditional syncs)

into beginFinish and endFinish constructs as follows:

1. Generate a beginFinish on entry to every function.

2. Replace each occurrence of sync by endFinish; beginFinish.

3. Generate an endFinish on function exit to reflect Cilk’s implicit sync on function

exit.
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This shows that the async-finish constructs subsume all of spawn-sync constructs.

Our data race detection algorithms work by intercepting the start and end of finish

and async constructs during the execution of a program. Hence, our algorithms can

be applied directly to spawn and sync constructs of Cilk as well.

In contrast to Cilk, with the use of nested finish operations in HJ, it is possible for

a task to join with some rather than all of its descendant tasks. This is not possible

in Cilk because Cilk requires that every parallel function be spawned. The way these

descendant tasks are specified at the language level in HJ is with the finish construct:

upon encountering the end of a finish block, the task waits until all of the descendant

tasks created inside the finish scope have completed.

The computation graph in Figure 2.1 illustrates the differences between Cilk and

HJ. At node 22, the main task waits only for T3 and T4 and not for T2 in HJ, which

is not possible using the spawn-sync semantics used in Cilk.

Further, another restriction in Cilk is that every task (spawned function) must

execute a sync statement before its return. That is, a task cannot terminate unless

all of its children (and transitively, descendants) have terminated. In contrast, in HJ,

a task can outlive its parents, i.e., a task can complete even while its children are still

alive. For instance, in the example of Figure 2.1, in Cilk, T3 would need to wait until

T4 has terminated. That is, the edge from node 19 to 22 would change to an edge

from 19 to 21. As we can see, this need not be the case in HJ: task T3 can terminate

before task T4 has finished.

More generally, the class of computation graphs generated by the spawn-sync con-

structs is said to be fully-strict [20], while the computation graphs generated by

async-finish constructs are called terminally-strict [21]. The set of terminally-strict

computation graphs subsumes the set of fully-strict computation graphs. All these re-
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laxations imply that it is not possible to rewrite all HJ programs using the spawn-sync

constructs of Cilk, which in turn implies that we cannot use the data race detection

algorithms designed for Cilk [5, 6, 2] to detect data races in all HJ programs.

2.3 Data Races

Data races are one of the most common form of bugs in explicitly parallel programs.

The presence of data races may result in data corruption and may lead to non-

deterministic behavior in parallel programs. Though data races may sometimes be

benign, they are often indicative of errors that lead to unintended behaviors. Some-

times data races are intentional when implementing low-level synchronization opera-

tions. However, structured parallel programming models, which are the focus of this

dissertation, target higher level of parallel programming where programmers are not

expected to implement low-level synchronizations.

In this section, we define data races, the process of data race detection, the sound-

ness and completeness (or precision) guarantees of data race detection algorithms, and

also discuss data race detection in structured parallel programs.

Definition 2.3.1. Two accesses to a shared memory location by two different tasks

result in a data race if:

– at least one access is a write, and

– there is no ordering between the two accesses.

Note that this definition refers to potential data races, i.e., data races that occur

in some schedule of the program for that input. The ordering between two memory

accesses α1 and α2 that occur in tasks τ1 and τ2 could be one of the following:



18

• τ2 is guaranteed to begin only after τ1 completes or vice-versa.

• There is some form of synchronization (e.g., post-wait, barrier, phaser) that

guarantees that α2 begins only after α1 completes or vice-versa.

• There is some form of mutual exclusion which guarantees that α1 and α2 never

execute in parallel.

In the absence of any such ordering between two conflicting memory accesses in

concurrent tasks, an actual data race is guaranteed to occur in some schedule5 of the

program.

2.3.1 Data Race Detection

Data race detection is the process of identifying potential or actual data races in a

program. It is important to identify data races correctly and efficiently because it

helps programmers identify and fix bugs in their programs quickly. Thus, identifying

data races could directly impact the productivity of programmers. The importance

of data race detection is evident from the attention this problem has received in the

literature for the past few decades.

Most data race detectors answer the following two questions for a given pair of

memory accesses:

• Check if the two accesses are interfering, i.e., if the two accesses are to the same

memory location and at least one of them is a write.

• Check if the two accesses may-happen-in-parallel.

5We use schedule and execution to refer to a particular schedule of a program.
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Data race detectors maintain some data structures to answer these questions. Typi-

cally, they maintain some form of access history for every memory location to check if

two accesses are interfering and some form of parallelism relationship among different

threads in the program to check if two accesses belonging to two different threads

may-happen-in-parallel.

Data race detectors can be classified into static and dynamic based on whether

they perform static or dynamic analysis to detect races in a program. Also, there are

some hybrid techniques that combine static and dynamic analysis to detect races in

a given program.

Static Data Race Detection

Static data race detection involves performing static analysis on the given program

to identify data races. There has been a lot of work on static data race detection in

the past [22, 23, 24, 25, 26, 27]. These techniques come with the usual advantages

and disadvantages of static analysis. The advantage is that they can reason about

the entire program and span all possible schedules of the program for all possible

inputs. The downside is that the conservative nature of static analysis may result in

false positives. Hence, static race detection may report false data races resulting in a

negative impact on the productivity of programmers.

A variant of static race detection is to employ a race-free type system in the

parallel programming language. These models augment the type system of a parallel

programming language with synchronization relationships. All parallel programs that

satisfy such type systems are guaranteed to be data race free [28, 29, 30, 31]. Hence,

these models also statically prove data race freedom in parallel programs. But these

models are very restrictive in the types of synchronizations that they allow and hence
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affect programmability.

Dynamic Data Race Detection

Dynamic data race detection involves performing dynamic analysis on the program

to identify data races. Dynamic race detectors overcome some of the drawbacks of

static race detectors. Since they perform the analysis at execution time they have the

complete context of the execution through which they can eliminate false positives.

But because they reason about data races by considering one particular schedule of

a parallel program, their guarantees apply to the schedules which only contain the

paths accessed in the examined schedule [4].

Post-mortem vs On-the-fly analysis: Some dynamic data race detectors per-

form post-mortem analysis on the execution traces of programs [32, 33, 34, 35]. In

this model, a race detector monitors an execution of a program and logs all the nec-

essary information during the execution. After the execution completes, it analyzes

the logged information and detects data races in the program execution. The main

drawback of this approach is that the execution logs can be prohibitively large even

for small parallel programs that execute for a short duration.

The other class of dynamic data race detectors perform on-the-fly analysis to

detect data races during an execution of a program [36, 37, 5, 6, 2, 38, 1]. These race

detectors maintain information about the program and its memory accesses during

the execution to identify conflicting accesses that result in a data race. In these

models, since the race detectors can discard some information about the program

and its memory accesses during execution (as and when they become unnecessary),

they take much less space compared to the post-mortem analysis based approaches,
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thereby making it possible to perform dynamic data race detection on longer program

executions than post-mortem techniques.

The on-the-fly analysis based data race detectors can either be summary meth-

ods [4] which only report data races and not the conflicting accesses that cause those

data races, or access history methods [37, 5, 6, 2, 1] which report data races along

with the conflicting accesses that cause those data races. It is evident that the ac-

cess history methods are more useful because they give enough information for the

programmers to correct the data races unlike the summary methods.

2.3.2 Guarantees of Data Race Detection Algorithms

We now discuss about the soundness and completeness guarantees provided by race

detection algorithms and also the levels at which the guarantees hold for different

race detection algorithms.

Definition 2.3.2. A data race detection algorithm is sound if it does not report any

false negatives; i.e., if there exists a data race, the algorithm will report it. In other

words, if the algorithm does not report a data race, then there are no possible data

races.

Definition 2.3.3. A data race detection algorithm is complete if it does not report

any false positives; i.e., if the algorithm reports a data race, then the data race

really exists.

The race detection algorithms may guarantee soundness and/or completeness at

three different levels : per-schedule, per-input, or per-program. A race detection algo-

rithm is said to be sound and (or) complete for a given schedule if it does not report

any false positives and (or) false negatives for that particular schedule. Similarly, a
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race detection algorithm is said to be sound and (or) complete for a given input, if it

does not report any false positives and (or) false negatives for all possible schedules

for a given input. Finally, a race detection algorithm is said to be sound and (or)

complete for a given program, if it does not report any false positives and (or) false

negatives for all possible schedules of the program for all possible inputs.

Note that per-program guarantee is stronger than per-input guarantee, which in

turn is stronger than per-schedule guarantee. While static data race detection al-

gorithms can provide per-program guarantee, the strongest guarantee that dynamic

data race detection algorithms can provide is the per-input guarantee. In a dynamic

data race detector with per-input guarantees, the data races reported may be for a

schedule that is different from the examined schedule.

Since completeness is usually associated with static analysis, we instead use the

term precision for dynamic analysis to avoid confusion. Hence, a dynamic race de-

tection algorithm is precise if it does not report any false positives.

2.3.3 Data Race Detection for Structured Parallelism

Data race detectors that provide per-schedule guarantees have to report only those

races that happen in that particular schedule. So, in this case, the race detectors

have to look for conflicting accesses by different worker threads only. Specifically,

they do not have to look for conflicting accesses by different tasks within the same

worker threads. In such a situation, data race detectors are very similar for both

unstructured and structured parallel programming models.

Data race detectors that provide per-input guarantees have to report those races

that may happen in any schedule of the program for the given input. In this case,

the race detectors have to look for conflicting accesses across different tasks in the
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program which may or may not have been executed by the same worker thread in

the examined schedule. In other words, they have to look for conflicting accesses in

every pair of tasks that may execute in parallel with each other in some schedule of

the program. Hence, per-input data race detectors for structured models have to be

different from those for unstructured models.

Now that we have established the difference between race detection for structured

and unstructured models, we focus on race detection for structured models a little

more, since that is the focus of this dissertation. In structured parallel programs, data

races manifest only in those schedules in which the tasks containing the conflicting

accesses are executed by different worker threads. Since such programs typically con-

tain a huge number of tasks, there are many possible schedules in which a particular

data race is not apparent. Also, some schedulers may inadvertently execute the tasks

containing conflicting accesses in the same worker thread, which in turn may hide

some data races. In most cases, it is not useful to detect only those data races that

occur in the schedule that is examined during data race detection.

In this dissertation, we focus on dynamic data race detectors that give per-input

guarantees for structured parallel programming models. Hence, when our race de-

tectors do not find any data races, it proves that there can be no data races in any

schedule of the program for that input. In other words, our race detectors can prove

data-race freedom in a program for a given input.

2.3.4 Past Work on Data Race Detection

We now present some past work on data race detection that is very closely related to

the problem we consider in this dissertation.

The Cilk paper [5] introduces the SP-bags algorithm for spawn-sync computations.
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The SP-bags algorithm requires that the input parallel program is executed in a

sequential depth first manner on a single worker thread. This algorithm requires only

constant space per memory location and time per memory access that is proportional

to the inverse Ackermann function. An extension to SP-bags was proposed by Cheng

et al. [6] to handle locks in Cilk programs. Their approach includes a data race

detection algorithm for programs that satisfy the umbrella locking discipline, i.e.,

each memory location is protected by the same lock in every parallel access. However,

the slowdown factors reported in [6] were in the 33× - 78× range for programs that

follow their locking discipline, and up to 3700× for programs that don’t. The main

drawback of these algorithms is that they require the input program to be executed

sequentially, due to which they will not use the multiple cores available in today’s

processors. Also, since these algorithms apply only for spawn-sync programs, they

cannot be directly applied to programs with async-finish.

Another related work on data race detection for structured parallel programs

was also done as part of the Cilk project [2]. This work introduces an algorithm

called SP-hybrid, which detects races in the program by executing it in parallel on

multiple workers and with a constant space and time overhead. Their algorithm has

constant overheads for both space and time. However, despite its good theoretical

bounds, the SP-hybrid algorithm is very complex and incurs significant inefficiencies in

practice. The original paper on SP-hybrid [2] provides no evaluation and subsequent

evaluation of an incomplete implementation of SP-hybrid [39] was done only for a

small number of processors. One indicator of the inefficiency of SP-hybrid is the fact

that the CilkScreen race detector used in Intel Cilk++ [40] uses the sequential All-

Sets algorithm [6] rather than the parallel SP-hybrid algorithm. Another drawback

of their algorithm is that it is tightly coupled with Cilk’s work-stealing scheduler.
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Hence, their algorithm cannot be applied directly to other schedulers.

Objective

We discussed couple of data race detectors from the past that are most related to

our problem. This combined with the knowledge of other related work on data race

detection, as discussed in Chapter 9, helps us define our objective very clearly.

Build a dynamic data race detector for terminally-strict (async-finish

style) parallel programs that executes the input program in parallel, uses

constant space per memory location, and is useful in practice.
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Chapter 3

Sequential Data Race Detection for HJ

In this dissertation, we focus on dynamic data race detection for structured paral-

lelism, specifically for parallel constructs in HJ. We begin by exploring a sequential

dynamic data race detector for async-finish parallel programs. Among the various

dynamic data race detection algorithms from the past, we start with the sequen-

tial SP-bags algorithm [5] because, the fully-strict computations that this algorithm

targets are closely related to the terminally-strict computations that we focus on.

The SP-bags algorithm was designed to detect races in parallel programs with

spawn and sync constructs, as part of the Cilk project. In this chapter, we describe

techniques to generalize the SP-bags algorithm for the parallel constructs in HJ. First,

we summarize the original SP-bags algorithm for spawn and sync constructs. Then, we

describe a generalization of the SP-bags algorithm for programs with async and finish

constructs of HJ. We also extend this algorithm for programs with isolated blocks. We

refer to our race detection algorithm for the parallel constructs in HJ as the ESP-

bags (Extended SP-bags) algorithm. Both the SP-bags and the ESP-bags algorithms

execute the input program sequentially. Then, we explore further generalizations of

the ESP-bags algorithm for labeled-finish constructs and a restricted form of futures,

called single-get futures. We also show that the generalization of ESP-bags for single-

get futures is a maximal generalization, in the sense that more general classes of

parallel programs cannot be analyzed with the SP-bags approach.
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3.1 Background: SP-bags for Fully-Strict Computations

This section summarizes the SP-bags algorithm that was developed for detecting

data races in Cilk programs with spawn and sync constructs [5]. As discussed in

Section 2.2.2, we can always translate spawn-sync computations into async-finish com-

putations. Therefore, we present the operations of the original SP-bags algorithm in

terms of async and finish, rather than spawn and sync constructs, so that the extensions

that we describe later are easily understood.

The SP-bags algorithm is a sequential data race detection algorithm that performs

a sequential depth-first execution of the parallel program.

Any dynamic data race detection algorithm has to identify parallel and interfering

accesses to memory locations during program execution. The SP-bags algorithm

uses two data structures, one to identify parallel accesses and the other to identify

interfering accesses.

Identifying Parallel Accesses

First, we explain the data structure that the SP-bags algorithm uses to identify

parallel accesses. Every dynamic task (async) instance is given a unique task id.

Also, two “bags”, S and P, are attached to each dynamic task instance. Here, S

stands for Serial and P for Parallel. Each bag contains a set of task id’s.

The following invariants are maintained by the algorithm throughout the execution

of the program.

1. Every task id will always belong to at most one bag. Also, a task id must belong

to at least one bag while the task is “live”.

2. When a statement E that belongs to a task A is being executed,
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(a) the S-bag of task A will hold all of the descendant tasks of A that always

precede E in any execution of the program. The S-bag of A will also

include A itself since any statement G in A that executes before E in the

sequential depth first execution will always precede E in any execution of

the program.

(b) the P-bag of A holds all descendant tasks of A that may execute in parallel

with E.

The implication of the invariant 1 is that the S and P bags of all the tasks are

always disjoint during the execution of the program. Therefore, all these bags can be

efficiently represented using a single disjoint-set data structure. The disjoint-set data

structure maintains the entire collection of task id’s with support for operations like

MakeSet, Union, and Find-Set. Tarjan [41] proved that any m of these operations

on n bags take a total of O(m α(m,n)) time, where α(m,n) represents the inverse

ackermann’s function.

Invariant 2 forms the basis for identifying parallel accesses using the S and P bags.

Table 3.1 shows the rules to update the S and P bags that are attached to each task.

Note that the S and P bags need to be updated only at the start and end of tasks

and at sync points (denoted by EndFinish in the table.).

When a task A is created, its S bag, SA, is initialized to contain its own task id

because no pair of accesses to a memory location in task A should conflict. The P

bag of A is initialized to empty set because when A begins it has no descendants.

When a task A returns to a task B during the depth-first execution, the contents of

the S and P bags of A are moved to the P bag of B. This is because the code following

task A in B can execute in parallel with A and hence, while executing this part of



29

Table 3.1 : SP-bags: Rules to update S and P bags at Task Boundaries

Execution Point Rules

Async A SA ← {A}

PA ← ∅

Task A returns to Task B PB ← PB ∪ SA ∪ PA

SA ← ∅

PA ← ∅

EndFinish F in a Task B SB ← SB ∪ PB

PB ← ∅

the code in B, A and its descendants should be in a P bag. When a join point is

encountered in a task A, the P bag of A is moved to its S bag. This is because the

code after the join point in A can never execute in parallel with the descendants of A

before the join and hence, while executing this part of the code in A, all descendants

of A before the join should be in a S bag.

The intuition behind the algorithm is the following: when a program is executed

sequentially in depth-first manner, a write W1 to a shared memory location L by a

task τ1 races with an earlier read/write to L by any task τ2 which is in a P-bag when

W1 occurs and it does not race with read/write to L by any task that is in an S-bag

when W1 occurs. A read races with an earlier write in the same way. The SP-bags

algorithm identifies parallel accesses using this idea.
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1 Read l o c a t i o n L by Task A:

2 I f L . w r i t e r i s in a P−bag then Data Race ;

3 I f L . r eader i s in a S−bag then L . reader = A;

1 Write l o c a t i o n L by Task A:

2 I f L . w r i t e r i s in a P−bag or L . reader i s in a P−bag

3 then Data Race ;

4 L . w r i t e r = A;

Figure 3.1 : Action to be taken on read and write of shared memory locations. This
action applies to the SP-bags and the ESP-bags algorithm.

Identifying Interfering Accesses

We now discuss the data structure used in the SP-bags algorithm to identify interfer-

ing memory accesses in a program. Each memory location is augmented to contain

two additional fields: a reader task id and a writer task id. These two fields keep

track of the “most recent” tasks that accessed a given memory location.

In addition to updating the S and P bags at task boundaries, during the depth-

first execution of a program, the SP-bags algorithm requires that action is taken on

every read and write of a shared variable. Figure 3.1 shows the required actions for

read and write operations.

On a read of a memory location L by a task A, the algorithm checks if the task

stored in the writer field of L is in a P-bag, which implies that the task A may execute

in parallel with writer task. Hence these two accesses conflict with each other and

result in a data race. If not, then there are no conflicting accesses for this read by

A. The reader field of L is updated to A only if the previous reader is in an S-bag.

If the previous reader is in a P-bag, then it should not be updated to this task A
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1 int main ( ) {

2 // Task T1

3 // T1 w i l l be in a S−bag

4 f inish {

5 async { // T2

6 t = x ; // x . reader = T2

7 } // T2 w i l l be moved to a P−bag

8 y = x ; // x . reader i s in a P−bag => x . reader = T1 => Correct ?

9 async {

10 x = 10 ; // x . reader i s a S−bag => missed data race

11 }

12 }

13 }

Figure 3.2 : A program where a data race would be missed if the reader field of the
memory location “x” is updated to the new reader while the previous one was in a
P-bag.

because doing so may lead to false negatives in the algorithm. For example, during

the execution of the program in Figure 3.2, the task T1 will be in its own S-bag.

The task T2 will be moved to the P-bag of T1 after it completes execution in line

7. At this point the reader field of the memory location “x” will point to T2. Now,

on the read of “x” in line 8 by T1, the algorithm does not update the reader field

of “x” to T1 because T2 is in a P-bag. When the write to “x” happens in line 10,

the algorithm will find the previous reader, T2, in a P-bag and hence, report a race

between accesses in lines 6 and 10. Suppose the reader field of “x” was update to T1

instead. Then, on the write of “x” in line 10, the algorithm will miss the data race

since the previous reader, T1, is in an S-bag.
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On a write of a memory location L by a task A, the algorithm checks if the task

stored in the writer field of L is in a P-bag and reports a data race. It repeats the

same for the task stored in the reader field of L. Then, the writer field of L is updated

to point to this task A.

Thus, for each operation on a shared memory location L, the algorithm checks

those fields of L that interfere with the current operation and updates the field cor-

responding to the current operation.

3.2 ESP-bags: A Generalization of SP-bags for Terminally-

Strict Computations

In this section, we describe a generalization of the SP-bags algorithm for terminally-

strict computations. First, we present our generalization of that algorithm, ESP-bags,

for detecting data races in programs with async and finish constructs. Then, we present

an extension of the ESP-bags algorithm for programs with isolated blocks.

The basic requirement for SP-bags and ESP-bags algorithms is that a sequential

depth-first execution of the input program is possible. This is trivially satisfied for

all programs with spawn and sync constructs, as well as for all programs with async

and finish constructs, because with these constructs every task can wait only for its

descendants. This requirement is satisfied even for programs with isolated constructs

because we require a sequential execution and also, no blocking operation is allowed

within isolated blocks.

For programs with future constructs, this requirement is satisfied because of the

restriction in HJ that every future must be declared final. Suppose this restriction

was not present, then we could have programs for which a sequential depth-first
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1 int main ( ) {

2 future<int> f 2 = null ; // non−f i n a l v a r i a b l e

3 f ina l future<int> f 1 = async<int> {

4 while ( f 2 != null ) ; // wai t u n t i l f 2 i s s e t

5 int x = f2 . get ( ) ;

6 return x ∗ 4 ;

7 } ;

8 f 2 = async<int> {

9 return 10 ;

10 } ;

11 }

Figure 3.3 : A sample HJ program with future (without the final restriction) for which
sequential depth-first execution is not possible.

execution may not be possible. The HJ program in Figure 3.3 is one example where

a sequential depth-first execution is not possible because future “f1” waits for future

“f2” to complete and “f2” will execute only after “f1” completes in the depth-first

execution. However, a single-threaded execution (not depth-first) is still possible for

the HJ program in Figure 3.3 where “f1” begins executing, suspends on line 4, then

“f2” executes followed by the rest of “f1”.

3.2.1 ESP-bags for Async-Finish

Now, we present our extension to the SP-bags algorithm for the parallel constructs

in the HJ language. We refer to this extended algorithm as the ESP-bags algorithm.

We start with the ESP-bags algorithm for async and finish constructs in HJ.

Recall that the key difference between async-finish and spawn-sync lies in the flexi-
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Table 3.2 : ESP-bags for Async-Finish: Rules to update S and P bags at Task
Boundaries

Execution Point Rules

Async A - fork a new task A SA ← {A}

PA ← ∅

Task A returns to Parent B PB ← PB ∪ SA ∪ PA

SA ← ∅

PA ← ∅

StartFinish F PF ← ∅

EndFinish F in a Task B SB ← SB ∪ PF

PF ← ∅

bility of selecting which of its descendants a given task can join with. Table 3.2 shows

the updated rules at task boundaries for the ESP-bags algorithm. The modifications

to SP-bags are highlighted in bold. The S and P bags need to be updated only at

the start and end of asyncs and finishes in the program.

The key extension lies in attaching a P bag, not only to tasks, but also to identifiers

of finish blocks. At the start of a finish block F, its P bag is initialized to empty set

because it has no descendants yet. When a finish block F ends in a task B, the

contents of the P bag of F are moved to the S bag of B. This is because at the end

of the finish block F, all the tasks within the scope of F are guaranteed to complete.

The code following the end of F in B can never execute in parallel with any task in F

and hence, while executing this part of the code in B, all the descendants of F must

be in a S bag. Further, during the depth-first execution, when a task A returns to its

parent B, B may be either a task or a finish block. The actual operations on the S
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and P bags in that case are identical to SP-bags.

The need for this extension comes from the fact that at the end of a finish block,

only the tasks created inside the finish block are guaranteed to complete and will

precede the tasks that follow the finish block. Therefore, only the tasks created inside

the finish block need to be added to the S-bag of the parent task when the finish

completes and those tasks created before the finish block began need to stay in the

P-bag of the parent task.

Note that the rest of the SP-bags algorithm, i.e., the data structure used to identify

the interfering memory accesses during program execution and the actions taken on

read and write of every memory location, remains the same in the ESP-bags algorithm

as well.

This extension generalizes the SP-bags algorithm from [5]. This means that the

ESP-bags algorithm can be applied directly to spawn-sync programs as well, by first

translating them to async-finish as shown earlier, and then applying the algorithm.

Of course, if we know that the finish blocks have a particular structure, and we know

that translated spawn-sync programs do, then we can safely optimize away the P bag

for the finish id’s and directly update the bag of the parent task (as was done in the

original SP-bags algorithm).

Discussion

In summary, the ESP-bags algorithm works by updating the reader and writer fields

of a shared memory location whenever that memory location is read or written by

a task. On each such read/write operation, the algorithm also checks to see if the

previously recorded task in these fields (if any) can conflict with the current task,

using the S and the P bags of the current task. We now show an example of how the
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algorithm works for the code in Figure 2.1.

Figure 3.4 repeats the computation graph from Figure 2.1. The statements are

numbered according to the order in which they will be executed in the sequential

depth-first execution of ESP-bags. Figure 3.4 also shows the S and P bags of all the

tasks and finishes when statement 20 executes. Statement 20 may execute in parallel

with T2 and T4. So, when statement 20 executes, both T2 and T4 are in a P-bag. But

statement 20 can never execute in parallel with the statements already executed in

T1 and T3. So, when statement 20 executes, T1 and T3 are in an S-bag. Table 3.3

shows how the S and P bags of the tasks and finishes are modified by ESP-bags as

the program corresponding to the computation graph is executed.

Each row in Table 3.3 shows the status of these S and P bags before or after the

execution of a particular statement. The PC refers to the statement number that

is executed. ‘-N’ in the PC column indicates that the bags are updated before the

execution of statement N. ‘N-’ in the PC column indicates that the bags are updated

after the execution of statement N. ‘N’ in the PC column indicates that reader/writer

field of a memory location is updated before the corresponding memory operation in

statement N. ‘*N’ in the PC column indicates that a data race is signaled as a result

of checking and updating the S and P bags due to a memory operation in N. The

table also tracks the contents of the writer field of the memory location B[0] which is

written in statements 8 and 18. The P bags of the tasks T1, T2, and T4 are omitted

here since they remain empty through this execution.

In the first three steps in the table, the S and P bags of T1, F1, and T2 are

initialized appropriately. When statement 8 is executed, the writer field of B[0] is set

to the current task, T2. Then, on completion of T2 in statement 14, the contents of

its S and P bags are moved to the P bag of F1. When the write to B[0] in statement
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Figure 3.4 : The computation graph from Figure 2.1. The S and P bags of all the
tasks and finishes when statement 20 executes are also shown here. Statement 20
may execute in parallel with T2 and T4. So, when statement 20 executes, both T2 and
T4 are in a P-bag. But statement 20 can never execute in parallel with the statements
already executed in T1 and T3. So, when statement 20 executes, T1 and T3 are in an
S-bag.
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Table 3.3 : Example of updating the S and P bags during ESP-bags algorithm on
the program corresponding to the computation graph in Figure 3.4. ‘-N’ in the PC
column indicates that the bags are updated before the execution of statement N. ‘N-’
in the PC column indicates that the bags are updated after the execution of statement
N. ‘N’ in the PC column indicates that reader/writer field of a memory location is
updated before the corresponding memory operation in statement N. ‘*N’ in the PC
column indicates that a data race is signaled as a result of checking and updating the
S and P bags due to a memory operation in N.

PC T1 F1 T2 F2 T3 T4 B[0]

S P S P P S S Writer

-1 {T1} - - - - - - -

-4 {T1} ∅ - - - - - -

-8 {T1} ∅ {T2} - - - -

8 {T1} ∅ {T2} - - - - T2

14- {T1} {T2} ∅ - - - - T2

-15 {T1} {T2} ∅ ∅ - - - T2

-17 {T1} {T2} ∅ ∅ ∅ {T3} - T2

-18 {T1} {T2} ∅ ∅ ∅ {T3} {T4} T2

*18 {T1} {T2} ∅ ∅ ∅ {T3} {T4} T4

19- {T1} {T2} ∅ ∅ {T4} {T3} ∅ T4

21- {T1} {T2} ∅ {T4,T3} ∅ ∅ ∅ T4

22- {T1,T4,T3} {T2} ∅ ∅ ∅ ∅ ∅ T4
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18 (in Task T4) is executed, the algorithm finds the task in its writer field, T2, in a P

bag (P bag of F1). Hence this is reported as a data race. Further, when T4 completes

in statement 19, the contents of its S and P bags are moved to the P bag of its parent

T3. Similarly, when T3 completes in statement 21, the contents of its S and P bags

are moved to the P bag of its parent F2. When the finish F2 completes in statement

22, the contents of its P bag are moved to the S bag of its parent T1.

Soundness and Precision

The ESP-bags (and SP-bags) algorithm detects a data race in a program, P , for

a given input if and only if a data race exists for a given input. Hence, both the

algorithms are precise and sound for a given input, as proved in Section 5.1. If the

ESP-bags algorithm does not detect a data race in P for a given input, then it is

guaranteed that there is no data race in any schedule of P for the given input. On

the other hand, if a race is found, then it is guaranteed that there is some schedule of

P with the given input for which the reported race is the first one encountered. There

may be other schedules of P with the given input which may encounter different races

in different orders, but all schedules are guaranteed to encounter a data race.

Note that the precision and soundness guarantees of the ESP-bags algorithm do

not hold beyond the first data race. So, there may be false positives and false negatives

among the data races that are reported after the first one if execution is continued

after the first data race. This is true for all dynamic data race detectors because the

code following the first race may be conditioned on the conflicting memory location

and hence, that conditional code may not execute when the first race is removed. For

example, the HJ program in Figure 3.5 has two data races, one on memory location

“t” between accesses in statements 4 and 6, and the other on memory location “x”
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1 int main ( ) {

2 f inish {

3 async {

4 t = 10 ;

5 }

6 t = 20 ;

7 }

8 i f ( t == 20) {

9 async {

10 x = 1 ;

11 }

12 x = 2 ; // a data race

13 }

14 }

Figure 3.5 : A sample HJ program with data races to show the lack of soundness and
precision guarantees beyond the first data race.
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between accesses in statements 10 and 12. Our algorithm will report both the races

but the second race may not occur if the first race is fixed. If the condition in

statement 8 was “t == 10” instead, then our algorithm will not report the second

data race on the variable “x”, though this race may occur when the first race is fixed.

As an analogy, the lack of precision and soundness beyond the first data race in

dynamic data race detectors is similar to the lack of precision and soundness beyond

the first error in the list of syntax errors given by a compiler on compiling a given

program.

Space Overhead

The space overhead of the ESP-bags algorithm is O(1) for each memory location,

since we just need to store the reader and writer task ids for each memory location.

In addition to this, we need space to store all the task ids in the form of a disjoint set

data structure. Note that we need to store the ids of completed tasks as well, since

there might be a need to look up that task to check if it is in a S or a P bag as part

of some memory access. The space overhead for storing all the task ids is O(a+f),

where ‘a’ is the number of async instances and ‘f’ is the number of finish instances in

the program. But this space is generally insignificant compared to the space needed

for each memory location.

Time Overhead

In this algorithm, there are up to two look-ups for every memory access in the pro-

gram. Note that some of these may be removed by the compiler optimizations de-

scribed in Section 7. Also there are two union operations for each task instance in

the program and one union operation for each finish instance. All these operations,
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look-ups and unions, are performed on the disjoint-set data structure that contains all

the tasks in the program. Tarjan et.al., showed that the worst case time taken for any

operation on a disjoint-set structure is bounded by the inverse Ackermann function

of the size of the data structure [41, 42]. Hence, each of these operations (look-up

and union) will take time proportional to the inverse Ackermann function of the total

number of tasks in the program. Note that the Ackermann function grows so fast

that we can take the value of the inverse of Ackermann function to be bounded by a

small constant (4) for all practical purposes. Since the number of memory accesses

dominates the number of tasks in most programs, the worst-case time complexity

of the algorithm is proportional to 4 times the number of memory accesses in the

program.

3.2.2 Extending ESP-bags for Isolated Blocks

In this section, we describe an extension to the ESP-bags algorithm to handle iso-

lated blocks in HJ programs [9, 43]. Isolated blocks are useful since they allow the

programmer to write data-race-free parallel programs in which multiple tasks interact

and update shared memory locations.

When a HJ program contains isolated blocks, the additional burden on the data

race detector is to check for conflicts between isolated and non-isolated accesses to the

same memory location that may execute in parallel and to ignore conflicts between

two isolated accesses. If an access a1 to a memory location L in an isolated block

conflicts with another access a2 to L in a non-isolated block, then it is a data race.

Whereas, if an access a1 to a memory location L in an isolated block conflicts with

another access a2 to L in another isolated block, then it does not constitute a data

race. This is because, according to the semantics of isolated, every isolated block will
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1 I s o l a t e d Read o f l o c a t i o n L by Task A:

2 I f L . w r i t e r i s in a P−bag then Data Race ;

3 I f L . i s o l a t edReade r i s in a S−bag then L . i s o l a t edReade r = A;

1 I s o l a t e d Write o f l o c a t i o n L by Task A:

2 I f L . w r i t e r i s in a P−bag or L . reader i s in a P−bag

3 then Data Race ;

4 I f L . i s o l a t edWr i t e r i s in a S−bag then L . i s o l a t edWr i t e r = A;

1 Read l o c a t i o n L by Task A:

2 I f L . w r i t e r i s in a P−bag or L . i s o l a t edWr i t e r i s in a P−bag

3 then Data Race ;

4 I f L . r eader i s in a S−bag then L . reader = A;

1 Write l o c a t i o n L by Task A:

2 I f L . w r i t e r i s in a P−bag or L . reader i s in a P−bag

3 or L . i s o l a t edWr i t e r i s in a P−bag

4 or L . i s o l a t edReade r i s in a P−bag

5 then Data Race ;

6 L . w r i t e r = A;

Figure 3.6 : Actions to be taken on isolated and non-isolated read, write operations
on shared memory locations for the ESP-bags algorithm.
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execute in mutual exclusion with respect to other isolated blocks. Note that though

the conflicting operations in two isolated blocks may never execute in parallel, they

may execute in one order in one schedule of the program and in some other order in

another schedule of the program.

The extension to ESP-bags for handling isolated blocks includes checking that

isolated and non-isolated accesses that may execute in parallel do not interfere. For

this, we extend the ESP-bags algorithm as follows: two additional fields are added

to every memory location, isolatedReader, and isolatedWriter. These fields are used

to record the ids of the tasks that perform an isolated read or write on the memory

location. The additional fields need only be added to memory locations that are

accessed within isolated blocks.

In this extended ESP-bags algorithm, we need to handle reads and writes in

isolated blocks differently as compared to non-isolated operations. Figure 3.6 shows

the steps that need to be performed for each of the operations: read, write, isolated-

read, and isolated-write.

An isolated read can never conflict with an isolated read, an isolated write, or a

non-isolated read. It can only conflict with a non-isolated write. So, on an isolated

read of a memory location L by task A, the algorithm checks if the previous writer

is in a P-bag and reports a data race. The isolatedReader field of L is updated to A

only if the previous isolatedReader is in an S-bag, for the same reasons as described

earlier for read.

Similarly, an isolated write can never conflict with an isolated read or an isolated

write. But it conflicts with a non-isolated read and write. So, on an isolated write of

a memory location L by task A, the algorithm checks if the previous writer or reader

is in a P-bag and reports a data race. Again the isolatedWriter field of L is updated
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to A only if the previous isolatedWriter is in an S-bag.

The only addition on the actions taken on read and write of memory locations is

that there are checks with additional fields for conflicts. On a read, the algorithm

additionally checks if it conflicts with the previous isolated writer and on a write,

the algorithm additionally checks if it conflicts with the previous isolated reader or

writer.

Soundness and Precision

With the extension to support isolated, the ESP-bags algorithm loses soundness (i.e.,

there may be false negatives) for a given input: there are example programs with

isolated construct that contain races for a given input for which ESP-bags fails to

find the race. Note that the ESP-bags algorithm is precise (i.e., there are no false

positives) for a given input even in the presence of isolated blocks.

The problem is that with isolated blocks, there may be cases when the sequential

depth-first execution does not execute certain paths of the code that may be executed

in some parallel schedule for the same input. This happens when the isolated blocks

in the program do not commute. In this case, for the same input, the isolated blocks

may produce a different result in some parallel schedule as compared to the result

produced in a depth-first execution and there may be some code conditioned on this

result which has a data race. The ESP-bags algorithm does not report this data race

because the code with the data race is never executed during the sequential depth-first

execution of the algorithm.

Figure 3.7 shows an example HJ program that depicts a scenario in which the

ESP-bags algorithm is not sound in the presence of isolated blocks. In this example,

during the depth-first execution of our algorithm, the isolated block in line 3 executes
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1 f i n i s h {

2 async {

3 i s o l a t e d { t = 0 ; }

4 } // async

5 i s o l a t e d { t = 1 ; }

6 } // f i n i s h

7 i f ( t == 0) {

8 async { x = 20 ; }

9 x = 10 ; // a data race

10 } // i f

Figure 3.7 : An example HJ program that depicts a scenario in which ESP-bags is
not sound in the presence of isolated.

before the isolated block in line 5. Hence, in such an execution, the if statement in

line 7 evaluates to false, due to which the code in lines 8 and 9 do not execute and our

algorithm reports no data races. However, there is a parallel schedule of this program

for the same input in which the execution happens such that the isolated block in line

5 executes first, followed by the isolated block in line 3. In this schedule, the if in line

7 will evaluate to true, the code in lines 8 and 9 will execute and there will be a data

race. This happens because the isolated blocks in lines 3 and 5 do not commute and

hence they produce different results based on the order in which they are executed.

However, if the isolated blocks in the input program commute, the sequential

depth-first execution is sufficient. In such cases, the ESP-bags algorithm does not

miss data races for the given input. In practice, isolated blocks are used only with

very small scopes and it is easy to show that they commute (for instance, they use

only commutative operations like addition, to increment a counter).
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In summary, when the isolated blocks commute, the ESP-bags algorithm is precise

and sound for the given input, otherwise, our algorithm does not guarantee soundness.

Space Overhead

The extension to ESP-bags to support the isolated construct involves two additional

fields for every memory location that is monitored by the algorithm. But these two

additional fields can be restricted to only those memory locations that are accessed

from within the isolated blocks. The locations that are accessed from within isolated

blocks can be identified dynamically as and when the accesses occur. They can be

mapped to their additional fields using an explicit map. Typically, the isolated blocks

in a program are very small and hence only a few memory locations are accessed

within the isolated blocks. Hence, these additional fields do not add much to the

space overhead of the algorithm (and hence, the size of the map is also typically

small) and the asymptotic space overhead remains the same.

Time Overhead

The time overhead of the extended ESP-bags algorithm increases with support for

isolated because of the look-ups on the two additional fields in the memory location.

Again, since these additional fields are restricted to only those few memory locations

that are accessed from within the isolated blocks, the extra time spent looking up these

additional fields will be small too. In the worst case, the time overhead may double

for the extended ESP-bags algorithm, but there will be no change in the asymptotic

overhead.
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3.3 ESP-bags for Labeled-Finish

The SP-bags algorithm was designed to detect data races for fully-strict computa-

tions generated by spawn-sync constructs of Cilk. We generalized it to the ESP-bags

algorithm to detect data races for terminally-strict computations generated by async-

finish constructs of HJ. In this section, we describe a generalization of ESP-bags for

the labeled-finish constructs.

The labeled-finish construct is a generalized form of the finish construct in HJ.1

With labeled-finish, there is a label associated with every finish statement in the pro-

gram. Now, every async in the program can choose to report to any of its ancestor

finishes. An async reports to a particular ancestor finish by specifying the label associ-

ated with that finish. Note that this is a generalization of the original finish construct

where every async reports to its immediately enclosing finish in the program. When we

refer to an async A reporting to a finish F, we actually mean that the task performing

F waits at the end of the finish F for A to complete before proceeding further.

Figure 3.8 shows a sample program to depict the usage of the labeled-finish con-

struct. The asyncs A1 and A2 report to their immediately enclosing finishes, F1

and F2 respectively, according to the semantics of the original finish construct. But

async A3 reports to finish F1 though its immediately enclosing finish is F2. This is

because async A3 specifies a label on its creation, label1, which in turn specifies that

A3 reports to the finish associated with that label, i.e., F1.

Note that, even with labeled-finish, every async has to report to one of its ancestor

finishes. It is not possible for an async to report to some arbitrary finish which is not

in its ancestor chain.

1We thank the X10 team at IBM Research for introducing us to the labeled-finish concept.
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1 int main ( ) {

2 l a b e l 1 : f inish { // F1

3 async { // A1

4 f inish { // F2

5 async { // A2

6 async ( l a b e l 1 ) { // A3

7 s4 ; s5 ;

8 } // async A3

9 s6 ;

10 } // async A2

11 s7 ;

12 } // f i n i s h F2

13 s8 ;

14 } // async A1

15 s9 ; s10 ; s11 ;

16 } // f i n i s h F1

17 }

Figure 3.8 : A sample program to depict the usage of the labeled-finish construct.
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Table 3.4 : ESP-bags for Labeled-Finish: Rules to update S and P bags at Task
Boundaries

Execution Point Rules

Async A (Label L) SA ← {A}

PA ← ∅

Task A (with label L) returns to its Parent PF ← PF ∪ SA ∪ PA

(F - finish associated with label L) SA ← ∅

PA ← ∅

StartFinish F PF ← ∅

EndFinish F in a Task B SB ← SB ∪ PF

PF ← ∅

To detect data races using the ESP-bags algorithm on programs with labeled-

finish constructs, we need to modify the rules to update the S and P bags at task

boundaries. Table 3.4 shows the modified rules to update the S and P bags at task

boundaries. The modifications to ESP-bags are highlighted in bold. Here again, the

S and P bags need to be updated only at the start and end of asyncs and finishes.

The only change to the update rules for S and P bags from the ESP-bags algorithm

for async-finish is in the rule when a task returns to its parent. The modified rules

state that, when a task returns to its parent, the S and P bags of the task are emptied

on to the P bag of the finish corresponding to the label associated with the task. This

is different from the original algorithm where, when a task returns to its parent, the

S and P bags of the task are emptied on to the P bag of the task’s immediately

enclosing finish. The rest of the ESP-bags algorithm remains the same for data race

detection with labeled-finish constructs.
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The soundness and precision guarantees of the ESP-bags algorithm (without iso-

lated) remain the same even with the generalization to support labeled-finish con-

structs. In other words, even with the generalization to support labeled-finish con-

structs, the ESP-bags algorithm is precise and sound for a given input, i.e., it has

no false positives or false negatives. This is because the labeled-finish constructs do

not lead to non-deterministic executions, unlike isolated. Also, the only change in the

ESP-bags algorithm is in the rules to update the S and P bags at task boundaries.

This does not affect the soundness and precision guarantees of the algorithm.

The space overhead of the ESP-bags algorithm remains the same because the

program still has the same number of task ids, one per task, and they are maintained

using a disjoint-set data structure. Also, there is no change in the fields needed

for every memory location. The time overhead of the algorithm also does not change

because the algorithm performs exactly the same number of operations on the disjoint-

set data structure at task boundaries.

3.4 ESP-bags for Single-Get Futures

In this section, we describe a generalization of the ESP-bags algorithm for a restricted

subset of futures. A single-get future is a future on which exactly one instance of get

operation is performed during the entire program execution. We show a generalization

of the ESP-bags algorithm for programs with single-get futures. Also, we explain why

the single-get restriction on futures is necessary for data race detection with the ESP-

bags algorithm. We also show that when we remove the single-get restriction on

futures it becomes impossible to generalize ESP-bags to detect data races.

Figure 3.9 shows a sample program that uses single-get futures. This program

has two futures, f1 and f2, and there is exactly one get operation on both these
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1 int main ( ) {

2 f ina l future<void> f 1 = async<void> {

3 s2 ; s3 ;

4 } ;

5 f ina l future<void> f 2 = async<void> {

6 s5 ;

7 f1 . get ( ) ;

8 s7 ;

9 }

10 s8 ;

11 f2 . get ( ) ;

12 }

Figure 3.9 : A sample program to depict the usage of single-get futures.

futures. Note that a finish can be modeled as a sequence of single-gets on all asyncs

created in its scope. Also, single-get futures can be combined with finish and async

in a program. For the sake of simplicity, we consider programs with only single-get

futures in this section. Also, in this section, we assume that every future has exactly

one get instance, though there can be futures with no get instances when they are

combined with finishes in the program.

We need to modify the rules to update the S and P bags at task boundaries in

the ESP-bags algorithm to detect data races in programs with single-get futures. The

modified set of rules to update the S and P bags are given in Table 3.5. Here, the

S and P bags need to be updated only at the start and end of tasks and on get

operations.

When a future A is created, its S bag, SA, is initialized to contain its own task
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Table 3.5 : ESP-bags for Single-Get Future: Rules to update S and P bags at Task
Boundaries

Execution Point Rules

Future A SA ← {A}

PA ← ∅

Task A returns to its Parent PA ← PA ∪ SA

SA ← ∅

Task B executes A.get() SB ← SB ∪ PA

PA ← ∅

id and its P bag, PA, is initialized to empty set. When a future task A returns to

its parent, the contents of the S bag of A are emptied on to its own P bag. This

is because the future task A can execute in parallel with the code following it in its

parent until a get operation is performed on A. Hence, during the execution of this

part of the code in its parent, A and its descendants should be a in a P bag. Moving

the contents of the S bag of A in to its own P bag is different from the original ESP-

bags algorithm in which the contents of the S and P bags of A would be emptied

on the P bag of the immediately enclosing finish of A. This is because, with futures,

unlike finishes, every task can be waited on and joined with individually (using get

operation on the future). When this get happens, the contents of the particular future

and its descendants alone must be moved to an S-bag. Hence, they have to be kept

separate from the contents of S and P bags of other tasks.

When task B performs a get operation on task A, the contents of the P bag of

A are emptied on to the S bag of B. This is because the code in B after A.get() will

never execute in parallel with A. Hence, during the execution of that part of B, A
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and its descendants should be in an S-bag. Note that beyond the A.get() point, A

and its descendants are merged with the contents of B. Hence, beyond this point, if

B can execute in parallel with any part of the program, then A and its descendants

also execute in parallel with those parts. This property holds because every future is

guaranteed to have at most one get operation performed on it.

The ESP-bags algorithm is precise and sound for a given input even with the gen-

eralization to support single-get futures, i.e., it has no false positives or false negatives.

This is because the use of futures in programs do not introduce non-deterministic be-

havior, unlike isolated. Also, the only change that is needed in the algorithm is in

updating the S and P bags at task boundaries.

The space overhead of the algorithm remains the same because the algorithm still

has the same number of task ids and they are represented using a disjoint-set data

structure. Though the average number of bags that are alive at various points during

the execution of the algorithm increases with this generalization, the set of bags on

the whole store the same set of task ids. Also, there is no change needed in the fields

associated with the memory locations. The time overhead of the algorithm at every

task boundary remains the same because the algorithm still does the same number of

operations on the disjoint-set data structure. But, with the presence of get operations

on futures, there would be more task boundary points than in the case of finishes.

Hence, the overall time overhead of the algorithm increases. But still, there would be

no change in the asymptotic time overhead because there can be at most as many get

operations as the number of futures in the program, due to the single-get restriction.
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3.4.1 A Maximal Generalization of ESP-bags

Now, we describe why this generalization of ESP-bags for single-get futures is a max-

imal generalization of the ESP-bags algorithm.

When the single-get restriction on futures is relaxed, there can be more than one

dynamic instance of a get operation on every future in the program. Now, whenever

there is get operation on a future A performed by a task B, the code following A.get()

in B can never execute in parallel with A. Hence, while executing this part of the

code in B, A and its descendants must be in an S-bag. According to the rules defined

above, when B performs A.get(), the contents of the P bag of A are emptied on to

the S bag of B. At this point, the contents of A are merged on to the contents of B.

Now, suppose there is another task C that may happen in parallel with both A

and B. When C performs A.get(), the code in C following A.get() can never execute

in parallel with A, but may happen in parallel with B. Hence, while executing this

part of the code in C, A and its descendants must be in an S-bag, but B and its

descendants must still be in a P-bag. Since the contents of A and B are in one bag

now, there is no way to split the contents of A from the bag to move them on to an

S-bag. This happens because there is more than one get operation on the future A

during the execution of a program.

The only other option is to not merge the P-bag of A on to the S-bag of B

when B performs A.get(). In that case, the contents of A have to be kept separate.

Similarly, the contents of every task has to be kept separate from other bags. Then,

this degenerates to a case where the S and P bags of a task will only contain its own

task id (at different points during execution) and no other task ids. Also, we will

have to maintain a set of tasks that every task joins with, to move the contents from

the S-bag to the P-bag of every task and vice-versa. Hence, in such a scenario, there
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is no use of S and P bags for data race detection. Instead, we could associate a flag

with every task to indicate whether the task is in parallel or serial with the current

task and set the flag appropriately at various get points and task boundaries.

This clearly shows that, when the single-get restriction on futures is removed,

the ESP-bags algorithm can no longer be used to detect data races. This is even

true if the number of get instances on a future is any constant >= 2. Hence, the

computations generated by single-get futures are a maximal set of computations for

which the ESP-bags algorithm can be generalized to detect data races. In other words,

one maximal possible generalization of the ESP-bags algorithm is for programs with

single-get futures. Note that there may be other maximal generalizations of ESP-bags

for computation graphs generated by a different set of constructs.

3.5 Summary

The async-finish constructs of HJ subsume the spawn-sync constructs of Cilk. In other

words, async-finish is more flexible than spawn-sync. Hence, any spawn-sync program

can be converted to an async-finish program but not vice versa. Similarly, single-get

futures subsume async-finish because all async and finish constructs can be replaced

by single-get futures but not vice versa.

The SP-bags algorithm was designed for data race detection in Cilk programs with

spawn-sync constructs. First, we presented an extension to the SP-bags algorithm,

called ESP-bags, for detecting data races in HJ programs with async-finish constructs.

The ESP-bags algorithm for async-finish is a generalization of the SP-bags algorithm

for a more relaxed programming model without any additional cost in terms of space

and time overhead. The ESP-bags algorithm for single-get futures further extends

this algorithm to support an even more relaxed programming model without any
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additional cost. Also, we showed that it is not possible to extend the ESP-bags

algorithm for a more relaxed programming model than single-get futures.

This clearly shows the importance of the structure of parallelism in building race

detectors with good space and time overheads.
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Chapter 4

SPD3: A Parallel Algorithm for Detecting Data

Races in HJ

Data race detectors play an important role in identifying bugs in parallel programs,

thereby increasing the productivity of programmers. In Chapter 3, we presented a

sequential algorithm called ESP-bags for detecting data races in HJ programs with

some of its parallel constructs. The ESP-bags algorithm helps detect data races

correctly and also eliminates most of the limitations of existing dynamic data race

detectors. The only drawback is that it is a sequential algorithm which requires that

the input program is executed in a sequential depth-first manner. Hence, the parallel

hardware resources available in today’s processors will not be used by this algorithm.

In future, with hardware trending towards more parallel processors, this will become

a serious bottleneck.

We solve this problem by introducing a new dynamic data race detection algorithm

that has all the nice properties of the ESP-bags algorithm but can also execute the

input program in parallel. This new parallel algorithm detects data races in HJ

programs with some of its parallel constructs like async, finish, isolated, and future.

We refer to this new parallel data race detection algorithm for HJ as SPD3. SPD3

stands for Scalable and Precise Dynamic Data race Detection.

In this chapter, we first present the SPD3 algorithm for async and finish constructs.

We then extend SPD3 for isolated and future constructs in HJ programs.
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4.1 SPD3 for Async-Finish

As we discussed earlier, most dynamic data race detection algorithms provide mech-

anisms that answer two questions: for any pair of memory accesses (with at least one

write):

• determine whether the accesses can execute in parallel.

• determine whether they access the same location.

SPD3 maintains two different data structures to answer these two questions. First,

we introduce the Dynamic Program Structure Tree (DPST), a data structure which

can be used to answer the first question.

4.1.1 Dynamic Program Structure Tree

The DPST is an ordered rooted tree that is built at runtime to capture parent-child

relationships among async, finish, and step (defined below) instances of a program.

The internal nodes of a DPST represent async and finish instances. The leaf nodes of

a DPST represent the steps of the program. Note that though we define the DPST in

terms of async and finish constructs as in HJ in this dissertation, it can also be adapted

to support dynamic analysis of structured parallel programs written in languages such

as Cilk and OpenMP 3.0.

Definition 4.1.1 (Step). A step is a maximal sequence of statement instances such

that no statement instance in the sequence includes the start or end of an async or

the start or end of a finish operation.

Definition 4.1.2 (DPST). The Dynamic Program Structure Tree (DPST) for a given

execution is a tree in which all leaves are steps, and all interior nodes are async and

finish instances. The parent relation is defined as follows:
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• Async instance A is the parent of all async, finish, and step instances directly

executed within A.

• Finish instance F is the parent of all async, finish, and step instances directly

executed within F .

There is a left-to-right ordering of all DPST siblings that reflects the left-to-right

sequencing of computations belonging to their common parent task. Further, the

tree has a single root that corresponds to the implicit top-level finish construct in the

main program.

Building a DPST

Next we discuss how to build the DPST during program execution. When the main

task begins, the DPST will contain a root finish node F and a step node S that is

the child of F . F corresponds to the implicit finish enclosing the body of the main

function in the program and S represents the starting computation in the main task.

Task creation When a task T performs an async operation and creates a new task

Tchild:

1. An async node Achild is created for task Tchild. If the immediately enclosing finish

(IEF) F of Tchild exists within task T , then Achild is added as the rightmost child

of F . Otherwise, Achild is added as the rightmost child node of (the async) node

corresponding to task T .

2. A step node representing the starting computations in task Tchild is added as

the child of Achild.
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3. A step node representing the computations that follow task Tchild in task T is

added as the right sibling of Achild.

Note that there is no explicit node in a DPST for the main task because everything

done by the main task will be within the implicit finish in the main function of the

program and hence all of the corresponding nodes in a DPST will be under the root

finish node.

Start Finish When a task T starts a finish instance F :

1. A finish node Fn is created for F . If the immediately enclosing finish F ′ of F

exists within task T (with corresponding finish node F ′

n in the DPST), then Fn

is added as the rightmost child of F ′

n. Otherwise, Fn is added as the rightmost

child of the (async) node corresponding to task T .

2. A step node representing the starting computations in F is added as the child

of Fn.

End Finish When a task T ends a finish instance F , a step node representing the

computations that follow F in task T is added as the right sibling of the node that

represents F in the DPST.

Note that the DPST operations described thus far only take O(1) time. Thus, the

DPST for a given program run grows monotonically as program execution progresses

and new async, finish, and step instances are added to the DPST. Note that since

all data accesses occur in steps, it follows that all tests for whether two accesses may

happen in parallel will only take place between two leaves in a DPST.
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Figure 4.1 : A sample program in HJ with async, finish, statements. The statements s1
- s13 are grouped in to steps S1 - S6. The tree on the right is the DPST corresponding
to this program.
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Example Let us now consider the example HJ program in Figure 4.1. This program

consists of statements s1 - s13, asyncs A1 - A3, and a finish F1. Let us consider

an execution in which the entire program is executed only once. So, every async,

finish, and statement in the program will result in exactly only async instance, finish

instance, and statement instance during this execution. Thus, we consider each of

them as dynamic instances from now on. Note the way statement instances are

grouped into steps S1 - S6.

When the main task starts executing finish F1, a node corresponding to F1 is

added as the root node of the DPST, and a step node S1 is added as the child of F1;

S1 represents the starting computations in F1, i.e., instances of statements s1 and s2.

When the main task forks the task A1, an async node corresponding to A1 is added

as the right-most child of F1 (since the immediately enclosing finish of A1 is F1 and

it is within the main task), a step node S2 is added as the child of A1, and a step

node S5 is added as the right sibling of A1. S2 represents the starting computations

in A1 (i.e., instance of statements s3, s4, and s5) and S5 represents the computation

that follows A1 in the main task (i.e., instances of statements s9, s10, and s11). After

this point, the main task and the task A1 can execute in parallel. Eventually, the

DPST grows to the form shown in the figure.

Properties of a DPST

In this section, we briefly summarize some key properties of a DPST.

• For a given input that leads to a data-race-free execution of a given async-finish

parallel program, all executions of that program with the same input will result

in the same DPST.
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• Let F be the DPST root (finish) node. Each non-root node n0 is uniquely

identified by a finite path from n0 to F :

n0

r0−→ n1

r1−→ n2

r2−→ . . .
rk−1

−−→ nk

where k ≥ 1, nk = F , and for each 0 ≤ i < k, ni is the rthi child of node ni+1.

The path from n0 to F stays invariant as the tree grows. For a given statement

instance, its path to the root is unique regardless of which execution is explored

(as long as the executions start with the same state). This property holds up

to the point that a data race (if any) is detected.

• The DPST is amenable to efficient implementations in which nodes can be

added to the DPST in parallel without any synchronization in O(1) time. Also,

the DPST is amenable to garbage collection, i.e., the nodes in the DPST can

be garbage collected as and when they become obsolete.

Definition 4.1.3. A node A is said to be to the left of a node B in a DPST if A

appears before B in the depth first traversal of the tree.

The function Left(A,B), where A 6= B, evaluates to A if A is to the left of B

in a DPST and to B otherwise. Similarly, the function Right(A,B), where A 6= B,

evaluates to A if B is to the left of A in a DPST and to B otherwise.

As mentioned above, even though the DPST changes during program execution,

the path from a node to the root does not change and the left-to-right ordering of

siblings does not change. Hence, even though the depth first traversal of the DPST is

not fully specified during program execution, the left relation between any two nodes

in the current DPST is well-defined.
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Definition 4.1.4. The Lowest Common Ancestor (LCA)1 of two nodes S1 and S2 in

a DPST, denoted by LCA(S1, S2), is the node λ that is an ancestor2 of both S1 and

S2 with the greatest depth.3

Definition 4.1.5. Two steps, S1 and S2, in a DPST Γ that corresponds to a program

P with input ψ, may execute in parallel if and only if there exists at least one schedule

δ of P with input ψ in which S1 executes in parallel with S2.

The predicate DMHP(S1, S2) evaluates to true if steps S1 and S2 can execute in

parallel in at least one schedule of a program and to false otherwise (DMHP stands

for “Dynamic May Happen in Parallel” to distinguish it from the MHP relation used

by static analysis). Note that the relation DMHP is symmetric, i.e., for every S1

and S2, DMHP(S1, S2) = DMHP(S2, S1). We now state a key theorem that will be

important in enabling our approach to data race detection.

Theorem 4.1.1. Consider two leaf nodes (steps) S1 and S2 in a DPST, where S1 6=

S2 and S1 is to the left of S2 as shown in Figure 4.2. Let LCA be the node denoting

the lowest common ancestor of S1 and S2 in the DPST. Let node A be the ancestor of

S1 that is a child of LCA. Then, DMHP(S1, S2) = true if and only if A is an async

node.

Proof. if: A is an async node. Let us consider a schedule δ of P with input ψ such

that one worker executes the subtree under A and the other worker executes all the

subtrees under LCA that are to the right of A. This is possible because, according to

the semantics of an async, A is not guaranteed to complete before any of its peers on

1LCA is sometimes referred to as Least Common Ancestor

2In a DPST, a node is considered both an ancestor and a descendant of itself.

3The depth of a node in a DPST is the length of the path from the root to the node.
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Figure 4.2 : A part of a DPST. LCA is the Lowest Common Ancestor of steps S1 and
S2. A is the DPST ancestor of S1 which is the child of LCA. S1 and S2 can execute
in parallel if and only if A is an async node.

the right. A is guaranteed to complete only by the end of its immediately enclosing

finish F . Note that F may be the node LCA or any of its ancestors. Now, in this

schedule, δ, the subtree under A will execute in parallel with the subtrees to the right

of A under LCA. Hence, S1 will execute in parallel with S2 in δ. Thus, DMHP(S1,

S2) = true.

only if: DMHP(S1, S2) = true. In general, node A can be an async node, finish

node or the same node as S1. Let A2 be the ancestor of S2 which is the child of LCA.

Case 1: Assume A is a finish node. A2 must be disjoint from, and to the right of

A. According to the semantics of finish, the subtree under A must complete

before any peers to the right of A (including A2) start execution. Hence, it is

guaranteed in all possible schedules of P with input ψ that S1 will complete

execution before S2 can start executing. This contradicts our assumption that

DMHP(S1, S2) = true.
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Case 2: Assume A = S1. Due to the left-to-right sequencing of computations within

a task, step S1 must complete before any peers to the right of S1 (including

A2) start execution. Hence, it is guaranteed in all possible schedules of P with

input ψ that S1 will complete execution before S2 can start executing. This

contradicts our assumption that DMHP(S1, S2) = true.

Thus A has to be an async node.

Computing DMHP

Now, we describe the algorithms to compute the DMHP relation for any given pair

of steps. We assume that every node in the DPST has a depth field which specifies

the depth of the node in the DPST and a parent field which gives the parent of the

node in the DPST.

Algorithm 1 computes the lowest common ancestor of two steps S1 and S2. If step

S1 is at a greater depth than step S2, then the loop in line 5 traverses the chain of

ancestors from S1 until it reaches a node at the same depth as S2. The loop in line 9

does the same for S2 if its depth is greater than the depth of S1. At the start of loop

in line 13, both nodes will be at the same depth. The algorithm then traverses up the

ancestor chains of both the nodes until they reach a common node L. This common

node L is the lowest common ancestor of the steps S1 and S2. The time overhead

of this algorithm is linear in the length of the longer of the two paths, S1 → L and

S2 → L.

Algorithm 2 computes the DMHP relation for two steps, S1 and S2. It returns

true if the given two steps S1 and S2 may happen in parallel and false otherwise. This

algorithm first computes the lowest common ancestor L of the given two steps using

Algorithm 1. If the step S1 is to the left of S2, then the algorithm returns true if the
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Algorithm 1: Lowest Common Ancestor (LCA)

Input: DPST Γ, Step S1, Step S2

Output: Nlca: the node which is the lowest common ancestor of S1 and S2 in Γ

node1 ← S11

node2 ← S22

depth1 ← node1.depth3

depth2 ← node2.depth4

while depth1 > depth2 do5

node1 ← node1.parent6

depth1 ← node1.depth7

end8

while depth2 > depth1 do9

node2 ← node2.parent10

depth2 ← node2.depth11

end12

while node1 6= node2 do13

node1 ← node1.parent14

node2 ← node2.parent15

end16

Nlca ← node117

return Nlca18
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Algorithm 2: Dynamic May Happen in Parallel (DMHP)

Input: DPST Γ, Step S1, Step S2

Output: true/false

Nlca ← LCA(Γ, S1, S2)1

A1 ← Ancestor of S1 in Γ which is the child of Nlca2

A2 ← Ancestor of S2 in Γ which is the child of Nlca3

if Left(A1, A2) = A1 then4

if A1 is an Async then5

return true6

else7

return false ; // S1 happens before S28

end9

else10

if A2 is an Async then11

return true12

else13

return false ; // S2 happens before S114

end15

end16
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ancestor of S1 (which is the child of L) is an async and false otherwise. If the step

S2 is to the left of S1, then the algorithm returns true if the ancestor of S2 which is

the child of L is an async and false otherwise. The time overhead of this algorithm is

same as that of the LCA function, since it only takes constant time to find the node

which is the ancestor of the left step that is the child of LCA node and then check if

that node is an async.

Example Let us now look at the DMHP relation for some pairs of steps in the

example program in Figure 4.1. First, let us consider DMHP(S2, S5). Here S2 is

to the left of S5, since S2 will appear before S5 in the depth first traversal of the

DPST. The lowest common ancestor of S2 and S5 is the node F1. The node A1

is the ancestor of S2 (the left node) that is the child of F1. Since A1 is an async

node, DMHP(S2, S5) will evaluate to true indicating that S2 and S5 can execute in

parallel. This is indeed true for this program: S2 is within A1, while S5 follows A1

and is within A1’s immediately enclosing finish.

Now, let us consider DMHP(S6, S5). Here S5 is to the left of S6, since S5 will

appear before S6 in the depth first traversal of the DPST. Their lowest common

ancestor is F1, and the ancestor of S5 which is the child of F1 is S5 itself. Since S5 is

not an async instance, DMHP(S6, S5) evaluates to false. This is consistent with the

program because S6 is in task A3 and A3 is created only after S5 completes.

4.1.2 Shadow Memory

A key novelty of our algorithm is that it requires constant space to store the access

history of a memory location, while still guaranteeing that no data races are missed.

We now describe the shadow memory mechanism that supports this constant space
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guarantee.

Our algorithm maintains a shadow memory Ms for every monitored memory lo-

cation M . Ms is designed to store the relevant parts of the access history to M . Our

algorithm uses this shadow memory to determine whether two accesses in a program

are to the same memory location. The shadow memory, Ms, contains the following

three fields, which are all initialized to null:

• w : a reference to a step that wrote M .

• r1 : a reference to a step that read M .

• r2 : a reference to another step that read M .

The following invariants are maintained on the shadow memory throughout the

execution of the program until the first data race is detected.

• Ms.w refers to the step that last wrote M . This is the only step that has

accessed M since the last synchronization (end finish).

• Ms.r1 & Ms.r2 refer to the steps that last read M . Ms.r1 and Ms.r2 may happen

in parallel, i.e., DMHP(Ms.r1, Ms.r2) = true. There have only been reads to M

in parallel since the last synchronization (end finish). All the steps (a1, a2, ..., ak)

that have read M since the last synchronization are in the subtree rooted at

LCA(Ms.r1, Ms.r2).

One of the important aspects of our algorithm is that it stores only three fields

for every monitored memory location irrespective of the number of steps that access

that memory location. This is similar to the constant size access history used in the

Offset-Span labeling algorithm [37].
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The intuition behind this is as follows: it is only necessary to store the last write

to a memory location because all the writes before the last one must have completed

at the end of the last synchronization. This is assuming no data races have been

observed yet during the execution. Note that though synchronization due to finish

may not be global, two writes to a memory location have to be ordered by some

synchronization to avoid constituting a data race. Among the reads to a memory

location, (a1, a2, ..., ak), since the last synchronization, it is only necessary to store

two reads, ai, aj , such that the subtree under LCA(ai, aj) includes all the reads

(a1, a2, ..., ak). This is because every future read, an, which is in parallel with any

discarded step will also be in parallel with at least one of ai or aj . Thus, the algorithm

will not miss any data race by discarding these steps.

The fields of the shadow memory Ms are updated atomically by different tasks

that access M .

4.1.3 SPD3 Algorithm

Our race detection algorithm involves executing the given program with a given input

and monitoring every dynamic memory access in the program for potential data races.

The algorithm maintains a DPST and the shadow memory for each shared memory

location as described earlier. The algorithm performs two types of actions:

• Task actions: these involve updating the DPST with a new node for each async,

finish, and step instance.

• Memory actions: on every shared memory access, the algorithm checks if the

access conflicts with the access history for the relevant memory location. If a

conflict is detected, the algorithm reports a race. Then, the memory location
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is updated to include the memory access in its access history.

Definition 4.1.6. In a DPST, a node n1 is dpst-greater than a node n2, denoted

by n1 >dpst n2, if n1 is an ancestor of n2 in the DPST. Note that, in this case, n1 is

higher in the DPST (closer to the root) than n2.

Algorithm 3: Write Check

Input: Memory location M , Step S that writes to M

if DMHP(Ms.r1, S) then1

Report a read-write race between Ms.r1 and S2

end3

if DMHP(Ms.r2, S) then4

Report a read-write race between Ms.r2 and S5

end6

if DMHP(Ms.w, S) then7

Report a write-write race between Ms.w and S8

else9

Ms.w ← S10

end11

Algorithms 3 and 4 show the checking that needs to be performed on write and

read accesses to monitored memory locations. When a step S writes to a memory

location M , Algorithm 3 checks if S may execute in parallel with the reader in Ms.r1

by computing DMHP(S, Ms.r1). If they can execute in parallel, the algorithm reports

a read-write data race between Ms.r1 and S. Similarly, the algorithm reports a read-

write data race between Ms.r2 and S if these two steps can execute in parallel. Then,
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Algorithm 3 reports a write-write data race between Ms.w and S, if these two steps

can execute in parallel. Finally, it updates the writer field, Ms.w, with the current

step S indicating the latest write to M . Note that this happens only when the write

to M by S does not result in data race with any previous access to M .

When a step S reads a memory location M , Algorithm 4 reports a write-read data

race between Ms.w and S if these two steps can execute in parallel. Then, it updates

the reader fields of Ms as follows: if S is the first step that reads M , then Ms.r1 is set

to S. If Ms.r2 is null, then Ms.r2 or Ms.r1 is set to S depending on whether S may

execute in parallel with Ms.r1 or not. If S can never execute in parallel with either of

the two readers, Ms.r1 and Ms.r2, then both these readers are discarded and Ms.r1 is

set to S. If S can execute in parallel with both the readers, Ms.r1 and Ms.r2, then the

algorithm stores two of these three steps, whose LCA is the highest in the DPST, i.e.,

if LCA(Ms.r1, S) or LCA(Ms.r2, S) is dpst-greater than LCA(Ms.r1, Ms.r2), then

Ms.r1 is set to S. Note that in this case S is outside the subtree under LCA(Ms.r1,

Ms.r2) and hence, LCA(Ms.r1, S) will be the same as LCA(Ms.r2, S).

If S can execute in parallel with one of the two readers and not the other, then

the algorithm does not update the readers because, in that case, S is guaranteed to

be within the subtree under the LCA(Ms.r1, Ms.r2).

Atomicity Requirements

A memory action for an access to a memory location M involves reading the fields

of Ms, checking the predicates, and possibly updating the fields of Ms. Every such

memory action has to execute atomically with respect to other memory actions for

accesses to the same memory location.
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Algorithm 4: Read Check

Input: Memory location M , Step S that reads M

if DMHP(Ms.w, S) then1

Report a write-read data race between Ms.w and S2

end3

if Ms.r1 = null then4

Ms.r1 ← S5

else if Ms.r2 = null then6

if DMHP(Ms.r1, S) then7

Ms.r2 ← S8

else9

Ms.r1 ← S10

end11

else if ¬DMHP(Ms.r1, S) ∧ ¬DMHP(Ms.r2, S) then12

Ms.r1 ← S13

Ms.r2 ← null14

else if DMHP(Ms.r1, S) ∧ DMHP(Ms.r2, S) then15

lca12 ← LCA(Ms.r1, Ms.r2)16

lca1s ← LCA(Ms.r1, S)17

lca2s ← LCA(Ms.r2, S)18

if lca1s >dpst lca12 ∨ lca2s >dpst lca12 then19

Ms.r1 ← S20

end21

end22
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4.1.4 Soundness and Precision

Like the ESP-bags algorithm, the SPD3 algorithm also detects a data race in a pro-

gram for a given input if and only if a data race exists. Hence, SPD3 is precise and

sound for a given input, which will be proved in Section 5.2. The other guarantees

regarding soundness and precision of SPD3 are also exactly the same as that for the

ESP-bags algorithm.

If the SPD3 does not report a data race during an execution of a program P for a

given input, then it is guaranteed that there is no data race in any schedule of P for

the given input. On the other hand, if a race is found, then it is guaranteed that there

is some schedule of P with the given input for which the reported race is the first

one encountered. There may be other schedules of P with the given input which may

encounter a different set of races in a different order, but all schedules are guaranteed

to encounter a data race. Also, the soundness and precision guarantees of the SPD3

algorithm hold only until the first data race.

4.1.5 Space Overhead

Now, we discuss the space overhead of our SPD3 algorithm. First, we define live steps

and live internal nodes in a DPST.

Definition 4.1.7. A step S in a DPST is said to be a live step at a point P during

program execution if S is referenced by at least one shadow memory at the point P.

Definition 4.1.8. An internal node N in a DPST is said to be a live internal node

at a point P during program execution if there is a live step in the subtree rooted at

N at the point P.

Note that, though the entire DPST is built during program execution, we only
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need to retain those leaf and internal nodes that are live at any point during program

execution. The dead nodes (nodes that are not live) can be removed from the DPST

because they will never participate in checking for data races in the program from

that execution point.

Suppose that a maximum of v shared memory locations are active at any point

during the execution of a program. The maximum number of shadow memory during

the program execution is also v. Each of these v shadow memory may refer to up to

three steps in the DPST. Assuming each field in every shadow memory refers to a

unique step in the DPST, the total number of live steps is v ∗ 3. Hence the maximum

number of leaf nodes in the DPST at any point during program execution is v ∗ 3.

The number of live internal nodes at any point during program execution is

bounded by the number of async and finish instances in the program execution. The-

oretically, the number of async and finish instances in a program execution could be

arbitrarily large. However, in practice, the number of async and finish instances in

a program execution is much smaller than the maximum number of active memory

locations v in that program execution.

The space overhead for every memory location is O(1), since we only need to store

a writer step and two reader steps in the shadow memory of every memory location.

4.1.6 Time Overhead

The time overhead at task boundaries is O(1), which is the time needed to add/update

a node in the DPST. The worst case time overhead on every memory access is same

as that of Algorithm 2, which is the length of the longer of the two paths involved in

the LCA computation. This is bounded by the height, H , of the DPST.

The height, H , of the DPST corresponds to the nesting depth of async and finish
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instances in the program execution. Though, in theory, the nesting depth of async

and finish instances in a program execution could be arbitrarily large, most practical

applications do not have large nesting depth of async and finish instances. This is

due to the high space requirements of parallel programs with large nesting depths.

Narlikar and Blelloch [44] show that the space requirement of a parallel schedule of

a program with a nesting depth D is linearly proportional to D ∗ p, where p is the

numbers of processors on which the program executes. This clearly shows that the

space requirements of parallel programs with large nesting depth become intractable

when running on highly parallel systems.

In the SPD3 algorithm, when the nesting depth of async and finish instances is

large, the LCA computation can be optimized in two ways: 1) by maintaining a cache

of the LCA of pairs of nodes and looking up the cache before computing new LCAs,

and 2) by deleting the internal nodes in the subtree rooted at any live node whose

execution is complete (path compression).

Note that the time overhead on memory access is not proportional to the number

of processors (underlying worker threads) on which the program executes. Hence,

the overhead is not expected to increase as we increase the number of processors on

which the program executes. This is an important property as future hardware will

likely have many cores.

4.2 Extending SPD3 for Isolated Blocks

In this section, we describe an extension to the SPD3 algorithm to handle HJ programs

with isolated blocks. For this we generalize the shadow memory used in the SPD3

algorithm to handle operations other than reads and writes. Recollect that the SPD3

algorithm stores one writer and two readers in the shadow memory of every memory
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location.

We need to store only one writer in the shadow memory of every memory location

because two or more writes to the same memory location in parallel will result in a

data race. In the case of reads, two or more reads to the same memory location in

parallel will not result in a data race. Hence, we need to store to two readers to cover

an entire subtree of readers. This can be generalized to any operation as follows:

• Let us consider an operation χ1 such that two or more of χ1 on the same

memory location in parallel will result in a data race. We only need one field

in the shadow memory of every memory location to represent χ1.

• Let us consider an operation χ2 such that two or more of χ2 on the same

memory location in parallel will not result in a data race. We need two fields

in the shadow memory of every memory location to represent χ2.

4.2.1 Shadow Memory with Isolated

To handle isolated blocks, the SPD3 algorithm has to check that the isolated and

non-isolated accesses to memory locations do not conflict. This is done by treating

isolated reads and writes to memory locations as distinct operations compared to the

non-isolated reads and writes. When two or more isolated-reads to the same memory

location happen in parallel, they do not result in a data race. Hence, according to the

above generalization, we need two fields in the shadow memory to handle isolated-

reads. Similarly, since two or more isolated-writes to the same memory location

happening in parallel do not result in a data race, we need two fields for isolated-

writes in the shadow memory. Thus, we add the following four fields to the shadow

memory to handle isolated-reads and isolated-writes.
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• ir1 : a reference to a step that performed an isolated-read of M.

• ir2 : a reference to another step that performed an isolated-read of M.

• iw1 : a reference to a step that performed an isolated-write on M.

• iw2 : a reference to another step that performed an isolated-write on M.

Note that, as in the case of the extended ESP-bags algorithm to support isolated

blocks, these additional fields need only be added to memory locations that are ac-

cessed within isolated blocks.

4.2.2 Extended SPD3 Algorithm

Now we describe the extension to the SPD3 algorithm to support isolated blocks. The

change needed in the SPD3 algorithm is to handle isolated read and write operations

differently as compared to non-isolated reads and writes. Algorithms 5 and 6 show the

modified Read-Check and Write-Check algorithms with support for isolated blocks.

In other words, these two algorithms give the steps that need to be performed on

read and write operations when the additional four fields are present in the shadow

memory to support isolated read and isolated write operations. Algorithms 7 and 8

give the steps that need to be performed on isolated read and isolated write operations

on memory locations.

Algorithm 5 shows a modified version of Algorithm 4 with support for handling

isolated reads and writes. Since a non-isolated read could conflict with an isolated

write, this algorithm includes steps in lines 4-9 to check if the current reader con-

flicts with the previous isolated writers, if any. These are the only modifications to

Algorithm 5 compared to Algorithm 4.
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Algorithm 5: Read Check w/ support for Isolated

Input: Memory location M , Step S that reads M

if DMHP(Ms.w, S) then1

Report a write-read data race between Ms.w and S2

end3

if DMHP(Ms.iw1, S) then4

Report an isolated write - read data race between Ms.iw1 and S5

end6

if DMHP(Ms.iw2, S) then7

Report an isolated write - read data race between Ms.iw2 and S8

end9

if Ms.r1 = null then Ms.r1 ← S10

else if Ms.r2 = null then11

if DMHP(Ms.r1, S) then Ms.r2 ← S12

else Ms.r1 ← S13

else if ¬DMHP(Ms.r1, S) ∧ ¬DMHP(Ms.r2, S) then14

Ms.r1 ← S15

Ms.r2 ← null16

else if DMHP(Ms.r1, S) ∧ DMHP(Ms.r2, S) then17

lca12 ← LCA(Ms.r1, Ms.r2)18

lca1s ← LCA(Ms.r1, S)19

lca2s ← LCA(Ms.r2, S)20

if lca1s >dpst lca12 ∨ lca2s >dpst lca12 then Ms.r1 ← S21

end22
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Algorithm 6: Write Check w/ support for Isolated

Input: Memory location M , Step S that writes to M

if DMHP(Ms.r1, S) then1

Report a read-write race between Ms.r1 and S2

end3

if DMHP(Ms.r2, S) then4

Report a read-write race between Ms.r2 and S5

end6

if DMHP(Ms.ir1, S) then7

Report an isolated read - write race between Ms.ir1 and S8

end9

if DMHP(Ms.ir2, S) then10

Report an isolated read - write race between Ms.ir2 and S11

end12

if DMHP(Ms.iw1, S) then13

Report an isolated write - write race between Ms.iw1 and S14

end15

if DMHP(Ms.iw2, S) then16

Report an isolated write - write race between Ms.iw2 and S17

end18

if DMHP(Ms.w, S) then19

Report a write-write race between Ms.w and S20

else21

Ms.w ← S22

end23
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Algorithm 6 shows a modified version of Algorithm 3 with support for handling

isolated reads and writes. Since a non-isolated write could conflict with both isolated

reads and isolated writes, this algorithm includes steps in lines 7-18 to check if the

current writer conflicts with the previous isolated readers and isolated writers, if any.

These are the only modifications to Algorithm 6 compared to Algorithm 3.

Algorithm 7 gives the steps that need to be performed on isolated reads of shared

memory locations. An isolated read conflicts with non-isolated writes but does not

conflict with isolated writes and non-isolated reads. So, the algorithm only checks

if the current step that is performing an isolated read conflicts with the previous

writer. Then, the algorithm updates the isolated reader fields with the new step, S,

as follows: if S is the first step that performs an isolated read on M , then Ms.ir1 is

set to S. If Ms.ir2 is null, then Ms.ir2 or Ms.ir1 is set to S depending on whether S

may execute in parallel with Ms.ir1 or not. If S can never execute in parallel either

of the two isolated readers, Ms.ir1 and Ms.ir2, then both these isolated readers are

discarded and Ms.ir1 is set to S. If S can execute in parallel with both the isolated

readers, Ms.ir1 and Ms.ir2, then the algorithm stores two of these three steps, whose

LCA is the highest in the DPST. If S can execute in parallel with one of the isolated

readers and not the other, then the algorithm does not update the isolated readers

because, in that case, S is guaranteed to be within the subtree under the LCA(Ms.ir1,

Ms.ir2).

Algorithm 8 gives the steps to be performed on isolated writes of shared memory

locations. An isolated write conflicts with non-isolated reads and non-isolated writes

but does not conflict with isolated reads. Hence, the algorithm checks if the current

step that is performing an isolated write conflicts with the previous writer or any of

the previous readers. Then, the algorithm updates the isolated writer fields with the
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Algorithm 7: Isolated Read Check w/ support for Isolated

Input: Memory location M , Step S that reads M

if DMHP(Ms.w, S) then1

Report a write - isolated read data race between Ms.w and S2

end3

if Ms.ir1 = null then Ms.ir1 ← S4

else if Ms.ir2 = null then5

if DMHP(Ms.ir1, S) then Ms.ir2 ← S6

else Ms.ir1 ← S7

else if ¬DMHP(Ms.ir1, S) ∧ ¬DMHP(Ms.ir2, S) then8

Ms.ir1 ← S9

Ms.ir2 ← null10

else if DMHP(Ms.ir1, S) ∧ DMHP(Ms.ir2, S) then11

lca12 ← LCA(Ms.ir1, Ms.ir2)12

lca1s ← LCA(Ms.ir1, S)13

lca2s ← LCA(Ms.ir2, S)14

if lca1s >dpst lca12 ∨ lca2s >dpst lca12 then15

Ms.ir1 ← S16

end17

end18
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Algorithm 8: Isolated Write Check w/ support for Isolated

Input: Memory location M , Step S that reads M

if DMHP(Ms.w, S) then1

Report a write - isolated write data race between Ms.w and S2

end3

if DMHP(Ms.r1, S) then4

Report a read - isolated write data race between Ms.r1 and S5

end6

if DMHP(Ms.r2, S) then7

Report a read - isolated write data race between Ms.r2 and S8

end9

if Ms.iw1 = null then Ms.iw1 ← S10

else if Ms.iw2 = null then11

if DMHP(Ms.iw1, S) then Ms.iw2 ← S12

else Ms.iw1 ← S13

else if ¬DMHP(Ms.iw1, S) ∧ ¬DMHP(Ms.iw2, S) then14

Ms.iw1 ← S15

Ms.iw2 ← null16

else if DMHP(Ms.iw1, S) ∧ DMHP(Ms.iw2, S) then17

lca12 ← LCA(Ms.iw1, Ms.iw2)18

lca1s ← LCA(Ms.iw1, S)19

lca2s ← LCA(Ms.iw2, S)20

if lca1s >dpst lca12 ∨ lca2s >dpst lca12 then Ms.iw1 ← S21

end22
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new step, S, in the same way as the isolated reader fields are updated in Algorithm 7.

4.2.3 Soundness and Precision

The extended SPD3 algorithm with support for isolated is precise but not sound,

i.e., the algorithm has no false positives but may have some false negatives. With

isolated blocks, there may be cases where the execution that is monitored during the

SPD3 algorithm does not execute certain parts of code which may execute in other

executions of the program for the same input. This happens when the isolated blocks

in the program do not commute. This is exactly the same reason why the ESP-bags

algorithm is precise but not sound in the presence of isolated blocks, as described in

Section 3.2.2.

Note that when the isolated blocks in the given program commute, the SPD3

algorithm is both precise and sound for a given input.

4.2.4 Space Overhead

The extended SPD3 algorithm with support for isolated uses four additional fields

in the shadow memory location to store the isolated readers and writers. These

additional fields can be restricted to only those memory locations that accessed within

isolated blocks, in the same way as described in Section 3.2.2. Typically, the isolated

blocks in programs are very small and hence, only a few memory locations are accessed

within isolated blocks. Thus, the increase in the space overhead is very small in most

programs. Since we only add constant number of fields to the shadow memory of

some memory locations, the asymptotic space overhead remains the same as in the

original SPD3 algorithm for async and finish.
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4.2.5 Time Overhead

The time overhead for the SPD3 increases in the presence of isolated blocks because of

the extra checks that need to be performed for every operation on a memory location.

In the worst case, we need to check if the new step conflicts with all the 7 fields in

the shadow memory location. Thus, we may have to do 7 DMHP computations for

every memory access in the worst case. But the additional checks for conflicts need

to be done only for those memory locations that are accessed within isolated blocks.

Since these memory locations are typically small in number, the extra time spent on

these checks is typically less. Since we only have to do a constant number of DMHP

computations in addition to the original algorithm, the asymptotic time overhead

remains the same as the original SPD3 algorithm for async and finish.

4.3 Extending SPD3 for Futures

We now describe an extension to the SPD3 algorithm to support HJ programs with

futures. Though this algorithm can be used for futures along with isolated, for the

sake of simplicity we restrict our presentation in this section to programs with async,

finish, and futures. Recall that the future construct is used to create a task with a

handle which can be used to wait on this task, specifically. The get operation on

a future, G, denoted by G.get(), waits for the task pointed to by the handle G to

complete.

For the purpose of data race detection, we consider every future as an async with

a special property. Hence, all futures are asyncs but not all asyncs are futures.

In this section, we first describe the modifications needed on the Dynamic Program

Structure Tree (DPST) used in the SPD3 algorithm to support futures. Then, we
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present an enhanced DPST which encodes the information regarding futures in a

sophisticated manner so as to make the DMHP computation on the DPST faster in

certain scenarios. Then, we present the extensions needed in the shadow memory

of memory locations to support futures. Finally, we present the changes needed in

the SPD3 algorithm to support futures. We also discuss about the soundness and

precision guarantees of SPD3 in the presence of futures and also about how futures

affect the space and time overhead of the algorithm.

4.3.1 Dynamic Program Structure Tree with Futures

Every instance of a future will get a node in the DPST, just like an async. Since every

future is also an async, any test for an async node will succeed on a future node as

well. But since every async is not a future, a test for a future node will not succeed

on a non-future async node.

Every instance of a get operation on a future, G, in the program is represented by

a new leaf node, Gg. Now, the DPST contains two kinds of leaf nodes, get and step

nodes. Also, every future node, G, in the DPST maintains a list of pointers, Ggets,

which point to the Gg nodes corresponding to the get operations performed on this

future.

In this extended DPST, a step is redefined as follows:

Definition 4.3.1. A step is a maximal sequence of statement instances such that no

statement instance in the sequence includes the start or end of an async, the start or

end of a finish or a get operation.

Now, get operations, in addition to the start and end of async and finish operations,

define the boundary of a step. When a program completes a get operation on a future

G, a corresponding get node is added to the DPST as follows: suppose a step S
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performs a get on a future G, we split S around the get operation. Let S′ denote the

part of S before the get and S′′ denote the part of S after the get. Now, we insert S′

in the place of S in the DPST. The get operation following S′ gets a node, Gg, which

is added as the right sibling of S′. Then, S′′ is added as the right sibling of Gg. Also,

a pointer to this get node, Gg, is added to the list Ggets.

We now look at some definitions and notations that will be used in the rest of

section.

Definition 4.3.2. The path to the root of a node, N, in the DPST, is the path from

N to the root of the DPST. The set P(N) denotes the set of all nodes in the path

from N to the root of the DPST.

P (N) = {Nodes in the path from N to root} (4.1)

Definition 4.3.3. Parallelism Defining Nodes (PDNs) for a node, N, in a DPST,

denoted by PDN(N), is the set of all nodes, K, along the path from N to the root of

the DPST, such that the child of K along this path is not an async, i.e.,

PDN(N) = {K : K ∈ P (N) and Kc is not an async,

where Kc is the child of K in P (N)} (4.2)

Definition 4.3.4. Parallelism Defining Asyncs (PDAs) for a node, N, in a DPST,

denoted by PDA(N), is the set of all async nodes in PDN(N).

PDA(N) = {K : K ∈ PDN(N) and K is an async} (4.3)

Definition 4.3.5. Parallelism Defining Futures (PDFs) for a node, N, in a DPST,

denoted by PDF(N), is the set of all future nodes in PDA(N).

PDF(N) = {K : K ∈ PDA(N) and K is a future} (4.4)
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Dynamic May Happen in Parallel (DMHP) on the extended DPST

Algorithm 9: Dynamic May Happen in Parallel (DMHP) on DPST extended

with Futures
Input: DPST Γ, Step S, Step S′

Output: true/false

S1 ← Left (S, S′)1

S2 ← Right (S, S′)2

Nlca ← LCA(Γ, S1, S2)3

A1 ← Ancestor of S1 which is the child of Nlca4

if A1 is not an async then5

return false6

end7

for G ∈ PDF (S1) do8

for Gg ∈ Ggets do9

if DMHP(Gg, S2) = false and Left(Gg, S2) = Gg then10

return false11

end12

end13

end14

return true15

With the DPST extended to support futures, we now describe the computation of

DMHP on this extended DPST. Algorithm 9 computes the DMHP relation for two

steps, S and S ′, when the DPST contains async, finish, and future constructs. The

algorithm first stores the left of the two input steps in S1 and the right of the two
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steps in S2. It then computes the Lowest Common Ancestor (LCA), Nlca, of the steps

S1 and S2 using Algorithm 1. Suppose A1 denotes the ancestor of S1 which is the

child of Nlca. If A1 is not an async, then the algorithm returns false. This follows

directly from the original DMHP algorithm, Algorithm 2.

When the node A1 is an async node, we need to check if any of the parallelism

defining futures of S1 (i.e., any node in the set PDF(S1)) is guaranteed to happen

before S2. Suppose a node, K, in PDF(S1) is guaranteed to happen before S2. Since

K is in PDF(S1), the child node of K along the path from S1 to root, Kc, is not an

async (so, Kc is either S1 or a finish node whose subtree contains S1). Hence, it is

guaranteed that S1 happens before S2. To check if any node in PDF(S1) happens

before S2, the algorithm recursively calls itself for every node in PDF(S1) along with

S2. If any of the nodes in PDF(S1) is guaranteed to never happen in parallel with

S2 and if that node is to the left of S2 in the DPST, then that node happens before

S2, in which case the algorithm returns false to denote that S1 can never happen in

parallel with S2. The intuition behind this is to check if there exists a happens before

ordering between any get operation and S2 which could transitively impose a happens

before ordering between S1 and S2.

Note that non-future nodes (other than A1) along the path from S1 to the root of

the DPST do not impose an ordering between S1 and S2 because A1 being an async

node guarantees that S1 and S2 may execute in parallel unless there is an explicit

ordering imposed through a get. The future nodes along the path from S1 to the root,

other than those in PDF(S1), also do not impose an ordering between S1 and S2.

This is because the child of each such future node along the path from S1 to the root

is an async node and the subtree under this async node is not guaranteed to complete

even when the future is guaranteed to complete.
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Figure 4.3 : An example DPST with async, finish, and future nodes. F1 and F2 are
finish nodes; G1, G2, and G3 are future nodes; A1, A2, A3, and A4 are non-future
async nodes. The nodes S1-S7 refer to the step nodes. The dotted lines denote the
pointers from future nodes to their get operations.

In summary, the algorithm returns false when there is a node, G, in PDF(S1),

such that for one of its get nodes, Gg, DMHP(Gg, S2) is false and Gg is to the left

of S2 in the DPST, i.e., Gg is guaranteed to happen before S2. When no such node

exists, the algorithm returns true implying that the steps S1 and S2 may execute in

parallel.



93

Example

Now, we show an example of DPST with futures and gets in Figure 4.3. This DPST

contains finish nodes (F1 and F2), non-future async nodes (A1, A2, A3, and A4),

future nodes (G1, G2, and G3), and step nodes (S1 - S7). The pointers from future

nodes to their corresponding get nodes are denoted by dotted lines in Figure 4.3. Note

that the only difference in this extended DPST are the leaf nodes for get operations

and pointers from future nodes to their corresponding get nodes.

We now sketch a couple of DMHP computations on the DPST in Figure 4.3. First,

let us consider the computation of DMHP(S4, S5). S4 is to the left of S5 and A1 is

the ancestor of S4 which is the child of the LCA(S4, S5). Since A1 is an async node,

the algorithm investigates further. PDF(S4) = {G3}. The algorithm then follows

G3’s pointer to its get nodes (only one get node for G3). This results in recursively

calling DMHP with G3g and S5 as input nodes. Now, S5 is the left node and A2

is the ancestor of S5 which is the child of LCA(G3g, S5). Since A2 is an async and

PDF(S5) is empty, DMHP(G3g, S5) returns true. Thus DMHP(S4, S5) also returns

true which correctly reflects the fact that S4 and S5 may execute in parallel.

Let us consider the computation of DMHP(S6, S4). The computation proceeds as

in the case above until the recursive call to DMHP, which will now be with inputs G3g

and S6. Now, G3g is the left node and also the node which is the child of LCA(G3g,

S6). Since it is not an async node, DMHP(G3g, S6) returns false. Hence, DMHP(S6,

S4) also returns false. This correctly reflects the fact that S4 and S6 can never execute

in parallel due to ordering imposed by the get node of G3, G3g.
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Discussion

To check if a get operation on a future, Gg, happens before a given step, S, Algorithm 9

checks that Gg and S can never happen in parallel (by computing the DMHP relation

on them) and that Gg is to the left of S in the DPST. These two checks are necessary to

confirm that Gg happens before S, on a complete DPST. But, during the execution

of the program, while the DPST is still growing, the DMHP computation will be

performed only when one of the two steps is being executed. So, when Algorithm 9

is being called to compute the DMHP of steps S1 and S2, one of S1 or S2 must be

executing. If S1 was executing, then none of the get operations on any of its PDFs

would have completed. Hence, in this case, Algorithm 9 will not enter the loop in

line 9. If S2 was executing, then the fact that DMHP(Gg, S2) is false is enough to

ascertain that Gg happens before S2. Hence, the check for Left relation in line 10 of

Algorithm 9 is not necessary, if the algorithm is used to compute DMHP when one

of the two steps involved is being executed.

Space and Time Overhead

The number of nodes in the DPST increases with nodes added for get operations.

So, the DPST now has as many additional nodes as the number of get instances in

the program. Every future node also stores a list of pointers to their get nodes in the

DPST. The total size required to store these lists over all the future nodes is equal

to the number of get instances in the program. Hence, the total size of the DPST

is O(a + f + g), where a refers to the number of async instances (including future

instances), f refers to the number of finish instances, and g refers to the number of

get instances in the program. Note that there is no need for a term to represent the

step instances because the number of step instances is proportional to the number of
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async, finish, and get instances in the program.

The algorithm to compute the DMHP relation between two steps in the DPST

may now involve recursive calls to the DMHP algorithm. In the worst case, every

DMHP computation between two steps could recursively call DMHP once for every

get instance in the program. Hence, the time required to compute the DMHP relation

between two steps in the DPST is O(L∗g), where L is the average length of the longer

path in the LCA computation and g is the number of get instances in the program.

This is bounded by O(h ∗ g), where h is the height of the DPST.

4.3.2 Enhancing the DPST with Futures

We now describe an enhancement to the DPST with futures to reduce the time over-

head of DMHP computation in certain scenarios. This enhancement involves replacing

the pointers from future nodes to their corresponding get nodes by a summarized in-

formation about the get nodes in the DPST. The downside is that the space overhead

of the DPST increases due to this enhancement.

The enhancement is done by associating sequence numbers with every node in the

DPST. The sequence number of a node N in the DPST, referred to as Nseq, represents

the ordering among the children of a node. Specifically, a value of k in Nseq for a node

N means that N is the kth child of its parent in the DPST.

In this enhanced DPST, there will be no pointers from every future node to its

corresponding get nodes. Instead, every internal node, N, will maintain a list, Ngets,

which stores a list of entries of the form future:seq. There will be at most one entry

per future in Ngets, for any node N. An entry G:k in Ngets indicates that G.get() (and

hence the future G) is guaranteed to complete at the end of the execution of the kth

child of N.
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Now, we describe the steps to update the gets list associated with every internal

node in the DPST. When a program completes a get operation on a future G, a corre-

sponding get node is added to the DPST as described in Section 4.3.1. Additionally,

the following steps are performed to update the gets list:

1. Gg ← Node in the DPST corresponding to G.get()

2. For every N in PDN(Gg):

(a) C ← child(N) in P(Gg)

(b) If Ngets does not contain “G:s” (for some s), then add “G:Cseq” to Ngets

3. Repeat the above step for every entry in Ggets.

When the program completes a get operation, Gg, on a future G, the gets list of all

the nodes in the set of parallelism defining nodes, PDN(Gg), are updated to include

an entry for G corresponding to this get. The entry will include the sequence number

of the child through which this get operation is guaranteed to complete. Also, all the

entries in the set Ggets are added to the gets list of all the nodes in PDN(Gg). This

is because all the futures that complete within the future G are also guaranteed to

complete at the end of G.

Dynamic May Happen in Parallel (DMHP) on the Enhanced DPST

Algorithm 10 computes the DMHP relation on the enhanced DPST. This algorithm

is exactly the same as Algorithm 9 until line 7, i.e., until checking if the node A1,

which is the ancestor of the left node and the child of the LCA of the two nodes, is

an async node. After that point, this algorithm investigates the path from the node

S2 (the right node among the two input nodes) to Nlca (the LCA of S1 and S2). The
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Algorithm 10: Dynamic May Happen in Parallel (DMHP) on the enhanced

DPST
Input: DPST Γ, Step S, Step S′

Output: true/false

S1 ← Left (S, S′)1

S2 ← Right (S, S′)2

Nlca ← LCA(Γ, S1, S2)3

A1 ← Ancestor of S1 which is the child of Nlca4

if A1 is not an async then5

return false6

end7

P2 ← { N : N is in the path from S2 to Nlca }8

for N ∈ P2 do9

C ← child(N) in P210

if Ngets contains “G:n” and G ∈ PDF(S1) then11

if n < Cseq then12

return false13

end14

end15

end16

return true17
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algorithm checks the gets list of every node in this path and looks for an entry for

one of the futures in PDF(S1). If any future in PDF(S1) is guaranteed to complete

before any node in the path from S2 to Nlca, then the DMHP algorithm returns false

indicating that the steps S1 and S2 cannot run in parallel. The algorithm returns true

when none of the gets lists contains such an entry. Note that the algorithm traverses

the path from S2 to Nlca only once. But it has to search the gets list of every node in

this path.

Example

An example of the enhanced DPST with async, finish, and future nodes is shown in

Figure 4.4. This is the enhanced DPST for the example in Figure 4.3. Note that

this DPST does not contain pointers from the future nodes to their corresponding get

nodes. Instead every internal node maintains the list, gets, of all the futures that are

guaranteed to complete along some path in its subtree.

Let us now sketch the computations of DMHP on this enhanced DPST. First, let

us consider the computation of DMHP(S4, S5). S4 is the left node among the two

inputs and A1 is the ancestor of S4 and a child of F2 (which is the LCA of S4 and S5).

Since A1 is an async, the algorithm proceeds to investigate further. It then looks at

the path from S5 to F2. Though the gets list of F2 contains A4 which is in PDN(S4),

the sequence number associated with that entry in F2 is 3. This means that G3 is

guaranteed to complete only after the 3rd child of F2. Since the path from S5 to F2

goes through the 2nd child of F2, DMHP returns false.

Now, let us consider the computation of DMHP(S6, S4). The computation pro-

ceeds as in the above case. But the entry G3:3 in the gets list of F2 is good enough

to ensure that S4 completes before S6 begins. This is because G3 is guaranteed to
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Figure 4.4 : An example of the enhanced DPST with async, finish, and future nodes.
This is the enhanced version of the DPST in Figure 4.3. F1 and F2 are finish nodes;
G1, G2, and G3 are future nodes; A1, A2, A3, and A4 are non-future async nodes.
The nodes S1-S7 refer to the step nodes.
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complete after the 3rd child of F2 and S6 is created only along the 4th child of F2.

Space and Time Overhead

The enhanced DPST does not include the pointers from future nodes to corresponding

get nodes but includes the gets list in every internal node. Note that the gets list is

empty in most internal nodes. Every finish node, whose subtree contains some get

instance, induces a non-empty gets list in its parent. This is because the parent of

the finish node will be in the set of parallelism defining nodes of those get instances.

Hence, the space overhead of the enhanced DPST is O(a+f+g+f ∗g), where a refers

to the number of async instances (including future instances), f refers to the number

of finish instances, and g refers to the number of get instances in the program. Note

that there is no need for a term to represent the step instances because the number of

step instances is proportional to the number of async, finish, and get instances in the

program. The enhancement increases the asymptotic space overhead of the DPST by

a factor of f .

The advantage of the enhancement is that the algorithm to compute DMHP does

not make any recursive calls to itself. The only extra work done during DMHP

computation now is to look up the gets list in the path from the right node to the

LCA of the two nodes. We assume that the look up on the gets list in every node

takes O(1) time. Let S1, S2 be the two nodes involved in the DMHP computation.

Let S1 be to the left of S2 in the DPST. There can be at most h/2 elements in the

set of parallelism defining futures for S1, where h is the height of the DPST. This is

because, for a future to be in PDF(S1), its child along the path from S1 to the LCA

has to be a finish. So, in the worst case, every alternate node along the path from

S1 to the LCA could be a future in PDF(S1). This is also bounded by the number of
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future instances in the program, ft. So, the size of the set PDF(S1) is min(h/2, ft).

Every node along the path from S2 to LCA may contain its own gets list. This

is also bounded by the number of finish instances in the program because every finish

node may induce a gets list in its parent. So, the total number of nodes with gets list

along the path from S2 to LCA is bounded by min(h, f), where f denotes the number

of finish instances in the program. Since every future in the set PDF(S1) has to be

looked up in every gets list along the path from S2 to LCA, the total time required

for this look up is O(min(h/2, ft) ∗min(h, f)).

When the height of the DPST is small, i.e., when the nesting depth of the finish,

async, and future instances is low in the program, it would be beneficial to use this

enhanced DPST. In that case, the time taken for DMHP computation would reduce

considerably at the cost of increase in some space overhead.

4.3.3 Shadow Memory with Futures

Now, we discuss the changes that are needed in the shadow memory in SPD3 to

detect data races in programs with futures. Recall that the shadow memory of the

SPD3 algorithm for async and finish contains three fields; Ms.w, Ms.r1, and Ms.r2.

While Ms.w stores the most recent step that wrote M , Ms.r1 and Ms.r2 store two

steps that read M such that the subtree under their LCA includes all the steps that

read M in parallel.

Since the soundness and precision guarantees of our algorithm hold only until the

first data race, we assume that no data races have been observed so far. Hence, all

the writes to every memory location must be ordered. So, even with futures, we need

only one field, Ms.w, to store the most recent step that wrote M . But it is no longer

sufficient to store just two readers to represent an entire subtree of readers. This is
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because if a new access is not in parallel with both the stored readers, Ms.r1 and

Ms.r2, due to explicit get operations on some futures, then there is no guarantee that

the new access is not in parallel with all the discarded readers.

We address this problem with the readers as follows. We store two steps that read

M , in Ms.r1 and Ms.r2, such that the PDF(Ms.r1) and PDF(Ms.r2) are empty, and

the LCA(Ms.r1, Ms.r2), say L, is the highest among every such pair of readers. In

addition to these two readers, we also store a list of steps that read M , Ms.fts, and

are outside the subtree under L such that their PDF set is non-empty. Note that

when two steps that read M have the same PDF set, we only need to store one of

them, because any step that is parallel with one of them will be in parallel with the

other as well. There is no need to store those steps that are within the subtree under

L even if their PDF set is non-empty, because those steps will be covered by the two

readers, Ms.r1 and Ms.r2.

Also, we maintain a map from the LCA of these steps with Ms.r1, to the steps

that have this node as their LCA. This map from the LCA nodes to the steps is

needed to prune the list Ms.fts, when steps in that list come within the subtree

under LCA(Ms.r1, Ms.r2) as Ms.r1 and Ms.r2 are updated.

In summary, the shadow memory for a memory location M will contain the fol-

lowing fields for race detection using the SPD3 algorithm in the presence of futures.

• Ms.w : a field that stores the most recent step that wrote M .

• Ms.r1 : a field that stores a step S1 that read M , such that PDF(S1) is empty.

• Ms.r2 : a field that stores another step S2 that read M , such that PDF(S2) is

empty. LCA(S1, S2) is the highest among every such pair of steps that read M

with their PDF set empty.
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• Ms.fts : a list that stores every step S that read M , such that:

– PDF(S) is unique and non-empty, and

– S is outside the subtree under LCA(Ms.r1, Ms.r2).

• Ms.lca map : Every step S in Ms.fts is outside the subtree under LCA(Ms.r1,

Ms.r2). Hence, LCA(S, Ms.r1) is higher in the DPST than LCA(Ms.r1, Ms.r2).

This field maintains a map from every such higher LCA node to the set of steps

that have this node as their LCA with Ms.r1.

4.3.4 Extended SPD3 Algorithm

We have already shown the changes needed in the DPST and the shadow memory

of every memory location to support futures. Now, we describe the extension to the

SPD3 algorithm to support futures.

Algorithm 11 show the modified Write-Check algorithm with support for futures.

The only modification from the original Write-Check algorithm is the additional check

done in the loop in line 7. This loop checks if the new step S that writes to M conflicts

with any of the steps in the list Ms.fts and reports a data race if it finds any such

conflicting steps.

Algorithm 12 shows the steps that need to be performed on read operations when

the program contains futures. In this algorithm, if Ms.r1 is null, then it is set to S if

the PDF set of S is empty or added to the list of steps, Ms.fts, using the function

AddStepToList, if the PDF set of S is non-empty. The function AddStepToList adds

the given step S to the list Ms.fts only if there are no other steps in Ms.fts whose

PDF set is same as S.

If Ms.r2 is null, then the same steps as in Algorithm 4 are performed if the PDF
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Algorithm 11: Write Check w/ support for Futures

Input: Memory location M , Step S that writes to M

if DMHP(Ms.r1, S) then1

Report a read-write race between Ms.r1 and S2

end3

if DMHP(Ms.r2, S) then4

Report a read-write race between Ms.r2 and S5

end6

for Sf ∈Ms.fts do7

if DMHP(Sf , S) then8

Report a read-write race between Sf and S9

end10

end11

if DMHP(Ms.w, S) then12

Report a write-write race between Ms.w and S13

else14

Ms.w ← S15

end16
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Algorithm 12: Read Check w/ support for Futures

Input: Memory location M , Step S that reads M

if DMHP(Ms.w, S) then Report a write-read data race between Ms.w and S1

if Ms.r1 = null then2

if PDF(S) = ∅ then Ms.r1 ← S3

else AddStepToList (S, Ms.fts)4

else if Ms.r2 = null then5

if PDF(S) = ∅ then6

if DMHP(Ms.r1, S) then Ms.r2 ← S7

else Ms.r1 ← S8

else AddStepToList (S, Ms.fts)9

else if ¬DMHP(Ms.r1, S) ∧ ¬DMHP(Ms.r2, S) then10

Ms.r1 ← Ms.r2 ← null11

if PDF(S) = ∅ then Ms.r1 ← S12

else AddStepToList (S, Ms.fts)13

else if DMHP(Ms.r1, S) ∧ DMHP(Ms.r2, S) then14

lca12 ← LCA(Ms.r1, Ms.r2)15

lca1s ← LCA(Ms.r1, S)16

if lca1s >dpst lca12 then17

if PDF(S) = ∅ then18

Ms.r1 ← S19

PruneStepList (S, lca12, lca1s, Ms.fts, Ms.lca map)20

else AddStepToList (S, Ms.fts)21

end22

end23
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set of S is empty. If the PDF set of S is non-empty, then S is added to the list of

steps, Ms.fts, using the function AddStepToList.

If the current step S that reads M is not in parallel with both Ms.r1 and Ms.r2,

then these two readers are set to null. If the PDF set of S is empty, then Ms.r1

is updated to S. If not, S is added to the list of steps, Ms.fts, using the function

AddStepToList.

If the current step S is in parallel with both Ms.r1 and Ms.r2, then the algorithm

checks if S is outside the subtree under LCA(Ms.r1, Ms.r2). If S is inside the subtree

under LCA(Ms.r1, Ms.r2), then S can be discarded because it is covered by the

two stored readers. If S is outside the subtree under LCA(Ms.r1, Ms.r2), then the

algorithm checks if PDF set of S is empty. If PDF(S) is empty, Ms.r1 is set to S,

thereby pushing the LCA higher up the DPST and covering a bigger subtree using

the pair of readers. Since the pair of readers cover a bigger subtree now, the algorithm

prunes the list of stepsMs.fts to remove those steps that now exists within the covered

subtree. This is done by the function PruneStepList. Specifically, the function looks

at the nodes along the path from the old LCA to the new LCA. For each of these

nodes, it looks for an entry in the map Ms.lca map, that maps these nodes to the set

of steps which have them as their LCA with the existing readers. All these steps can

be removed from the list Ms.fts, since they are now covered by the subtree under

the new LCA. If PDF(S) is non-empty, then S is added to the list of steps, Ms.fts,

using the function AddStepToList. The details of the functions AddStepToList and

PruneStepList are not shown here.
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4.3.5 Soundness and Precision

The extended SPD3 algorithm to support futures is sound and precise for a given

input. The extra work done to extend SPD3 to support futures is to guarantee

soundness and precision. Suppose, the shadow memory does not store the list of

steps Ms.fts and the map Ms.lca map and the algorithm does not do the extra work

associated with these fields. The algorithm would still be precise for programs with

futures but it will not be sound. In other words, the algorithm may miss data races

that occur during some execution of the program for the given input.

4.3.6 Space Overhead

The space overhead of the modified DPST has already been discussed earlier. The

space overhead for every memory location was O(1) with just async and finish. In

the presence of futures, it is no longer constant, because of the presence of the list

fts in every shadow memory location. In the worst case, the size of this list could

be equal to the number of future instances in the program. This is because every

future instance could have a unique step reporting to it and hence, every such step

need to be stored in fts. Also, the size of the map lca map could be as large as the

height of the DPST, since we need to store the mapping from every node higher that

the current LCA, in the worst case. The total size of the sets that these nodes are

mapped on to is the same as the size of fts.

The worst case space overhead for every memory location is O(ft+ h), where ft

is the number of future instances in the program and h is the height of the DPST.

Though the worst case space overhead is high, in practice, if the program has a good

mix of asyncs, finishes, and futures, then the size of the fts list is not expected to grow

large.
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4.3.7 Time Overhead

The time overhead of the SPD3 algorithm increases in the presence of futures by a

factor of ft, where ft refers to the number of future instances in the program. This is

because every write to a memory location could potentially result in checking if the

new step conflicts with any of the steps in the list fts, whose worst case size is ft.

Also, every read of a memory location could potentially result in updating the list

fts, which in turn requires checking if any step in fts has the same PDF set as the

new step. The pruning of the list fts during read operations would involve a constant

time look up in the map for every node in the path from the old LCA to the new

LCA, and deleting the corresponding steps from the list fts.

In the worst case, the time taken for every memory operation is O(ft ∗ L ∗ g),

where ft is the number of future instances in the program, L is the length of the

longer path in the LCA computation, and g is the number of get instances in the

program. This is because every DMHP computation will take O(L ∗ g), assuming we

use the DPST with pointers from future nodes to their corresponding get nodes.



109

Chapter 5

Correctness Proofs

We presented the ESP-bags algorithm and the SPD3 algorithm for data race detection

in HJ programs. While the ESP-bags algorithm is a sequential algorithm, the SPD3

algorithm is parallel. In this chapter, we prove the correctness of both the algorithms

for async and finish constructs in HJ.

5.1 ESP-bags for Async-Finish

In this section, we prove the correctness of the basic ESP-bags algorithm that de-

tects data races in programs with async and finish constructs. First, we define the

may-happen-in-parallel relation in terms of the Computation Graph of an HJ pro-

gram execution. We then discuss about the use of Dynamic Program Structure Tree

(DPST) in proving the correctness of ESP-bags. Note that the DPST abstraction

is used to establish the proof of correctness and is not actually constructed by the

ESP-bags algorithm. Then, we prove a couple of important properties of the DPST

that are necessary to establish the correctness of ESP-bags. Using the invariants on

the DPST, we establish a relation between may-happen-in-parallel and the contents

of the P-bag. Finally, we prove that the ESP-bags algorithm detects a data race in

a program for a given input if and only if a data race exists; i.e., the algorithm is

precise and sound for the given input.

Recall the definition of the Computation Graph of an HJ program execution from
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Section 2.2. Figure 2.1 shows an HJ program with finish and async constructs and

the computation graph corresponding to its execution in which the for loop in line 5

is executed only once.

Definition 5.1.1. Two statement instances s1 and s2 in a schedule δ of a program

may-happen-in-parallel, written as DMHP(s1, s2) = true, if and only if there is no

path from s1 to s2 and from s2 to s1 in the computation graph of δ.

When two statement instances s1 and s2 in a schedule δ of a program P for

an input ψ may-happen-in-parallel, DMHP(s1, s2) = true, it means that there is a

possible schedule of P with input ψ in which s1 and s2 execute in parallel.

We use the Dynamic Program Structure Tree (DPST) defined in Section 4.1.1 as

part of the SPD3 algorithm, to prove the correctness of ESP-bags. Note that the

DPST used in SPD3 groups statements into steps and uses step as the basic unit

of computation. To make the proofs simpler here, we assume that the statements

are not grouped into steps and there is a leaf node in the DPST for every statement

instance. Note that all the properties of the DPST hold with this change.

Theorem 5.1.1. Every data-race-free HJ program with finish and async constructs

has a unique DPST that corresponds to all possible executions for a given input.

Proof. Let us consider an HJ program P with finish and async constructs that contains

no data races. The immediately enclosing finish for every statement in P is the same

across all possible executions of P for a given input ψ. Also every statement in P

belongs to the same task across all possible executions of P for input ψ. Hence, in

every DPST of P that corresponds to different executions of P for an input ψ, the

parent-child relationship is unique between nodes corresponding to all the instances
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of finish, async, and statements in P . In other words, if node α is the parent of node

β in a DPST of P , then α is the parent of β in every DPST of P for an input ψ.

The only other source of non-determinism could be in the order of edges from an

internal node to its children. By definition of the DPST, all the edges from every

internal node to its children are arranged according to the program order. Hence,

there is a unique DPST for every HJ program with finish and async constructs for a

given input.

Corollary 5.1.2. Every data-race-free HJ program with finish and async constructs

has a unique Computation Graph that corresponds to all possible executions for a

given input.

Theorem 5.1.3. The sequential depth-first execution of an HJ program explores the

DPST of the program corresponding to this execution in depth-first order from left to

right.

Proof. By definition of DPST, the edges from every internal node to its children

are ordered according to the program order of the corresponding statements. The

sequential depth-first execution of an HJ program will execute the statements in the

program order, which corresponds to the left to right depth-first order of the nodes

in its DPST.

Theorem 5.1.4. Let Γ be the DPST corresponding to the sequential depth-first exe-

cution of an HJ program P with an input ψ. Let statement instance s1 be to the left

of statement instance s2 (s1 6= s2)in Γ. During the sequential depth-first execution of

P with input ψ in the ESP-bags algorithm, when s2 is being executed, the ID of the

task τ that executes s1 will be in a P-bag if and only if s1 may-happen-in-parallel with

s2.
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Proof. Let Γ be the DPST of P for input ψ. Let LCA(s1, s2) = λ. Since s1 and s2

are leaf nodes in the DPST, λ 6= s1 and λ 6= s2.

if: Let us assume s1 may-happen-in-parallel with s2. During the sequential depth-

first execution of P , s1 will be executed before s2 because of the assumption that s1

is to the left of s2. Let A1 denote the DPST ancestor of s1 that is the child of λ. We

know from Theorem 4.1.1 that A1 must be an async node. According to the rules of

the ESP-bags algorithm, when the sequential depth-first execution returns from an

async to its parent, the contents of the S and P bags of the async are emptied into

the P bag of the parent. These contents stay in the P bag of the parent until the

execution reaches the end of the parent. In our case, when the sequential depth-first

execution of ESP-bags returns from A1, the ID of the task τ that owns s1 will be put

in the P-bag of λ, which is the parent of A1 in Γ. The ID of τ will stay in the P-bag

of λ until the execution completes the execution of the subtree under λ. By definition

of λ and A1 we know that s2 is in a subtree whose root is a peer of A1 and is to the

right of A1. Hence when s2 is executed, the ID of τ will be in a P-bag.

only if: Let us assume that the ID of the task τ that owns s1 is in a P-bag when

s2 is executed under the sequential depth-first execution of the ESP-bags algorithm.

Let A1 denote the DPST ancestor of s1 that is the child of λ.

Case 1: A1 is a finish node. In this case τ will be in a S bag when s2 is executed,

according to the rules of the ESP-bags algorithm.

Case 2: A1 is the node s1. Again in this case τ will be in a S bag when s2 is executed,

according to the rules of the ESP-bags algorithm.

Hence A1 can neither be a finish node nor the node s1. A1 must be an async node.

Following from Theorem 4.1.1, s1 may-happen-in-parallel with s2.
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Theorem 5.1.5 (Precision and Soundness). The ESP-bags algorithm detects a data

race in an HJ program for a given input if and only if a data race exists.

Proof. Let us consider an HJ program P that is executed with an input ψ. Let Γ

denote the DPST corresponding to the sequential depth-first execution of P with

input ψ.

if: Let us assume that there is a data race in some schedule of P with input ψ.

There are two statements, s1 and s2, that may-happen-in-parallel, both accessing the

same memory location L, and one of those is a write. Without loss of generality, let us

assume that s1 executes before s2 during ESP-bags’s sequential depth-first execution

of P . Thus s1 will be to the left of s2 in Γ. From Theorem 5.1.4 it follows that when

s2 is executed, the task τ that owns s1 will be in a P-bag.

Case 1: s2 contains a read of L. In this case, s1 will contain a write to L. When s2

is executed during the sequential depth-first execution, the ESP-bags algorithm

checks if the previous writer of L is in a P-bag. In this case, since τ is in a

P-bag, the algorithm signals a data race.

Case 2: s2 contains a write of L. Now s1 may contain either a read or a write to L.

When s2 is executed during the sequential depth-first execution, the ESP-bags

algorithm checks if the previous reader or writer of L is in a P-bag. In this case,

since τ is in a P-bag, the algorithm signals a data race.

only if: Let us assume that the ESP-bags algorithm detects a data race in P

with input ψ. According to the rules of the ESP-bags algorithm, a data race will be

signaled only in two cases:

Case 1: On the read of a memory location L in a statement s2, the previous writer

of L (corresponding to a write in a statement s1), say τ , is in a P-bag. It follows
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from Theorem 5.1.4 that s1 may-happen-in-parallel with s2. Hence, there is a

data race in some execution of P with input ψ.

Case 2: On the write of a memory location L, the previous reader or writer of L

(corresponding to a read or a write in a statement s1), say τ , is in a P-bag.

It follows from Theorem 5.1.4 that s1 may-happen-in-parallel with s2. Hence,

there is a data race in some execution of P with input ψ.

In summary, if the ESP-bags algorithm reports a data race, then it is a true data

race and if the ESP-bags algorithm does not report a data race, then no execution of

that program for that input will result in a data race.

5.2 SPD3 for Async-Finish

In this section, we prove the correctness of the basic SPD3 algorithm that detects

data races in HJ programs with async and finish constructs. First, we define a few

terms and relations that will be used extensively in our proof. Then, we present a

few lemmas along with their proofs. These lemmas form the basis of our correctness

proof for SPD3. We then present three theorems that prove that the SPD3 algorithm

is sound, i.e., if the algorithm does not report a data race, then no execution of that

program for that input will have a data race. Then, we present three theorems that

prove the precision of SPD3, i.e., if the algorithm reports a data race, then it is a

true data race. Finally, we present the theorem that uses these earlier results to show

that SPD3 is sound and precise for a given input.

Definition 5.2.1. A parallel schedule of a program P with a given input is a mapping

from every dynamic instruction instance in P to a unique pair (w, t), where w is the

worker that executes the instruction at time t.
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Since, the SPD3 algorithm works with steps as the basic unit of computation, the

parallel schedule can also be considered to be a mapping from every step to a unique

triple (w, t1, t2), where the worker w executes the step from time t1 to t2.

Definition 5.2.2. For two memory operations, O1 and O2, on the same location,

operation O1 scheduled at (w, t1) is said to execute before operation O2 scheduled at

(w′, t2) if t1 < t2. We assume that no two memory operations on the same location

can execute at the same time.

Note that when memory operation O1 executes before memory operation O2, we

also refer to this as O2 executing after O1.

Definition 5.2.3. A step S1 scheduled at (w, t1, t2) is said to execute before another

step S2 scheduled at (w′, t3, t4) if t2 < t3.

Definition 5.2.4. For three memory operations, O1, O2, and O3, on the same loca-

tion, operation O1 is said to execute between operations O2 and O3 if O2 executes

before O1 and O1 executes before O3.

Definition 5.2.5. A read-write data race on a memory location M is a data race

caused by a read R of M executing before the conflicting write W to M , where

DMHP(R, W ) = true.

Definition 5.2.6. A write-read data race on a memory location M is a data race

caused by a write W to M executing before the conflicting read R of M , where

DMHP(W , R) = true.

Definition 5.2.7. A write-write data race on a memory location M is a data race

caused by two conflicting writes, W1 and W2, to M , where DMHP(W1, W2) = true.
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Definition 5.2.8. Consider two nodes, n1 and n2, n1 6= n2, in a DPST Γ, such that

neither node is an ancestor of the other in Γ. Then, happens-before-defining-node of

n1 and n2, denoted by HBDN(n1, n2), is defined to be the node η, such that:

• if n1 is to the left of n2 in Γ, then η is the ancestor of n1 which is the child of

LCA(n1, n2). Note that, if n1 is a child of LCA(n1, n2), then η is the node n1.

• if n2 is to the left of n1 in Γ, then η is the ancestor of n2 which is the child

of LCA(n1, n2). Note that, if n2 is a child of LCA(n1, n2), then η is the node

n2.

For any two steps, S1 and S2, in a DPST, it follows from Theorem 4.1.1 that:

DMHP(S1, S2) = true⇔ HBDN(S1, S2) is an async.

The motivation behind the name happens-before-defining-node is that the node HB-

DN(S1, S2) defines the happens-before relation between S1 and S2, i.e. HBDN(S1, S2)

defines whether S1 and S2 may execute in parallel.

Lemma 5.2.1. Consider two steps, S1 and S2, S1 6= S2, in a DPST Γ. Let LCA(S1,

S2) = λ. Every node Sk which may execute in parallel with one of S1, S2 and not the

other, will be in the subtree under λ.

Proof. For any node Sk that is outside the subtree under λ, HBDN(S1, Sk) = HBDN(S2,

Sk). Hence, DMHP(S1, Sk) = DMHP(S2, Sk). So, it cannot be the case that Sk ex-

ecutes in parallel with one of S1, S2 and not the other. Thus, Sk has to be in the

subtree under λ.

Lemma 5.2.2. If a step S1 executes before a step S2 in an execution δ of a program

P with input ψ and DMHP(S1, S2) = false, then S1 will execute before S2 in all

executions of P with ψ.
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Proof. Consider the DPST Γ of the program P with input ψ. Let HBDN(S1, S2) =

η. Since DMHP(S1, S2) = false, η is not an async. Since S1 executes before S2 in the

execution δ, S1 has to be to the left of S2 in Γ. We know that every execution of P

with ψ will result in the same DPST Γ. Since HBDN(S1, S2), η, is not an async, S1

has to execute before S2 in all executions of P with input ψ.

Lemma 5.2.3. Consider two steps, S1 and S2, S1 6= S2, in a DPST Γ such that

DMHP(S1, S2) = false. Then, for any step, Sk, in Γ that may execute after S1 and

S2:

DMHP(S1, Sk) = true⇒ DMHP(S2, Sk) = true

Proof. Let LCA(S1, S2) = λ. Let HBDN(S1, S2) = η. Since DMHP(S1, S2) = false,

η is not an async. Without loss of generality, let us assume that S1 executes first

followed by S2. Since DMHP(S1, S2) = false, it follows from Lemma 5.2.2 that S1

will execute before S2 in all executions of the given program with the given input.

Hence, η is an ancestor of S1 that is a child of λ.

Case 1: Sk is outside the subtree under λ.

HBDN(S1, Sk) = HBDN(S2, Sk). Hence DMHP(S1, Sk) = DMHP(S2, Sk), i.e.,

DMHP(S1, Sk) = true ⇒ DMHP(S2, Sk) = true

Case 2: Sk is inside the subtree under λ and to the left of the subtree under η.

Let HBDN(S1, Sk) = η′. If DMHP(S1, Sk) = true, η′ is an async. Since Sk is

to the left of the subtree under η and S2 is to the right of the subtree under η,

HBDN(S2, Sk) is η′. Since η′ is an async, DMHP(S2, Sk) = true.

Case 3: Sk is inside the subtree under λ and to the right of the subtree under η.

HBDN(S1, Sk) = η. Since η is not an async, DMHP(S1, Sk) = false. In this
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case, DMHP(S1, Sk) can never be true.

Case 4: Sk is inside the subtree under η.

Since η is not an async and S2 is to the right of the subtree under η, Sk can

never execute after S2. Hence, this case is not possible.

Lemma 5.2.4. Consider two steps, S1 and S2, S1 6= S2, in a DPST Γ, such that

DMHP(S1, S2) = true. Let LCA(S1, S2) = λ. Let S3 denote a step in the subtree

under λ. Then, for any step, Sk, in Γ that may execute after S1 and S2:

DMHP(Sk, S3) = true⇒ DMHP(Sk, S1) = true ||

DMHP(Sk, S2) = true

Proof. Without loss of generality, let us assume that S1 is to the left of S2 in Γ. Let

HBDN(S1, S2) = η. Since DMHP(S1, S2) = true, η is an async.

Case 1: Sk is outside the subtree under λ.

Since Sk is outside the subtree under λ, HBDN(S1, Sk) = HBDN(S2, Sk) =

HBDN(S3, Sk). Hence, DMHP(S3, Sk) = DMHP(S1, Sk) = DMHP(S2, Sk).

Case 2: Sk is within the subtree under λ.

Case 2a: Sk is within the subtree under η.

HBDN(S2, Sk) = η and η is an async. So, DMHP(S2, Sk) = true.

Case 2b: Sk is outside the subtree under η and to the left of S1.

Let HBDN(S1, Sk) = ζ . If ζ is a finish or ζ = Sk, Sk can never execute after

S1 and S2, i.e., no execution of the given program will have Sk executing

after S1 and S2. Hence, ζ must be an async and DMHP(Sk, S1) = true.
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Case 2c: Sk is outside the subtree under η and to the right of S1.

HBDN(S1, Sk) = η and η is an async. So, DMHP(S1, Sk) = true.

Theorem 5.2.1. If Algorithms 3 and 4 do not report any data race in some execution

of a program P with input ψ, then no execution of P with ψ will have a write-write

data race on any memory location M .

Proof. Consider an execution δ of a program P with input ψ in which Algorithms 3

and 4 do not report any data race.

Suppose that a write-write data race, χ, occurs on a memory location M in some

execution δ′ of P with ψ. Let W1 and W2 denote the two steps that write to M

resulting in the data race in δ′, i.e, DMHP(W1, W2) = true. Note that the execution

δ′ does not have any data race until χ occurs. Without loss of generality, let us

assume W1 writes to M first and W2 writes later in δ.

Case 1: There are no writes to M between W1 and W2 in δ.

When W1 occurs in δ′, Algorithm 3 checks if any of the previous readers and

writers of M (in the three fields of Ms) can execute in parallel withW1. Since χ

is the first data race to occur in δ′, they can never execute in parallel with W1.

Since the DPST is same across all executions of P with ψ, this applies to δ as

well. Also, it follows from Lemma 5.2.2 that the previous readers and writers of

M will execute before W1 in δ. Hence, when W1 occurs in δ, Algorithm 3 sets

Ms.w to W1. Then, when W2 occurs in δ, Algorithm 3 will see that W2 can

execute in parallel withW1 and signal a write-write race between them. This is

contradicting our assumption that both our algorithms do not report any data

race in δ.

Case 2: There are writes to M by steps Wi · · · Wj between W1 and W2 in δ.
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The writes to M happen in this order in δ′: W1, Wi · · · Wj , W2. Since the

data race χ between W1 and W2 is the first data race in δ′, there must have

been no races among the writes W1, Wi · · · Wj . In other words, DMHP(W1,

Wi) = false, · · · , DMHP(Wj−1, Wj) = false. Since the DPST is same across

all executions of P with ψ, this applies to δ as well. Also, it follows from

Lemma 5.2.2 that these writes to M occur in the same order in δ as well.

Hence in δ, Algorithm 3 would set Ms.w field to W1, Wi · · · Wj in order.

When W2 occurs in δ, Ms.w will contain Wj . It follows from Lemma 5.2.3 that

if DMHP(W1, W2) = true, then DMHP(Wj , W2) = true. Hence, when W2

occurs in δ, Algorithm 3 will see that W2 can execute in parallel with Wj and

signal a write-write race between them. This is contradicting our assumption

that both our algorithms do not report any data race in δ.

Theorem 5.2.2. If Algorithms 3 and 4 do not report any data race in some execution

of a program P with input ψ, then no execution of P with ψ will have a read-write

data race on any memory location M .

Proof. Consider an execution δ of a program P with input ψ in which Algorithms 3

and 4 do not report any data race.

Suppose that a read-write data race, χ, occurs on a memory location M in some

execution δ′ of P with ψ. Let R1 and W1 denote the steps that read and write M

resulting in the data race in δ′, i.e, DMHP(R1, W1) = true. Note that the execution

δ′ does not have any data race until χ occurs.

Case 1: R1 executes before W1 in δ.

When R1 occurs in δ, Algorithm 4 either updates one of the readers of Ms with

R1 or chooses not to update the readers because R1 can execute in parallel with
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Ms.r1 and Ms.r2 and is also within the subtree of LCA(Ms.r1, Ms.r2) (= λ).

Case 1.a: There are no reads of M between R1 and W1 in δ.

If Ms.r1 or Ms.r2 contains R1, when W1 occurs in δ, Algorithm 3 will find

thatW1 can execute in parallel with R1 and report a read-write data race.

This contradicts our assumption that our algorithm does not report a data

race in δ.

If Ms.r1 and Ms.r2 does not contain R1, whenW1 occurs in δ, Algorithm 3

will find that W1 can execute in parallel with at least one of Ms.r1, Ms.r2.

(This follows from Lemma 5.2.4 and the fact that DMHP(R1,W1) = true.)

Again, Algorithm 3 will report a read-write data race which contradicts

our assumption.

Case 1.b: There are reads of M by steps Ri · · · Rj between R1 and W1 in δ.

Case 1.b.1: ∀ Rk in [Ri · · · Rj ] DMHP(R1, Rk) = true.

AfterRj completes in δ, Ms.r1 and Ms.r2 will be updated such thatRj

is in the subtree under LCA(Ms.r1, Ms.r2) (= λ). Since DMHP(R1,

Rj) = true,R1 must also be in the subtree under λ. From Lemma 5.2.4

it follows that either DMHP(Ms.r1,W1) = true or DMHP(Ms.r2,W1)

= true. Hence, Algorithm 3 should have reported a read-write data

race in δ. A contradiction.

Case 1.b.2: ∃ Rk in [Ri · · · Rj ] such that DMHP(R1, Rk) = false.

Since DMHP(R1,W1) = true, DMHP(Rk,W1) = true from Lemma 5.2.3.

Hence, Algorithm 3 should have reported a read-write data race in δ.

A contradiction.

Case 2: W1 executes before R1 in δ.
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Case 2.a: There are no writes to M between W1 and R1 in δ.

When W1 occurs in δ, Algorithm 3 will update Ms.w to W1. When R1

occurs in δ, Algorithm 4 will see that DMHP(W1, R1) = true and should

have reported a write-read data race in δ. A contradiction.

Case 2.b: There are writes to M by steps Wi · · · Wj between W1 and R1 in

δ.

If anyWk in [Wi · · · Wj ] can execute in parallel withW1, i.e. DMHP(W1,

Wk) = true, Algorithm 3 should have reported a write-write data race in

δ. So, ∀ Wk in [Wi · · · Wj ] DMHP(W1, Wk) = false. Hence, when Wj

executes in δ, Algorithm 3 will update Ms.w to Wj . From Lemma 5.2.3,

DMHP(W1, R1) = true =⇒ DMHP(Wj , R1) = true. Hence, Algorithm 4

should have report a write-read data race in δ. A contradiction.

Theorem 5.2.3. If Algorithms 3 and 4 do not report any data race in some execution

of a program P with input ψ, then no execution of P with ψ will have a write-read

data race on any memory location M .

Proof. Consider an execution δ of a program P with input ψ in which Algorithms 3

and 4 do not report any data race.

Suppose that a write-read data race, χ, occurs on a memory location M in some

execution δ′ of P with ψ. Let W1 and R1 denote the steps that write and read M

resulting in the data race in δ′, i.e, DMHP(W1, R1) = true. Note that the execution

δ′ does not have any data race until χ occurs.

Case 1: W1 executes before R1 in δ.

Same as Case 2 in Theorem 5.2.2.



123

Case 2: R1 executes before W1 in δ.

Same as Case 1 in Theorem 5.2.2.

Theorem 5.2.4. If Algorithm 3 reports a write-write race on a memory location

M during an execution of a program P with input ψ, then there exists at least one

execution of P with ψ in which this race exists.

Proof. Since Algorithm 3 reports a write-write race on M , there must be two steps,

W1 and W2, that write M such that DMHP(W1, W2) = true. From the definition of

DMHP, it follows that there is a schedule δ of P with ψ in which W1 and W2 execute

in parallel. Hence, the write-write data race exists in δ.

Theorem 5.2.5. If Algorithm 3 reports a read-write race on a memory location M

during an execution of a program P with input ψ, then there exists at least one exe-

cution of P with ψ in which this race exists.

Proof. Since Algorithm 3 reports a read-write race on M , there must be two steps,

R1 and W1, that read and write M respectively such that DMHP(R1, W1) = true.

From the definition of DMHP, it follows that there is a schedule δ of P with ψ in

which R1 andW1 execute in parallel. Hence, the read-write data race exists in δ.

Theorem 5.2.6. If Algorithm 4 reports a write-read race on a memory location M

during an execution of a program P with input ψ, then there exists at least one exe-

cution of P with ψ in which this race exists.

Proof. Since Algorithm 4 reports a write-read race on M , there must be two steps,

W1 and R1, that write and read M respectively such that DMHP(W1, R1) = true.

From the definition of DMHP, it follows that there is a schedule δ of P with ψ in

which W1 and R1 execute in parallel. Hence, the write-read data race exists in δ.
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Theorem 5.2.7. The SPD3 race detection algorithm, described by Algorithms 3

and 4, is sound and precise for a given input.

Proof. From Theorems 5.2.1, 5.2.2, and 5.2.3 it follows that if our race detection

algorithm does not report any data race in some execution of a program P with input

ψ, then no execution of P with ψ will have a data race on any memory location M .

Hence the algorithm is sound for a given input.

From Theorems 5.2.4, 5.2.5, and 5.2.6 it follows that if our race detection algorithm

reports a data race for a program P with input ψ, then there exists at least one

execution of P with ψ in which the race will occur. Hence the algorithm is precise

for a given input.
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Chapter 6

Implementation

This chapter describes the implementation of the ESP-bags and the SPD3 algorithm

for HJ programs with async, finish, and isolated constructs. First, we discuss the

common details about the design and implementation of both data race detectors.

We then discuss the implementation of disjoint-sets used in ESP-bags. Then, we

describe the implementation of the Dynamic Program Structure Tree (DPST) that is

used in the SPD3 algorithm. Finally, we present a technique to relax the atomicity

requirement while updating the shadow memory in the SPD3 algorithm.

6.1 Design of Data Race Detectors

In this section, we describe the design and implementation details that are common

to both ESP-bags and SPD3. We also explain the HJ system architecture with the

focus on where and how the race detectors fit in.

The implementation of both ESP-bags and SPD3 involves two separate compo-

nents:

– the race detection runtime

– the race detection instrumentor

The race detection runtime implements the actual race detection algorithm and de-

fines interfaces for the HJ program to interact with the algorithm. The race detection



126

!"#$%&$'()*#+,-+#%.(

/0(1&$&"2%#"(

3445(

678(

96(*"#-"2:(

;35(

*/0(

<,%&=#'&(

02=&(>&%&=?#$(

/$@%"A:&$%2?#$(

02=&(>&%&=?#$(

0A$?:&(
96(0A$?:&(

Figure 6.1 : HJ System Architecture with Race Detection

instrumentor adds the necessary instrumentations to the HJ program so that the

algorithm can detect data races during the execution of the program.

The race detection runtime for both the algorithms were implemented as Java

libraries. For every memory location, the shadow location was implemented by ex-

tending the hj.lang.Object class with shadow fields. In the case of arrays, array

views [9, 10] were used as anchors for shadow arrays.

Now, we briefly describe the HJ system architecture and also the interaction of

the two components of the data race detectors with the HJ system. The full descrip-

tion of the HJ system architecture can be found in [45]. Figure 6.1 shows the HJ
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system architecture along with the race detector components. First, the HJ program

is parsed and an Abstract Syntax Tree (AST) is generated by the frontend which is

based on Polyglot [46]. The IR generator reads in the AST and generates a Parallel

Intermediate Representation (PIR) for the given HJ program. The PIR is an inter-

mediate representation that extends Soot’s Jimple IR [47] with parallel constructs

such as async, finish, isolated, and future. The HJ compiler includes an extended set

of Soot passes to handle the PIR with the parallel constructs in HJ and to optimize

the PIR of the given HJ program. It also includes a Soot pass that transforms the

PIR to target a HJ runtime, say the work-stealing runtime. This pass would elimi-

nate all the parallel constructs from the PIR and transform the code to use the HJ

runtime for execution. The final step in the set of Soot passes is to generate bytecode

from the transformed PIR. The bytecode then runs on a JVM like any other Java

program. The execution of the bytecode on the JVM will use the HJ runtime that it

was targeted to execute with.

The race detection runtime library, written in Java, is compiled to bytecode by the

regular Java compiler, javac. The race detection instrumentor for both the algorithms

are implemented as Soot transformation passes on the PIR. To enable data race

detection, the race detection instrumentor is added to the list of passes that execute

in Soot. This instrumentation pass adds the necessary calls to the race detection

runtime library at async, finish, and isolated boundaries and also on reads and writes

to shared memory locations. Now, the generated bytecode will contain these calls to

the race detection runtime library. When this bytecode runs on the JVM, the race

detection runtime monitors the accesses to shared memory locations in the program

and detects data races when they occur.
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6.2 Disjoint-set in ESP-bags

The implementation of the ESP-bags algorithm is mostly covered by the details in

Section 6.1. The only part that remains is the maintaining of S and P bags of all

the tasks during the execution of the program. The S and P bags are implemented

as sets. Every task has two sets associated with it, one for the S bag and the other

for the P bag of the task. As we discussed earlier in Section 3.2.1, since all the S

and P bags of all the tasks are disjoint, the sets to store them are maintained as a

disjoint-set forest [48]. The disjoint-set forest supports all the operations that are

used in the ESP-bags algorithm, like MakeSet, Union, and Lookup, in an efficient

manner.

The disjoint-set forest is implemented as follows. Every set is represented as a

tree, where the nodes point to their parents. The root of the tree is the representative

element of the set. A flag is attached to the root of every tree to indicate whether

the set represents an S bag or a P bag. The MakeSet operation creates a tree with a

single node because the set initially contains only one element. The Union operation

on two sets combines the trees corresponding to the two sets into one by attaching the

root of one tree to the other. The Lookup operation follows the parent pointer from

the node to its root and returns the root because it is the representative element for

that set. Note that the implementation also includes two optimizations to improve

the asymptotic performance of the disjoint-set forest, namely union by rank and path

compression [48].
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6.3 DPST in SPD3

The SPD3 algorithm uses the Dynamic Program Structure Tree (DPST) to detect

data races in HJ programs. In this section, we describe an implementation of the

DPST and discuss how this implementation of DPST is amenable to garbage collec-

tion.

The DPST of the program being executed is built to maintain the parent-child

relationship of asyncs, finishes and steps in the program. Every node in the DPST

consists of the following 4 fields:

• parent: the DPST node which is the parent of this node.

• depth: an integer that stores the depth of this node. The root node of the

DPST has depth 0. Every other node in the DPST has depth one greater than

its parent. This field is immutable.

• num children: number of children of this node currently in the DPST. This field

is initialized to 0 and incremented when child nodes are added.

• seq no: an integer that stores the ordering of this node among the children of

its parent, i.e., among its siblings. Every node’s children are ordered from left

to right. They are assigned sequence numbers starting from 1 to indicate this

order. This field is also immutable.

The use of depth for nodes in the DPST leads to a lowest common ancestor

(LCA) algorithm with better complexity (than if we had not used this field). The use

of sequence numbers to maintain the ordering of a node’s children makes it easier to

check for may happen in parallel given two steps in the program.
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Note that all the fields of a node in the DPST can be initialized/updated without

any synchronization: the parent field initialization is trivial because there are no

competing writes to that field; the depth field of a node is written only on initialization,

is never updated, and is read only after the node is created; the num children field

is incremented whenever a child node is added, but for a given node, its children are

always added sequentially in order from left to right; the seq no field is written only

on initialization, is never updated, and is read only after the node is created.

Amenability to Garbage Collection

Every node in a DPST points to its parent. There are no pointers from a node to its

children or to its siblings in a DPST. The only reference to step nodes (leaf nodes) are

from the shadow memory of the shared memory locations during program execution.

This design ensures that the nodes in a DPST can be garbage collected as and when

they become obsolete.

We now explain the process of garbage collection on a DPST. Suppose there are v

shared memory locations during a program execution. There are v shadow memory

locations, one for each memory location. Also, there is a pointer from each memory

location to its shadow memory. The shadow memory stores the fields as described

in the SPD3 algorithm. Each of these fields in the shadow memory points to a step

in the DPST. Suppose there are u memory locations whose shadow memory point to

a particular step S. During program execution, when all these u memory locations

get garbage collected, the shadow memories corresponding to all these u memory

locations can also be garbage collected. Now, since there are no references to the

step S, the node corresponding to the step S can be garbage collected. When all the

nodes within a subtree in the DPST get garbage collected, the root of the subtree
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can be garbage collected.

Since DPST is a dynamic data structure, its size can grow arbitrarily large during

program execution as there can be multiple instances for every statement in the

program and each such instance gets a node in the DPST. Hence, the property of the

DPST to allow for an implementation that is amenable to garbage collection is very

important for using it in practical applications.

6.4 Relaxing the Atomicity Requirement in SPD3

A memory action for an access to a memory location M involves reading the fields

of its shadow memory location Ms, computing the necessary DMHP information and

checking appropriate predicates, and possibly updating the fields of Ms. Let us refer

to these three stages as read, compute, and update of a memory action.

In our algorithm, every memory action on a shadow memory Ms has to execute

atomically relative to other memory actions on Ms. When there are parallel reads

to a memory location, this atomicity requirement effectively serializes the memory

actions due to these reads. Hence this atomicity requirement induces a bottleneck

in our algorithm when the program is executed on a large number of threads. Note

that the atomicity requirement does not result in a bottleneck in the case of writes

to a memory location because the memory actions due to writes have no contention

in data race free programs. (In a data race free program, there is a happens-before

ordering between a write and every other access to a memory location.)

We now present our implementation strategy to overcome this atomicity require-

ment without sacrificing the correctness of our algorithm. This implementation strat-

egy is based on the solution to the reader-writer problem proposed by Leslie Lamport

in [49]. Our implementation allows multiple memory actions on the same shadow
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memory to proceed in parallel. This is done by adding two atomic integers to every

shadow memory, i.e., Ms contains the following two additional fields:

– startVersion: an atomic integer that denotes the version number of Ms

– endVersion: an atomic integer that denotes the version number of Ms.

Both startVersion and endVersion are initialized to zero. Every time any of the

fields Ms.w, Ms.r1, or Ms.r2 are updated, Ms.startVersion and Ms.endVersion are

incremented by one. The following invariant is maintained on every shadow memory

Ms during the execution of our algorithm: any consistent snapshot of Ms will have

the same version number in both startVersion and endVersion. Now, we show how

the read, compute, and update stages of a memory action on Ms are performed. Note

that these rules use a CompareAndSet (CAS)1 primitive which is atomic relative to

every operation on the same memory location.

Read:

1. Read the version number in Ms.startVersion into a local variable, X.

2. Read the fields Ms.w, Ms.r1, and Ms.r2 into local variables, W , R1, and

R2.

3. Perform a fence to ensure that all operations above are complete.

4. Read the version number in Ms.endVersion into a local variable, Y .

5. If X is not the same as Y , restart the read stage.

Compute:

1It is also referred to as CompareAndSwap in the literature.
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1. Perform the computation on the local variables, W , R1, and R2.

Update:

1. Do the following steps if an update to any of the fields Ms.w, Ms.r1, or

Ms.r2 is necessary.

2. Perform a CAS on the version number in Ms.endVersion looking for the

value X and updating it with an increment of one.

3. If the above CAS fails, restart the memory action from the beginning of

the read stage.

4. Write to the required fields of Ms.

5. Write the incremented version number to Ms.startVersion.

When a memory action on Ms completes the read stage, the above rules en-

sure that a consistent snapshot of Ms was captured. This is because the read stage

completes only when the same version number is seen in both Ms.startVersion and

Ms.endVersion.

The CAS in the update stage of the memory action on Ms succeeds only when

Ms.endVersion has the version number that was found in the read stage earlier. The

update stage completes by writing to the reader and writer fields of Ms as necessary,

followed by incrementing the version number in Ms.startVersion. When the update

stage completes, both Ms.startVersion and Ms.endVersion will have the same version

number and thus, the fields of Ms are retained in a consistent state.

The CAS in the update stage of a memory action α on Ms also ensures that the

fields of Ms are updated only if it has not already been updated by any memory

action on Ms, since the read stage of α. If this CAS fails, then there has been some
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update to Ms since the read stage and hence, the computations are discarded and the

memory action is restarted from the beginning of the read stage. Thus, the memory

actions are guaranteed to be atomic relative to other memory actions on the same

memory location.

The main advantage of this implementation is that it allows multiple memory

actions on the same shadow memory Ms to proceed in parallel. But if more than

one of them needs to update the fields of Ms, then only one of them is guaranteed to

succeed while the others repeat the action. This is especially beneficial when there

are multiple parallel accesses to M whose memory actions do not update the fields of

Ms. In our algorithm, this occurs when there are reads by step S such that S is in

the subtree rooted at LCA(Ms.r1, Ms.r2). These cases occur frequently in practice

thereby emphasizing the importance of relaxing the atomicity requirement.

Our algorithm is implemented in Java and we use the AtomicInteger from Java

Concurrency Utilities for the version numbers. The CAS on Atomic Integer is guar-

anteed to execute atomically with respect to other operations on the same location.

Also, the CAS acts as a barrier for the memory effects of the instructions on its either

side, i.e., all the instructions above it are guaranteed to complete before it executes

and no instructions below it will execute before it completes. This is the same as

the memory effects of the fence that is used in the read stage. The read of an Atom-

icInteger has the memory effects of the read of a volatile in Java. Hence, it does not

allow any instruction after it to execute until it completes. Similarly, the write to an

AtomicInteger has the memory effects of the write to a volatile in Java. Hence, it

does not execute until all the instructions before it complete.
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Chapter 7

Static Optimizations for Data Race Detection

The race detection algorithms are implemented as a Java library. Recall that the

algorithms require that actions be taken on every read and write to a shared memory

location. It is during these actions that the algorithms check if the current task can

race with the task recorded in the access history of the memory location. To test a

given program for data races using our algorithms, we use a compiler transformation

pass that instruments read and write operations on a heap location or an array in

the program with appropriate calls to the library. A näıve way to perform this is

to instrument every access to every shared memory location. But some of these

instrumentations may be redundant, i.e., removing them will not affect the process of

checking for data races in the program. This is because some read and write operations

are guaranteed to never introduce any additional data races in the program and hence

such operations need not be instrumented.

As described earlier, our race detection algorithms also keep track of the finish,

async, isolated blocks in the program. Hence, they require instrumentations for the

start and end of every such block in the program. But these instrumentations are all

necessary to maintain the parallelism structure at runtime in our algorithms1.

In this chapter, we describe static analysis that can be used to reduce the instru-

1Though some redundant finish blocks can be removed as well, we ignore it because, removing

these redundant finish blocks will not improve the runtime of our algorithms (since the number of

memory accesses in a typical parallel program is much larger than the number of finish instances).
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mentation and hence improve the runtime performance of the instrumented program.

These analysis apply to all the race detection algorithms that we have described so

far. We also include an example that depicts how each of these static analysis are

used to eliminate instrumentation points. Figure 7.1 shows a program in HJ with

all its read and write operations instrumented (markRead and markWrite refers to

the call to the library). Suppose that the main task is always guaranteed to start

executing this portion of the program. This will be used as the baseline to depict

these optimizations. Note that the instrumentations that are needed for the finish

and async blocks are not shown in this example.

7.1 Main Task Check Elimination in Sequential Code Re-

gions

The first static optimization aims at eliminating redundant instrumentation points

that are added in the sequential code regions in the main task. A parallel program will

always start and end with sequential code regions and will contain alternating parallel

and sequential code regions in the middle. It is clear that no read or write operation

in the sequential code regions of the program can result in a data race. Hence, there

is no need to instrument the read and write operations in such sequential code regions

of the program. In an HJ program, the sequential code regions are the regions of the

program that are outside the outermost finish blocks2 and are executed by the main

task. Thus, in an HJ program, there is no need to instrument the read and write

operations in such sequential code regions of the main task.

2This is assuming there are no asyncs outside any finish in the program. If there are any such

asyncs, then the only sequential code regions in the program are the regions outside the outermost

finish and before the first such async.
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1 int [ ] A, B; Foo p ;

2 . . . . . .

3 markWrite (p , x ) ;

4 p . x = 0 ;

5 f i n i s h {

6 for ( int i =0; i<s i z e ; i++ ) {

7 f ina l int ind = i ;

8 async {

9 markRead(A, ind ) ;

10 markRead(B, ind ) ;

11 markWrite (p , x ) ;

12 p . x = A[ ind ] + B[ ind ] ;

13 Foo q = new Foo ( ) ;

14 for ( int j =0; j<ind ; j++) {

15 markRead(p , x ) ;

16 markWrite (q , x ) ;

17 q . x = p . x + 1 ;

18 markRead(q , y ) ;

19 markWrite (B, j ) ;

20 B[ i ] = q . y + ind ;

21 }

22 }

23 }

24 }

Figure 7.1 : An example HJ program
with all read and write operations in-
strumented

1 int [ ] A, B; Foo p ;

2 . . . . . .

3 p . x = 0 ;

4 f i n i s h {

5 for ( int i =0; i<s i z e ; i++ ) {

6 f ina l int ind = i ;

7 async {

8 markRead(A, ind ) ;

9 markRead(B, ind ) ;

10 markWrite (p , x ) ;

11 p . x = A[ ind ] + B[ ind ] ;

12 Foo q = new Foo ( ) ;

13 for ( int j =0; j<ind ; j++) {

14 markRead(p , x ) ;

15 markWrite (q , x ) ;

16 q . x = p . x + 1 ;

17 markRead(q , y ) ;

18 markWrite (B, j ) ;

19 B[ i ] = q . y + ind ;

20 }

21 }

22 }

23 }

Figure 7.2 : After applying the main
task check elimination optimization on
the program in Figure 7.1
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Figure 7.2 shows the result of eliminating the instrumentation points in the se-

quential code regions of the program in Figure 7.1. The program in Figure 7.1 contains

a write to a heap location p.x in line 4 which is part of the sequential code region

executed by the main task. Hence the corresponding call to the library in line 3 can

be eliminated.

7.2 Read-only Check Elimination in Parallel Code Regions

The input program may have shared memory locations that are written by the se-

quential regions of the program and only read within parallel regions of the program.

Such read operations within parallel regions of the program need not be instrumented

because parallel tasks reading from the same memory location will never lead to a

conflict. In order to perform this optimization, the compiler implements an inter-

procedural side-effect analysis to detect potential write operations to shared memory

locations within the parallel regions of the given program. If there is no possible write

to a shared memory location M in the parallel regions of the program, that clearly

shows that all accesses to M in the parallel regions must be read-only and hence

the instrumentation points corresponding to these reads can be eliminated. (The

checks for the writes in the sequential regions, if any, will be eliminated by the rule

in Section 7.1).

The result of applying this optimization on the program in Figure 7.2 is shown

in figure 7.3. There is no write to array A within the parallel regions of the program

in Figure 7.2. Hence the instrumentation in line 8 corresponding to the read of A in

line 11 can be removed.
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1 int [ ] A, B; Foo p ;

2 . . . . . .

3 p . x = 0 ;

4 f i n i s h {

5 for ( int i =0; i<s i z e ; i++ ) {

6 f ina l int ind = i ;

7 async {

8 markRead(B, ind ) ;

9 markWrite (p , x ) ;

10 p . x = A[ ind ] + B[ ind ] ;

11 Foo q = new Foo ( ) ;

12 for ( int j =0; j<ind ; j++) {

13 markRead(p , x ) ;

14 markWrite (q , x ) ;

15 q . x = p . x + 1 ;

16 markRead(q , y ) ;

17 markWrite (B, j ) ;

18 B[ j ] = q . y + ind ;

19 }

20 }

21 }

22 }

Figure 7.3 : After applying the read-
only check optimization on the program
in Figure 7.2

1 int [ ] A, B; Foo p ;

2 . . . . . .

3 p . x = 0 ;

4 f i n i s h {

5 for ( int i =0; i<s i z e ; i++ ) {

6 f ina l int ind = i ;

7 async {

8 markRead(B, ind ) ;

9 markWrite (p , x ) ;

10 p . x = A[ ind ] + B[ ind ] ;

11 Foo q = new Foo ( ) ;

12 for ( int j =0; j<ind ; j++) {

13 markRead(p , x ) ;

14 q . x = p . x + 1 ;

15 markWrite (B, j ) ;

16 B[ j ] = q . y + ind ;

17 }

18 }

19 }

20 }

Figure 7.4 : After applying the escape
analysis and check elimination optimiza-
tion on the program in Figure 7.3
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7.3 Escape Analysis

The input program may include many parallel tasks. A data race occurs in the

program only when two or more tasks access a shared memory location and at least

one of them is a write. Suppose an object is created inside a task and it never escapes

that task, then no other task can access this object [50, 51, 52] and hence it cannot

lead to a data race. In order to ensure the task-local attribute, the compiler performs

an inter-procedural analysis that identifies if an object is shared among tasks. This

also requires an alias analysis to ensure that no alias of the object escapes the task.

Thus, if an object O is proven to not escape a task, then the instrumentation points

corresponding to all accesses to O can be eliminated.

The object q in the program in Figure 7.3 is created in line 11 within a task

and it never escapes this task. Thus no access to q can lead to a determinacy race.

Hence, the instrumentation points in line 14 and 16 corresponding to access to q are

eliminated and the resulting program is shown in Figure 7.4.

7.4 Loop Invariant Check Motion

Recall that the instrumentation corresponding to a memory access to M will first

check if the task that previously accessed M conflicts with the current task and also

update the information that the current task now accessed M . If there are multiple

accesses of the same type (read or write) to M by a task, then it is sufficient to instru-

ment one such access because other instrumentations will only add to the overhead

by unnecessarily repeating the steps. Suppose the input program accesses a shared

memory location M unconditionally inside a loop, the instrumentation corresponding

to this access to M can be moved outside the loop in order to prevent multiple calls
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1 int [ ] A, B; Foo p ;

2 . . . . . .

3 p . x = 0 ;

4 f i n i s h {

5 for ( int i =0; i<s i z e ; i++ ) {

6 f ina l int ind = i ;

7 async {

8 markRead(B, ind ) ;

9 markWrite (p , x ) ;

10 p . x = A[ ind ] + B[ ind ] ;

11 Foo q = new Foo ( ) ;

12 i f ( ind > 0)

13 markRead(p , x ) ;

14 for ( int j =0; j<ind ; j++) {

15 q . x = p . x + 1 ;

16 markWrite (B, j ) ;

17 B[ j ] = q . y + ind ;

18 }

19 }

20 }

21 }

Figure 7.5 : After applying the loop in-
variant check elimination optimization
on the program in Figure 7.4

1 int [ ] A, B; Foo p ;

2 . . . . . .

3 p . x = 0 ;

4 f i n i s h {

5 for ( int i =0; i<s i z e ; i++) {

6 f ina l int ind = i ;

7 async {

8 markRead(B, ind ) ;

9 markWrite (p , x ) ;

10 p . x = A[ ind ] + B[ ind ] ;

11 Foo q = new Foo ( ) ;

12 for ( int j =0; j<ind ; j++) {

13 q . x = p . x + 1 ;

14 markWrite (B, j ) ;

15 B[ j ] = q . y + ind ;

16 }

17 }

18 }

19 }

Figure 7.6 : After applying the read-
/write check elimination optimization
on the program in Figure 7.5
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to the instrumented function for M .

In summary, given a memory access M that is performed unconditionally on every

iteration of a sequential loop, the instrumentation for M can be hoisted out of the

loop by using classical loop-invariant code motion. This transformation includes the

insertion of a zero-trip test to ensure that the loop-invariant check is performed only

when the loop executes for one or more iterations.

In Figure 7.4, the program contains a read of p.x in line 13 that is inside a se-

quential loop. Now, since the same memory location is accessed in every iteration

of the loop, the instrumentation for this access is moved out of the loop as shown

in Figure 7.5. Note the test for the non-zero trip count in line 12 guarding this

instrumentation outside the loop.

7.5 Read/Write Check Elimination

In the previous optimization we showed that it is sufficient to instrument one access

to a memory location M if there are multiple accesses of the same type to M by a

task. In this optimization, we claim that if there are two accesses M1 and M2 to the

same memory location in a task, then we can use the following rules to eliminate one

of them. It works on the basic idea that the instrumentation for a write subsumes

that for a read in the race detection algorithms. An intuitive argument for this is

that, if a read to a memory location M in a task τ causes a data race, then a write

to M in τ will definitely cause a data race.

1. If M1 dominates M2 and M2 is a read operation, then the instrumentation for

M2 can be eliminated (since M1 is either a read or write operation).

2. If M2 postdominates M1 and M1 is a read operation, then the check for M1 can
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be eliminated (since M2 is either a read or write operation). This rule tends

to be applicable in fewer situations than the previous rule in practice, because

computation of postdominance includes the possibility of exceptional control

flow.

Consider the program in Figure 7.5. There is an instrumentation for the write to

p.x in line 9 and an instrumentation corresponding to the read of the same memory

location in line 13. Since the instrumentation in line 9 dominates the one in line 13

and latter is not a write, the latter can be eliminated.
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Chapter 8

Experimental Results

We have so far presented a sequential algorithm (ESP-bags) and a parallel algorithm

(SPD3) for dynamic data race detection in HJ programs. We also described an im-

plementation of ESP-bags and SPD3 for HJ programs with async, finish, and isolated

constructs. Also, we discussed some static optimizations to reduce the overhead of

dynamic data race detectors.

In this chapter, we evaluate the performance of our implementation of the ESP-

bags algorithm and the SPD3 algorithm for async, finish, and isolated constructs,

with and without the static optimizations. First, we discuss the experimental setup

including the system used for our evaluation, the list of benchmarks that we evaluate

our algorithms on, and also the runtime settings used in our evaluation. Then, we

discuss the data races that were identified as a result of applying our algorithms on

these benchmarks. We then present an evaluation of the ESP-bags algorithm for

async, finish, and isolated constructs. Finally, we present an evaluation of the SPD3

algorithm for async, finish, and isolated constructs. We also compare SPD3 with

ESP-bags and two other algorithms, Eraser and FastTrack, from past work.

8.1 Experimental Setup

Our experiments were conducted on a 16-core (quad-socket, quad-core per socket)

Intel Xeon 2.4GHz system with 30 GB memory, running Red Hat Linux (RHEL
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Table 8.1 : List of Benchmarks Evaluated

Source Benchmark Input Description

JGF

Crypt (Section 2) C IDEA encryption

LUFact (Section 2) C LU Factorization

MolDyn (Section 3) B Molecular Dynamics simulation

MonteCarlo (Section 3) B Monte Carlo simulation

RayTracer (Section 3) B 3D Ray Tracer

Series (Section 2) C Fourier coefficient analysis

SOR (Section 2) C Successive over-relaxation

SparseMatMult (Section 2) C Sparse Matrix multiplication

Bots

FFT large Fast Fourier Transformation

Health large Simulates a country health system

Nqueens 14 N Queens problem

Strassen large Matrix Multiply with Strassen’s method

Shootout
Fannkuch 10M Indexed-access to tiny integer-sequence

Mandelbrot 8000 Generate Mandelbrot set portable bitmap

EC2 Matmul 1000ˆ2 Matrix Multiplication (Iterative)

5), and Sun Hotspot JDK 1.6. To reduce the impact of JIT compilation, garbage

collection and other JVM services, we report the smallest time measured in 3 runs

repeated in the same JVM instance for each data point.

We present our evaluations on a suite of 15 benchmarks listed in Table 8.1. It

includes eight Java Grande Forum benchmarks (JGF) [53], four Barcelona OpenMP

Task Suites benchmarks (BOTS) [54], two Shootout benchmarks [55], and one EC2

challenge benchmark. All benchmarks were written in HJ using only async, finish,

and isolated constructs for parallelism, with fine grained one-async-per-iteration par-

allelism for parallel loops. The original version of the JGF benchmarks in Java con-
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tained “chunked” parallel loops with programmer-specified decomposition into coarse

grained one-chunk-per-thread parallelism. The fine grained task-parallel versions of

the JGF benchmarks used for the evaluation here were obtained by rewriting the

chunked loops into “unchunked” parallel loops. In addition, barrier operations in the

JGF benchmarks were replaced by appropriate finish constructs.

Note that benchmarks used for evaluation are limited by the availability of pro-

grams ported to HJ. HJ-Base refers to the uninstrumented baseline version of each of

these benchmarks. All the JGF benchmarks were configured to run with the largest

available input size. The input sizes used for all the benchmarks are also shown in

Table 8.1.

To simulate the sequential depth-first execution needed for the ESP-bags algo-

rithm, HJ tasks were scheduled on a work-stealing scheduler with work-first policy [19]

on 1-thread that performs a sequential depth-first execution. We also evaluated the

ESP-bags algorithm on serialized versions of the benchmarks which remove the async,

finish, and isolated constructs in the program (by eliding the keywords), thereby pro-

ducing a sequential depth-first execution without the overhead of parallel constructs

(but with the overhead of ESP-bags instrumentation).

To evaluate the SPD3 algorithm, HJ tasks were scheduled on a fixed number of

worker threads using a work-stealing scheduler with an adaptive policy [56], which

has been to shown to perform the best among the schedulers available for HJ across

a wide range of benchmarks.

8.2 Data Races Observed

While running our algorithms on the coarse grained HJ versions of the eight JGF

benchmarks, data races were reported for four of the benchmarks: LUFact, MolDyn,
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RayTracer, and SOR. The data race reports pointed to races in shared arrays that

were used by the programmer to implement custom barriers. However, all the custom

barrier implementations were incorrect because they involved unsynchronized spin

loops on shared array elements. Even though the programmer declared the array

references as volatile, the volatile declaration does not apply to the elements of the

array. (In all fairness to the programmer, the JGF benchmarks were written in the

late 1990’s when many Java practitioners were unaware of the implications of the Java

memory model.) We fixed these data races in the HJ versions of the JGF benchmarks

by replacing the incorrect barrier operations with appropriate finish constructs.

Our algorithms also found another data race which turned out to be a benign race.

This was due to repeated parallel assignments of the same value to the same location

in the HJ version of the MonteCarlo benchmark, which was corrected by removing

the redundant assignments. After that, all the benchmarks used for evaluation here

were observed to be data-race-free for the inputs used.

8.3 Evaluation of ESP-bags for Async-Finish-Isolated

In this section, we evaluate our implementation of the ESP-bags algorithm for async,

finish, and isolated constructs along with the static optimizations.

8.3.1 Performance of ESP-bags

Table 8.2 shows the results of applying the ESP-bags algorithm to our benchmarks.

The table gives the original execution time for each benchmark, i.e., the execution

time of the benchmark without any instrumentation on 1-thread using the work-

first work-stealing runtime. It also shows the slowdown of the benchmark when

instrumented for the ESP-bags algorithm, with and without the static optimizations
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Table 8.2 : Slowdown of the ESP-bags algorithm relative to uninstrumented 1-thread
execution time on a work-first work-stealing runtime

Benchmark Uninstrumented 1-thread Slowdown of ESP-bags

Execution Time (s) w/o optimizations w/ optimizations

Crypt 10.16 8.52× 12.93×

LUFact 24.91 6.37× 5.17×

MolDyn 7757.11 3.24× 2.67×

MonteCarlo 18.65 2.17× 1.23×

RayTracer 42.70 11.69× 5.15×

Series 1379.66 1.01× 1.01×

SOR 13.33 3.97× 2.66×

SparseMatMult 29.19 7.08× 1.74×

FFT 1.09 4.63× 4.16×

Health 93.04 2.00× 1.84×

Nqueens 33.22 2.77× 2.71×

Strassen 9.78 3.17× 3.07×

Fannkuch 9.11 1.88× 1.86×

Mandelbrot 11.29 1.27× 1.20×

Matmul 34.61 3.83× 1.05×

Geo Mean - 3.40× 2.47×
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described in Chapter 7.

On average, the slowdown for the benchmarks with the ESP-bags algorithm is

3.40× without optimizations. When all the static optimizations described in Sec-

tion 7 are applied, the average slowdown drops to 2.47×. The slowdown factor of S

means that, when data race detection is performed using the ESP-bags algorithm,

the benchmark is S× slower than the uninstrumented 1-thread execution time on a

work-first work-stealing runtime.

With static optimizations, the slowdown for all benchmarks except Crypt is under

10×. The only other benchmarks which have a slowdown of more than 5× are LUFact

and RayTracer. The slowdowns for seven of the benchmarks are under 2×. The high

overhead in the case of Crypt, LUFact, and RayTracer is due to the fact that these

benchmarks perform a large number of memory accesses and each of these accesses

require updates to the reader/writer fields of the corresponding memory locations.

There is no slowdown in the case of Series because most of the code accesses local

variables1. In HJ, none of the local variables can be shared across tasks and hence we

do not instrument any access to these variables.

8.3.2 Performance of Static Optimizations

We now discuss the effects of the static compiler optimizations (described in Sec-

tion 7) on the benchmarks. The static optimizations that were performed include

check elimination in sequential code regions in the main task, read-only check elim-

ination in parallel code regions, escape analysis based optimization, loop invariant

check motion, and read/write check elimination. As evident from Table 8.2, some of

1Note that dynamic data race detection focuses on heap accesses (static and instance data) since

there cannot be a race on local variables.
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the benchmarks like RayTracer, SparseMatMult, and Matmul benefit a lot from the

optimizations, with a maximum reduction in slowdown of about 75% for SparseMat-

Mult. On the other hand, for other benchmarks the reduction is relatively low. The

optimizations do not reduce the slowdown much for FFT, Nqueens, and Strassen be-

cause these benchmarks do not contain many redundant memory accesses for which

the instrumentations could be removed. In the case of LUFact, though many of

the instrumentations are eliminated, a significant fraction of them still remain and

hence there is not much performance improvement in it due to optimizations. On

average, there is a 27% reduction in the slowdown of all the benchmarks due these

optimizations.

In Crypt, the slowdown of the ESP-bags algorithm with optimizations is higher

than that without optimizations. This anomaly occurs because our results use the

minimum execution time in 3 iterations repeated in the same JVM instance. Since the

memory footprint of Crypt is very high, it takes a longer time to warm up the hardware

resources in this case. With Crypt, when we use the minimum execution time in 30

iterations repeated in the same JVM instance, the optimized version performs better

than the unoptimized version as explained in Appendix A.

Breakdown of Static Optimizations

We now describe the effects of each of the static optimizations separately on the

performance of the benchmarks. Figure 8.1 shows the breakdown of the effects of

each of the static optimizations. The graph also shows the slowdown without any

optimization and with the whole set of optimizations enabled. The Main Task Check

Elimination optimization described in Section 7 is applied to all the versions included

here, including the unoptimized version. This is because we consider that optimiza-
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Figure 8.1 : Breakdown of the effect of static optimizations on the performance improvement of the
ESP-bags algorithm.
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tion as a basic step without which there could be excessive instrumentations. For each

benchmark, the first bar shows the slowdown of the benchmark with no optimization,

the second bar shows the slowdown when the read-only check elimination alone is en-

abled, the third one shows the slowdown when the escape analysis based optimization

alone is enabled, the fourth bar shows the slowdown when loop invariant code motion

alone is enabled, the fifth one shows the slowdown when the read-write optimization

alone is enabled, and the last one shows the slowdown when all the optimizations are

enabled simultaneously

The read-only check elimination performs much better than the other optimiza-

tions for most of the benchmarks, like MolDyn, SOR, SparseMatMult, and Matmul.

This is because in these benchmarks the parallel regions include reads to many arrays

which are written only in the sequential regions of the code. Hence, this optimiza-

tion eliminates the instrumentation for all these reads. It contributes the most to

the overall performance improvement in the full optimized version. The read-write

optimization improves the performance of LUFact, SOR, and FFT a bit, but does

not have much effect on other benchmarks. The Loop invariant code motion and the

Escape analysis based optimization does not seem to help any of these benchmarks

to a great extent.

The slowdown of Crypt in the presence of read-only check elimination is higher

than the slowdown in the unoptimized version. This is due to fact that we use the

minimum execution time of 3 iterations of the benchmark repeated in the same JVM

instance, which is not enough to warm up the hardware resources in the case of

Crypt. Appendix A explains how the same anomaly in the fully optimized version is

no longer present when we use the minimum execution time of 30 iterations repeated

in the same JVM instance. A similar observation was made for Crypt with read-only
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check elimination as well. In other words, when we use the minimum execution time

of 30 iterations in the same JVM instance, the slowdown of Crypt with read-only

check elimination is lower than that with the unoptimized version.

8.3.3 Comparison with Serialized Execution

Recall that the ESP-bags algorithm requires that the input program is executed

in a sequential depth-first manner. We achieve the sequential depth-first execution

using two different techniques: one is by executing the program on 1-thread with the

work-first work-stealing runtime and the other is by serializing the given program

and executing the serial program. The results we have seen so far were obtained by

executing the program on 1-thread with work-first work-stealing. Now, we show the

difference in the performance of the ESP-bags algorithm between the 1-thread based

execution and the serialized execution. The serialized execution avoids the overhead

of parallel constructs (async, finish), but retains the overhead of tracking S-bags,

P-bags, and memory locations.

Figure 8.2 compares the performance of 1-thread uninstrumented, 1-thread with

ESP-bags, serialized uninstrumented, and serialized with ESP-bags. The graph shows

the execution time for each of these versions normalized to 1-thread uninstrumented

time. Hence, the values for 1-thread uninstrumented bar is 1.00 for all the bench-

marks. (It is included for clarity.)

The serialized versions are expected to be faster than the 1-thread versions be-

cause of the extra overhead involved with 1-thread versions due to the support for

parallelism. The serialized uninstrumented version is either same as or less than

the 1-thread uninstrumented for all the benchmarks. On an average, the serialized

uninstrumented version is 21% faster than the 1-thread uninstrumented version. The
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serialized version with ESP-bags is almost same as the 1-thread version with ESP-

bags in benchmarks like Crypt, LUFact, RayTracer, SOR, and FFT. Whereas, in

the case of benchmarks like MolDyn, Health, Nqueens, and Strassen, the serialized

version with ESP-bags is faster than the 1-thread version with ESP-bags. On an

average, the serialized version with ESP-bags is about 10% faster than the 1-thread

version with ESP-bags.

8.4 Evaluation of SPD3 for Async-Finish-Isolated

In this section, we evaluate the performance of the SPD3 algorithm for async, finish,

and isolated. We present a comparison of the performance of the SPD3 algorithm

with that of the ESP-bags algorithm. Also, we compare SPD3 with two dynamic

data race detectors from past work, namely Eraser [3] and FastTrack [1].

8.4.1 Performance of SPD3

Figure 8.3 shows the relative slowdown of SPD3 for all benchmarks when executed

with 1, 2, 4, 8, and 16 worker threads. (Recall that these benchmarks create many

more async tasks than the number of worker threads.) The relative slowdown on n

threads refer to the slowdown of the SPD3 instrumented version of the benchmark

executing on n threads compared with the HJ-Base version executing on n threads.

Ideally, a scalable race detector should have a constant relative slowdown as the

number of worker threads increases. As evident from Figure 8.3, the slowdown for

many of the benchmarks decrease as the number of worker threads increase from 1

to 16. The geometric mean of the slowdowns for all the benchmarks on 16 threads is

2.78×.

Though the geometric mean is below 3×, four of the 15 benchmarks (Crypt, LU-
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Fact, RayTracer, and FFT) exhibited a slowdown around 10× for worker threads

from 1 to 16. This is because these benchmarks contain larger numbers of shared lo-

cations that need to be monitored for race detection. These were also the benchmarks

with the four largest overheads for ESP-bags. As discussed later, other race detection

algorithms exhibit much larger slowdowns for these benchmarks than SPD3. Note

that even in these cases the slowdowns are similar across 1 to 16 threads. This shows

that SPD3 exhibits scalable performance.

The slowdown for 1-thread is higher than that for all other threads in many bench-

marks. This is because our implementation uses compareAndSet operations on atomic

variables. These operations are not optimized for the no contention scenario as with

1-thread. Instead, if we use a lock that is optimized for no contention scenario, the

slowdown for 1-thread cases would have been a lot lower. But that implementation

does not scale well for larger numbers of threads. For example, the lock based imple-

mentation is 1.8× slower (on average) than the compareAndSet implementation when

running on 16-threads. While the two implementations are close for many bench-

marks (within a factor of 2), there is a difference of up to 7× for some benchmarks,

when running on 16-threads. The compareAndSet implementation is always faster

than the lock based implementation for larger numbers of threads. Since our aim was

to make the algorithm scalable, we chose the compareAndSet approach.

Table 8.3 shows the uninstrumented execution times on 1-thread and 16-threads

for all the benchmarks and the slowdown of the SPD3 algorithm on 1-thread and

16-threads relative to the uninstrumented 1-thread and 16-thread execution times re-

spectively. For the Matmul benchmark, where the uninstrumented version scales well

from 1-thread to 16-threads, the slowdown of SPD3 decreases only by a small fraction.

Whereas, in the case of Crypt, where the uninstrumented version with 16-threads is



158

Table 8.3 : Slowdown of the SPD3 algorithm on 1-thread and 16-threads relative to
uninstrumented 1-thread and 16-thread execution times respectively on an adaptive
work-stealing runtime

Benchmark Uninstrumented Slowdown of SPD3

Execution Time (s)

1-thread 16-threads 1-thread 16-threads

Crypt 10.21 72.30 16.67× 2.40×

LUFact 25.03 6.45 14.31× 11.20×

MolDyn 8062.37 543.55 3.30× 5.08×

MonteCarlo 20.01 5.41 1.45× 1.24×

RayTracer 43.45 6.99 10.10× 7.49×

Series 1391.90 88.18 1.00× 1.01×

SOR 14.21 2.85 5.81× 4.75×

SparseMatMult 27.12 4.20 2.64× 2.34×

FFT 1.04 0.15 9.23× 8.67×

Health 106.67 58.46 2.66× 2.07×

Nqueens 27.96 11.21 5.32× 1.87×

Strassen 9.64 5.69 4.19× 3.17×

Fannkuch 9.21 33.94 2.73× 1.15×

Mandelbrot 11.35 3.68 1.41× 2.42×

Matmul 33.89 2.05 1.22× 1.10×

GeoMean - - 3.78× 2.78×
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much slower than the uninstrumented 1-thread execution, the slowdown of SPD3 on

16-threads is much less than the slowdown on 1-thread. It is clear from the table that

there is no correlation between the speedup of the uninstrumented version and the

scaling of the slowdown factors as we go from 1-thread to 16-threads. Similarly, there

is no correlation between the absolute execution times and the slowdown of SPD3.

Breakdown of Optimizations

Now, we look at the effect of each of the static optimizations on the performance

of SPD3. Figure 8.4 shows the breakdown of the effect of the static optimizations

on the performance of SPD3 for all the benchmarks we consider while executing on

16-threads. For each benchmark, there are six bars representing the slowdown of the

SPD3 algorithm when no optimization, read-only check elimination, escape analysis

based optimization, loop invariant code motion, read-write check elimination, and full

set of optimizations are enabled, respectively.

As in the case with the ESP-bags algorithm, the read-only check elimination per-

forms the best among the optimizations we presented. This optimization plays a

major part in reducing the overhead of SPD3 for benchmarks like LUFact, MolDyn,

SOR, SparseMatMult, and Matmul. Again, this is because of the fact that these

benchmarks have lot of memory locations that are written in the sequential regions

of the program and are only read within parallel regions. The read-write check elim-

ination contributes to the reduction in overhead of SPD3 in benchmarks like LUFact

and FFT. The other optimizations, escape analysis based one and loop invariant code

motion do not help in reducing the overhead of SPD3 in any of these benchmarks.

The slowdown of Crypt with full optimization is slightly higher than the slowdown

in the unoptimized version. This anomaly is due to the reason discussed in the case of
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SPD3 algorithm while executing on 16-threads.
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Crypt with ESP-bags in Section 8.3.2. For ESP-bags algorithm, Appendix A shows

that this anomaly is not present if we use the minimum execution time of 30 iterations,

instead of 3 iterations, repeated in the same JVM instance. The same argument holds

for SPD3 with full optimization and with read-only check elimination as well.

Comparison of Synchronized and CompareAndSet Implementations

The SPD3 algorithm executes the input program in parallel but requires that the

updates to the shadow memory of every memory location are done atomically with

respect to other updates to the same memory location. As we discussed earlier,

we evaluated two different ways of implementing this atomicity requirement. One

is using Java’s synchronized and the other is using a non-blocking algorithm with

CompareAndSet (CAS) on atomic integers. Now, we present a comparison of the

performance of SPD3 based on these two implementations.

Figure 8.5 shows the comparison of the slowdown of the SPD3 implementation

based on synchronized with the slowdown of the implementation based on CAS while

executing on 16-threads. Both the slowdown factors in this graph for every benchmark

were calculated using the time for the uninstrumented version of the benchmark

running on 16-threads as the baseline.

For all the benchmarks except SparseMatMult, the CAS version performs better

than the synchronized version on 16-threads. The highest difference is for MolDyn

where the CAS version is 7.2× faster than the synchronized version. For other bench-

marks like RayTracer, FFT, Health, Nqueens, and Strassen the CAS version is over

2× faster than the synchronized version. On an average, the CAS version is 1.8×

faster than the synchronized version. In the case of SparseMatMult, the synchronized

version is 1.2× faster than the CAS version. This is because there are not many paral-
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Figure 8.5 : Comparison of the performance of the SPD3 algorithm based on “Synchronized” with
that of SPD3 based on “CompareAndSet” while executing on 16-threads.
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lel accesses to memory locations in SparseMatMult after the static optimizations. In

other words, most of the accesses to shared memory locations in SparseMatMult are

ordered with each other. Hence, there is no contention between threads in updating

their shadow memory locations due to which the synchronized version performs well.

On the other hand, the additional overhead involved with CAS, which is unnecessary

for this benchmark, leads to a poor performance.

This clearly proves that the CompareAndSet implementation helps SPD3 perform

better than the synchronized version. Hence, all the results presented so far on SPD3

and those that will follow use the implementation based on CompareAndSet.

8.4.2 Comparison of SPD3 with ESP-bags

In this section, we compare the performance of SPD3 with ESP-bags. Figure 8.6

shows the slowdown of ESP-bags and SPD3 for all the benchmarks, relative to the

execution time of the 16-thread HJ-Base version. Note that the ESP-bags version

runs on 1-thread (because it is a sequential algorithm) while the SPD3 version runs

on 16-threads.

This comparison underscores the fact that the slowdown for a sequential approach

to data race detection can be significantly larger than that of parallel approaches,

when running on a parallel machine. For example, the slowdown is reduced by more

than a 15× factor when moving from ESP-bags to SPD3 for Series and Matmul bench-

marks and by more than a 5× factor for benchmarks like MolDyn and SparseMatMult

that scale well. On the other hand, the slowdown for Crypt is similar for ESP-bags

and SPD3 because the uninstrumented async-finish version of Crypt does not scale

well. On average, SPD3 is 3.2× faster than ESP-bags on our 16-way system. This

gap is expected to further increase on systems with larger number of cores.
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Figure 8.6 : Slowdown of ESP-bags and SPD3 relative to 16-thread HJ-Base version for all bench-
marks. Note that the ESP-bags version runs on 1-thread while the SPD3 version runs on 16-threads.
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8.4.3 Comparison of SPD3 with Eraser and FastTrack

Now, we compare SPD3 with two parallel dynamic data race detectors from the

past, Eraser and FastTrack. For Eraser and FastTrack, we use the implementations

included in the RoadRunner tool [57]. Since the performance of the FastTrack imple-

mentation available in the public RoadRunner download yielded worse results than

those described in [1], we communicated with the implementers and received an im-

proved implementation of FastTrack which was used to obtain the results reported

in [11] and in this dissertation.

We only use the JGF benchmarks for comparisons with these algorithms since

those are the only common benchmarks with past work on Eraser and FastTrack.

However, since Eraser and FastTrack work on multithreaded Java programs rather

than task-parallel variants like HJ, they used the original coarse-grained one-chunk-

per-thread approach to loop parallelism in the JGF benchmarks and created one

thread per core. Converting these programs to fine-grained parallel versions that

create larger numbers of Java threads quickly leads to OutOfMemoryError’s due to

the memory required by Java threads and the larger size of vector clocks.

So, to enable an apples-to-apples comparison in this section, we created coarse-

grained async-finish versions of the JGF benchmarks with chunked loops for the HJ

versions to match the multithreaded Java versions, even though it is more natural for

the programmer to write the fine-grained HJ versions. Since Eraser and FastTrack

were implemented in RoadRunner, we used the execution of the Java versions of these

benchmarks on RoadRunner without instrumentation (RR-Base) as the baseline for

calculating the slowdowns for Eraser and FastTrack. The differences between RR-

Base and HJ-Base arise from the use of array views in the HJ version, and from the

use of finish operations instead of barriers as discussed below.
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As we mentioned earlier, our algorithms found data races in the barrier imple-

mentations of four of the JGF benchmarks. We observed that the default Eraser and

FastTrack tools in the RoadRunner implementation did not report most of these data

races. The only race reported was by FastTrack for SOR. After communication with

the implementers of RoadRunner, we learned that RoadRunner recognizes a number

of common barrier class implementations by default and generates special “Barrier

Enter” and “Barrier Exit” events for them which in turn enables Eraser and Fast-

Track to take the barriers into account for race detection (even though the barriers

are technically buggy). Further a “-nobarrier” option can be used to suppress this

barrier detection. We confirmed that all races were indeed reported by RoadRunner

with the “-nobarrier” option. However, all RoadRunner performance measurements

reported here were obtained with the default settings (i.e., without the “-nobarrier”

option) to match RoadRunner’s intended handling of barrier idioms.

To undertake a performance comparison, we converted the four benchmarks to

race-free HJ programs by replacing the buggy barriers by finish operations. In some

cases, this caused the HJ-base version to be slower than the RR-base version as a

result (since RR-base measures the performance of the unmodified JGF benchmarks

with custom barriers).

It is also worth noting that the implementation of Eraser and FastTrack in Road-

Runner include some optimizations that are orthogonal to the race detection algo-

rithm used [57]. Similarly, the static optimizations discussed in Chapter 7 included

in our implementation of SPD3 are also orthogonal to the race detection algorithm.

Both these sets of optimizations could be performed on any race detection algorithm

to improve its performance.
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Performance Comparison

Table 8.4 : Relative slowdown of Eraser, FastTrack and SPD3 for JGF benchmarks
on 16 threads. The slowdown of Eraser and FastTrack was calculated relative to RR-
Base while the slowdown of SPD3 was calculated relative to HJ-Base. For benchmarks
marked with *, race-free versions were used for SPD3 but the original (buggy) versions
were used for Eraser and FastTrack.

Benchmark
RR-Base Eraser FastTrack HJ-Base SPD3

Time(s) Slowdown Time(s) Slowdown

Crypt 0.36 122.40× 133.24× 0.59 1.84×

LUFact* 1.47 17.95× 26.41× 5.41 1.08×

MolDyn* 16.19 8.39× 9.59× 3.75 13.56×

MonteCarlo 2.88 10.95× 13.54× 5.61 1.86×

RayTracer* 2.19 20.23× 17.45× 19.97 5.84×

Series 112.52 1.00× 1.00× 88.77 1.00×

SOR* 0.91 4.26× 8.36× 2.60 4.53×

SparseMatMult 2.75 14.29× 20.59× 4.61 1.72×

GeoMean - 11.21× 13.87× - 2.63×

Table 8.4 shows the slowdowns of Eraser, FastTrack, and SPD3 for all the JGF

benchmarks on 16 threads. Note that the slowdowns of Eraser and FastTrack were

calculated relative to RR-Base (with 16 threads), and the slowdown of SPD3 was

calculated relative to HJ-Base (with 16 threads). For benchmarks marked with *,

race-free versions were used for SPD3 but the original versions were used for Eraser

and FastTrack; this accounts for differences in the execution times of RR-Base and HJ-

Base for some benchmarks since the HJ-Base versions include more synchronization

to correct the bugs in the RR-Base versions.
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Figure 8.7 : Slowdown (relative to 16-threads RR-Base) of RR-Base, Eraser, Fast-
Track, HJ-Base, and SPD3 for Crypt benchmark (chunked version) on 1-16 threads

Table 8.4 shows that the relative slowdowns for Eraser and FastTrack are much

larger than those for SPD3. On average (geometric mean), the slowdown for SPD3

relative to HJ-base is 2.70× while that for Eraser and FastTrack are 11.21× and

13.87× respectively relative to RR-base. There is also a large variation. While the

slowdowns are within a factor of 2 for SOR, there is more than a 60× gap in slowdowns

for Crypt and quite a significant difference for LUFact, MonteCarlo, and SparseMat-

Mult as well. The slowdown for SPD3 on MolDyn is larger than the slowdowns for

Eraser and FastTrack because the baseline for SPD3 is more than 4× faster than the

baseline for Eraser and FastTrack. For FastTrack, these slowdowns are consistent

with the fact that certain data access patterns (notably, shared reads) can lead to

large overheads because they prevent the use of optimized versions of vector clocks.

For the case with the largest gap in Table 8.4 (Crypt), Figure 8.7 shows the
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slowdown (scaled execution time) of RR-Base, Eraser, FastTrack, HJ-Base, and SPD3

for the chunked version of the Crypt benchmark on 1-16 threads relative to the 16-

thread RR-Base execution time. In this benchmark, RR-Base is the fastest for 16

threads as expected. The execution time of HJ-Base is 1.9× slower than RR-Base in

the 1-thread case and 1.6× slower than RR-Base in the 16-thread case. Similarly, the

execution time of SPD3 version is also very close; it is 4.2× slower in the 1-thread case

and 3× slower in the 16-thread case. The execution time of Eraser and FastTrack are

13.7× and 16.6× slower than RR-Base in the 1-thread case but they increase to more

than 100× for 8-threads and 16-threads. This example shows that for some programs

the performance overheads for Eraser and FastTrack can increase dramatically with

the number of threads (cores).

Memory Usage Comparison

We now compare the memory usages of the Eraser, FastTrack and SPD3 algorithms

on the coarse-grained JGF benchmarks. Again, the baseline for Eraser and FastTrack

was RR-Base and the baseline for SPD3 was HJ-Base. To obtain a coarse estimation

of the memory used, we used the -verbose:gc option in the JVM and picked the

maximum heap memory used over all the GC executions in a single JVM instance.

All three instrumented versions trigger GC frequently, so this is a reasonable estimate

of the memory overhead.

Table 8.5 shows the estimated memory usage of these three algorithms and their

baselines for JGF benchmarks on 16 threads. The table shows that the memory usage

of HJ-Base is lower than that of RR-Base in all the benchmarks except Series. In

all cases, the memory usage is lower for SPD3, compared to Eraser and FastTrack

with significant variation in the gaps. The memory usage of Crypt with SPD3 is quite
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Table 8.5 : Peak heap memory usage of RR-Base, Eraser, FastTrack, HJ-Base, and
SPD3 for JGF benchmarks on 16 threads. For benchmarks marked with *, race-
free versions were used for SPD3 but the original versions were used for Eraser and
FastTrack.

Benchmark
Memory (in MB)

RR-Base Eraser FastTrack HJ-Base SPD3

Crypt 209 8539 8535 149 6009

LUFact* 80 1790 2455 47 203

MolDyn* 382 1048 1040 9 35

MonteCarlo 1771 9316 9292 557 584

RayTracer* 1106 4475 4466 43 88

Series 80 1067 1062 162 177

SOR* 81 1161 1551 47 202

SparseMatMult 225 2120 2171 88 714
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Figure 8.8 : Estimated heap memory usage (in MB) of RR-Base, Eraser, FastTrack,
HJ-Base, and SPD3 for LUFact benchmark

high because the benchmark has arrays of size 20 million and our algorithm maintains

shadow locations for all elements of these arrays. But the memory used by SPD3 for

Crypt is still less than that of Eraser and FastTrack. The high memory usage for

Eraser and FastTrack is not surprising because Eraser has to maintain all the locks

held while accessing a particular location, and FastTrack’s vector clocks may grow

linearly in the number of threads in the worst case.

For one of the benchmarks in Table 8.5 (LUFact), Figure 8.8 shows the estimated

memory usage of the three algorithms and their baselines as a function of the number

of threads/cores used. Note that both the baselines (RR-Base and HJ-Base) are very

close. While the estimated heap usage of RR-Base remains constant at 80M , the

estimated usage of HJ-Base varies from 33M to 47M as we go from 1 thread to 16

threads. The estimated heap usage of SPD3 is about 6× larger than HJ-Base: it varies
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between 192M and 203M across 16 threads. The estimated heap usage of Eraser

increases from 833M for 1 thread to 1790M for 16 threads (2.1× increase). Similarly,

the estimated heap usage of FastTrack increases from 825M for 1 thread to 2455M

for 16 threads (3× increase). This clearly shows the increase in the memory usage

for Eraser and FastTrack as we increase the number of threads for this benchmark.
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Chapter 9

Related Work

Data races are a major cause of incorrect and unintended behaviors in parallel pro-

grams. Since data races typically occur only in a few of the possible interleavings,

it is extremely difficult to detect and reproduce them. But data race detection is

important because it helps improve productivity. Consequently, there has been a lot

of prior work on data race detection. While there has been a lot of work on data

race detection in software, there has also been some hardware-based data race detec-

tors. Software data race detectors are classified into static and dynamic race detectors

based on the type of the analysis they perform to detect data races in a given pro-

gram. There has also been some approaches that combine static and dynamic analysis

(hybrid techniques) to detect data races in a given program [58, 59].

This chapter discusses some related work on data race detection. First, we describe

some related dynamic data race detection techniques from the past. Then, we present

some past work on static analysis for data race detection and avoidance. Then, we

describe some existing hardware-based data race detection. Finally, we describe static

and dynamic analysis for checking determinism in parallel programs.

9.1 Dynamic Data Race Detection

Dynamic data race detection involves analyzing an execution of the input parallel

program to detect data races at runtime. In this section, we describe some related
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work on dynamic data race detection. First, we start with the dynamic data race

detection algorithms based on locksets. Then, we describe the happens-before based

dynamic data race detection algorithms.

9.1.1 Lockset based Algorithms

Eraser [3] is a dynamic data race detector that targets lock-based synchronization

used in multithreaded programs. Eraser performs a lockset analysis to ensure that the

program strictly follows a locking discipline. A simple locking discipline is that each

variable shared between threads is protected by a particular lock. When the program

being monitored does not follow the locking discipline, Eraser flags a data race. While

this approach identifies data races that may occur in schedules other than the one

that is examined, a drawback is that it may have false positives. This is because

there could be regions in the program where accesses to a variable are unprotected

by locks, like initialization, and also the lock protecting a variable could change over

time. Another major drawback of this approach is that it only handles lock-based

synchronization. It does not handle other forms of synchronizations like fork-join,

barriers, post-wait, etc., which are used extensively in multithreaded programs.

Choi et.al. [59] presented a dynamic data race detector for multithreaded object-

oriented programs. Their data race detection technique is designed for locks like

Eraser. But unlike Eraser, they extend their detector to support thread start and

join operations by introducing an ownership model. Though it reduces the number of

false positives considerably compared to Eraser, it is still not precise. The advantage

of this technique is that it reduces the overhead of race detection to under 50% by

applying static and dynamic optimization techniques.

There are other lockset based data race detectors [60, 61] that improve the Eraser
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algorithm to reduce the number of false positives. Though these data race detectors

reduce the space and time overhead of race detection, they are still not precise, i.e.,

they may have false positives. The main limitation of these algorithms is due to the

fact that the locksets associated with variables only become smaller.

Goldilocks [38, 62] eliminates the limitation in earlier algorithms by allowing the

locksets associated with variables to grow. It is a precise lockset-based dynamic data

race detection algorithm. It also computes a precise happens-before relation (defined

in the next section) using the locksets. Since this algorithm does not use any ex-

pensive data structure to compute the happens-before relation, it is expected to be

much faster than happens-before based data race detectors. But it has been shown

subsequently that there are happens-before data race detectors, like FastTrack [1],

that are faster than Goldilocks. In this thesis, we show that our SPD3 algorithm per-

forms much better than FastTrack for structured parallel programs. In Goldilocks,

a DataRaceException is thrown just before the access causing the data race is exe-

cuted. This allows the programmers to handle data races explicitly in their programs.

It also guarantees that when an execution does not throw any DataRaceException it

is sequentially consistent.

9.1.2 Happens-Before based Algorithms

The happens-before relation defined by Lamport [63] has been used extensively for

data race detection. The happens-before relation defines a partial order among all the

operations in all the threads of a parallel program. All the operations within a thread

are ordered by program order. Two operations in two different threads are ordered if

there is some synchronization operation that ensures that one of these operations is

guaranteed to complete before the other one begins. In this case, the first operation
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happens-before the second operation. There has been a lot of work on dynamic data

race detection based on the happens-before relation [4, 36, 37, 64, 1].

The may-happen-in-parallel relation that we use in our SPD3 algorithm is the

inverse of the happens-before relation. In other words, when two events have no

happens-before relation between them, they may-happen-in-parallel with each other.

Schonberg [4] presented one of the earliest dynamic data race detection algorithm

for nested fork-join and synchronization operations that uses happens-before relation

to detect data races. In this algorithm, a shared variable set is associated with each

sequential block in every task. There is also a concurrency list associated with each

shared variable set which keeps track of the concurrent shared variable sets that will

complete at a later time. The algorithm detects anomalies by comparing complete

concurrent shared variable sets at each time step. The space required to store read

information in the shared variable sets is bounded by V ×N , where V is the number

of variables being monitored and N is the number of execution threads.1 One of

the limitations of this work is that this space requirement increases linearly with the

number of threads the program is executed on. This is clearly not useful in practice

because its memory requirement will exceed the available memory when executed

on a large number of threads. Also, this algorithm’s guarantees apply only to the

schedule of the program that was examined, which is again not very useful. Another

limitation is that since access anomalies are detected at synchronization points, it

does not identify the actual read and write operations involved in the data races and

hence, it does not help improve the productivity.

1If N refers to the maximum number of threads possible in all executions of a program for a

given input, then this algorithm can guarantee data race freedom for all executions of the program

for that input. If not, then this guarantee will not hold.
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Offset-Span (OS) labeling [37] is an optimized version of the English-Hebrew (EH)

labeling technique [36] for detecting data races. The idea behind both these techniques

is to attach a label to every thread in the program and use these labels to check if

two threads can execute concurrently. They also maintain the access history for

every shared variable that is monitored which is then used to check for conflicts.

The length of the labels associated with each thread can grow arbitrarily long in EH

labeling,2 whereas the length of the labels in OS labeling is bounded by the maximum

nesting depth of fork-join in the program. While the EH labeling technique needs

an access history of size equal to the number of threads for every monitored variable

in the program, the OS labeling technique only needs constant size to store access

history. The OS labeling algorithm works only for the nested fork-join constructs.

The computations generated by async-finish constructs are a strict superset of those

generated by nested fork-join constructs. Hence, this algorithm cannot be directly

applied to programs with async-finish. Also, the OS labeling algorithm has been

evaluated only on sequential executions [58] and the performance of this algorithm

on parallel executions is not clear.

LiteRace is a light-weight dynamic data race detector that reduces the overhead

of race detection by sampling [65]. It maintains a happens-before relation to precisely

identify data races. The novelty of the approach is in the use of sampling to reduce

the race detection overhead. They sample regions of the code that are more likely to

result in a data race at a higher rate than those regions of the code that are less likely

to result in a data race. While this technique does not report any false positives, it

may miss data races.

2Note that the length of the labels is bounded by the maximum nesting level of fork-join in EH

labeling in the presence of an effective heuristic as reported in [36]
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Algorithms using Vector Clocks

A vector clock [66] is a data structure that is used to maintain the happens-before

relation between operations during program execution. Every thread’s execution is

considered as a sequence of time-steps split according to the synchronization opera-

tions performed by that thread. Every thread maintains a vector (or an array), called

a vector clock, of numbers that represent the time-steps of all the other threads in

the program. The number in position q in the vector clock of thread p represents the

latest time-step of thread q after which there was a synchronization between p and

q. In other words, the number in position q refers to the most recent time-step of

thread q that is visible to thread p. A basic data race detector using vector clocks

would maintain two vector clocks for each memory location, one for read and one for

write, and compare the vector clocks to check for data races on every access.

DJIT [67] is one of earliest dynamic data race detectors that use vector clocks to

detect data races in distributed shared memory (DSM) systems. DJIT is designed

to detect data races for global synchronization constructs like barriers and two-way

synchronization constructs like clocks. It can also be extended to support k-way

synchronization constructs. The disadvantages of DJIT is that it works only on

a sequentially consistent system and reports only the first data race found in an

execution. The DJIT+ algorithm [68] overcomes these restrictions.

MultiRace [68, 69] combines DJIT+ and an improved lockset algorithm to detect

data races. This combination is effective because they complement each other. While

DJIT+ detects only those data races that happen in the examined execution, the im-

proved lockset algorithm can detect data races across all executions of the program

for an input. While the improved lockset algorithm reports false positives, DJIT+

is precise. In this algorithm, the granularity of data race detection changes dynam-
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ically, and can also be controlled by the users. Since the race detection granularity

varies, this algorithm can generate false positives when detecting data races at coarse

granularities.

Perković and Keleher [70] present an on-the-fly data race detector that detects data

races in programs executing on a distributed shared memory system. The main idea

in this technique is to utilize the mechanisms that support lazy release consistency to

detect data races. The implementations of lazy release consistency models maintain

enough information to detect data races by identifying concurrent accesses in constant

time. This technique uses vector timestamps [66] to check if two “intervals” are

concurrent. The advantage of this technique is that it does not require any support

from the compiler. But the downside is that it detects data races that occur in the

particular examined execution only.

RaceTrack [71] is a dynamic data race detection algorithm that combines lockset

and happens-before analysis. It uses vector clocks to maintain the happens-before

relation between different operations in the program. While RaceTrack may miss

data races, it adaptively focuses on areas in the program that are more suspicious to

report more accurate data races with much less overhead. It does this by estimating

the current number of parallel accesses to every memory location and resetting the

access history of those memory locations that are not expected to have any data

races, thereby reducing the space and time overhead associated with those memory

locations. In summary, RaceTrack reduces the overhead of data race detection by

adaptively changing the granularity of race detection and the technique used for race

detection.

The FastTrack algorithm [1] is a precise dynamic data race detection algorithm

that can run in parallel and handles classic (unstructured) fork-join programs with
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locks and barriers. This algorithm uses vector-clocks to maintain the access history

for every memory location that is monitored in the program. A key drawback of

FastTrack is that, in the worst-case, it requires O(n) space per instrumented memory

location, where n is the number of threads. Note that this drawback applies to all

vector-clock based race detection techniques. This means that the algorithm can

only be used with a small number of threads. Increasing the number of threads can

quickly cause space overheads and slowdowns that render the algorithm impractical.

FastTrack applies an optimization to reduce the overhead by requiring only O(1)

space per memory location when it is local to a thread, but for memory locations

that are read shared, the algorithm requires O(n) space. Unfortunately, in domains

where structured parallelism dominates, programs typically use a massive number of

lightweight tasks (e.g. consider a parallel-for loop on a GPU) and often the parallel

tasks share read-only data.

Summary

We now summarize and compare our race detection algorithms, ESP-bags and SPD3,

with some of the past work discussed so far that are closely related. Recall the

discussion from Section 2.3.4 about the race detection algorithms that were designed

for Cilk. The SP-bags algorithm was designed to detect data races in Cilk programs

with spawn and sync constructs. It requires that the input program is executed

sequentially. The SP-hybrid algorithm is a parallel race detection algorithm for spawn

and sync constructs of Cilk.

Table 9.1 compares five of the past works on dynamic data race detection with our

ESP-bags and SPD3 algorithms. The past algorithms that we compare with are On

The Fly Detection of Access Anomalies (OTFDAA) [4], Offset-Span Labeling [37],
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Table 9.1 : A comparison of related work. OTFDAA refers to “On The Fly Detection of Access
Anomalies”, n refers to the number of threads executing the program and N refers to the maximum
logical concurrency in the program.

Target Space Overhead Guarantees Empirical Parallel Scheduling

Language per Memory Evaluation Execution Dependency

Locationa

OTFDAA Nested Fork-Join O(n) Per-Schedule No Yes No

Offset-Span Nested Fork-Join O(1) Per-Input Minimal Yes No

SP-bags Spawn-Sync O(1) Per-Input Yes No No

SP-hybrid Spawn-Sync O(1) Per-Input No Yes Yes

FastTrack Fork-Join O(N) Per-Input Yes Yes No

ESP-bags Async-Finish O(1) Per-Input Yes No No

SPD3 Async-Finish O(1) Per-Input Yes Yes No

aA discussion about the full space overhead of the SPD3 algorithm can be found in Section 4.1.5
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SP-bags [5], SP-hybrid [2], and FastTrack [1]. We focus on six properties of dynamic

race detection algorithms in this comparison.

While some algorithms target nested fork-join and spawn-sync constructs for race

detection, our algorithms work for a more relaxed concurrency model, async-finish.

FastTrack supports the most relaxed model, the unstructured fork-join frameworks.

The worst-case space overhead per memory location in most of the algorithms, includ-

ing ESP-bags and SPD3, are constant. The worst-case space overhead per memory

location is linear in the number of threads executing the program in OTFDAA and

is linear in the maximum logical concurrency of the program in FastTrack, which is

the major downside of these algorithms. All the algorithms except OTFDAA have

per-input guarantees.

There has been no empirical evaluation for OTFDAA and SP-hybrid. The em-

pirical evaluation of Offset-Span labeling has been done only on sequential execu-

tions [58]. The SP-bags and ESP-bags algorithms need to execute the input program

sequentially, but the other algorithms can execute the program in parallel. While

the SP-hybrid algorithm is closely tied with the work-stealing scheduler, no other

algorithm depends on a scheduling technique.

Other Dynamic Data Race Detectors

Veeraraghavan et.al. [72] introduce a new approach to detecting data races called

outcome-based data race detection. In this approach, when a parallel program exe-

cutes, multiple replicas of the program are executed such that two of these replicas

follow complementary schedules. Two replicas with complementary schedules are

constructed such that conflicting operations execute in opposite order in these two

replicas with high probability. By comparing the states of replicas executed with



183

complementary schedules, data races can be detected. This technique has very low

overhead compared to existing dynamic data race detectors but it may miss data

races. This technique also includes a mechanism to “survive” data races by choosing

the replica that is expected to be correct when a data race occurs.

Process races are those that occur when shared operating systems resources are

accessed in parallel by different processes without any synchronization. RacePro is

an offline technique to detect process races on real world applications [73]. In a

deployed system, RacePro records the necessary information during execution and

then analyzes the recorded information to detect process races offline. It has various

methods to reduce the overhead of recording all the necessary information during

execution. It also has some methods to validate the detected process races, thereby

reducing the number of false positives and false negatives.

9.2 Static Analysis for Data Race Detection and Avoidance

Static data race detection involves analyzing the input parallel program statically at

compile-time to detect data races. Static data race detection is attractive because it

can reason about the program completely unlike dynamic analysis, where the reason-

ing holds only for the particular input considered. The major drawback of static race

detection is that it generates large number of false positives. We now describe two

approaches that are commonly used in static race detection and also briefly describe

few specific techniques in static race detection.

One approach to static race detection is to explore all possible states of a parallel

program beginning with the initial state that correspond to the input to the program.

Whenever a state with conflicting accesses is reached, a data race is signaled between

these conflicting accesses. Some techniques explore these states by building them
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explicitly [74, 75, 76, 77, 78, 79] and others build abstractions to represent the state

space [80, 81]. The problem with this approach is that the number of possible states

could be exponential even for simple programs. In other words, both the space and

time requirement could be exponential for this approach.

The other approach to static race detection involves performing data flow analysis

to compute the ordering between memory accesses in a program and reporting data

races when there are conflicting accesses that are not ordered [82, 83, 84, 85, 86, 87,

88]. The advantage of this approach is that it usually takes polynomial space and

time. But the downside is that, when no ordering between two memory accesses

can be proved, they are said to result in a data race. Thus, these approaches are

conservative in nature which may lead to false positives.

The type based data race detection for Java [89] identifies data races in a program

by combining user annotations and a type based analysis. This work focuses on lock-

based synchronization by identifying the lock protecting every field in the program

and tracking them to check if every access to that field happens when that lock is held.

Loginov et.al. combine inter-thread control flow analysis and points-to analysis [90]

to statically detect data races in multithreaded object-oriented programs. Aiken and

Gay present a static analysis to detect data races in SPMD programs [29]. SPMD

programs perform synchronization using constructs like barriers and hence, this work

focuses on barrier synchronization.

One of the earliest work on avoiding data races was using a monitor, which was

introduced by Hoare [91]. A monitor associates a group of procedures and a lock with

every shared variable. The lock is meant to guard the variable. The shared variable is

accessible only within the procedures associated with it. The lock associated with the

variable is acquired at the entry to these procedures and released at their exits. With
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this set up, there is no way for a data race to occur because all accesses to the variable

are guarded by a lock. Though it gives static guarantees that the program is free of

data races, a drawback is that it can only handle global variables. Specifically, it

cannot handle dynamically allocated memory locations. Also, it serializes all accesses

to a variable even if it is read-shared by multiple threads.

Young and Taylor [92] present a technique that combines static analysis for data

race detection with symbolic execution to reduce the false positives generated by static

analysis. In this technique, symbolic execution is used to discover more information

about execution paths, which is then used to prune the results of static race detection.

Also, this technique uses static analysis to select the paths for symbolic execution and

hence, it does not incur the complete overhead of symbolic execution as well. Earlier,

Taylor showed that the problem of computing the ordering between accesses in Ada

programs is NP-complete [78, 93].

9.2.1 Static Analysis to Improve Dynamic Race Detectors

Static analysis can be used to improve the performance of dynamic data race detec-

tors. Static analysis can prove that some regions of a parallel program will never

result in a data race and hence, these regions of the program need not be monitored

for races during dynamic data race detection [94, 33, 95, 79].

In chapter 7, we present some static optimizations to eliminate the redundant

instrumentations for race detection thereby reducing the overhead of the algorithms.

These static optimizations are similar to compile-time analysis used by Mellor-

Crummey [58]. His work uses a dependence graph that contains edges for all data

dependences to eliminate instrumentations for variable references that are not part

of these data dependences. His technique is applicable for loop carried data depen-
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dences across parallel loops and also for data dependences across parallel blocks of

code. In our approach, we concentrate on the instrumentations within a particular

task and try to eliminate redundant instrumentations for memory locations which are

guaranteed to have already been instrumented in that task.

Harris et.al. [96] present an implementation of Software Transactional Memory

(STM) that improves the performance of atomic blocks in a parallel program. They

present some compiler optimizations to eliminate the need for logging on some vari-

ables and regions of the program because they are redundant. These optimizations

are similar to our static optimizations to reduce the runtime overhead of our race

detection algorithms.

Parallel programs sometimes use ad hoc synchronizations between different threads

for flexibility or performance reasons. This kind of synchronization makes it hard for

tools like data race detectors to detect bugs in parallel programs. SyncFinder is a tool

that performs static analysis to automatically identify such ad hoc synchronizations

in parallel programs [97]. When ad hoc synchronizations in parallel programs are

annotated, debugging tools like data race detectors can utilize this extra information

to improve their performance. Specifically, data race detectors can reduce their false

positives by using the knowledge of ad hoc synchronizations. Similarly, SyncFinder

can be used to improve the accuracy of other concurrency bug detectors.

9.3 Data Race Detection in Hardware

Min and Choi present a cache-based approach to data race detection [98]. This

technique uses the underlying cache coherence protocol to minimize the overhead of

data race detection. The execution of the program proceeds without any data race

detection until there is a cache miss on a read access or an invalidation on a write
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access. When one such event is observed data race detection is enabled.

Prvulovic and Torrellas propose the idea that the rollback capabilities of thread-

level speculation can be used to re-execute a buggy piece of code until the bug is

characterized [99]. Their ReEnact tool uses the thread-level speculation mechanisms

to detect, characterize, and even repair data races automatically.

HARD is a hardware implementation of the lockset algorithm for race detec-

tion [100]. The candidate sets used in the lockset algorithm is stored in hardware

bloom filters. It improves upon the lockset algorithm by handling barriers. This

helps in reducing the number of false positives reported.

Nistor et.al. present a hardware-based race detector that detects data races during

systematic testing of parallel programs [101]. Their tool, Light64, computes a hash

of program execution history during systematic testing. It detects data races by

comparing the hashes of two executions of the program. It depends on the fact that

two executions in which the accesses causing a data race are reversed will mostly

likely have different execution histories. The advantage of this technique is that it

does not report any false positives.

SigRace is a hardware-based data race detector that uses hardware address sig-

natures [102]. As a thread executes on a processor, the addresses of the locations ac-

cessed by that thread are encoded in a signature. Then, a hardware module computes

the intersection of signatures from different threads (processors). If the intersection

of signatures from any two threads is not null, then there may have been a data race.

This technique eliminates the limitations due to the reliance on caches in the earlier

hardware-based race detectors and also reduces the overhead of race detection a lot.

A recent work on demand driven software race detection uses hardware perfor-

mance counters to enable race detection as needed [103]. It monitors the cache events
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that are indicative of shared memory accesses across threads. It enables the software

race detection only when such events occur. The downside of this approach is that

it may miss data races because some shared memory accesses may not lead to any

cache events.

9.4 Determinism Checking

Data races and determinism are very closely related. This is because data race free-

dom may imply determinism in some cases. We now describe some techniques to

check for or guarantee determinism in parallel programs.

Burnim and Sen present an assertion framework to specify deterministic regions

of a parallel program [104]. The programmers specify assertions in a parallel program

that could involve program states from different executions of the program. The

assertions can be viewed as pre-conditions and post-conditions that span multiple

executions of a program. The assertion framework executes the program for some

inputs and verifies that the assertions are satisfied during these executions. While this

technique identifies non-deterministic behavior if the executions monitored exhibit

non-determinism, it can not provide any guarantees about determinism otherwise.

Sadowski et.al. present a dynamic analysis to verify conflict freedom and external

serializability of multithreaded programs [105]. They define determinism as a com-

bination of conflict freedom and external serializability properties. Though they can

prove determinism of multithreaded programs, the main drawback of their approach

is that they use vector clocks to model the happens-before relation. Since the space

overhead due to vector clocks is linear in the number of threads for every memory

location, this cannot be applied to programs with large number of threads.

Vechev et.al present a static analysis to verify determinism for structured parallel
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programs [27]. They identify fragments in a parallel program that may execute in

parallel and prove that these fragments access independent memory locations. While

this technique can prove determinism in some of the programs, they can not handle

programs where the memory locations accessed are based on the input specified. This

is an inherent drawback of static analysis.

Dthreads is an efficient multithreading system designed to provide determinis-

tic executions for multithreaded C/C++ programs [106]. In this technique, every

thread is implemented as a separate process. Since every process has its own private

address space, there is no interaction between different threads except at synchro-

nization points. At synchronization points, the updates to the shared memory from

every thread (process) are applied in sequence. Thus, a deterministic execution is

guaranteed even in the presence of data races.

Deterministic Multithreading (DMT) is another technique to preserve determin-

ism in parallel program executions. Tern is a deterministic multithreading system that

performs schedule memoization to deterministically execute parallel programs [107].

It maintains a cache of inputs and their corresponding working schedules. When

the program execution begins with an input, it checks if the input is present in the

cache. If there is a match, then the corresponding schedule is used to execute the

program. The execution will be deterministic because the same schedule is always

used to execute the program for a given input.

Peregrine [108] is an efficient deterministic multithreading system which records

the trace during the first execution of a parallel program on an input. It then computes

a hybrid schedule of the program for that input, i.e., a schedule that contains a total-

order on all the synchronization events in the program execution and an ordering of

all the memory events in the regions of the program that contain data races. Then,
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the system uses this schedule to deterministically execute the program on all “similar”

inputs.
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Chapter 10

Conclusions and Future Work

While increasing emphasis is being placed on parallel programming to utilize the pro-

cessing power available in parallel processors, writing parallel programs still remains

a challenge. The main cause for this difficulty is the need to reason about large

numbers of interleavings of statements in a parallel program. Since data races are

a major source of bugs in parallel programs, data race detection plays an important

role in improving the productivity of programmers. Structured parallelism is an at-

tractive and emerging trend in parallel programming. Though there has been a lot of

work on data race detection in the past, existing dynamic data race detectors suffer

from a number of limitations due to which it has not been effective to apply them to

structured parallel programs.

In this dissertation, we introduce two new dynamic data race detection algorithms

for structured parallel programs. The first is the ESP-bags algorithm that detects

data races in HJ programs with async, finish, isolated, and a restricted form of future,

by executing the program sequentially. This algorithm is a generalization of the SP-

bags algorithm that was designed for data race detection in Cilk programs with spawn

and sync constructs. Though this algorithm is sound and precise for a given input,

the main drawback of this algorithm is that it requires a sequential execution of the

input program.

The second algorithm that we present, called the SPD3 algorithm, can detect data

races by executing the input program in parallel. It uses a new data structure called
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the Dynamic Program Structure Tree (DPST) to check if two accesses may execute

in parallel. The DPST has some nice properties that enable it to be accessed and

updated in parallel without any synchronization. The algorithm uses only constant

space per memory location irrespective of the number of parallel tasks accessing that

location. This algorithm incurs an average slowdown of under 3× over the original

execution time on a suite of 15 benchmarks executing on a 16-core smp system. This is

in contrast with an average slowdown of over 10× from past work (Eraser, FastTrack).

With these algorithms, we show that structured parallelism can enable simpler

analysis of concurrency. Specifically, we show that structured parallelism can enable

efficient dynamic data race detectors that are useful in practice. We believe that our

parallel SPD3 algorithm is the first practical dynamic data race detection algorithm

for async-finish parallel programs, that can execute the input program in parallel

and use constant space per memory location. This algorithm provides a promising

foundation for future data race detection tools. It takes us closer to our goal of

designing dynamic data race detectors that can be “always-on” while developing

parallel applications.

Future Work

This dissertation on dynamic data race detection paves the way for a variety of future

research directions. Some of them are listed below.

1. The next logical step with the SPD3 algorithm is to extend it to support other

parallel constructs like Phasers [16], Data Driven Futures [109], and Actors [110].

2. Since our data race detection algorithms are dynamic, their guarantees hold

only for the input that is considered. We could augment our algorithms with
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some static analysis to extend the guarantees beyond one input, say to a class

of inputs.

3. The race detection algorithms presented in this thesis can also be used to synthe-

size the synchronization needed in the program. We could start with a program

where the parallelism is specified (e.g., using async statements) but is devoid

of any synchronization (e.g., finish statements). In our model, such a program

would consist of asyncs and no finishes. Using our race detection algorithm on

such programs, whenever a data race occurs, an appropriate synchronization

construct can be placed so as to prevent the data race. This way all the syn-

chronization in the program can be automatically generated and the program

will also be free of data races.

4. The work on Permission Regions in HJ [111, 112] introduces the notion of per-

missions for read / write of memory locations for regions of code. It reports a

violation when there are two conflicting permissions that are acquired by tasks

executing in parallel. Currently, this work reports a violation only if that hap-

pens in the execution that is monitored. We can use the DPST based approach

to extend the guarantees beyond the monitored execution and also enable the

detection of high level data races.

5. The DPST introduced in the SPD3 algorithm can be used to check for determin-

ism in parallel programs. The concurrency libraries used by parallel programs

often consist of conflicting methods, i.e., methods which when executed in par-

allel lead to non-determinism. We can model these conflicting methods in the

same form as reads, writes, isolated-reads, and isolated-writes in our SPD3

algorithm. Then, we can use the DPST to show that there are no calls to con-
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flicting methods in parallel thereby proving determinism of the program for a

given input.
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Appendix A

Anomaly in Crypt with Optimizations

This section explores the performance anomaly seen with Crypt benchmark when

using static optimizations. Section 8.3 discusses the performance of the ESP-bags

algorithm along with the static optimizations. In general, the slowdown of ESP-bags

with optimizations is lower than the slowdown of ESP-bags without optimizations.

But for Crypt benchmark, the slowdown of ESP-bags with optimizations is 12.93×

(relative to uninstrumented 1-thread execution time of Crypt), which is about 1.5×

slower than the performance of ESP-bags without optimizations, as shown in Ta-

ble 8.2.

All performance results in Chapter 8 use the smallest time measured in 3 execu-

tions repeated in the same JVM instance. For Crypt, when we repeat the experiment

by performing 30 executions in the same JVM instance, the optimized version per-

forms better than the unoptimized version.

Table A.1 shows the execution time of Crypt on 1-thread by performing 30 execu-

tions in the same JVM instance for three cases: uninstrumented, ESP-bags without

optimizations, and ESP-bags with optimizations. Though the optimized version is

slower than the unoptimized version for the first few iterations, beyond 15 iterations,

the optimized version is consistently better than or same as the unoptimized version.

This occurs because, in the case of Crypt, the memory footprint of the uninstrumented

program is very high. Consequently, the memory footprint of the instrumented ver-

sion is even higher. So, it takes a longer time to warm up the hardware resources used
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Table A.1 : Crypt execution repeated for 30 iterations

Execution Time on 1-thread (s)

Iteration # Uninstrumented ESP-bags w/o Opts ESP-bags w/ Opts

1 10.91 165.82 209.50

2 10.41 122.93 146.69

3 10.82 89.98 138.41

4 10.69 63.88 153.42

5 10.68 58.88 79.61

6 10.67 50.24 99.71

7 10.67 63.35 64.76

8 10.82 41.85 47.64

9 10.57 38.38 15.00

10 10.65 58.22 60.07

11 10.64 68.84 88.69

12 10.64 24.69 59.43

13 10.55 25.18 45.26

14 10.61 26.07 15.45

15 10.51 25.39 77.57

16 10.58 37.57 18.18

17 10.62 42.12 23.44

18 10.61 34.41 25.22

19 10.61 34.80 24.99

20 10.56 34.89 24.73

21 10.58 34.39 25.13

22 10.60 34.81 24.88

23 10.79 24.51 24.70

24 10.46 34.52 24.93

25 10.46 24.69 25.10

26 10.66 24.79 25.34

27 10.42 25.55 25.63

28 10.45 24.77 25.76

29 10.47 25.35 15.18

30 10.46 24.87 15.63
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by the instrumented version. The minimum execution time of the optimized version

is 15 seconds while that of the unoptimized version is 24.51 seconds.

Table A.2 shows the result of repeating the above experiment with

some additional JVM parameters. The additional parameters used are:

-XX:MaxPermSize=256m -XX:+UseParallelGC -XX:+UseParallelOldGC

-XX:NewRatio=2 -XX:-UseGCOverheadLimit. With these additional JVM pa-

rameters, the execution times of both the optimized and the unoptimized versions

are lower than earlier in the initial iterations. Now, the execution times seem to

reach a steady state with fewer iterations. Also, note that, with these additional

parameters, we see lower execution times more often than before. This improvement

over the execution times in Table A.1 is because there were frequent executions of the

garbage collector in the earlier experiment. But, in this experiment, the number of

executions of the garbage collector is reduced with these JVM options. In particular,

the -XX:-UseGCOverheadLimit option specifies a policy that limits the proportion

of the time that the JVM spends in garbage collection before an OutOfMemory

error is thrown. Now, the minimum execution time of the optimized version is 11.54

seconds whereas that of the unoptimized version is 21.03 seconds.
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Table A.2 : Crypt execution repeated for 30 iterations with additional JVM pa-
rameters: -XX:MaxPermSize=256m -XX:+UseParallelGC -XX:+UseParallelOldGC

-XX:NewRatio=2 -XX:-UseGCOverheadLimit

Execution Time on 1-thread (s)

Iteration # Uninstrumented ESP-bags w/o Opts ESP-bags w/ Opts

1 11.52 66.89 130.91

2 10.15 60.75 69.46

3 9.85 42.72 57.15

4 9.90 49.78 11.55

5 9.88 21.03 33.24

6 9.99 30.14 65.33

7 10.01 36.70 31.10

8 9.45 70.46 27.34

9 9.52 24.81 30.02

10 9.57 37.21 28.54

11 9.55 36.96 30.79

12 9.48 37.01 27.42

13 9.55 24.65 26.85

14 9.80 37.12 24.69

15 9.78 24.62 24.54

16 9.73 24.61 16.02

17 9.63 25.16 15.64

18 9.91 24.94 15.50

19 9.57 24.75 16.17

20 9.79 24.69 15.55

21 9.50 24.62 15.82

22 9.51 24.67 15.87

23 9.54 24.62 15.48

24 9.37 24.62 24.62

25 9.74 24.60 15.35

26 9.50 25.05 15.53

27 9.51 24.63 15.73

28 9.84 24.57 15.81

29 9.55 25.03 15.87

30 9.87 24.54 16.40
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