

ABSTRACT

Extending the Polyhedral Compilation Model for Debugging and Optimization of

SPMD-style Explicitly-Parallel Programs

by

Prasanth Chatarasi

The SPMD (Single Program Multiple Data) parallelism continues to be one of the

most popular parallel execution models in use today, as exemplified by OpenMP

for multi-core systems, CUDA and OpenCL for accelerator systems, and MPI for

distributed-memory systems. The basic idea behind the SPMD model, which differ-

entiates it from task-parallel models, is that all logical processors (worker threads)

execute the same program with sequential code executed redundantly and parallel

code executed cooperatively.

This thesis extends the polyhedral compilation model to enable analysis of SPMD-

style explicitly-parallel programs. This thesis demonstrates the value of this extended

polyhedral model by describing its use for identification of data races, as well as

identification and removal of redundant barriers. This thesis evaluates the effective-

ness of these two applications using 34 OpenMP programs from the OmpSCR and the

PolyBench/ACC OpenMP benchmark suites.

Dedicated to

Gautama Buddha (Siddhartha Gautama)

(c. 563 BCE/480 BCE c. 483 BCE/400 BCE)

&&

My grand parents

Late Ch.Rama Rao and T.V.Ravanamma

Acknowledgments

Taittiriya Upanishad, Shikshavalli I.20

ma;a:�ua;de ;va;ea Ba;va ;
a;pa:�ua;de ;va;ea Ba;va A;a;C+a.yRa;de ;va;ea Ba;va A;�a;ta;�a;Ta;de ;va;ea Ba;va

mātrudevo bhava pitrudevo bhava āchāryadevo bhava atithidevo bhava

“Respects to Mother, Father, Guru and Guest. They are all forms of God.”

Foremost, I would like to express my gratitude to my mother Ch. Anjanee Devi and

my father Dr. C. V. Subbaiah for always being there for me, and loving me uncondi-

tionally through out the situations of extreme happiness to depression. Without the

two of you, I don’t know where I would be. If I have learned anything while being

away from you, it is that you are the most important people in my life, and I love

you both more than anything.

I would like to express my sincere appreciation to my guru (advisor) Prof. Vivek

Sarkar, who always has had time for me when I needed him – no matter whether the

reason was a technical discussion, an administrative problem, academic development,

or the planning of my next steps. There are no words that can express my gratitude

towards your efforts. Thank you for believing in me and supporting. Without you, I

would not be able to handle everything that graduate program and life throw at me.

Having you backing me up 100% allows me to be at peace and do research. You’re

much more than an advisor, and thanks for helping me in my personal life too.

I am also very grateful to my co-advisor Dr. Jun Shirako with whom I had

many very fruitful discussions on various topics of this thesis. Thank you for always

iv

being supportive, even when I feel like I cant do it. Also, thank you for being a

humble teacher in explaining answers to my questions. Thanks for respecting my

opinions, and those lunch sessions not only are great to discuss my ideas but to build

a relationship with you.

I would also like to thank rest of my committee Prof. John Mellor-Crummey and

Prof. Keith Cooper for agreeing to be a part of my thesis committee. I am very fortu-

nate to have taken John’s course on Parallel Computing and Multi-core Computing,

and Keith’s course on Advanced Compiler Construction, which laid the foundations

for my introduction to mainstream compiler optimizations and parallel programming.

I would also like to thank you all for your time, feedback and suggestions for numerous

valuable improvements in my thesis.

I am also very grateful to the members of Polyhedral Research Community –

Dr. Uday Bondhugula for teaching me the foundations of polyhedral compilation

techniques, Dr. Albert Cohen for broadening my knowledge on applying expansion

techniques using polyhedral model, and Dr. Martin Kong for having collaboration

on this thesis, and providing suggestions to improve my research. I would like to

acknowledge the members of the Habanero Extreme Scale Software Research Project

at Rice, PARKAS research team at INRIA Paris, and Multicore computing lab at

IISc Bangalore for the research interactions.

I would also like to acknowledge my teacher Prof. Kesav Nori for piquing my

curiosity about compilers during my undergraduate study at IIT Hyderabad. Without

you, I would not be where I am today. Also, thanks are due to my bachelor thesis

advisors Dr. Aditya Nori, Dr. M. V. Panduranga Rao and Dr. Bheemarjuna Reddy

for giving me a research exposure in the undergraduate study itself. Also, thanks to

all my professors who encouraged me to apply for graduate studies, and for quickly

providing reference letters.

Furthermore, I also really appreciate my senior graduate students Dr. Deepak

v

Majeti, Dr. Karthik Murthy, Dr. Milind Chabbi, Dr. Shams Imam, and Dr. Rishi

Surendran for all the helpful advice in both research and personal life. I cannot thank

you enough for everything you taught me while your stay at Rice. I greatly value

your kindness and the expertise you imparted to me as my mentors.

Thanks are due to my friends for all the support and encouragement during my

stay at Rice. There are too many of you to mention, but I would especially like

to thank Adithya, Ankush, Arghya, Arkabandu, Hamim, Kuldeep, Lechen, Mohit,

Nishant, Priyanka, Quazi, Ramya, Rabimba, Rohan, Sharan, Sourav, Sriparna, Sriraj,

Suguman, Vivek, and Yaswanth. Thanks for always being up for a good laugh over

the years. I would also like to thank members of Rice Computer Science department

staff especially Belle, Melissa, Sherry, Beth, Lena, Annepha and Carlyn for all the

help I received during my stay at Rice.

Also, I would appreciate Office of International Students & Scholar (OISS) at

Rice for organizing International Friends at Rice (IFR), through which I could meet

a beautiful U.S. family Larry and Carole Huelbig. I express deeper gratitude to them

for helping me to feel more at home, introducing me to various activities/shows in

Houston, and sharing cross-cultural experiences.

My acknowledgments never end without mentioning siblings, i.e., my elder sister

Sree Pavani and my elder brother Sreenivasa Prabhu. First and for most, life may

not be that exciting without you. We may fight 50% of the time, but I love you a

lot for being my best friends, toughening up during tough situations of my life, and

celebrating with me during happy moments. As per a Vietnamese proverb, you both

are as close as my hands and feet. Also, I would like to express my gratitude to my

sister’s family including my brother-in-law Srinivasulu, and my cute nieces Venkata

Tejaswini and Sai Sugandhini, for the homely support during my stay in the United

States.

Contents

Abstract i

Acknowledgments iii

List of Illustrations ix

List of Tables xii

1 Introduction 1

1.1 Thesis Statement . 4

1.2 Contributions . 4

1.3 Outline . 4

2 Background 6

2.1 Explicitly-Parallel Programs . 6

2.1.1 SPMD-style Parallelism . 7

2.1.2 Serial-elision Property . 9

2.2 Mathematical Foundations for the Polyhedral Model 13

2.3 Polyhedral Model . 17

2.3.1 Polyhedral Representation of Programs 18

2.3.2 Dependence Analysis . 21

2.3.3 Affine Program Transformations 23

2.3.4 Code Generation . 25

2.4 Limitations of the Polyhedral Model 25

3 Extensions to the Polyhedral Model for SPMD Programs 28

3.1 Important Concepts in an SPMD Execution 28

vii

3.2 Space Mapping . 30

3.3 Phase Mapping . 33

3.4 May-Happen-in-Parallel (MHP) Analysis 40

3.5 Past Work in Extending Polyhedral Model for Explicitly-Parallel

Programs . 43

4 PolyOMP: A Polyhedral Framework for Debugging and

Optimizations of SPMD Programs 46

4.1 Overall Workflow . 47

5 Debugging Of SPMD Programs – Static Data Race De-

tection 50

5.1 Motivation . 50

5.2 Our Approach . 53

5.2.1 An Algorithm to Identify Data Races 53

5.3 Experimental Evaluation . 55

5.3.1 Experimental Setup . 55

5.3.2 OpenMP Source Code Repository 56

5.3.3 PolyBench/ACC OpenMP Suite 58

5.4 Strengths and Limitations of Our Approach 63

5.5 Past Work on Race Detection . 64

6 Optimization Of SPMD Programs – Static Redundant

Barrier Detection 67

6.1 Motivation . 68

6.2 Our Approach . 70

6.2.1 An Algorithm to Identify Redundant Barriers 70

6.2.2 A Greedy Approach to Compute a Set of Required Barriers . 74

viii

6.3 Experimental Evaluation . 76

6.3.1 Experimental Setup . 76

6.3.2 OpenMP Source Code Repository 77

6.3.3 PolyBench/ACC OpenMP Suite 79

6.4 Strengths and Limitations of Our Approach 81

6.5 Past Work on Analysis of Barriers . 82

7 Conclusions & Future Work 85

Bibliography 88

Illustrations

2.1 SPMD programs of the class C1 satisfy the serial-elision property. . . 11

2.2 SPMD programs (having barriers) of the class C2 don’t satisfy the

serial-elision property. 12

2.3 A two dimensional integer set

S = {(i, j) | (2 ≤ i ≤ 8) ∧ (1 ≤ j ≤ i− 1)}, with horizontal axis as

dimension i and vertical axis as dimension j∗(courtesy: islplot

display tool [1]). 13

2.4 A map M = {(i, j)→ (i+ j + 3, j + 1)} with the input elements from

the orange colored set S1 = {(i, j) | 1 ≤ i, j ≤ 3} and output elements

from the blue colored set

S2 = {(i, j) | (j ≥ −5 + i) ∧ (2 ≤ j ≤ 4) ∧ (j ≤ −3 + i)}, with

horizontal axis as dimension i and vertical axis as dimension j. . . . 14

2.5 Traditional workflow of polyhedral compilation frameworks 17

2.6 Working example: Smith-Waterman excerpt 18

2.7 Iteration domain of statement S in the Smith-Waterman kernel for

the value of M = 5 and N = 9†(courtesy: islplot display tool [1]). . 19

2.8 Execution order of instances of statement S in the Smith-Waterman

kernel (courtesy: islplot display tool [1]). 21

2.9 Dependence relations on statement S in the Smith-Waterman kernel

(courtesy: islplot display tool [1]). 22

2.10 Iteration domain of statement S in the Smith-Waterman kernel after

loop skewing to expose parallelism at loop-j (courtesy: islplot

display tool [1]). 24

x

2.11 Transformed code of Smith-Waterman kernel with parallelism at

innermost loop (j-loop) . 25

2.12 An example to discuss limitations of the polyhedral model 26

3.1 An example to motivate important concepts in an SPMD execution . 29

3.2 Overall SPMD execution of the program in Figure 3.1 with two threads 29

3.3 An OpenMP SPMD-style program with various directives 32

3.4 An OpenMP SPMD program that includes barriers with depth > 0. . 35

3.5 Overall SPMD execution of the program in Figure 3.4 with two

threads and value of N as 2 . 36

4.1 Summary of the PolyOMP, a polyhedral framework for debugging and

optimizations of SPMD programs . 46

4.2 Overview of the PolyOMP system built on top of the Polyhedral

Extraction Tool (PET, version: pet-0.08-30-g77689da) [2]. 48

5.1 Data races in the Jacobi benchmark from OmpSCR benchmark suite . . 51

5.2 PolyBench/ACC OpenMP benchmark developer might have

forgotten to mark certain variable as private variables (x in Cholesky,

nrm in Gramschmidt), and there by resulting races on such variables. 61

5.3 PolyBench/ACC OpenMP benchmark developer have incorrectly

parallelized the linear algebra kernels (some of them are notoriously

hard to be parallelized because of complex dependence patterns), and

there by resulting races on arrays C in Symm and B in Trmm benchmarks. 62

6.1 Redundant barrier (implicit) at line 11 in the 3mm benchmark from

PolyBench/ACC benchmark suite . 68

6.2 Bipartite graph constructed by mapping each barrier in 3mm

benchmark to data races that can be avoided with the barrier 72

xi

List of Algorithms

1 Building phase mappings of statements 38

2 Building May-Happen-in-Parallel (MHP) information between

statements S and T. 43

3 An approach to compute a set of data races in an SPMD program . . . 54

4 An approach to compute a set of redundant barriers in an SPMD

program . 71

5 An approach to construct a bipartite graph from barriers to data races

in an SPMD program . 73

6 A greedy approach to compute a set of required barriers 75

Tables

5.1 Race detection analysis over the subset of OmpSCR benchmark suite.

PolyOMP - Detection time / Reported / False +ves : Total time taken

to detect races by PolyOMP, Number of reported races, Number of

false positives among reported. ARCHER / Intel Inspector XE:

Number of races reported. 57

5.2 Race detection analysis over the subset of PolyBench/ACC OpenMP

benchmark suite. PolyOMP - Detection time / Reported / False +ves

: Total time taken to detect races by PolyOMP, Number of reported

races, Number of false positives among reported. Intel Inspector XE:

Number of races reported, Hang up (H) and Application exception (A). 59

5.3 Closely related static approaches in race detection 65

6.1 Hardware specifications of the experimental setup for evaluating our

approach to identify redundant barriers. 77

6.2 Redundant barrier detection analysis over the subset of OmpSCR

benchmark suite. Benchmarks labeled with (*) have no true races but

our race detection algorithm reported false positives, and benchmarks

with (**) indeed have true races. Our tool ignored (I) the

benchmarks with labels (*, **) because of the presence of races

(including false positives). size, k, error, numiter are symbolic

parameters in the corresponding benchmarks. Note that we also

count implicit barriers after the omp parallel construct even though

these implicit barriers cannot be removed from the source code. . . . 78

xiii

6.3 Redundant barrier detection analysis over the subset of

PolyBench/ACC OpenMP benchmark suite. Benchmarks labelled

with (*) doesn’t have redundant barriers, and we didn’t run (NR) the

benchmarks for performance evaluation. Benchmarks labelled with

(**) have true races, and our tool ignored (I) these benchmarks. A -

Application exception, i.e., Segmentation fault in the original

program itself. Note that we also count implicit barriers after the omp

parallel construct even though these implicit barriers cannot be

removed from the source code. 80

6.4 Closely related static approaches in barrier analysis 83

1

Chapter 1

Introduction

It is widely recognized that computer systems anticipated in the 2020 time frame will

be qualitatively different from computer systems of previous decades. Specifically,

they will be built using homogeneous and heterogeneous many-core processors with

hundreds of cores per chip. Also, the performance of these processors will be driven

by parallelism and constrained by energy and data movement [3]. This trend towards

ubiquitous parallelism has forced the need for improved productivity and scalability in

parallel programming models. Two classical programming models that were conceived

to express parallelism are the Single-Program-Multiple-Data (SPMD) computational

model [4] and the fork-join computational model [5].

In the SPMD computational model, all processes working together will execute the

same program [4], i.e., all logical processors (worker threads) execute the same pro-

gram with sequential code executed redundantly and parallel code executed coop-

eratively. In the last couple of decades, the SPMD computational model has been

exemplified by OpenMP [6] for multi-core systems, CUDA [7] and OpenCL [8] for

accelerator systems, as well as MPI [9] for distributed-memory systems.

In the fork-join computational model, a sequential thread spawns (fork) multiple

threads to execute a portion of code concurrently and waits (join) for the spawned

threads to finish their part of execution [5]. This computational model is used by

task parallel programming models and libraries, such as OpenMP [6], Chapel [10],

Cilk [11], and X10 [12]. There is a general agreement that the fork-join model is more

productive than the SPMD model, i.e., programmers can express different styles of

2

parallelism and concurrency more conveniently in the fork-join model than in the

SPMD model. However, the SPMD model has been developed as a straightforward

method of low-overhead parallel execution compared to the fork-join model [4]. Hence,

some compiler approaches [13, 14, 15, 16] transform a given region of fork-join code

to the SPMD model for improved performance, a transformation technique that is

referred to as “SPMDization”.

Current production compilers enhance the performance of source programs by per-

forming SSA-based optimizations, automatic vectorization, loop-level transformations

based on data-dependence analysis, inspector-executor strategies, and profile guided

optimizations [17]. In the coming decades, compiler research is expected to play a

crucial role in addressing the multi-core programming challenge, i.e., how to exploit

the parallelism in large-scale parallel hardware without undue programmer effort.

Also, multi-core programming challenge is mentioned as one of the major challenges

facing the overall computer field [18]. Traditionally, the two major approaches in han-

dling the parallel programming challenge are automatic parallelization of sequential

programs, and analysis and optimization of explicitly-parallel programs.

In the automatic parallelization approach [19, 20, 21, 22, 23, 24, 25] of sequential

programs, the programmer provides either a portion of a sequential program or a

high-level specication of a computation. Then, the compiler identifies parallelism

available in the program and generates parallel code for a broad range of architec-

tures. When successful, automatic parallelization removes the significant burden from

a programmer to manually re-write sequential programs for parallel execution, which

often requires the generation of different parallel code for different parallel platforms.

The polyhedral model [26, 27, 28, 29], a mathematical algebraic framework, repre-

sents one of the major automatic parallelization approaches for a variety of architec-

tures including multi-cores [23, 24], accelerators such as GPU’s/ FPGA’s [25, 30, 31],

and distributed-memory systems [32]. The polyhedral model reasons about execu-

tions (instances) of statements, and can be used for accurate dependence analysis

3

over arrays, data flow analysis of arrays, applying loop transformations holistically,

and generating transformed code in high-level languages. However, despite decades

of research on automatic parallelization, fully automatic parallelization of sequen-

tial programs by compilers remains difficult due to its need for a complex program

analysis and unknown input parameters (such as indirect array subscripts) during

compilation [33, 34].

An alternate approach to address the multi-core programming challenge is through

analysis and optimization of explicitly-parallel programs [35, 36, 37, 38, 39, 40, 15,

41, 42], in which the programmer species the logical parallelism and explicit syn-

chronizations in the source program, and the compiler extracts the parallelism sub-

set that is best suited for a given target platform. An interesting property of an

explicitly-parallel program is that it specifies a partial execution order, unlike a se-

quential program, which specifies a total order. In this approach, the compiler is

made aware of explicitly-parallel information (the partial execution order) such as

Happens-Before (HB) relations, May-Happen-in-Parallel (MHP) relations and Never-

Execute-in-Parallel (NEP) relations from the various constructs in the source pro-

gram. Then the compiler leverages the parallel information to perform stronger and

more focused debugging analyses with the goal of, for instance, detecting races, dead-

locks or localizing the root cause of false sharing (an important source of “performance

bugs”); on the other hand, the explicit parallelism can also be used to enable loop

transformations after fusing SPMD regions, removing redundant barriers, code mo-

tion on a region of code surrounded by constructs that enforce mutual exclusion. The

major challenge in the analysis of explicitly-parallel programs is the extraction and

representation of parallel information (HB, MHP, NEP) from different parallel and

concurrency constructs [43]. In this thesis, we propose a new system (PolyOMP) which

captures the partial execution order present in an SPMD-style parallel program as

May-Happen-in-Parallel (MHP) information in the polyhedral model, and utilizes the

MHP information for debugging and optimizations of SPMD programs.

4

1.1 Thesis Statement

Though the polyhedral compilation model was designed for analysis and optimization

of sequential programs, our thesis is that it can be extended to enable analysis of

SPMD-style explicitly-parallel programs with benefits to debugging and optimization

of such programs.

1.2 Contributions

This thesis makes the following contributions in defense of our thesis statement:

• It describes our extensions to the polyhedral compilation model to represent

partial execution order present in SPMD-style parallel programs.

• It formalizes the partial order as May-Happen-in-Parallel (MHP) information

using our extensions to the polyhedral model.

• It presents an approach for compile-time detection of data races in SPMD-style

parallel programs [44].

• It also presents an approach for identification and removal of redundant barriers

at compile-time in SPMD-style parallel programs.

• It demonstrates the effectiveness of our approaches on 34 OpenMP programs

from the OmpSCR and the PolyBench/ACC OpenMP benchmark suites.

1.3 Outline

The rest of this thesis is organized as follows.

• Chapter 2 summarizes background on the SPMD parallel execution model and

on the polyhedral model. Some of the fundamental concepts related to the

5

polyhedral model are taken from the PhD dissertations of Bondhugula, Grosser

and Kong [45, 46, 47].

• Chapter 3 explains the lack of existing approaches in the polyhedral model to

capture partial execution orders originating from barriers in SPMD programs.

Then, we present our formal extensions (space and phase mappings) to the

polyhedral representation, and also introduce an algorithm to formalize May-

happen-in-parallel relations from the extensions as a way to capture the partial

orders. Also, we summarize the past work in extending polyhedral model to

enable analysis of explicitly-parallel programs.

• Chapter 4 provide an overview of our system (PolyOMP) including the descrip-

tion of all components involved in the system.

• Chapter 5 describes our approach to compile-time detection of data races in

SPMD-style parallel programs. Then, we evaluate our technique for race de-

tection on 34 OpenMP programs from the OmpSCR and the PolyBench/ACC

OpenMP benchmark suites. Also, we summarize related work on approaches

for compile-time detection of data races.

• Chapter 6 introduces an approach to compile-time detection and removal of

redundant barriers in SPMD-style parallel programs by building on the race

detection approach of Chapter 5. Then, we analyze performance of the 34

OpenMP programs evaluated in Chapter 5 after applying our technique to re-

move redundant barriers. Also, we summarize related work on approaches for

compile-time analysis of barriers in the SPMD programs.

• Finally, Chapter 7 present our conclusions and directions for future research.

6

Chapter 2

Background

I believe in innovation and that the way you get

innovation is you learn the basic facts.

Bill Gates

This chapter begins with a discussion of the motivation for explicitly-parallel

programs, and briefly summarizes SPMD-style parallelism using OpenMP as an ex-

emplar. Then, we summarize the mathematical foundations of the polyhedral model,

which in turn provide the theoretical foundation for the contributions in this thesis.

Then, we briefly summarize the polyhedral model including the polyhedral represen-

tation of programs, dependence analysis, loop transformations, and code generation.

Finally, we conclude with limitations of the polyhedral model, which in turn provide

the motivation for our research in this thesis.

2.1 Explicitly-Parallel Programs

Traditionally, there have been two different approaches in programming parallel ar-

chitectures: the automatic parallelization and the explicitly-parallel programming ap-

proach. In the automatic parallelization approach, the programmer provides either a

portion of a sequential program or a high-level specification of a computation. Then,

the compiler identifies parallelism available in the program and generates parallel

codes for a broad range of architectures. When successful, automatic parallelization

7

removes the significant burden from a programmer to manually re-write sequential

programs for parallel execution, which often requires the generation of different par-

allel code for different parallel platforms. Also, there is a little effort required from

the programmer, but there are many fundamental limitations that make it difficult

for compilers to identify the parallelism from the input program.

The alternate approach is to write explicitly-parallel programs, in which the pro-

grammer specifies the logical parallelism and explicit synchronizations in the source

program, and the compiler extracts the parallelism subset that is best suited for a

given target platform. In this approach, the programmer takes care of providing the

parallelism required for performance, and then the compiler takes care of generating

low-level code for the architecture. Even though this approach can be tedious for

programmers, it is the default approach used in practice because the programmers

are more confident of a successful outcome with this approach than with automatic

parallelization.

2.1.1 SPMD-style Parallelism

SPMD (Single Program Multiple Data) parallelism [13, 48] continues to be one of the

most popular parallel execution models in use today, as exemplified by OpenMP [6] for

multi-core systems, CUDA [7] and OpenCL [8] for accelerator systems, and MPI [9]

for distributed-memory systems. The basic idea behind the SPMD model is that

all logical processors (worker threads) execute the same program, with sequential

code executed redundantly and parallel code (worksharing, barrier constructs, etc.)

executed cooperatively. In this thesis, we focus on OpenMP [6] as an exemplar of

SPMD parallelism. In the rest of this section, we explain the semantics of OpenMP

constructs, which are considered in this thesis.

1. The OpenMP parallel construct creates a fixed number of parallel worker

threads to execute an SPMD parallel region. The number of threads can be

8

specified in the code, or in an environment variable (OMP NUM THREADS), or via

a runtime function, omp set num threads() that is called before the parallel

region starts execution.

2. The OpenMP barrier construct specifies a barrier operation among all threads

in the current parallel region. In this thesis, we restrict our attention to tex-

tually aligned barriers [49], in which all threads reach the same textual sequence

of barriers. Each dynamic instance of the same barrier operation must be en-

countered by all threads, e.g., it is not allowed for a barrier in a then-clause

of an if statement executed by (say) thread 0 to be matched with a barrier

in an else-clause of the same if statement executed by thread 1. We plan to

address textually unaligned barriers as part of the future work. However, many

software developers believe that textually aligned barriers are better from a

software engineering perspective.

3. The OpenMP for construct indicates that the immediately following loop can

be parallelized and executed in a work-sharing mode by all the threads in the

parallel SPMD region. An implicit barrier is performed immediately after a

for loop, while the nowait clause disables this implicit barrier. Further, a

barrier is not allowed to be used inside a for loop. When the schedule(kind,

chunk size) clause is attached to a for construct, its parallel iterations are

grouped into batches of chunk size iterations, which are then scheduled on the

worker threads according to the policy specified by kind.

4. The OpenMP single construct specifies that the enclosed code is to be exe-

cuted by only one thread among all the threads in the parallel SPMD region.

An implicit barrier is performed immediately after the enclosed code block by

single construct, while the nowait clause disables this implicit barrier. A

single OpenMP construct can be viewed as equivalent to a OpenMP for con-

struct with a single-iteration loop.

9

5. The OpenMP master construct indicates that the immediately following region

of code is to be executed only by the master thread of the parallel SPMD region.

Note that, there is no implied barrier associated with this construct.

Since programmers can also leverage modern task-based parallel programming models

such as Chapel [10] towards SPMD-style parallelism, we provide a brief background

on required constructs in Chapel to express SPMD-style computation.

1. The chapel coforall loop construct creates a distinct task per loop iteration,

each of which executes a copy of the loop body. The construct can be seen as a

way to parallelize a loop where each iteration is independent of other iterations.

2. The chapel barrier construct can be used to prevent tasks from proceeding

until all other related tasks have also reached the barrier. According to the

Chapel documentation, it is legal to insert barriers in the parallel loops ex-

pressed by coforall construct unlike OpenMP which doesn’t allow barriers

inside the parallel loops.

2.1.2 Serial-elision Property

The serial-elision property is one of the interesting properties of explicitly-parallel

programs. It is informally defined as the property that removal of all parallel con-

structs results in a sequential program that is a valid (albeit inefficient) implemen-

tation of the original parallel program semantics [50]. In the context of the Cilk

programming language, serial-elision of a Cilk program is defined a Cilk program,

when run on one processor, is semantically equivalent to the C program that results

from the deletion of the Cilk keywords [51]. It has been shown in past work that

restricting attention to parallel programs that satisfy the serial-elision property can

simplify debugging and optimization of parallel programs [52, 41]. In contrast, this

thesis focuses on debugging and optimization of SPMD programs, which in general

10

do not satisfy serial-elision property.

We classify SPMD programs into two classes, C1 – SPMD programs whose cor-

rectness doesn’t depend on a fixed number of logical threads participating in the

SPMD region, and C2 – SPMD programs which depend on a fixed number of logical

threads for correct semantics. For SPMD programs in the class C1, one way to achieve

a serial elision is to simply run the program with one thread. However, this approach

cannot be applied to SPMD programs in the class C2, which include certain pro-

grams that conform with the OpenMP specification (see section 2.5.1 in [53]). Also,

modern task-based parallel programming models such as Chapel [10] and X10 [12]

allow barriers inside parallel loops unlike OpenMP programming model which doesn’t

allow barriers inside the parallel loops. To define the serial-elision version for generic

SPMD programs with barriers, we consider SPMD programs (both in classes C1 and

C2) written using OpenMP and Chapel programming models.

1) Class C1: In this class of SPMD programs, programmer guarantees the correct-

ness independent of number of participating threads in the SPMD regions. Hence,

serial-elision version of an SPMD program of class C1 is defined as a C program that

results from the removal of omp parallel, omp barrier constructs in case of the

OpenMP, and replacing coforall by a for loop, removal of all barrier constructs

in case of the Chapel programming language. Since the semantics of SPMD pro-

grams of the class C1 is unchanged with the number of logical threads participating

in the SPMD region, and execution of such programs with one thread is semanti-

cally equivalent to its serial-elision version, SPMD programs of the class C1 satisfy

the serial-elision property. As can be observed from Figure 2.1, execution of both

OpenMP and Chapel SPMD programs of the class C1 with one thread (T = 1) is

semantically equivalent to its serial-elision version; hence SPMD programs of the class

C1 satisfy the serial-elision property.

2) Class C2: In this class of SPMD programs, programmer guarantees the correct-

11

1#pragma omp p a r a l l e l \
2 num_threads (T)
3 {
4 S1 ;
5#pragma omp ba r r i e r //B1
6 S2 ;
7 S3 ;
8#pragma omp ba r r i e r //B2
9 }

(a) An OpenMP program of the class C1

1 var b = new Barrier (T) ;
2 coforall tid in 1 . . . T do
3 {
4 S1 ;
5 b . barrier () ;
6 S2 ;
7 S3 ;
8 b . barrier () ;
9 }

(b) A Chapel program of the class C1
w

w

�

w

w

�

2 {
3 S1 ;
4 S2 ;
5 S3 ;
6 }

(c) Serial-elision version of the above program

2 {
3 S1 ;
4 S2 ;
5 S3 ;
6 }

(d) Serial-elision version of the above program

Figure 2.1 : SPMD programs of the class C1 satisfy the serial-elision property.

ness only for a fixed number of participating threads in the SPMD regions. Hence,

serial-elision version of an SPMD program of class C2 is defined as a C program

that results from replacing each OpenMP parallel region containing a fixed number

of threads, by a sequential loop that executes the body of the parallel region for

num threads() iterations, as well as removal of all OpenMP barrier constructs from

the OpenMP program. In case of the Chapel, a serial-elision is obtained by replacing

each coforall by a for loop, as well as of all barrier constructs from the program.

Consider Figure 2.2 to illustrate the fact that eliding a barrier can alter the execution

order of the original program, possibly leading to incorrect results and unexpected

behavior. Eliding the barrier B1 can (for example) result in first logical thread exe-

cuting statement S2 without waiting for third thread to complete executing statement

S1. Likewise, eliding the barrier B2 can also lead to first thread not waiting for the

12

1#pragma omp p a r a l l e l \
2 num_threads (3)
3 {
4 S1 ;
5#pragma omp ba r r i e r //B1
6 S2 ;
7 S3 ;
8#pragma omp ba r r i e r //B2
9 }

(a) An OpenMP program of the class C2

1 var b = new Barrier (3) ;
2 coforall tid in 1 . . . 3 do
3 {
4 S1 ;
5 b . barrier () ;
6 S2 ;
7 S3 ;
8 b . barrier () ;
9 }

(b) A Chapel program of the class C2
w

w

�

w

w

�

1 f o r (tid = 0 ; tid < 3 ; \
2 tid++)
3 {
4 S1 ;
5 S2 ;
6 S3 ;
7 }

(c) Serial-elision version of the above program

1 f o r tid in 1 . . . 3 do
2 {
3 S1 ;
4 S2 ;
5 S3 ;
6 }

(d) Serial-elision version of the above program

Figure 2.2 : SPMD programs (having barriers) of the class C2 don’t satisfy the

serial-elision property.

remaining tasks to finish executing statements S2 and S3. Therefore, eliding a bar-

rier from SPMD programs of the class C2 can alter the original program semantics,

and violate the serial-elision property. However, SPMD programs of the class C2

without barrier satisfy the serial-elision property since executing all of thread related

iterations in a serial fashion keeps semantics of original programs.

Our implementation (in PolyOMP) is specific to SPMD-style programs using the

OpenMP programming model, and hence we don’t encounter barriers in parallel loops;

however, the ideas in this thesis can be applied to other languages (such as Chapel and

CUDA) that support SPMD-style constructs with barriers in parallel loops, thereby

violating the serial-elision property.

13

2 3 4 5 6 7 8
dimension i

1

2

3

4

5

6

7

di
m

en
sio

n
j

An integer element in the set

Figure 2.3 : A two dimensional integer set S = {(i, j) | (2 ≤ i ≤ 8) ∧ (1 ≤ j ≤

i−1)}, with horizontal axis as dimension i and vertical axis as dimension j∗(courtesy:

islplot display tool [1]).

2.2 Mathematical Foundations for the Polyhedral Model

In this section, we provide a brief overview of the polyhedral model [26, 27, 28, 29], a

powerful framework that enables analyzing, reasoning, transforming and generating

programs using mathematical representations. Some of the fundamental concepts

related to the polyhedral model are taken from the PhD dissertations of Bondhugula,

Grosser, and Kong [45, 46, 47].

Definition 2.2.1. (Integer set) A d-dimensional integer set is defined as a set of

integer tuples from Zd as described by Presburger formulas [54, 46]. Note that “A

Presburger formula is defined recursively as either a boolean constant, the result of

a boolean operation such as negation, conjunction, and disjunction or implication, a

quantified expression or a comparison between different quasi-affine expressions [46].”

For example, S = {(i, j) | (2 ≤ i ≤ N) ∧ (1 ≤ j ≤ i − 1)} is an example of a

∗Note that the orange corner points also do belong to the triangle.

14

0 2 4 6 8
dimension i

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

di
m

en
sio

n
j

A single element in the map

Figure 2.4 : A map M = {(i, j) → (i + j + 3, j + 1)} with the input elements from

the orange colored set S1 = {(i, j) | 1 ≤ i, j ≤ 3} and output elements from the blue

colored set S2 = {(i, j) | (j ≥ −5 + i) ∧ (2 ≤ j ≤ 4) ∧ (j ≤ −3 + i)}, with horizontal

axis as dimension i and vertical axis as dimension j.

two dimensional (dimensions i, j) integer set described in terms of a parameter N.

Figure 2.3 illustrates the integer set S (for the value of N = 8), which consists of the

brown integer points (including orange corner points) within the triangle. The shape

is derived from the Presburger constraints ((2 ≤ i ≤ N) ∧ (1 ≤ j ≤ i− 1)) imposed

on the set S and elements of the set are integral points in the shape. In general,

integer sets are used in describing the iteration space of loops in a program.

Definition 2.2.2. (Integer Map) An integer map is a binary relation from an

integer set of dimension d1 to another integer set of dimension d2. The first integer

set in the relation is called the domain or the input set (according to isl [54]) and

the second integer set is called the range or the output set. These integer maps are

modeled as pairs of integer tuples from Zd1 ×Zd2 .

Figure 2.4 illustrates a map M = {(i, j)→ (i+j+3, j+1)} with input elements

from the orange colored set S1 = {(i, j) | 1 ≤ i, j ≤ 3} and output elements from the

15

blue colored set S2 = {(i, j) | (j ≥ −5+i) ∧ (2 ≤ j ≤ 4) ∧ (j ≤ −3+i)}. Each black

colored arrow represents an edge between an input tuple from the orange colored set

S1 to an output tuple from the blue colored set S2. In general, integer maps are

useful in transforming iteration space of loops in a program for optimizations. The

map M = {(i, j)→ (i+ j + 3, j + 1)} (in Figure 2.4) can be viewed as loop skewing

and shifting transformation on the S1 set.

Definition 2.2.3. (Affine space/Affine set) A k-dimensional space s is called an

affine space if the space is closed under affine combination i.e., if vectors ~v1, ~v2 are in

the space s, then all the integer vectors lying on the line joining ~v1 and ~v2 should also

belong to space s. In general, integer sets can be used to describe affine spaces, but

the integer sets can also be used to describe quasi-affine spaces [54]. An example of

a space that is quasi-affine but not affine is as follows:

S = {j | (0 ≤ i ≤ 3) ∧ (j = 3× (i mod 3))} = {0, 3, 6}

In the above quasi-affine space S, the element 2 on the line joining elements 0 and 3

doesn’t belong to the space S.

Definition 2.2.4. (Affine function/Affine map) A function f is called an affine

function [45] from a k-dimensional affine space to a d-dimensional affine space if it

can be expressed of the form:

f(~v) = Mf~v + ~f0 (2.1)

where ~v and ~f0 are k-dimensional and d-dimensional vectors of integers, respectively.

Also, Mf is an integer matrix with d rows and k columns. In general, integer maps

can be used to describe affine maps, but integer maps can also describe quasi-affine

maps [54].

16

Definition 2.2.5. (Affine hyperplane) An affine hyperplane can be viewed as

a one-dimensional affine function that maps an n-dimensional space onto a one-

dimensional space [45].

φ(~v) = h.~v + c (2.2)

Such an affine hyperplane can divide the input n-dimensional space into two half-

spaces i.e., the positive half space (φ(~v) ≥ 0) and the negative half space (φ(~v) ≤ 0).

The affine hyperplanes (a special case of affine functions) can also be described with

integer maps.

Definition 2.2.6. (Polyhedron) A polyhedron can be formally defined as the set

of solutions to a system of linear inequalities.

M~x ≤ ~b (2.3)

where ~x,~b are k and d dimensional vectors respectively. A polyhedron can be viewed

as an intersection of a finite number of half-spaces from affine hyperplanes. Also, M

can be seen as set of d constraints on k dimensional vectors and expressed using an in-

teger matrix with d rows and k columns. In general, an integer set cannot completely

describe the set of points inside a polyhedron since the polyhedron can contain non-

integer points as well. But, when the polyhedron is intersected with integer space,

then the resulting polyhedron can be described using integer sets, and such resulting

polyhedra are called Z-polyhedra.

17

Figure 2.5 : Traditional workflow of polyhedral compilation frameworks

2.3 Polyhedral Model

Many scientific and engineering applications often spend most of their execution

time in nested loops. Therefore, optimizing such nested loops can significantly im-

prove the performance of the applications. The polyhedral model is a mathemat-

ical algebraic representation for such arbitrarily nested loops that enables system-

atic analysis and transformation at the granularity of array cells and statement in-

stances [26, 27, 28, 29]. The polyhedral model has been shown to have significant ad-

vantages over AST-based (Abstract Syntax Tree) representations with respect to anal-

ysis and transformation of code regions consisting of loops and array accesses [55, 56].

One of its primary distinguishing factors is the use of powerful and robust code gener-

ation algorithms that can synthesize new code from algebraic specifications of trans-

formations [57, 58, 59]. In the original formulation of the polyhedral model, all array

subscripts, loop bounds, and branch conditions in analyzable programs were required

to be affine functions of loop index variables and global parameters. However, decades

of research since then have led to a significant expansion in the set of programs that

can be considered analyzable by polyhedral compilation techniques [60, 61, 62].

18

1 f o r (i n t i = 1 ; i < M ; i++) {
2 f o r (i n t j = 1 ; j < N ; j++) {
3 A [i] [j] = MAX (A [i−1] [j] , A [i−1] [j−1] , A [i] [j−1]) ; //S
4 }
5 }

Figure 2.6 : Working example: Smith-Waterman excerpt

Figure 2.5 presents a traditional workflow in restructuring input programs based

on the polyhedral model. In the rest of this section, we describe each step of the

workow using the Smith-Waterman kernel (shown in Figure 2.6) as a running exam-

ple.

2.3.1 Polyhedral Representation of Programs

Loop nests amenable to polyhedral (algebraic) representation are called Static Control

Parts (SCoP’s) and represented in the SCoP format, which includes three elements for

each statement, namely, the iteration domain, access relations and program sched-

ule [63].

Definition 2.3.1. (Iteration Vector) The iteration vector (denoted by ~iS) of a

statement S is defined as a multi-dimensional vector in which each element corre-

sponds to a loop that surrounds the statement, ordered from outermost to innermost.

The length of the vector is the number of loops surrounding the statement. As an

example, the iteration vector for the first instance of statement S in Figure 2.4 is

~iS = (i = 1, j = 1)

Thus, an iteration vector represents a dynamic instance of a statement in a loop nest.

19

0 1 2 3 4 5 6
loop i

0

2

4

6

8

10

lo
op

 j

Figure 2.7 : Iteration domain of statement S in the Smith-Waterman kernel for the

value of M = 5 and N = 9†(courtesy: islplot display tool [1]).

Definition 2.3.2. (Statement Instance) Each dynamic instance of a statement

S in a program is identified by its iteration vector (~iS), which contains values for

the iterators of the surrounding loops. For example, S(i = 1, j = 1) in the Smith-

Waterman kernel refers to the statement S when the values of loop iterators i, and j

are 1, i.e., the first instance that gets executed among all the statement instances of S.

Definition 2.3.3. (Iteration Domain) The iteration domain (denoted by DS) of

a statement S is defined as the set of all iteration vectors, i.e., the set of all possible

dynamic instances of the statement. The iteration domain of the statement S in the

Smith-Waterman kernel as follows:

D(S(~iS)) = {(i, j) | (1 ≤ i ≤M − 1) ∧ (1 ≤ j ≤ N − 1)}

Figure 2.7 shows the iteration domain of statement S in the Smith-Waterman kernel

for the value of M = 5 and N = 9. Each point in the iteration domain is an execution

†Note that the orange corner points also do belong to the iteration domain.

20

instance ~iS ∈ D of the statement. If the length of the iteration vector of the statement

is m, then the iteration domain of the statement can be viewed as an m-dimensional

bounded polyhedron(polytope) [64].

Definition 2.3.4. (Access Relation) Each memory reference (such as scalars, ar-

rays, structures), denoted by A, in a statement is expressed as an access relation,

which maps a statement instance ~iS to one or more memory locations to be read-

/written [65]. The read memory reference A[i-1][j-1] in the statement S of the

Smith-Waterman can be expressed as follows:

Aread
1 (S(~iS)) =







1 0 0 0 −1

0 1 0 0 −1



































i

j

M

N

1





























Definition 2.3.5. (Schedule) A schedule (denoted by ΘS(S(~iS))) is an affine func-

tion that describes the order in which each dynamic instance of the statement will be

executed in the original or transformed version of the program.

In other words, the execution order of a program is captured by the schedule,

which maps a statement instance S(~iS) to a logical timestamp. In general, a sched-

ule is expressed as a multidimensional vector, and statement instances are executed

according to the increasing lexicographic order of their timestamps. For example,

the execution order of instances of statement S in the original version of the Smith-

Waterman kernel is as follows:

ΘS(S(~iS)) = (i, j)

21

0 1 2 3 4 5 6
loop i

0

2

4

6

8

10

lo
op

 j

Figure 2.8 : Execution order of instances of statement S in the Smith-Waterman

kernel (courtesy: islplot display tool [1]).

As can be seen from Figure 2.8, the points in the iteration domain of the statement

S will be executed in the order specified by the schedule ΘS(~iS).

2.3.2 Dependence Analysis

After extracting the polyhedral representation of an input program, dependence anal-

ysis phase computes memory based dependences which need to be preserved in trans-

formations. A statement instance T is dependent on another statement instance S

if they access the same memory location (at least one of the accesses is a write),

and there exists a possible program execution path from S to T. Dependence rela-

tions denoted by DS→T capture the precise constraints under which the statement

instances S and T are dependent on a memory location. For example, a dependence

relation arising from the pair of memory accesses, i.e., A[i][j] and A[i-1][j-1] of

statement S in the Smith-Waterman are as follows:

22

0 1 2 3 4 5 6
loop i

0

2

4

6

8

10
lo

op
 j

(a) Dependence between instances of

statement S with read on A[i-1][j-1] and

write on A[i][j]

0 1 2 3 4 5 6
loop i

0

2

4

6

8

10

lo
op

 j

(b) Dependence between instances of

statement S with read on A[i-1][j] and write

on A[i][j]

0 1 2 3 4 5 6
loop i

0

2

4

6

8

10

lo
op

 j

(c) Dependence between instances of

statement S with read on A[i][j-1] and write

on A[i][j]

0 1 2 3 4 5 6
loop i

0

2

4

6

8

10

lo
op

 j

(d) Union of dependences from parts (a),

(b), (c)

Figure 2.9 : Dependence relations on statement S in the Smith-Waterman kernel

(courtesy: islplot display tool [1]).

DS→S = { (~iS = (is, js))→ (~i′S = (i′s, j
′
s)) | (~iS,

~i′S ∈ D(S(~iS))

∧ (is = i′s − 1) ∧ (js = j′s − 1)

∧ ΘS(S(~iS)) � ΘS(S(~i′S)) }

where ΘS(S(~iS)) � ΘS(S(~i′S)) = (is < i′s) ∨ (is = i′s ∧ js < j′s) (2.4)

23

In the equation (2.4), ~iS, ~i′S are iteration vectors of source and sink of the dependence

relation respectively. The constraint that the iteration vectors of source and sink

should belong to their corresponding iteration domain is captured by the condition,

(~iS, ~i′S ∈ D(S(~iS)). Also, the constraint that the source and sink of the dependence

should access same memory location is captured by the condition, ((is = i′s−1)∧(js =

j′s − 1)). Further more, the constraint that the source of the dependence should

execute before the sink of the dependence is captured by the condition ΘS(S(~iS)) �

ΘS(S(~i′S)).

Figure 2.9 shows all dependence relations among instances of S arising from

all the read accesses (A[i-1][j-1], A[i-1][j], A[i][j-1]) and the write access

(A[i][j]) in the Smith-Waterman kernel. Above dependence relations from the input

program are then leveraged to compute a new program schedule that can expose

parallelism in the Smith-Waterman kernel.

2.3.3 Affine Program Transformations

Polyhedral optimizers such as PLuTo [23], PolyAST [24], PPCG [25] take polyhedral

representation of an input program along with memory based dependences as input.

Then, the optimizers compute a best affine program transformation, i.e., a sequence

of tens of textbook loop transformations, so as to enable parallelism, vectorization or

improve data locality, while obeying the inherent dependences in the input program.

Definition 2.3.6. (Affine Transformation) “Affine transformations (denoted by

T (S(~iS))) are the class of transformations that preserve the collinearity and convexity

of points in space, besides the ratio of distances” [45].

Several loop transformations such as skewing, interchange, distribution, fusion,

non-parametric tiling, and others can be represented using affine transformations.

24

0 2 4 6 8 10 12 14
loop i

0

2

4

6

8

10
lo

op
 j

Figure 2.10 : Iteration domain of statement S in the Smith-Waterman kernel after

loop skewing to expose parallelism at loop-j (courtesy: islplot display tool [1]).

An affine transformation can reorder the execution of statement instances to expose

hidden parallelism while obeying the inherent dependences in the input program. For

example, neither of the loops (i,j loops) in the Smith-Waterman kernel can be par-

allelized because of carried dependences on both i, j loops. However, loop skewing

can be applied on the Smith-Waterman kernel to enable innermost loop (j-loop) to

be executed in parallel. The affine program transformation (shown in Figure 2.10)

corresponding to the loop skewing on Smith-Waterman kernel is as follows.

T (S(~iS)) = {(i, j)→ (i′, j′) | (i′ = i+ 1) ∧ (j′ = j)} (2.5)

In general, polyhedral optimizers rely on integer linear programming (ILP) based cost

modeling to compute the best affine program transformation by respecting program

dependences, and maximizing the parallelism and data locality [23, 24, 25].

25

1 f o r (i n t i = 2 ; i < M + N − 1 ; i += 1) {
2 #pragma omp parallel f o r
3 f o r (i n t j = max (1 , −M + i + 1) ; j < min (N , i) ; j += 1) {
4 A [i−j] [j] = MAX (A [i−j−1] [j] , A [i−j−1] [j−1] , \
5 A [i−j] [j−1]) ;
6 }
7 }

Figure 2.11 : Transformed code of Smith-Waterman kernel with parallelism at

innermost loop (j-loop)

2.3.4 Code Generation

Generating code in the polyhedral model is finding a set of nested loops visiting

each integral point of each polyhedra, once and only once, following the execution

order from schedules. As explained, one of the key distinguishing factors of the

polyhedral model is the use of powerful code generation algorithms (Quilleré [66] and

Extended Quilleré [58]) that can synthesize new code from algebraic specifications of

transformations. Figure 2.11 shows the transformed code of Smith-Waterman kernel

after applying loop skewing transformation (show in equation 2.5).

2.4 Limitations of the Polyhedral Model

In the original formulation of the polyhedral model, all array subscripts, loop bounds,

and branch conditions in analyzable programs were required to be affine functions of

loop index variables and global parameters. As can be observed from an example

program in Figure 2.12, the array subscript (A[i*j]) in the statement S1, the i-loop

bound (M*M), and the branch condition (C[j] > 0) are non-affine functions of the

loop index variables (i, j), and the global parameters (M, N); hence they are not

analyzable with the polyhedral model precisely. However, decades of research since

then have led to a significant expansion of programs that can be considered analyzable

26

1 i n t M ;
2 i n t N = M /2 ;
3 i n t A [1 0 0 0] , B [1 0 0 0] , C [1 0 0 0] ;

5#pragma scop
6 i n t P = M /2 ;
7 f o r (i n t i = 0 ; i < M ∗ M ; i++) {
8 f o r (i n t j = i ; j < N ; j++) {
9 f o r (i n t k = j ; k < P ; k++) {

10 i f (C [k] > 0)
11 A [i∗j] = B [j] ; //S1
12 }
13 }
14 }
15#pragma endscop

Figure 2.12 : An example to discuss limitations of the polyhedral model

by polyhedral frameworks using the approaches such as array region analysis [62],

fuzzy array data flow analysis [67] and other variants to approximate the access

relations for arrays having non-affine subscripts. Also, certain polyhedral extraction

tools such as PET [2] can extract the relation between parameters (e.g., P = M/2

in line 6) in the program shown in Figure 2.12, and capture these relations into the

polyhedral representation of the program. However, these extraction tools may not

be able to capture some relations e.g., N = M/2 in line 2 of the above program since

the extraction tools ignore regions of code not surrounded by pragma scop’s. Finally,

the remaining constraints in the polyhedral model stem from restrictions on various

program constructs including pointer aliasing, unknown function calls, recursion, and

unstructured control flow.

Previously [68, 41], we showed how explicit structured (loop and task level) par-

allelism can be harnessed to enhance dependence analysis, thereby enabling a larger

set of transformations on the input program. The dependence analysis is improved

by first enabling conservative dependence analysis of serial-elision version of the in-

put program, i.e., the program without parallel constructs. (This past work assumed

27

that the input parallel program was constrained to satisfy the serial-elision property,

which requires that the serial-elision version is a correct implementation of the paral-

lel program.) Next, happens-before relations are identified from the explicitly-parallel

constructs, such as tasks and parallel loops, and intersected with the conservative

dependences. Finally, the resulting set of dependences is passed on to a polyhedral

optimizer, such as PLuTo [22] or PolyAST [24], to enable transformations of explicitly-

parallel programs with unanalyzable data accesses. The approaches in [68, 41] did not

require alteration in the polyhedral intermediate representation since the serial-elision

version of the input program always has a total program execution order.

In general, SPMD parallel programs have partial program execution order and

don’t satisfy the serial-elision property in general (See Section 2.1.2). Also, there

are no existing approaches to extract the partial execution order originating from

barriers in the SPMD programs, and represent in the polyhedral model. Hence, we

propose extensions to the polyhedral model in the next chapter to capture such partial

execution orders and enable debugging and optimizations of SPMD programs.

28

Chapter 3

Extensions to the Polyhedral Model for SPMD

Programs

Research is creating new knowledge.

Neil Armstrong

In the polyhedral model, schedules (defined in Section 2.3) are introduced to cap-

ture total execution orders present in the sequential programs. These total execution

orders are extracted and expressed in a variety of ways including 2d+1-schedules [56],

Schedule trees [69, 59] among others in the existing polyhedral frameworks. These

schedules can also express some partial execution orders by assigning the same logical

timestamp to multiple statement instances, thereby indicating that they can execute

at the same time [63]. However, there are no existing approaches to extract the par-

tial execution order originating from barriers in the SPMD programs, and express

them onto schedules. In this thesis, we present novel extensions (i.e., space and phase

mappings) to the polyhedral model to express such partial execution orders from

SPMD programs. Also, these extensions are subsequently used (explained in further

chapters) to enable both debugging and optimizations of SPMD programs.

3.1 Important Concepts in an SPMD Execution

There are two important concepts in an SPMD execution with barriers to extract

partial order in the execution.

29

1#pragma omp p a r a l l e l
2 {
3 {S1 ;}

5 #pragma omp barrier // B1

7 {S2 ;}

9 #pragma omp barrier // B2

11 #pragma omp master

12 {S3 ;}
13 } // B3

Figure 3.1 : An example to motivate important concepts in an SPMD execution

Figure 3.2 : Overall SPMD execution of the program in Figure 3.1 with two threads

The overall execution of the SPMD program in Figure 3.1 with two threads is

shown in Figure 3.2. As can be seen from it, both threads (threads with id’s 0 and

1) execute the same program with sequential code (S1, S2) redundantly, and parallel

code (B1, B2, S3) cooperatively. Since the programmer annotated the statement S3

(line 12) with omp master, only master thread, i.e., thread with id 0, can execute the

statement. Hence, the thread mapping information, i.e., which thread executes which

30

statements, is one of the important mappings required to capture the partial order in

an SPMD program.

A key property of the SPMD programs is that their execution can be partitioned

into a sequence of phases separated by the textually aligned barriers. The overall

SPMD execution in Figure 3.2 can be seen as a sequence of three different partitions

(execution phases) separated by the barriers B1, B2 and B3. It has been observed

in past work that statements from different execution phases cannot execute con-

currently [70], i.e., the statement S1 can never run in parallel with the statement

S3. So, the phase mapping information, i.e., which statement is in which phase, is

another important mapping, and together with thread mapping can help in capturing

the partial orders in the SPMD programs.

3.2 Space Mapping

A space mapping (denoted by ΘA(S(~iS))) is an affine function which assigns a logical

processor ID to a statement instance (S(~iS)) on which the instance has to be exe-

cuted [71]. The space mapping can be viewed as a one-dimensional affine function

that maps a statement instance onto a one-dimensional space of logical processors.

For example, the space mappings of the statements in Figure 3.1 are as follows (Note

that we replaced the parallel region with a logical loop that iterates over threads, and

the loop induction variable is tid):

ΘA(S1(~iS1)) = tid , where ~iS1 = (tid)

ΘA(S1(~iS2)) = tid , where ~iS2 = (tid)

ΘA(S1(~iS3)) = 0 , where ~iS3 = (tid)

In our tool PolyOMP, we recognize the SPMD-style parallelism using OpenMP

constructs with the support for omp parallel, omp for, omp parallel for, omp

31

barrier, omp single, omp master directives and the nested parallel regions. To

compute the space mappings in case of the above OpenMP constructs, we

1. Replace the omp parallel region header by a logical parallel loop that iterates

over threads to model the entire SPMD execution with all threads,

2. Enclose the body of a statically scheduled worksharing loop in an if block with

the condition on the thread iterator to be a function of lower, upper loop bounds,

the loop chunk size if specified and total number of threads participating in

the worksharing loop (the last two are treated as fixed but unknown program

parameters),

3. Enclose the body of a non-statically scheduled worksharing loop or body of a

omp single region in an if block with the condition on the thread iterator to

be a function,

4. Enclose the body of a omp master region in an if block with the condition on

the thread iterator to be zero,

5. Insert an explicit barrier immediately after a parallel region (or) a worksharing

loop (or) a single region if a nowait clause is not specified.

Note that the transformations are only performed for the purpose of computing

space mappings in an easier and cleaner fashion, and don’t change the semantics of

the original program. Also, note that the temporary function name (introduced as

part of above transformations) for all the static scheduled worksharing loops is the

same.

The SPMD program (shown in Figure 3.3) contain several OpenMP constructs

of type worksharing (omp parallel for, omp for, omp single), and synchroniza-

tion (omp master, omp barrier). This input SPMD program is transformed at AST

level by applying the above transformations so that space mappings can be easily com-

puted. For example, the omp single construct enclosing statement S3 (line 10) is

32

1#pragma omp p a r a l l e l num threads (T1)
2 {
3 {S1 ;}

5 #pragma omp f o r
6 f o r (i n t i = 0 ; i < N ; i++)
7 {S2 ;}

9 #pragma omp single

10 {S3 ;}

12 #pragma omp master

13 {S4 ;}

15 #pragma omp parallel f o r num_threads (T2)
16 f o r (i n t j = 0 ; j < N ; j++)
17 {S5 ;}
18 }

Figure 3.3 : An OpenMP SPMD-style program with various directives

replaced with an if block with a condition on the thread iterator to be equal to a

function f2. An explicit omp barrier is also inserted after the if block since the

omp single has a default enclosing barrier according to OpenMP specifications [53].

After the transformations, space mappings of the statements in Figure 3.3 are as

follows:

ΘA(S1(~iS1)) = tid1 , where ~iS1 = (tid1)

ΘA(S2(~iS2)) = f1(i, 0, N, T1) , where ~iS2 = (tid1, i)

ΘA(S3(~iS3)) = f2(T1) , where ~iS3 = (tid1)

ΘA(S4(~iS4)) = 0 , where ~iS4 = (tid1)

ΘA(S5(~iS5)) = f1(j, 0, N, T2) , where ~iS5 = (tid1, tid2, j)

Consider space mapping (ΘA(S2(~iS2))) of the statement instance S2(~iS2). The

33

logical processor id that executes the statement instance (S2(~iS2)) is a function f1’s

value over the variable i, and parameters N, T1. In general, space mappings can

consist of non-affine and unknown functions (in the case of S2, S3, and S5) particularly

when the statement instance is surrounded by an OpenMP single construct or an

OpenMP worksharing loop. When comparing space mappings of two statements, the

non-affine mappings can create hard challenges for program analysis. Therefore, we

conservatively compare only the name and arguments of these mappings to distinguish

the non-affine space mappings of the statements [55].

3.3 Phase Mapping

In this thesis, we assume the barriers in SPMD programs to be textually aligned,

which statically ensures that all threads of the SPMD region reach the same tex-

tual sequence of barriers inside the SPMD region [70]. A fundamental property of

the SPMD programs with barriers is that their execution can be partitioned into a

sequence of phases separated by the textually aligned barriers.

A phase mapping (denoted by ΘP (S(~iS))) is a multi-dimensional affine function

that assigns a logical identifier, which we refer to as a phasestamp, to each statement

instance. The statement instances are executed according to the increasing lexico-

graphic order of their phase timestamps, and similarly, the instances follow increasing

lexicographic order of the schedule (defined in Section 2.3) within a given phasestamp.

For example, phase mappings of the statements in Figure 3.1 are as follows (Note that

we replaced the parallel region with a logical parallel loop that iterates over threads,

34

and the loop induction variable is tid):

ΘP (S1(~iS1)) = 0 , where ~iS1 = (tid)

ΘP (S1(~iS2)) = 1 , where ~iS2 = (tid)

ΘP (S1(~iS3)) = 2 , where ~iS3 = (tid)

Also, phase mappings of the statements in Figure 3.3 are as follows:

ΘP (S1(~iS1)) = (0) , where ~iS1 = (tid1)

ΘP (S2(~iS2)) = (0) , where ~iS2 = (tid1, i)

ΘP (S3(~iS3)) = (1) , where ~iS3 = (tid1)

ΘP (S4(~iS4)) = (2) , where ~iS4 = (tid1)

ΘP (S5(~iS5)) = (2) , where ~iS5 = (tid1, tid2, j)

Definition 3.3.1. (Depth of a barrier) The depth of a barrier is defined as the

number of sequential loops surrounding the barrier from the immediately enclosing

SPMD region. For example, all the barriers present in Figures 3.1 and 3.3 have

zero depth, i.e., these barriers are not surrounded by any sequential loop from its

immediately enclosing SPMD region. Most relevant past work [72] in computing

phasestamps were limited to barriers having zero depth.

The example SPMD program shown in Figure 3.4 contains two explicit barriers,

i.e., one barrier (at line 10) with depth 2 and another barrier (at line 16) with depth

1. This pattern of barrier usage is common in accelerator programming where each

thread proceeds in a lock step fashion [73]. The overall execution of the SPMD

program in Figure 3.4 with two threads is shown in Figure 3.5. As can be seen from

it, the statement instances S3(i = 0) and S1(i = 1, j = 0) are in same execution

phase of computation, i.e., they are not separated by any barrier during the program

35

1#pragma omp p a r a l l e l
2 {
3 f o r (i n t i = 0 ; i < N ; i++)
4 {
5 f o r (i n t j = 0 ; j < N ; j++)
6 {
7 {S1 ;} //S1 (i , j)

9 // Bar r i e r B1(i , j) with depth 2
10 #pragma omp barrier

12 {S2 ;} //S2 (i , j)
13 }

15 // Bar r i e r B2(i) with depth 1
16 #pragma omp barrier

18 #pragma omp master

19 {S3 ;} // S3 (i)
20 }
21 } // Imp l i c i t Bar r i e r3 with depth 0

Figure 3.4 : An OpenMP SPMD program that includes barriers with depth > 0.

execution.

ΘP (S1(~iS1)) = ΘP (S3(~iS3)) for ~iS1 = (1, 0) and ~iS3 = (0)

In the rest of section, we propose a novel approach to compute phase mappings

of the statements in SPMD programs including barriers with depth > 0.

Definition 3.3.2. (Barrier instance): Similar to the definition of a statement in-

stance (in Section 2.3), each dynamic instance of a barrier B in an SPMD region is

identified by its iteration vector (~iB). For example, B1(i = 1, j = 1) in Figure 3.4

refers to the barrier B1 (at line 10) when the values of loop iterators i, j are 1.

36

Figure 3.5 : Overall SPMD execution of the program in Figure 3.4 with two threads

and value of N as 2

Definition 3.3.3. (Reachable barriers / Immediately succeeding barriers):

Reachable barriers (or) Immediately succeeding barriers of a statement instance (de-

noted by RB(S(~iS))) is defined as the set of barrier instances that can be executed

after the statement instance (S(~iS))) without an intervening barrier instance. For ex-

ample, a reachable barrier/ immediately succeeding barrier for the statement instance

(S1(i = 1, j = 0)) from Figure 3.5 is B1(i = 1, j= 0). Symbolically, reachable barriers

for a statement instance (S2(~iS2 = (i, j))) in Figure 3.4 include the barrier instance

(B1(~iB1)) in the next iteration of j-loop, and another barrier instance (B2(~iB2)) in

the same iteration of i-loop. These reachable barriers are shown below:

RB(S2(~iS2)) = { B1(~iB1) | i = i′ ∧ j = j′ − 1 ,

B2(~iB2) | i = i′′ ∧ j = N − 1 }

where ~iS2 = (i, j), ~iB1 = (i′, j′), and ~iB2 = (i′′)

During the execution, there exists only one reachable barrier for a given dynamic

statement instance under the assumption of textually aligned barriers, and it would

37

be one (based on the program parameters, for example, N in Figure 3.4) from the

statically determined set of reachable barriers.

Observation: Two statement instances are in same execution phase if and only if

they have same set of reachable barrier instances. For example, the statement in-

stances S3(i = 0) and S1(i = 1, j = 0) are in same execution phase of computation

since they have same reachable barrier/ immediately succeeding barrier instance, i.e.,

B1(i = 1, j = 0).

Definition 3.3.4. (Phase mapping): The phase mapping of a statement instance

(denoted by ΘP (S(~iS))) is computed as the union (collection) of the schedules (times-

tamps, defined in Section 2.3) of reachable barriers of the statement instances.

ΘP (S(~iS)) = ΘS(RB(S(~iS)))

Algorithm 1 summarizes the overall approach to compute the phase mappings of the

statements by taking regular statements and barriers schedules as an input (at lines 2-

3). For example, the 2d+1-schedules of regular statements and barriers in Figure 3.4

are as follows:

ΘS(S1(~iS1) = (0, i, 0, j, 0), ΘS(S2(~iS2)) = (0, i, 0, j, 2), ΘS(S3(~iS3)) = (0, i, 1, 0, 0)

ΘS(B1(~iB1)) = (0, i, 0, j, 1), ΘS(B2(~iB2)) = (0, i, 1, 0, 0), ΘS(B3) = (1, 0, 0, 0, 0)

Then, reachable barriers are computed by identifying the lexicographically closest

barrier instances to each regular statement instance (at lines 4-8).

RB(S1(~iS1)) = { B1(~iB1) | i = i′ ∧ j = j′ }

where ~iS1 = (i, j), and ~iB1 = (i′, j′)

38

Algorithm 1: Building phase mappings of statements

Input : Regular statements (S) and barriers (B)
1 begin

/* Extract original program schedules (time stamps, defined

in Section 2.3) */

2 ΘS(S) := Schedules of the regular statements
3 ΘS(B) := Schedules of the barriers

/* Build a map from the regular statements to the barriers

such that the statements are lexicographically strictly

smaller than those of barriers */

4 ∆S→B := {~x→ ~y : ΘS(~x) ≺ ΘS(~y), ~x ∈ S, ~y ∈ B}

/* Build another map from the time stamps of the regular

statements to the time stamps of the barriers that must

precede it */

5 ∆ΘS(S)→ΘS(B) := (ΘS(S))−1 ◦∆S→B ◦ΘS(B)

/* Extract a map from pairs of statement and barrier

timestamps to their time difference */

6 ∆(S,B)→(ΘS(B)−ΘS(S)) :=
{(ΘS(~x)→ ΘS(~y))→ (ΘS(~y)−ΘS(~x)) : ~x ∈ S, ~y ∈ B}

/* Build another map from each statement time stamp to the

time stamp of the immediately succeeding barriers i.e.,

reachable barriers */

7 βΘS(S)→ΘS(B) := dom(lexmin(∆(S,B)→(ΘS(B)−ΘS(S))))

/* Build a map from each statement instance to the immediately

succeeding barriers, i.e., reachable barriers */

8 βS→B := lexmin(ΘS(S) ◦ βΘS(S)→ΘS(B)) ◦ (ΘS(B))−1

/* Compute phase mappings of a statement instance by union of

timestamps of the reachable barriers of the statement

instance */

9 Phase mappings, ΘP := βS→B ◦ θB

10 end

39

RB(S2(~iS2)) = { B1(~iB1) | i = i′ ∧ j = j′ − 1 ,

B2(~iB2) | i = i′′ ∧ j = N − 1 }

where ~iS2 = (i, j), ~iB1 = (i′, j′), and ~iB2 = (i′′)

RB(S3(~iS3)) = { B1(~iB1) | i = i′ − 1 ∧ j′ = 0 ,

B3 | i = N − 1 }

where ~iS3 = (i, j), and ~iB1 = (i′, j′)

Finally, phase mappings of each statement instances are obtained by union of the

schedules (timestamps) of reachable barriers of the statement instance (at line 9).

ΘP (S1(~iS1)) = ΘS(RB(S1(~iS1)))

= {ΘS(B1(~iB1)) | i = i′ ∧ j = j′ where ~iS1 = (i, j) and ~iB1 = (i′, j′)}

= {(0, i′, 0, j′, 1) | i = i′ ∧ j = j′ }

= {(0, i, 0, j, 1) }

ΘP (S2(~iS2)) = ΘS(RB(S2(~iS2)))

= {ΘS(B1(~iB1)) | i = i′ ∧ j = j′ − 1 where ~iS2 = (i, j) and ~iB1 = (i′, j′),

ΘS(B2(~iB2)) | i = i′′ ∧ j = N − 1 where ~iS2 = (i, j) and ~iB2 = (i′′)}

= {(0, i′, 0, j′, 1) | i = i′ ∧ j = j′ − 1 ,

(0, i′′, 1) | i = i′′ ∧ j = N − 1 }

= {(0, i, 0, j + 1, 1) | j + 1 < N ,

(0, i, 1) | j = N − 1}

40

ΘP (S3(~iS3)) = ΘS(RB(S3(~iS3)))

= {ΘS(B1(~iB1)) | i+ 1 = i′ ∧ j′ = 0 where ~iS3 = (i) and ~iB1 = (i′, j′),

ΘS(B3) | i = N − 1 where ~iS3 = (i) }

= {(0, i′, 0, j′, 1) | i+ 1 = i′ ∧ j′ = 0,

(1, 0, 0, 0, 0) | i = N − 1}

= {(0, i+ 1, 0, 0, 1) | i+ 1 < N ,

(1, 0, 0, 0, 0) | i = N − 1}

In general, the partial execution order of parallel programs are expressed either

through Happens-before (HB) relations or May-happen-in-parallel (MHP) relations.

In this thesis, after computing both space and phase mappings of all statement in-

stances in an SPMD program, we construct partial execution order of the SPMD

program in the form of MHP relations.

3.4 May-Happen-in-Parallel (MHP) Analysis

Parallel programming languages offer many high-level parallel constructs for paral-

lelism and synchronization. All these parallel constructs indicate the relative progress

and interactions of logical threads during execution. Furthermore, these interactions

among threads can impact the possible execution order of statements. For example,

statements before and after a barrier are ordered within an SPMD region, as they

cannot execute simultaneously. Knowledge of these possible orderings can be very

helpful when debugging parallel programs. “May-Happen-in-Parallel (MHP) analy-

sis determines if it is possible for execution instances of two statements (or the same

statement) to run in parallel ” [43]. The MHP can be reformulated as follows with

our extensions to the polyhedral representation.

41

Definition 3.4.1. May-Happen-in-Parallel : Two statement instances S(~iS) and

T(~iT) can run in parallel if and only if both the instances are in the same execution

phase (based on barriers) and are executed by two different logical threads of the

SPMD region.

MHP(S(~iS), T (~iT)) = True ⇔ (ΘP (S(~iS)) = ΘP (T (~iT)))

∧ (ΘA(S(~iS)) 6= ΘA(T (~iT))) (3.1)

For example, any instance of the statement S2 would never execute in parallel with any

instance of the statement S3 in Figure 3.4 because they are always either separated

by barrier B2 (at line 14) or barrier B1 (at line 7).

The MHP condition in (3.1) appears quite simple because MHP contains less

information than the happens-before (HB) information. If MHP(S(~iS), T(~iT)) is true,

then we know that HB(S(~iS), T(~iT)) and HB(T(~iT), S(~iS) must both be false.

MHP (S(~iS), T (~iT)) = True =⇒ (HB(S(~iS), T (~iT)) = False)

∧ (HB(T (~iT), S(~iS)) = False) (3.2)

However, if MHP(S(~iS), T(~iT)) is false, then we know either of HB(S(~iS), T(~iT)) or

HB(T(~iT), S(~iS)) must be true and the other false, but there is insufficient information

in MHP(S(~iS), T(~iT)) to indicate which of the two disjuncts evaluates to true and

42

which to false.

MHP (S(~iS), T (~iT)) = False =⇒ ((HB(S(~iS), T (~iT)) = True)

∧ (HB(T (~iT), S(~iS)) = False))

∪ ((HB(S(~iS), T (~iT)) = False)

∧ (HB(T (~iT), S(~iS)) = True)) (3.3)

Algorithm 2 summarizes the overall steps to build the MHP information on a

given pair of statements S and T. Lines 2-3 of the algorithm extract the space and

phase mappings of both statements S and T. Line 4 builds a map from each point

in the iteration domain of S to each point in the iteration domain of T such that

their phase mappings are the same. Likewise, line 5 computes a map such their

space mappings are same. To compute a map (line 7) such that thread mapping of S

and T are different, we subtract the cross product of thread maps (line 5) from the

map having same thread mappings (line 6)(e.g. the identity mappings). Lastly, MHP

information (line 8) between a pair of statements S and T are obtained by intersecting

the maps with the same phase from line 4 and the maps with different space from

line 7.

Finally, the program execution order in an SPMD program is captured through

MHP relations from the combination of Space mappings (θA), Phase mappings (θP),

and Schedule (time) mappings (θ) in the polyhedral model.

43

Algorithm 2: Building May-Happen-in-Parallel (MHP) information between
statements S and T.
Input : Regular statements S and T

1 begin
/* Extract space and phase mappings of statements S and T */

2 ΘA(S(~iS)),Θ
A(T (~iT)) := Space mappings of S and T

3 ΘP (S(~iS)),Θ
P (T (~iT)) := Phase mappings of S and T

/* Build a map from S to T such that an element from S is

mapped to another element in T with same phase mappings */

4 ∆S→T
SamePhase := ΘP (S(~iS)) ◦ (ΘP (T (~iT)))

−1

/* Build a map from S to T such that an element from S is

mapped to another element in T with same space mappings */

5 ∆S→T
SameSpace := ΘA(S(~iS)) ◦ (ΘA(T (~iT)))

−1

/* Compute cross product of S and T */

6 ∆S→T
CrossProduct := dom(ΘA(S(~iS)))× dom(ΘA(T (~iT)))

/* Build another map from S to T such that an element from S

is mapped to another element in T with different space

mappings */

7 ∆S→T
NotSameSpace := ∆S→T

CrossProduct - ∆
S→T
SameSpace

/* Build MHP information by intersecting the map with same

phase mappings and another map with different space

mappings */

8 ∆S→T
MHP := ∆S→T

NotSameSpace ∩ δS→T
SamePhase

9 end

3.5 Past Work in Extending Polyhedral Model for Explicitly-

Parallel Programs

In the last few years, a significant interest ([41, 74, 75, 76, 77, 78]) from the polyhedral

research community has started to address the challenges in using the polyhedral

44

model to analyze and optimize explicitly-parallel programs.

Firstly, Yuki et al. [75] started with addressing the problem of data-flow analysis

of explicitly-parallel programs using the polyhedral model. It included an adaptation

of array data-flow analysis to X10 programs with finish/async parallelism [75] and

extended some support to clocks [77]. In this approach, the happens-before (HB)

relations are first analyzed, and then the data-flow is computed based on the partial

order imposed by happen-before relations. Their work [77] also extended happens-

before relations to X10 clocks and proved that comparing two statement instances

with the extended happens-before relations to be undecidable. But, our extensions

to the polyhedral model focus on the partial orders arising from the textually aligned

barriers (subset of X10 clocks) in an SPMD program, and comparing two statement

instances with the MHP relations from the barriers turned out to be decidable.

Secondly, our prior works [41, 68], addressed the problem of analyzing and trans-

forming programs with explicit parallelism (doall, task parallelism in OpenMP 4.0,

and doacross parallelism in > OpenMP 5.0) that satisfy the serial-elision property.

The work starts by enabling a conservative dependence analysis of a given region

of code, which may contain non-affine constructs. Next, it identifies happens-before

relations from the explicitly-parallel constructs, such as tasks and parallel loops, and

intersects them with the conservative dependences. Finally, the resulting set of depen-

dences is passed on to a polyhedral optimizer, such as PLuTo [22, 23] Or PolyAST [24],

to enable the transformation of explicitly-parallel programs with unanalyzable data

accesses. However, the approach in [41, 68] does not apply to general SPMD parallel

programs with barriers because they don’t satisfy serial-elision property in general

and the approach doesn’t consider barriers in the analysis.

Thirdly, PENCIL [79], a platform-neutral compute intermediate language, aimed

at facilitating automatic parallelization and optimization on multi-threaded SIMD

hardware for domain specific languages. The language allows users to supply informa-

45

tion about dependences and memory access patterns to enable better optimizations.

PENCIL provides directives such as independent, reductions to remove data depen-

dences on the loop, but doesn’t have support to enable analysis for barriers.

Lastly, Pop and Cohen have presented a preliminary approach to increase op-

timization opportunities for parallel programs by extracting the semantics of the

parallel annotations [80]. This extracted information is brought into compiler’s in-

termediate representation and leverage existing polyhedral frameworks for optimiza-

tions. They also planned to consider streaming OpenMP extensions carrying explicit

dependence information, to enhance the accuracy of data dependence analyses.

46

Chapter 4

PolyOMP: A Polyhedral Framework for

Debugging and Optimizations of SPMD Programs

High achievement always takes place in the

framework of high expectation.

Charles Kettering

In this chapter, we introduce PolyOMP, a framework extending the polyhedral

model to enable analysis for debugging and optimization of SPMD programs which

are expressed through OpenMP. The summary of the PolyOMP framework is shown

in Figure 4.1.

Figure 4.1 : Summary of the PolyOMP, a polyhedral framework for debugging and

optimizations of SPMD programs

47

On a high-level, PolyOMP extracts partial execution orders from SPMD programs,

and represents them in the polyhedral model as MHP relations (explained in Chap-

ter 3). Then, PolyOMP uses these MHP relations to enable debugging (i.e., static data

race detection in Chapter 5) and optimizations (i.e., static redundant barrier removal

in Chapter 6) of the SPMD programs.

4.1 Overall Workflow

In this section, we briefly explain overall workflow of the PolyOMP, which is imple-

mented as an extension to the Polyhedral Extraction Tool (PET, version: pet-0.08-

30-g77689da) [2], and consists of the following components (See Figure 4.2):

1. Clang OMP Parser – Conversion from input OpenMP-C program (with sup-

port for omp parallel, for, parallel for, barrier, single, master di-

rectives and nested parallel regions) to Clang AST with the help of Clang-omp

(version: 3.5) [81] and LLVM [82](version: 3.5.svn)

2. PET AST Builder – Conversion from Clang AST to PET AST (defined in [2])

3. Polyhedral SCoP Extractor – Extract components of the polyhedral repre-

sentation (See Section 2.3) such as iteration domain, access relations, and sched-

ules of the statements from the PET AST.

The first three components, i.e., Clang OMP Parser, PET AST Builder, and

Polyhedral SCoP Extractor are part of the Polyhedral Extraction Tool (PET,

version: pet-0.08-30-g77689da).

4. Space Mapping Builder – Build space mappings of the statements from the

PET AST (See Section 3.2).

5. Phase Mapping Builder – Build phase mappings of the statements from the

components of polyhedral representation especially schedules of both regular

48

Figure 4.2 : Overview of the PolyOMP system built on top of the Polyhedral Extrac-

tion Tool (PET, version: pet-0.08-30-g77689da) [2].

statements and barriers (See Section 3.3).

6. MHP Builder – Build May-happen-in-parallel (MHP) relations from the space

and phase mappings of the statements (See Section 3.4).

7. Debugger - Data Race Detector – Identify data races present among the

statements at compile-time with the help of the MHP relations (See Chapter 5).

8. Optimizer - Redundant Barrier Remover – Identify and remove redundant

barriers in the input program at compile-time by using the race detector and

the phase mapping builder (See Chapter 6).

49

In the rest of this thesis, we discuss how the proposed extensions and the MHP

relations can be used to enable debugging (i.e., static data race detection in Chapter 5)

and optimizations (i.e., static redundant barrier removal in Chapter 6) of the SPMD

programs.

50

Chapter 5

Debugging Of SPMD Programs – Static Data

Race Detection

Debugging is twice as hard as writing the code in

the first place.

Brian Kernighan

Data races are the dominant cause of semantic errors in multi-threaded programs.

A data race happens when two or more logically parallel threads perform conflict-

ing accesses (such that at least one access is a write) to a shared memory location

without any synchronization. Complicating the matter, data races may occur for a

certain input or may happen only in certain executions of a parallel program, thereby

making the races notoriously hard to detect and reproduce. Hence, data race detec-

tion remains a challenging and hard problem, nevertheless the significant progress

on the restricted subsets of fork-join and SPMD programs [83, 84, 72], as well as for

higher-level programming models [85, 75, 86, 87]. In this chapter, we propose and

evaluate an approach to identify data races in SPMD programs at compile-time with

our extensions (introduced in Chapter 3) to the polyhedral intermediate representa-

tion.

5.1 Motivation

To motivate our approach for detection of data races at compile-time, we use an

SPMD program (Jacobi03 benchmark from the OmpSCR benchmark suite [88]) as

51

an illustrative example. The excerpt shown in Figure 5.1 is a 2-dimensional Jacobi

1#pragma omp p a r a l l e l p r i va t e (r e s i d , i)
2 {
3 whi le (k <= maxit && error > tol) { //S1
4 /∗ copy new s o l u t i o n in to o ld ∗/
5#pragma omp f o r
6 f o r (j=0; j<m ; j++)
7 f o r (i=0; i<n ; i++)
8 uold [i + m∗j] = u [i + m∗j] ;

10 /∗ compute s t e n c i l , r e s i d u a l and update ∗/
11#pragma omp f o r r educt i on (+: e r r o r)
12 f o r (j=1; j<m−1; j++) {
13 f o r (i=1; i<n−1; i++) {
14 resid =(ax ∗(uold [i−1+m∗j] + uold [i+1+m∗j])
15 + ay ∗(uold [i+m∗(j−1)] + uold [i+m∗(j+1)])
16 + b∗uold [i+m∗j] − f [i+m∗j]) / b ;

18 /∗ update s o l u t i o n ∗/
19 u [i + m∗j] = uold [i + m∗j] − omega ∗ resid ;

21 /∗ accumulate r e s i d u a l e r r o r ∗/
22 error =error + resid∗resid ;
23 }
24 }

26 /∗ e r r o r check ∗/
27#pragma omp master
28 {
29 k++; //S2
30 error = sqrt (error) /(n∗m) ; //S3
31 }
32 } /∗ whi le ∗/
33 } /∗ end p a r a l l e l ∗/

Figure 5.1 : Data races in the Jacobi benchmark from OmpSCR benchmark suite

stencil computation from the OmpSCR benchmark suite [88]. The computation is par-

allelized using OpenMP parallel construct with worksharing directives (at lines 5,

11) and synchronization directives (implicit barriers from worksharing loops at lines

52

5, 11). The first for-loop is parallelized (at line 5) to produce values of the array uold.

Likewise, the second for-loop is parallelized (at line 11) to consume values of the array

uold. The reduced error (from the reduction clause at line 11) is updated by only

the master thread in the region (lines 28-31). Finally, the entire computation in lines

5–31 is repeated until it reaches the maximum number of iterations (or) the error is

less than a threshold value. This pattern is very common in many stencil programs,

often with multidimensional loops and multidimensional arrays [89]. Although the

worksharing parallel loops have implicit barriers, the programmer who contributed

this code to the OmpSCR suite likely overlooked the fact that a master region does

not include a barrier. As a result, data races are possible in this example since state-

ment S1’s (at line 3) read access of variables k, error by a non-master thread can

execute in parallel with an update of the same variables performed in statements S2

(at line 29) and S3 (at line 30) by the master thread. These races can be fixed by

inserting another barrier immediately after the master region or converting it to a

single region.

We observe that existing static race detection tools (e.g., [84, 85]) are unable

to identify such races since they don’t model barriers inside of imperfectly nested

sequential loops in the SPMD regions. We also observe that existing dynamic race

detection tools such as Intel Inspector XE (2015 Update 1) in its default mode miss

this true race [90] and hybrid race detection tools such as ARCHER incurred signifi-

cant runtime overhead to detect this true race [87]. Furthermore, these techniques are

also known to be input dependent and only guaranteed for a given input. In contrast,

our proposed approach using the extended polyhedral model can identify such races

at compile-time by effectively capturing execution phases from barrier directives via

static analysis of SPMD regions.

53

5.2 Our Approach

In this section, we begin by computing May-Happen-in-Parallel (MHP) relations with

our extensions (introduced in Chapter 3) to the polyhedral model. Subsequently, we

explain our approach to identify data races using the MHP relations.

5.2.1 An Algorithm to Identify Data Races

Detecting read-write and write-write data races become straightforward with the

availability of MHP information. A data race happens when two or more logically

parallel threads perform conflicting accesses (such that at least one access is a write)

to a shared memory location without any synchronization. The race condition can be

formulated as follows with the MHP information and access relations (defined in Sec-

tion 2.3).

Definition 5.2.1. Race condition: A race exists between statement instances S(~iS)

and T(~iT) on a memory location if and only if MHP(S(~iS), T(~iT)) is true, and access

relations of S(~iS) and T(~iT) have the same memory location in common and at-least

one of them is a write relation.

Race(S(~iS), T (~iT)) = True ⇔ ((MHP(S(~iS), T (~iT)) = True)

∧ (A(S(~iS)) = A(T (~iT)))) (5.1)

For example, data races are possible in Figure 5.1 since statement S1’s (at line 3) read

access of variables k, error by a non-master thread can execute in parallel with an

update of the same variables performed in statements S2 (at line 29) and S3 (at line

30) by the master thread.

The major idea in our approach (shown in Algorithm 3) is to construct race

constraints for all possible pairs of the regular statements (excluding barriers) and

54

solve for the existence of solutions. Algorithm 3 identifies read-write and write-write

Algorithm 3: An approach to compute a set of data races in an SPMD program

1 begin
/* Extract all regular statements (excluding barriers) */

2 S := Set of all regular statements

/* Build MHP information for every pair of statements */

3 ∆MHP :=
⋃

Si∈S

⋃

Sj∈S

MHP(Si, Sj)

/* Union of read access relations from all statements */

4 ∆R :=
⋃

Si∈S

|Reads| in Si
⋃

j=1

ARead
j (Si)

/* Union of write (including may writes) access relations from

all statements */

5 ∆W :=
⋃

Si∈S

|Writes| in Si
⋃

j=1

AWrite
j (Si)

/* Build a map from read access relations to write access

relations such that they access same memory location */

6 ∆R→W
SameLocation := ∆R ◦ (∆W)−1

/* Build a map from write access relations to write access

relations such that they access same memory location */

7 ∆W→W
SameLocation := ∆W ◦ (∆W)−1

/* Build Read-Write races by intersecting the MHP relations

and RW maps */

8 ∆RWRaces := ∆MHP ∩ ∆R→W
SameLocation

/* Build Write-Write races by intersecting the MHP relations

and WW maps */

9 ∆WWRaces := ∆MHP ∩ ∆W→W
SameLocation

10 end

55

data races in the SPMD programs by beginning with computing MHP information

(at line 3) for every pair of regular statements (excluding barriers) with Algorithm 2.

Then, the algorithm aggregates all possible reads, writes (including may-writes arising

from unanalyzable data accesses and control flow) present in the regular statements

(lines 4-5). Thanks to the PET framework [2] for handling non-affine constructs

(in both data subscripts and control flow) elegantly in the form of may-write access

relations. Next, the algorithm identifies pairs of read and write access relations that

touch the same memory location (at line 6), and likewise, it also computes pairs of

write and write access relations that access same memory cell (at line 7). Finally, the

MHP relations and read-write relations are intersected to compute read-write races

(at line 8). Similarly, the MHP relations are also intersected with write-write relations

to compute write-write races (at line 9).

5.3 Experimental Evaluation

In this section, we evaluate our approach for race detection at compile-time using

the extensions to the polyhedral model. Firstly, we briefly describe our experimental

setup and benchmark suites used for the evaluation. Then, we present our discussion

on the obtained results for each of the benchmark suites.

5.3.1 Experimental Setup

Since the race detection part of our tool PolyOMP is developed to help OpenMP pro-

grammers in debugging, the experiments have been performed on a local development

machine having quad cores (each core is a core-i7 with 2.2GHz clock frequency) with

16 GB of main memory. In the evaluation, we compare the following three race de-

tection tools: 1) ARCHER∗, a recently developed race detection tool employing both

∗ We had challenges in installing ARCHER on our local machine. Hence, we compared with
ARCHER only on the OmpSCR suite, for which ARCHER published races in [87].

56

static and dynamic analysis [87], 2) Intel Inspector XE, a dynamic memory and thread-

ing error checking tool from Intel [90], 3) Our tool PolyOMP using the proposed race

detection approach in Algorithm 3.

5.3.2 OpenMP Source Code Repository

OmpSCR, an OpenMP Source Code Repository [88], consists of OpenMP applications

written in C, C++ and Fortran. This repository includes a wide spectrum of ap-

plications including stencils, LU decomposition, molecular dynamics, FFT, pi com-

putation, quick sort among others. There are 18 OpenMP-C benchmarks in this

repository, 6 of which use C structs and pointer arithmetic. Since we defer support

for C structs and pointer arithmetic in our current toolchain for future work, our

results focus on the remaining 12 OpenMP-C benchmarks in OmpSCR, which are listed

in Table 5.1.

Discussion. This benchmark suite contains known races, as reported in prior work

on hybrid data race detection in the ARCHER tool [87]. Our evaluation shows

that PolyOMP is able to detect all of the documented races in the following applica-

tions: Jacobi03, LoopA.bad, LoopB.bad1, LoopB.bad2. All reported races (col-

umn Reported) were manually verified. (Note: each reported data race corresponds

to a static pair of conflicting accesses). The False +ves column shows the number

of reported races that actually are false positives. In addition, we compared our re-

ported races with those reported by the ARCHER†. As mentioned in [87], the data

race in Jacobi03 benchmark highly influenced the execution time of the benchmark,

varying it by a factor of 1000 from run to run. In contrast, our tool PolyOMP is able

to detect the races present in Jacobi03 benchmark in less than two seconds during

the compilation time.

†ARCHER is known to not have any false positives or false negatives for a given input, but may
have false negatives for inputs that it has not seen.

57

PolyOMP (Static)

Benchmark

ARCHER

(Static + Dynamic)

Reported races

Intel Inspector XE

(Dynamic)

Reported races

Reported

races

False +ve

races

Detection time

(seconds)

Jacobi01 0 0 2 2 1.38

Jacobi02 0 0 2 2 3.91

Jacobi03 2 0 4 2 1.54

Lud 0 1 0 0 0.30

LoopA.bad 1 2 1 0 0.20

LoopA.sol1 0 2 0 0 0.44

LoopA.sol2 0 0 7 7 1.21

LoopA.sol3 0 0 7 7 1.19

LoopB.bad1 1 2 1 0 0.20

LoopB.bad2 1 2 1 0 0.21

LoopB.pipe 0 0 7 7 2.40

C pi 0 0 0 0 0.05

Total (12) 5 9 30 25 13.03 (seconds)

Table 5.1 : Race detection analysis over the subset of OmpSCR benchmark suite.

PolyOMP - Detection time / Reported / False +ves : Total time taken to detect races

by PolyOMP, Number of reported races, Number of false positives among reported.

ARCHER / Intel Inspector XE: Number of races reported.

Even though Intel Inspector XE (2015 update 1 with default mode) was able

to identify the true races in LoopA.bad, LoopB.bad1 and LoopB.bad2, it failed to

detect the races in Jacobi03 (explained in Section 5.1) even after multiple runs.

Furthermore, it reported additional false races (according to OpenMP specifications)

on the iterators of parallel loops for benchmarks Lud, LoopA.bad, LoopA.sol1,

LoopB.bad1, LoopB.bad2 and C pi.

Our tool PolyOMP computes races conservatively when unanalyzable control flow

or data accesses are present and result in false positive races.

58

This is evident in benchmarks Jacobi01, Jacobi02, Jacobi03, LoopA.sol2,

LoopA.sol3 and LoopB.pipe since they contain linearized array subscripts, thereby

yielding 27 false positives which could have been avoided with a delinearization pass

before detecting races. However, when the parallel region fully satisfies all the as-

sumptions of standard polyhedral frameworks (e.g., all array accesses and branch

conditions must be affine functions of the loop variables, and as well as no known

relations between parameters) then all reported races are true races.

5.3.3 PolyBench/ACC OpenMP Suite

We also use PolyBench/ACC OpenMP suite [91], another benchmark suite partially

derived from the standard PolyBench benchmark suite [89]. This suite consists of

benchmark codes for linear algebra, linear algebra solvers, data-mining, and stencils,

all with static control parts. There are 32 OpenMP-C benchmarks in this suite, for

which we were unable to compile ten benchmarks due to incorrect usage of OpenMP

directives in those codes. This benchmark suite is relatively new and is perhaps still

in development compared to other benchmark suites. Thus, our results focus on

the remaining 22 OpenMP-C benchmarks in PolyBench/ACC. We had challenges in

installing ARCHER on our local machine. Hence, we compared results of our tool

PolyOMP only with Intel Inspector XE for this benchmark suite.

Discussion. All of the benchmarks in this suite have statically analyzable control

flow, affine subscripts and completely fit the assumptions of the polyhedral model

without any conservative estimates. We manually verified the reported races and

found the races to be real. Moreover, our static analysis does not need to resort to

conservative estimations for these benchmarks, as they meet all the standard affine

requirements. It also verifies our claim that our approach is guaranteed to be exact

(with neither false positives nor false negatives) if the input program satisfies all the

standard preconditions of the polyhedral model (without any non-affine constructs,

59

PolyOMP (Static)

Benchmark

Intel Inspector XE

(Dynamic)

Reported races

Reported

races

False +ve

races

Detection time

(seconds)

Correlation H 0 0 2.30

Covariance H 0 0 1.04

2mm 0 0 0 0.64

3mm 0 0 0 1.13

Atax 2 2 0 0.37

Bicg 2 2 0 0.43

Cholesky 8 28 0 0.49

Doitgen 0 0 0 0.54

Gemm 0 0 0 0.34

Gemver 0 0 0 0.75

Gesummv 0 0 0 0.52

Mvt 0 0 0 0.32

Symm 5 5 0 0.64

Syrk 0 0 0 0.39

Syr2k 0 0 0 0.52

Trmm 1 1 0 0.28

Durbin 0 6 0 0.73

Gramschmidt 8 12 0 0.36

Lu 5 5 0 0.33

Convolution-2 0 0 0 0.25

Convolution-3 A 0 0 0.42

Fdtd-ampl 0 0 0 1.62

Total (22) 31 61 0 14.41 (seconds)

Table 5.2 : Race detection analysis over the subset of PolyBench/ACC OpenMP

benchmark suite. PolyOMP - Detection time / Reported / False +ves : Total time

taken to detect races by PolyOMP, Number of reported races, Number of false pos-

itives among reported. Intel Inspector XE: Number of races reported, Hang up (H)

and Application exception (A).

60

and aware of any known relations between parameters).

Currently, we are not aware of any prior work reporting data races in this bench-

mark suite. Hence, we compared our reported races with those reported by the Intel

Inspector XE tool (2015 update 1 with default mode), which (unlike ARCHER) is

known to have false negatives even for a given input. Overall, our tool reported a

total of 61 races whereas Intel Inspector XE could only find 31 races. The details

are presented in Table 5.2. A table entry marked with the letter “H” indicates that

the Intel Inspector XE tool would get into a hang mode for that benchmark, while

a table entry marked with the letter “A” indicates that the Intel Inspector XE tool

encountered an Application exception for that benchmark.

Majority of the data races in the PolyBench/ACC OpenMP suite arises from:

• The PolyBench/ACC OpenMP suite developer might have simply forgotten to

declare certain variables as private, although they were used in this way. The

default sharing attribute rules of OpenMP specification will make the variable

shared in this case, and resulting in data races on those variables. Also, this

particular mistake is mentioned as one of the important source of errors in

OpenMP programming [92]. As can be seen from Figure 5.2, the variable x in

Cholesky benchmark and the variable nrm in Gramschmidt of PolyBench/ACC

suite can be privatized to avoid races on those variables. In such scenarios,

privatization can be realized either by moving the declaration of those variables

into the parallel region or inserting the variables into private data sharing

attribute list or adding default(none) to the OpenMP directive to get compiler

errors on these variables.

• The benchmark developer might have incorrectly parallelized some of the lin-

ear algebra kernels (e.g., Symm and Trmm in Figure 5.3). These kernels are

extremely hard to be parallelized by novice OpenMP programmers since these

kernels have complex dependence patterns and requires much knowledge to ex-

61

1 DATA_TYPE x ;
2#pragma omp p a r a l l e l f o r p r i va t e (j , k)
3 f o r (i = 0 ; i < _PB_N ; ++i)
4 {
5 x = A [i] [i] ;
6 f o r (j = 0 ; j <= i − 1 ; ++j)
7 x = x − A [i] [j] ∗ A [i] [j] ;
8 p [i] = 1 .0 / sqrt (x) ;
9 f o r (j = i + 1 ; j < _PB_N ; ++j)

10 {
11 x = A [i] [j] ;
12 f o r (k = 0 ; k <= i − 1 ; ++k)
13 x = x − A [j] [k] ∗ A [i] [k] ;
14 A [j] [i] = x ∗ p [i] ;
15 }
16 }

(a) Data races on the variable x in the Cholesky benchmark

1 DATA_TYPE nrm ;
2#pragma omp p a r a l l e l f o r p r i va t e (i , j)
3 f o r (k = 0 ; k < _PB_NJ ; k++)
4 {
5 nrm = 0 ;
6 f o r (i = 0 ; i < _PB_NI ; i++)
7 nrm += A [i] [k] ∗ A [i] [k] ;
8 R [k] [k] = sqrt (nrm) ;
9 f o r (i = 0 ; i < _PB_NI ; i++)

10 Q [i] [k] = A [i] [k] / R [k] [k] ;
11 f o r (j = k + 1 ; j < _PB_NJ ; j++)
12 {
13 R [k] [j] = 0 ;
14 f o r (i = 0 ; i < _PB_NI ; i++)
15 R [k] [j] += Q [i] [k] ∗ A [i] [j] ;
16 f o r (i = 0 ; i < _PB_NI ; i++)
17 A [i] [j] = A [i] [j] − Q [i] [k] ∗ R [k] [j] ;
18 }
19 }

(b) Data races on the variable nrm in the Gramschmidt benchmark

Figure 5.2 : PolyBench/ACC OpenMP benchmark developer might have forgotten to

mark certain variable as private variables (x in Cholesky, nrm in Gramschmidt), and

there by resulting races on such variables.

62

1#pragma omp p a r a l l e l
2 {
3 /∗ C := alpha ∗A∗B + beta ∗C, A i s symetr i c ∗/
4#pragma omp f o r p r i va t e (j , acc , k)
5 f o r (i = 0 ; i < _PB_NI ; i++)
6 f o r (j = 0 ; j < _PB_NJ ; j++)
7 {
8 acc = 0 ;
9 f o r (k = 0 ; k < j − 1 ; k++) {

10 C [k] [j] += alpha ∗ A [k] [i] ∗ B [i] [j] ;
11 acc += B [k] [j] ∗ A [k] [i] ;
12 }
13 C [i] [j] = beta ∗ C [i] [j] + alpha ∗ A [i] [i]
14 ∗ B [i] [j] + alpha ∗ acc ;
15 }
16 }

(a) Data races on the array C in the Symm benchmark

1 /∗ B := alpha ∗A∗B, A t r i a n gu l a r ∗/
2#pragma omp p a r a l l e l f o r p r i va t e (j , k)
3 f o r (i = 1 ; i < _PB_NI ; i++)
4 f o r (j = 0 ; j < _PB_NI ; j++)
5 f o r (k = 0 ; k < i ; k++)
6 B [i] [j] += alpha ∗ A [i] [k] ∗ B [j] [k] ;

(b) Data races on the array B in the Trmm benchmark

Figure 5.3 : PolyBench/ACC OpenMP benchmark developer have incorrectly paral-

lelized the linear algebra kernels (some of them are notoriously hard to be parallelized

because of complex dependence patterns), and there by resulting races on arrays C in

Symm and B in Trmm benchmarks.

63

pose hidden parallelism in the benchmarks. In such scenarios, our tool PolyOMP

can be of a great help in aiding the programmers while debugging, because our

tool can provide precise information (including precise iteration values) about

the races.

5.4 Strengths and Limitations of Our Approach

In this section, we present strengths and limitations of our race detection approach

using our extensions to the polyhedral model.

Strengths:

• The current implementation of race detection approach in PolyOMP supports

OpenMP constructs such as omp parallel for, parallel for, barrier,

single, master directives and nested parallel regions.

• Our approach reports races in a program independent of inputs to the program,

unlike approaches based on dynamic analysis (e.g., Intel Inspector XE) which

report races guaranteed on a given input.

• Our approach allows number of threads to be an unknown symbolic parameter

unlike other approaches [84, 72] which are applicable only to a fixed number of

threads in a given program.

• Our approach is guaranteed to be exact (with neither false positives nor false

negatives) if the input program satisfies all the standard preconditions of the

polyhedral model (without any non-affine constructs, and aware of any known

relations between parameters). This has been evident in case of the evaluation

on PolyBench/ACC OpenMP suite.

• Our approach can identify challenging data races (e.g., data race on variable k

in jacobi03 benchmark in Figure 5.1) which can influence the program execution

64

overhead in dynamic analysis techniques. Hence, we believe that coupling our

static approach with dynamic analysis techniques (e.g., Intel Inspector XE,

ARCHER) can reduce overall program execution overhead in detecting races in

larger OpenMP programs.

Limitations:

• Our tool currently does not perform any pointer based analysis. However,

previous works on pointer analysis can be added as a pre-pass to our race

detection stage to enhance the race detection.

• In our approach, we restrict our attention to textually aligned barriers, in which

all threads encounter the same textual sequence of barriers. Each dynamic

instance of the same barrier operation must be encountered by all threads.

We plan to address textually unaligned barriers as part of the future work.

However, many software developers believe that textually aligned barriers are

better from a software engineering perspective.

• The support for analyzing SPMD programs with constructs that enforce mutual

exclusion and task-based parallel constructs are part of future work.

5.5 Past Work on Race Detection

There is an extensive body of literature on identifying races in explicitly-parallel

programs (at compile-time [83, 84, 72, 85, 75, 86], run-time [93], and hybrid combi-

nations [87]). We focus our discussion on past work that is most closely related to

static analysis techniques for identifying data races in SPMD-style parallel programs.

Table 5.3 lists the details of related static analysis tools for race detection and their

limitations with respect to PolyOMP .

Among the static analysis techniques, symbolic approaches have received a lot of

attention in analyzing parallel programs, especially in the context of OpenMP. Yu et

65

Supported Constructs Approach Guarantees

Pathg

(Yu et al.)

OpenMP worksharing loops,

barriers with depth 0, Atomic
Thread automata Per no. of threads

OAT

(Ma et al.)

OpenMP worksharing loops,

Barriers, locks, Atomic,

single, master

Symbolic execution Per no. of threads

ompVerify

(Basupalli et al.)

OpenMP ‘parallel for’
Dependence analysis

using Polyhedral model
Per worksharing loop

ARCHER (static)

(Atzeni et al.)

OpenMP ‘parallel for’
Dependence analysis

using Polyhedral model
Per worksharing loop

PolyOMP

Our Approach

OpenMP worksharing loops,

Barriers in arbitrary nested loops,

Single, master

MHP relations computed from the

extensions to the polyhedral model

Per program

Table 5.3 : Closely related static approaches in race detection

al. [84] presented a symbolic approach for checking the consistency of multi-threaded

programs with OpenMP directives using extended thread automata (with a tool called

Pathg). However, their race detection is only guaranteed for a fixed number of worker

threads. Ma et al. [72] also use a symbolic execution-based approach (running the

program on symbolic inputs and fixed number of threads) to detect data races in

OpenMP codes, based on constraint solving using an SMT solver. The data races

reported from this toolkit (called OAT) are applicable only to a fixed number of input

threads, unlike our approach which takes the number of threads as variable.

As part of static analysis techniques, polyhedral based approaches have also

gained significant interest in analyzing parallel programs because these approaches

perform exact analysis if the input program fits into the polyhedral model (without

any non-affine constructs). Basupalli et al. [85] presented an approach (ompVerify)

to detect data races inside a given worksharing loop using polyhedral dependence

analysis. However, this approach handled only affine constructs and limited to work-

66

sharing loops. Yuki et al. [75] presented an adaptation of array data-flow analysis

to X10 programs with finish/async parallelism. In this approach, the happens-before

relations are first analyzed, and the data-flow is computed based on the partial order

imposed by happen-before relations. This extended array dataflow analysis is used to

certify determinacy in X10 finish/ async parallel programs by identifying the possibil-

ity of multiple sources of write for a given read. Their extended work [77] formulated

the happens-before relations with X10 clocks in a polyhedral context. This approach

provides the race-free guarantee of clocked X10 programs by disproving all possible

races. But, it doesn’t provide races present in the input program since computing

happens-before relations involves polynomials in a general case.

Atzeni et al. [87] introduced a hybrid approach (ARCHER) to achieve high ac-

curacy, low overheads on large OpenMP applications to detect data races. The static

part of ARCHER tool still leverages the existing polyhedral dependence analyzer to

identify races in a given worksharing loop. Our static approach can be complemented

with the dynamic analysis of ARCHER tool to further reduce overheads as observed

for the benchmark in Figure 5.1.

67

Chapter 6

Optimization Of SPMD Programs – Static

Redundant Barrier Detection

Optimization is detrimental to future success.

Erik Naggum

As we are evolving towards homogeneous and heterogeneous many-core proces-

sors, and relying on SPMD model for the homogeneous and SIMT model for heteroge-

neous cores, it is likely that redundant synchronization will become more prevalent.

The performance of a parallel program is often determined by its synchronization

behavior. Barriers are one of the popularly used synchronization construct in SPMD-

style parallel programs particularly with OpenMP and MPI, but barriers introduce

execution overheads along with influencing scalability of parallel programs. Techni-

cally, a barrier is a redundant barrier if no data races emanate after removing the

barrier. The goal of redundant barrier detection in an input SPMD-style program is

to identify a set of barriers that can be eliminated without affecting the semantics

of the program. Complicating the matter, barriers may be enclosed in imperfectly

nested sequential loops of an SPMD region, thereby making static analysis harder

to reason. Henceforth, detecting redundant barriers has been receiving a fair at-

tention [94, 95, 96, 49] in the parallel programming. In this chapter, we propose

and evaluate our approach to identify redundant barriers in SPMD-style programs

at compile-time with our extensions (introduced in Chapter 3) to the polyhedral

intermediate representation.

68

6.1 Motivation

To motivate our approach for detection of redundant barriers at compile-time, we

consider a SPMD-style program as an illustrative example. The excerpt shown in Fig-

1#pragma omp p a r a l l e l p r i va t e (j , k)
2 {
3 /∗ E := A∗B ∗/
4#pragma omp f o r
5 f o r (i = 0 ; i < _PB_NI ; i++) {
6 f o r (j = 0 ; j < _PB_NJ ; j++) {
7 E [i] [j] = 0 ;
8 f o r (k = 0 ; k < _PB_NK ; ++k)
9 E [i] [j] += A [i] [k] ∗ B [k] [j] ;

10 }
11 }

13 /∗ F := C∗D ∗/
14#pragma omp f o r
15 f o r (i = 0 ; i < _PB_NJ ; i++) {
16 f o r (j = 0 ; j < _PB_NL ; j++) {
17 F [i] [j] = 0 ;
18 f o r (k = 0 ; k < _PB_NM ; ++k)
19 F [i] [j] += C [i] [k] ∗ D [k] [j] ;
20 }
21 }

23 /∗ G := E∗F ∗/
24#pragma omp f o r
25 f o r (i = 0 ; i < _PB_NI ; i++) {
26 f o r (j = 0 ; j < _PB_NL ; j++) {
27 G [i] [j] = 0 ;
28 f o r (k = 0 ; k < _PB_NJ ; ++k)
29 G [i] [j] += E [i] [k] ∗ F [k] [j] ;
30 }
31 }
32 }

Figure 6.1 : Redundant barrier (implicit) at line 11 in the 3mm benchmark from

PolyBench/ACC benchmark suite

69

ure 6.1 is a part of the 3mm benchmark from the PolyBench/ACC OpenMP suite [91],

which computes a sequence of three matrix multiplications E = A.B; F = C.D; G =

E.F. The excerpt contains a parallel region (lines 1-32) spanning three worksharing

loops having implicit barriers. As no dependences flow between the first two work-

sharing loops, the implicit barrier between them is redundant and conservative. This

pattern of over-conservative synchronization is quite common especially while pro-

grammer trying to parallelize loops with worksharing directives which have implicit

barriers by default. Such redundant barriers not only introduce execution overheads

but also affect the scalability of applications since they involve system-wide commu-

nication and coordination.

Our approach identifies such redundant barriers by building on our work on data

race detection as follows. First, our static analysis temporarily elides all barriers in the

program and computes the resulting data races. Next, it maps each barrier to a set of

data races which can potentially be fixed with that barrier and eventually it builds a

bipartite graph from the barriers to the data races. This mapping information is then

used to compute sets of required barriers in the program that can completely fix all

the data races. Then, a set of redundant barriers is computed by subtracting the set

of required barriers from all the barriers in the program. To illustrate the potential

performance impact of the optimization, we have performed experiments on 57-cores

Intel Knights Corner (Xeon Phi) system with four threads per each core. As reported

in Table 6.3, there is 2.5% improvement by removing the redundant barrier between

the first two worksharing loops. Also, we have observed a performance improvement

from this optimization as high as 9% for the 2mm benchmark on Intel Xeon Phi from

PolyBench ACC OpenMP suite [91].

70

6.2 Our Approach

In this section, we present an approach (See Algorithm 4) to identify redundant

barriers in SPMD programs. Removing a barrier from an SPMD program is valid

(keeping semantics preserved) as long as removing the barrier doesn’t introduce data

races in the input program. Henceforth, our approach ignores input programs which

have data races.

6.2.1 An Algorithm to Identify Redundant Barriers

Algorithm 4 summarizes overall steps in identifying redundant barriers at compile-

time in an SPMD program and reports a warning (at lines 4-5) if the input SPMD pro-

gram has data races. The following are the major steps involved in Algorithm 4.

1) Firstly, our approach temporarily elides all barriers in the input program (at lines

6-7) and computes data races∗ with our race detection approach in Algorithm 3.

For example, temporarily eliding all barriers in the 3mm benchmark (shown in Fig-

ure 6.1) results in two races, i.e., race r1 between statements on line 9, 29 on the

array E, and another race r2 between statements on line 19, 29 on the array F.

2) Then, our approach constructs a bipartite graph with one set being barriers and

another set being the data races from the previous step (line 10). For the 3mm

benchmark, the barriers and the data races in the bipartite graph are implicit

barriers b1, b2, b3 at lines 11, 21 31 in Figure 6.1, and races r1, r2 respectively.

3) Next, our approach maps each barrier in the bipartite graph to a set of data

races which can be avoided with that barrier. As can be seen from Figure 6.2,

the implicit barrier b1 can potentially fix the race r1, and the barrier b2 can fix

both races r1 and r2, whereas the barrier b3 fixes neither of races. The mappings

∗Note that any race detection tool can be used in place of our approach to recognize races.

71

Algorithm 4: An approach to compute a set of redundant barriers in an SPMD
program

Input : An SPMD program, P
Output: A set of redundant barriers (REDBARR) in the SPMD program

1 begin
2 B ← Set of barriers in the input SPMD program P

/* Identify data races in the input SPMD program with our race

detection approach in Algorithm 3 */

3 R ← Dataraces(P)

4 if R 6= φ then
5 Report a warning that the input SPMD program P has races, and our

approach ignores racy input SPMD programs; Return

/* Temporarily elide all barriers in the input program and

computes data races */

6 P1 ← Elide the set B from the input SPMD program P
7 R1 ← Dataraces(P1)

/* Return all barriers in original program as redundant

barriers if there are no races originating after eliding

the barriers */

8 if R1 = φ then
9 Output B

/* If there are data races after eliding barriers, then

construct a bipartite graph (shown in Algorithm 5), from

the barriers to the data races, to identify a set of

redundant barriers */

10 G ← Build a bipartite graph (P , R1)

/* After building bipartite graph, compute a set of required

barriers, using a greedy approach (shown in Algorithm 6) to

cover all data races in the bipartite graph */

11 REQBARR ← Compute required barriers(G)

/* Compute redundant barriers by subtracting required barriers

from all barriers in the SPMD program */

12 REDBARR ← B - REQBARR
13 Output REDBARR

14 end

72

b1

b2

b3

r1

r2

Barriers(B)

Races(R)

Figure 6.2 : Bipartite graph constructed by mapping each barrier in 3mm benchmark

to data races that can be avoided with the barrier

between the barriers and the data races are constructed using Algorithm 5 and

the approach is summarized below.

For each barrier,

• Our approach recomputes phase mappings of all statements in the SPMD

program with only that barrier (line 4 in Algorithm 5).

• Then for each identified data race in the bipartite graph, if the source and

target of the data race have different recomputed phase mappings, then our

approach adds an edge between the barrier and the data race, i.e., the barrier

can potentially avoid the race, to the bipartite graph (at lines 5-9 in Algo-

rithm 5).

4) After constructing the bipartite graph, our approach uses a greedy strategy (at

line 11) to compute a set of minimum number of required barriers to keep the

original semantics of the program, i.e., all data races in the bipartite graph are

covered by the set of required barriers. For the 3mm benchmark, the barrier b2 is

sufficient enough to cover both of the races r1 and r2.

73

Algorithm 5: An approach to construct a bipartite graph from barriers to data
races in an SPMD program

Input : An SPMD program (P), and a set of races (R)
Output: A bipartite graph (G) from barriers in P to race in R

1 begin
2 B ← Set of barriers in the input SPMD program P

3 for barrier b in B do

/* Recompute phase mappings based on the barrier b for all

the statements in the SPMD program with our approach

in Algorithm 1 */

4 P1 ← P ∪ {b}
5 ΘP ← Phases(P1)

/* Loop through each data race to verify whether the data

race can be avoided by the barrier b */

6 for race r in R do

7 S, T := Source and target of the data race r

/* If the phase mappings of S and T are different, then

add an edge between the barrier b and the data race r

to the bipartite graph */

8 if ΘP (S) 6= ΘP (T) then

9 G ← G ∪ {(b −→ r)}

10 Ouput G

11 end

5) Finally, our approach computes set of redundant barriers by eliminating the set of

required barriers from the barriers in the input SPMD program (at line 12). The

set of redundant barriers in case of the 3mm benchmark are the implicit barriers b1

and b3, and their removal doesn’t influence semantics of the original benchmark.

74

6.2.2 A Greedy Approach to Compute a Set of Required Barriers

In this subsection, we present a greedy approach to compute a minimum set of re-

quired barriers in an SPMD program, which needs to be retained in the original

program to avoid data races. The greedy approach (shown in Algorithm 6) takes a

bipartite graph from barriers to data races as an input and outputs a minimum set

of barriers, that can cover all the races in the bipartite graph†. The entire approach

is summarized below.

1) Firstly, our greedy approach includes any barriers that are the only barriers that

address particular races into a set of required barriers. Then, our approach removes

all the races that these barriers address, and also these barriers from the bipartite

graph (lines 3-8). For the bipartite graph in Figure 6.2 of the 3mm benchmark,

our approach would first consider the barrier b2 since it is the only barrier that

can address the race r2. Then, our approach would add the barrier b2 to a set of

required barriers, and then remove the barrier b2 from the bipartite graph. Also,

it removes both of the races r1 and r2 from the bipartite graph since the barrier

b2 can address both of them.

2) Then, our approach works by considering a barrier that can address more races

from the remaining bipartite graph, i.e., keeping that barrier can fix more races.

Then, the approach adds that barrier to the set of required barriers. Similarly

to the first step, our approach then removes the barrier and all the races that it

can address from the bipartite graph (lines 9-13). After removing the barrier b2,

and races r1, r2 in the previous step on the bipartite graph of the 3mm benchmark,

there will be no races left in the bipartite graph that our approach would need to

address.

†Note that this problem can be modeled as an instance of minimum set cover problem, and the
proposed greedy approach (excluding the first step) is equivalent to the log n based approximation
algorithm for minimum set cover problem.

75

Algorithm 6: A greedy approach to compute a set of required barriers

Input : Bipartite graph G from barriers (B) to races (R)
Output : A set of required barriers (RB) in B such that all races in R

are covered
1 begin

/* RB indicates required barriers to retain semantics */

2 RB ← φ

/* Include any barriers that are the only barriers that

address particular races, and remove all the races these

barriers address */

3 for race r in R do
4 if In-degree(r) in G = 1 then

5 b ← Source of the edge to r

6 RB ← RB ∪ {b}

7 R ← R -
⋃

r∈R

{ race r s.t there is an edge from barrier b to it }

8 B ← B - { b}

/* Repeat until all races are covered without exhausting

barriers */

9 while R is not empty and B is not empty do

/* Greedy choice */

10 b ← Pick up a barrier from G with highest outgoing degree

/* Add barrier b to required barriers */

11 RB ← RB ∪ {b}

/* Remove races from R that are connected to barrier b */

12 R ← R -
⋃

r∈R

{ race r s.t there is an edge from barrier b to it }

/* Remove barrier b from B */

13 B ← B - { b}

14 end

76

3) Next, the second step is repeated until all the races are covered or no more bar-

riers left in the remaining bipartite graph. In case of the 3mm benchmark, our

greedy approach would finally return the barrier b2 as the required barrier that

can address all the races in the input bipartite graph.

Since the proposed greedy approach may not find an optimal solution in certain

scenarios, we defer the efficient approaches to find the optimal solution to future work.

Also, our greedy approach has the following assumptions: 1) All barriers (regardless

of its depth) are treated uniformly in finding minimum number of required barriers,

and 2) all edges in the bipartite graph have equal weights which may be not true in

certain SPMD programs having barriers with higher depths.

6.3 Experimental Evaluation

In this section, we evaluate our approach by measuring performance improvement

of SPMD programs after removing redundant barriers identified from the approach.

Firstly, we briefly describe our experimental setup and benchmark suites used for the

evaluation. Then, we present our discussion on the obtained results for each of the

benchmark suites.

6.3.1 Experimental Setup

Our evaluation uses two different multi-way SMP multicore setups: an Intel Xeon

Phi and a IBM Power8 system. Table 6.1 lists their hardware specifications. In the

evaluation, we compare two experimental variants: 1) OpenMP to show the original

OpenMP parallel version running with all threads - i.e., 228 on Intel KNC and 192 on

Power8, and 2) PolyOMP to show the transformed version by our framework running

with all threads. The improvement factor is defined as the execution time of the

original version of the parallel program divided by the execution time of the optimized

77

Intel Knights Corner (KNC) IBM Power 8E (Power 8)

Micro architecture Xeon Phi Power PC

Clock speed 1.10GHz 3.02GHz

Cores/socket 57 12

Total cores 57 24

Threads per core 4 8

Total threads 228 192

Compiler Intel ICC v15.0.0 IBM XLC v13.1.2

Compiler flags -O3 (highest) -O5 (highest)

Table 6.1 : Hardware specifications of the experimental setup for evaluating our

approach to identify redundant barriers.

parallel version of the program by removing redundant barriers.

6.3.2 OpenMP Source Code Repository

OpenMP Source Code Repository (OmpSCR) [88] consists of 18 OpenMP-C bench-

marks, in which 6 use C structs and pointer arithmetic. We defer support for C

structs and pointer arithmetic in our current toolchain for future work, and hence we

ignore these six benchmarks. Hence, our results focus on the remaining 12 OpenMP-C

benchmarks, which are listed in Table 6.2.

Discussion. Our tool PolyOMP identified absence of races (including false posi-

tives) in the three benchmarks Lud, LoopA.sol1, C pi and applied the Algorithm 4

to detect redundant barriers. But, the tool recognized that all barriers are necessary

to respect program semantics and hence no elimination applied to these benchmarks.

Since our tool PolyOMP enables redundant barrier optimization only for race-free in-

put programs, the tool refuses to optimize the remaining nine benchmarks having

78

Benchmark
#Barriers in the

input program

#Barrier instances (dynamic count)

during the program execution

#Eliminated in the

input program

Lud 1 size - 1 0

LoopA.sol1∗ 2 2×numiter 0

C pi 1 1 0

Jacobi01∗ 2 2 × f1(k, error) I

Jacobi02∗ 3 2 × f2(k, error) + 1 I

LoopA.sol2∗ 3 2×numiter + 1 I

LoopA.sol3∗ 2 2×numiter I

Jacobi03∗∗ 3 2 × f3(k, error) + 1 I

LoopA.bad∗∗ 1 numiter I

LoopB.bad1∗∗ 1 numiter I

LoopB.bad2∗∗ 1 numiter I

LoopB.pipe∗∗ 3 2×numiter + 1 I

Table 6.2 : Redundant barrier detection analysis over the subset of OmpSCR bench-

mark suite. Benchmarks labeled with (*) have no true races but our race detection

algorithm reported false positives, and benchmarks with (**) indeed have true races.

Our tool ignored (I) the benchmarks with labels (*, **) because of the presence of

races (including false positives). size, k, error, numiter are symbolic parameters

in the corresponding benchmarks. Note that we also count implicit barriers after the

omp parallel construct even though these implicit barriers cannot be removed from

the source code.

data races (including false positives). But the benchmarks Jacobi01, Jacobi02,

LoopA.sol2, LoopA.sol3 don’t have true races, and still, our tool ignored them be-

cause of false positive races arising from the unanalyzed array subscripts in those

benchmarks. However, the tool can be improved to enable redundant barrier opti-

mization for input programs, which have no true races but our race detection algo-

rithm reported false positives, with programmer’s support.

79

6.3.3 PolyBench/ACC OpenMP Suite

The PolyBench/ACC OpenMP Suite [91] consists of OpenMP implementations of the

original PolyBench suite [89] to run on GPU’s and accelerators. The suite contains

32 benchmarks, and for which our tool was unable to compile ten benchmarks due to

the incorrect usage of OpenMP directives in those benchmarks according to OpenMP

specifications. Hence, our results focus on the remaining 22 benchmarks. For each

benchmark among those 22 benchmarks, Table 6.3 shows the number of barriers in

the original benchmark, how many times barriers executed, how many barriers were

removed by our optimization, and the performance improvement factor by the barrier

elimination on Intel KNC and Power 8. We have used large dataset as an input to

measure the performance improvement since the evaluation on large dataset has less

standard deviation compared to other datasets.

Discussion. Our tool PolyOMP identified a total of 19 redundant barriers from

11 benchmarks (Correlation, Covariance, 2mm, 3mm, Doitgen, Gemm, Gemver,

Mvt, Syrk, Syr2k, Convolution-3d, fdtd-apml) among 22 benchmarks consid-

ered for the evaluation. The geometric mean of improvement factors after remov-

ing these 19 redundant barriers are 1.032x on Intel KNC and 1.007x on Power8.

Among these 19 redundant barriers, 12 redundant barriers (from Correlation, 3mm,

Gemver, Mvt, Syrk, Syr2k) are the implicit barriers between worksharing loops

which don’t have data dependences flowing between them, and our tool removed

these redundant barriers by adding nowait clause to the worksharing loop. Since

these 12 redundant barriers are between worksharing loops and these worksharing

loops in the benchmarks have better load balance, the improvement factors are not

significant after removing these redundant barriers. However, we believe that the

improvement may be significant in the case of benchmarks having 1) more dynamic

instances of redundant barriers during the program execution, 2) redundant barriers

between unbalanced worksharing loops. As shown in Table 6.3, eliminating redun-

80

Mean improvement

(Standard deviation)Benchmark

#Barriers

in the input

program

#Barrier instances

(dynamic count)

during execution

#Eliminated

in the input

program Intel KNC Power 8

Correlation 5 5 2 1.008 (± 0.019) 1.049 (± 0.146)

3mm 4 4 2 1.024 (± 0.018) 1.006 (± 0.041)

Gemver 5 5 2 1.006 (± 0.010) 1.004 (± 0.041)

Mvt 3 3 2 1.025 (± 0.012) 0.971 (± 0.038)

Syrk 3 3 2 1.003 (± 0.030) 0.999 (± 0.012)

Syr2k 3 3 2 0.994 (± 0.023) 1.000 (± 0.010)

Covariance 4 4 1 1.008 (± 0.032) 0.993 (± 0.020)

2mm 3 3 1 1.090 (± 0.022) 0.985 (± 0.084)

Doitgen 2 2 1 1.091 (± 0.610) 0.997 (± 0.010)

Gemm 2 2 1 1.011 (± 0.040) 1.016 (± 0.059)

Gesummv 2 2 1 0.991 (± 0.034) 0.998 (± 0.043)

Fdtd-apml 2 2 1 1.149 (± 0.510) 1.068 (± 0.205)

Convolution-3 2 2 1 A A

Convolution-2∗ 1 1 0 NR NR

Atax∗∗ 3 3 I NR NR

Bicg∗∗ 3 3 I NR NR

Cholesky∗∗ 2 2 I NR NR

Symm∗∗ 2 2 I NR NR

Trmm∗∗ 2 2 I NR NR

Durbin∗∗ 3 3 I NR NR

Gramschmidt∗∗ 1 1 I NR NR

Lu∗∗ 2 2 I NR NR

Table 6.3 : Redundant barrier detection analysis over the subset of PolyBench/ACC

OpenMP benchmark suite. Benchmarks labelled with (*) doesn’t have redundant

barriers, and we didn’t run (NR) the benchmarks for performance evaluation. Bench-

marks labelled with (**) have true races, and our tool ignored (I) these benchmarks.

A - Application exception, i.e., Segmentation fault in the original program itself. Note

that we also count implicit barriers after the omp parallel construct even though

these implicit barriers cannot be removed from the source code.

81

dant barriers generally contributes to overall performance while small slowdown was

observed in some benchmarks (e.g., Gesummv, Syr2k benchmarks). On Power8, the

IBM XL compiler supports efficient runtime barriers, which reduce the effect of bar-

rier eliminations on the application performance, compared to the ICC compiler on

Intel KNC. Remaining seven redundant barriers (from Covariance, 2mm, Doitgen,

Gemm, Gesummv, Convolution-3, fdtd-apml) out of 19 are the implicit barriers

from the worksharing loops which are immediately succeeded by the end of the omp

parallel region construct. We believed that the existing compilers (Intel ICC, IBM

XLC) could identify and eliminate these seven redundant barriers as part of their

optimizations, but we could still observe these redundant barriers in the assembly

codes generated by these compilers. Hence, we believe that adding this redundant

barrier optimization can help the existing compilers to improve the performance and

even enable more opportunities for further optimizations.

PolyOMP also recognized the absence of redundant barriers in 1 benchmark, i.e.,

Convolution-2 out of the 22 benchmarks. Hence, we didn’t evaluate this benchmark

for performance improvement. Also, PolyOMP identified true races in the remaining

eight benchmarks (Atax, Bicg, Cholesky, Symm, Trmm, Durbin, Gramschmidt,

Lu). Since our tool checks for absence of data races in the input program before

identifying redundant barriers, these eight benchmarks were ignored by our tool and

no evaluation was performed on these benchmarks.

6.4 Strengths and Limitations of Our Approach

In this section, we present strengths and limitations of our approach to identify a

minimum set of required barriers in an SPMD program to preserve its semantics.

Strengths:

• Our approach can model barriers with higher depths, i.e., deeply enclosed in

82

arbitrarily nested sequential loops in a SPMD program.

• Also, our approach can compute phase mappings very precisely unlike other

approaches [95, 97] which computes phase information conservatively in case of

barriers with higher depths. Such precise phase mappings may help in removing

more redundant barriers compared to [95, 97], and enabling other transforma-

tions such as fusion of SPMD regions to enable more loop transformations across

SPMD regions.

Limitations:

• Since the problem of finding the minimum set of required barries can be modeled

as an instance of minimum set cover problem, our algorithm in Algorithm 4 can

be strengthened by replacing the greedy approach with an ILP formulation.

6.5 Past Work on Analysis of Barriers

There is an extensive research ([94, 95, 96, 49]) done towards analyzing barriers

present in SPMD programs. In this section, we focus on closely related compile-

time approaches for analysis of the barriers and the summary is presented in Ta-

ble 6.4.

In the beginning, Aiken et al. have developed an inference system that detects

the SPMD structure and verifies the correctness of global barrier synchronization [94].

In this work, single-valued expressions are introduced to evaluate to the same value

in all the processes, to ensure that all processes execute the same number of barriers.

Kamil et al. [95] extended the work in [94] by constructing a concurrency graph from

a program written in the context of Titanium parallel programming language [49].

Then, MHP relations are computed by performing depth-first traversals on the con-

currency graph. However, this approach results in conservative MHP relations in case

of programs with barriers enclosed in nested sequential loops, unlike our approach

83

Style Key idea Limitations

Kamil et al

LCPC’05
SPMD

Tree traversal on

concurrency graph

Conservative MHP in case of

barriers enclosed in loops

Tseng et al

PPoPP’95

SPMD +

fork-join

Communication analysis b/w

computation partitions

Structure of loops

enclosing barriers

Zhao et al

PACT’10
fork-join

SPMDization by

loop transformations

Join (barrier) synchronization

from only for-all loops

Surendran et al

PLDI’14
fork-join

Dynamic programming on

scoped dynamic structure trees

Limited to finish construct

but the finish placement

algorithm is optimal

Our approach SPMD
Precise MHP analysis with

extensions to Polyhedral model

Can support barriers in

arbitrarily nested loops

Table 6.4 : Closely related static approaches in barrier analysis

which computes MHP relations precisely in such scenarios.

Tseng [97, 98] proposed a greedy approach that combines array data dependence

analysis and communication analysis over threads for redundant barrier elimination in

a hybrid programming model employing fork-join and SPMD techniques. In particu-

lar, the communication analysis is performed by constructing a system of inequalities

and solving it with the Fourier-Motzkin elimination process, an early polyhedral tech-

nique. However, if a loop contains one or more required barriers, this approach is not

always able to detect the barrier at the end of the loop body, which may be redun-

dant and can be eliminated. But, our approach can identify such redundant barriers

if they exist in the input program.

Zhao et al.[14] addressed the problem of barrier elimination of explicitly-parallel

programs by SPMDization of region code in the fork-join model. They proposed a

compiler based approach to SPDMize the code so as to reduce the number of spawned

84

tasks, thereby reducing the number of required synchronizations. Their work leverages

typical transformations such as loop interchange and introduces novel ones such as

redundant next-single elimination. However, this approach is limited to barriers (as

part of join synchronization) arising from only forall construct. But, our approach

can handle not only barriers from forall construct but also barriers enclosed in

arbitrarily nested sequential loops.

Surendran et al. [99] addressed the problem of inserting finish synchroniza-

tion construct in X10 parallel programs, where parallelism is expressed using async

construct. Their approach starts with a program having data races and then deter-

mines where additional synchronization constructs should be inserted to guarantee

correctness (absence of data races), with the goal of maximizing parallelism. But,

our approach ignores an input program if it has data races, and also our approach

doesn’t insert any additional synchronization constructs (barriers) to eliminate data

races. Instead, our approach checks for the redundant synchronization already present

in the input program.

85

Chapter 7

Conclusions & Future Work

A story really isn’t truly a story until it reaches

its climax and conclusion.

Ted Naifeh

This work is motivated by the observation that software with explicit parallelism

is on the rise, and that SPMD parallelism is a common model for explicit paral-

lelism as evidenced by the popularity of OpenMP, OpenCL, and CUDA. As with

other imperative parallel programming models, data races are a pernicious source

of bugs in the SPMD model and may occur only in few of the possible schedules

of a parallel program, thereby making them extremely hard to detect dynamically.

However, effective approaches to static data race detection remains an open problem,

despite significant progress in recent years. Further, in addition to debugging parallel

programs, it is important to extend classical code optimization techniques (such as

partial/total redundancy elimination) to operations such as synchronization barriers

that incur large overheads in current parallel programming models.

In this work, we formalized May-happen-in-parallel (MHP) relations to capture

partial execution orders in SPMD program by extending the polyhedral model with

“space” and “phase” mappings. We demonstrate the value of these extensions and

formalized MHP relations by its use in two applications to help developers of SPMD

programs — identification of data races, as well as identification and removal of

redundant barriers. We evaluate our approaches on the 34 OpenMP programs from

86

the OmpSCR and PolyBench/ACC benchmark suites.

In summary, the contributions of this thesis include the following: 1) It describes

our extensions to the polyhedral compilation model to represent partial execution

order present in SPMD programs. 2) It formalizes the partial order as May-Happen-

in-Parallel (MHP) information using our extensions to the polyhedral model. 3) It

presents an approach for compile-time detection of data races in SPMD programs [44].

4) It presents an approach for identification and removal of redundant barriers at

compile-time in SPMD programs. 5) It demonstrates the effectiveness of the ap-

proaches on 34 OpenMP programs from the OmpSCR and the PolyBench/ACC OpenMP

benchmark suites.

As part of future work, 1) We plan to use the proposed extensions for further

static applications such as detecting false sharing issues, and identifying deadlocks in

input parallel programs. 2) We also plan to enhance existing hybrid race detection

tools [87, 100], by either adding our race detection approach in the static analysis of

the hybrid approaches or help the dynamic analysis (e.g., in [101]) with the MHP in-

formation from our extensions. 3) We also plan to extend the work on race detection

to enable program repair by automatically inserting barrier synchronization to elimi-

nate the data races that were detected, as has been done with finish synchronization

for Habanero-Java [99]. 4) Also, we are interested in extending our work on redundant

barrier detection to replace non-redundant barriers with fine-grained synchronization

constructs [97, 98], in both user-written code and in the output of automatic program

repair. 5) Finally, we plan to enable classic scalar optimizations (code motion) on

concurrency constructs in SPMD programs with our proposed extensions to the poly-

hedral model, as has been done in optimizing remote access on distributed memory

machines using the Split-C language as a global address layer [36].

87

Reasoning draws a conclusion, but does not make

the conclusion certain, unless the mind discovers

it by the path of experience.

Roger Bacon

88

Bibliography

[1] T. Grosser, “islplot.” https://github.com/tobig/islplot, 2014.

[2] S. Verdoolaege and T. Grosser, “Polyhedral Extraction Tool,” in Second

Int. Workshop on Polyhedral Compilation Techniques (IMPACT’12), (Paris,

France), Jan. 2012.

[3] V. Sarkar, W. Harrod, and A. E. Snavely, “Software Challenges in Extreme Scale

Systems,” Journal of Physics: Conference Series, vol. 180, no. 1, p. 012045,

2009.

[4] F. Darema, D. George, V. Norton, and G. Pfister, “A single-program-multiple-

data computational model for EPEX/FORTRAN,” Parallel Computing, vol. 7,

no. 1, pp. 11 – 24, 1988.

[5] L. Nyman and M. Laakso, “Notes on the History of Fork and Join,” IEEE

Annals of the History of Computing, vol. 38, no. 3, pp. 84–87, 2016.

[6] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for Shared-

Memory Programming,” IEEE Comput. Sci. Eng., vol. 5, pp. 46–55, Jan. 1998.

[7] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel Program-

ming with CUDA,” Queue, vol. 6, pp. 40–53, Mar. 2008.

[8] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming Stan-

dard for Heterogeneous Computing Systems,” IEEE Des. Test, vol. 12, pp. 66–

73, May 2010.

[9] Anon, “MPI: A Message Passing Interface,” in Proceedings of the Supercomput-

https://github.com/tobig/islplot

89

ing Conference, pp. 878–883, 1993.

[10] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability and

the Chapel Language,” International Journal of High Performance Computing

Applications, vol. 21, no. 3, pp. 291–312, 2007.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou, “Cilk: An Efficient Multithreaded Runtime System,” in Proceedings

of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPOPP ’95, (New York, NY, USA), pp. 207–216, ACM, 1995.

[12] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar, “X10: An Object-oriented Approach to Non-

uniform Cluster Computing,” in Proceedings of the 20th Annual ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Languages, and

Applications, OOPSLA ’05, (New York, NY, USA), pp. 519–538, ACM, 2005.

[13] R. Cytron, J. Lipkis, and E. Schonberg, “A Compiler-assisted Approach to

SPMD Execution,” in Proceedings of the 1990 ACM/IEEE Conference on Su-

percomputing, Supercomputing ’90, (Los Alamitos, CA, USA), pp. 398–406,

IEEE Computer Society Press, 1990.

[14] J. Zhao, J. Shirako, V. K. Nandivada, and V. Sarkar, “Reducing Task Creation

and Termination Overhead in Explicitly Parallel Programs,” in Proceedings of

the 19th International Conference on Parallel Architectures and Compilation

Techniques, PACT ’10, (New York, NY, USA), pp. 169–180, ACM, 2010.

[15] V. K. Nandivada, J. Shirako, J. Zhao, and V. Sarkar, “A Transformation Frame-

work for Optimizing Task-Parallel Programs,” ACM Trans. Program. Lang.

Syst., vol. 35, pp. 3:1–3:48, Apr. 2013.

[16] M. Gupta, S. Midkiff, E. Schonberg, P. Sweeney, K. Y. Wang, and M. Burke,

“PTRAN II - A Compiler for High Performance Fortran,” in 4th International

90

Workshop on Compilers for Parallel Computers, 1993.

[17] “The Next Generation of Compilers,” in Proceedings of the 7th Annual

IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’09, (Washington, DC, USA), IEEE Computer Society, 2009.

[18] M. Hall, D. Padua, and K. Pingali, “Compiler Research: The Next 50 Years,”

Commun. ACM, vol. 52, pp. 60–67, Feb. 2009.

[19] V. Sarkar, “Parallel Functional Languages and Compilers,” ch. PTRAN–the

IBM Parallel Translation System, pp. 309–391, New York, NY, USA: ACM,

1991.

[20] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang,

S. Liao, C. Tseng, M. Hall, M. Lam, and J. Hennessy, “The SUIF Compiler

System: A Parallelizing and Optimizing Research Compiler,” tech. rep., Stan-

ford, CA, USA, 1994.

[21] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Pe-

tersen, B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford, “Polaris:

The Next Generation in Parallelizing Compilers,” in Proceedings of the In-

ternational Workshop on Languages and Compilers for Parallel Computing,

Springer-Verlag, Berlin/Heidelberg, 1994.

[22] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Roun-

tev, and P. Sadayappan, “Automatic Transformations for Communication-

minimized Parallelization and Locality Optimization in the Polyhedral Model,”

in Proceedings of the Joint European Conferences on Theory and Prac-

tice of Software 17th International Conference on Compiler Construction,

CC’08/ETAPS’08, (Berlin, Heidelberg), pp. 132–146, Springer-Verlag, 2008.

[23] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A Practical

Automatic Polyhedral Parallelizer and Locality Optimizer,” in Proceedings of

91

the 29th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’08, (New York, NY, USA), pp. 101–113, ACM, 2008.

[24] J. Shirako, L.-N. Pouchet, and V. Sarkar, “Oil and Water Can Mix: An Inte-

gration of Polyhedral and AST-based Transformations,” in Proceedings of the

International Conference for High Performance Computing, Networking, Stor-

age and Analysis, SC ’14, (Piscataway, NJ, USA), pp. 287–298, IEEE Press,

2014.

[25] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado, and

F. Catthoor, “Polyhedral Parallel Code Generation for CUDA,” ACM Trans.

Archit. Code Optim., vol. 9, pp. 54:1–54:23, Jan. 2013.

[26] P. Feautrier, “Parametric integer programming,” RAIRO - Operations Research

- Recherche Oprationnelle, vol. 22, no. 3, pp. 243–268, 1988.

[27] P. Feautrier, “Dataflow Analysis of Array and Scalar References,” International

Journal of Parallel Programming, vol. 20, 1991.

[28] P. Feautrier, “Some Efficient Solutions to the Affine Scheduling Problem: I.

One-dimensional Time,” Int. J. Parallel Program., vol. 21, pp. 313–348, Oct.

1992.

[29] P. Feautrier, “Some Efficient Solutions to the Affine Scheduling Problem. Part

II. Multidimensional Time,” International journal of parallel programming,

vol. 21, no. 6, pp. 389–420, 1992.

[30] J. Shirako, A. Hayashi, and V. Sarkar, “Optimized Two-level Parallelization

for GPU Accelerators Using the Polyhedral Model,” in Proceedings of the 26th

International Conference on Compiler Construction, CC 2017, (New York, NY,

USA), pp. 22–33, ACM, 2017.

[31] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-based

Data Reuse Optimization for Configurable Computing,” in Proceedings of the

92

ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

FPGA ’13, (New York, NY, USA), pp. 29–38, ACM, 2013.

[32] U. Bondhugula, “Compiling Affine Loop Nests for Distributed-memory Parallel

Architectures,” in Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’13, (New York, NY,

USA), pp. 33:1–33:12, ACM, 2013.

[33] G. Martinovic, Z. Krpic, and S. Rimac-drlje, “Parallelization Programming

Techniques: Benefits and Drawbacks,” in Proceedings of the First International

Conference on Cloud Computing, GRIDs, and Virtualization, 2010.

[34] M. Frumkin, M. Hribar, H. Jin, A. Waheed, and J. Yan, “A Comparison of

Automatic Parallelization Tools/Compilers on the SGI Origin 2000,” in Pro-

ceedings of the 1998 ACM/IEEE Conference on Supercomputing, SC ’98, (Wash-

ington, DC, USA), pp. 1–22, IEEE Computer Society, 1998.

[35] V. Sarkar, “Analysis and Optimization of Explicitly Parallel Programs Using

the Parallel Program Graph Representation,” in Proceedings of the 10th Inter-

national Workshop on Languages and Compilers for Parallel Computing, LCPC

’97, (London, UK, UK), pp. 94–113, Springer-Verlag, 1998.

[36] A. Krishnamurthy and K. Yelick, “Optimizing Parallel Programs with Explicit

Synchronization,” in Proceedings of the ACM SIGPLAN 1995 Conference on

Programming Language Design and Implementation, PLDI ’95, (New York, NY,

USA), pp. 196–204, ACM, 1995.

[37] D. Novillo, Compiler Analysis and Optimization Techniques for Explicitly Par-

allel Programs. PhD thesis, University of Alberta, 2000.

[38] J. Ferrante, D. Grunwald, and H. Srinivasan, “Compile-time Analysis and Opti-

mization of Explicitly Parallel Programs,” Parallel Algorithms and Applications,

vol. 12, no. 1-3, pp. 21–56, 1997.

93

[39] J. Collard, “Array SSA for Explicitly Parallel Programs,” in Euro-Par ’99 Par-

allel Processing, 5th International Euro-Par Conference, Toulouse, France, Au-

gust 31 - September 3, 1999, Proceedings, pp. 383–390, 1999.

[40] J. Collard and M. Griebl, “Array Dataflow Analysis for Explicitly Parallel Pro-

grams,” Parallel Processing Letters, vol. 7, no. 2, pp. 117–131, 1997.

[41] P. Chatarasi, J. Shirako, and V. Sarkar, “Polyhedral Optimizations of Explicitly

Parallel Programs,” in Proceedings of the 2015 International Conference on

Parallel Architecture and Compilation (PACT), PACT ’15, (Washington, DC,

USA), pp. 213–226, IEEE Computer Society, 2015.

[42] T. B. Schardl, W. S. Moses, and C. E. Leiserson, “Tapir: Embedding Fork-

Join Parallelism into LLVM’s Intermediate Representation,” in Proceedings of

the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’17, (New York, NY, USA), pp. 249–265, ACM, 2017.

[43] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar, “May-happen-in-

parallel Analysis of X10 Programs,” in Proceedings of the 12th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’07,

(New York, NY, USA), pp. 183–193, ACM, 2007.

[44] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar, “An Extended Polyhedral

Model for SPMD Programs and Its Use in Static Data Race Detection,” in Lan-

guages and Compilers for Parallel Computing - 29th International Workshop,

LCPC 2016, Rochester, NY, USA, September 28-30, 2016, Revised Papers,

pp. 106–120, 2016.

[45] U. K. R. Bondhugula, Effective Automatic Parallelization and Locality Opti-

mization Using the Polyhedral Model. PhD thesis, Department of Computer

Science and Engineering at Ohio State University, OH, USA, 2008.

[46] T. Grosser, A Decoupled Approach to High-level Loop Optimization : Tile

94

Shapes, Polyhedral Building Blocks and Low-level Compilers. Theses, Université

Pierre et Marie Curie - Paris VI, Oct. 2014.

[47] M. R. Kong, Enabling Task Parallelism on Hardware/Software Layers using the

Polyhedral Model. PhD thesis, Department of Computer Science and Engineer-

ing at Ohio State University, OH, USA, 2016.

[48] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, “A single-program-

multiple-data computational model for EPEX/FORTRAN.,” Parallel Comput-

ing, vol. 7, no. 1, pp. 11–24, 1988.

[49] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,

P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken, “Titanium: A

High-Performance Java Dialect,” Concurrency Practice and Experience, vol. 10,

pp. 825–836, 9 1998.

[50] M. Frigo, C. E. Leiserson, and K. H. Randall, “The Implementation of the

Cilk-5 Multithreaded Language,” in Proceedings of the ACM SIGPLAN 1998

Conference on Programming Language Design and Implementation, PLDI ’98,

(New York, NY, USA), pp. 212–223, ACM, 1998.

[51] A. Mani, “OSS-Based Grid Computing,” CoRR, vol. abs/cs/0608122, 2006.

[52] M. Feng and C. E. Leiserson, “Efficient Detection of Determinacy Races in Cilk

Programs,” in Proceedings of the Ninth Annual ACM Symposium on Parallel

Algorithms and Architectures, SPAA ’97, (New York, NY, USA), pp. 1–11,

ACM, 1997.

[53] “OpenMP Application Program Interface, Version 4.0.”

http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf, July 2013.

[54] S. Verdoolaege, isl: An Integer Set Library for the Polyhedral Model, pp. 299–

302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

95

[55] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul, “The Poly-

hedral Model is More Widely Applicable Than You Think,” in Proceedings of

the 19th Joint European Conference on Theory and Practice of Software, In-

ternational Conference on Compiler Construction, CC’10/ETAPS’10, (Berlin,

Heidelberg), pp. 283–303, Springer-Verlag, 2010.

[56] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and

O. Temam, “Semi-automatic Composition of Loop Transformations for Deep

Parallelism and Memory Hierarchies,” Int. J. Parallel Program., vol. 34,

pp. 261–317, June 2006.

[57] M. Griebl, C. Lengauer, and S. Wetzel, “Code Generation in the Polytope

Model,” in Proceedings of the 1998 International Conference on Parallel Ar-

chitectures and Compilation Techniques, PACT ’98, (Washington, DC, USA),

IEEE Computer Society, 1998.

[58] C. Bastoul, “Code Generation in the Polyhedral Model Is Easier Than You

Think,” Proceedings of the 22nd International Conference on Parallel Architec-

tures and Compilation Techniques, vol. 0, pp. 7–16, 2004.

[59] T. Grosser, S. Verdoolaege, and A. Cohen, “Polyhedral AST Generation Is

More Than Scanning Polyhedra,” ACM Trans. Program. Lang. Syst., vol. 37,

pp. 12:1–12:50, July 2015.

[60] J.-F. Collard, D. Barthou, and P. Feautrier, “Fuzzy Array Dataflow Analysis,”

in Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, PPOPP ’95, (New York, NY, USA), pp. 92–101,

ACM, 1995.

[61] B. Creusillet and F. Irigoin, “Interprocedural Array Region Analyses,” Int. J.

Parallel Program., vol. 24, pp. 513–546, Dec. 1996.

[62] B. Creusillet and F. Irigoin, “Exact Versus Approximate Array Region Anal-

96

yses,” in Proceedings of the 9th International Workshop on Languages and

Compilers for Parallel Computing, LCPC ’96, (London, UK, UK), pp. 86–100,

Springer-Verlag, 1997.

[63] C. Bastoul, “A Specification and a Library for Data Exchange in Polyhedral

Compilation Tools Edition 1.0, for Openscop Specification 1.0 and Openscop

Library 0.8.4,” 2012.

[64] P. Feautrier and C. Lengauer, “Polyhedron Model,” in Encyclopedia of Parallel

Computing (D. A. Padua, ed.), pp. 1581–1592, Springer, 2011.

[65] D. G. Wonnacott, Constraint-based Array Dependence Analysis. PhD thesis,

University of Maryland at College Park, MD, USA, 1995.

[66] F. Quilleré, S. Rajopadhye, and D. Wilde, “Generation of Efficient Nested Loops

from Polyhedra,” Int. J. Parallel Program., vol. 28, pp. 469–498, Oct. 2000.

[67] D. Barthou et al., “Fuzzy Array Dataflow Analysis,” J. Parallel Distrib. Com-

put., vol. 40, no. 2, pp. 210–226, 1997.

[68] P. Chatarasi, J. Shirako, and V. Sarkar, “Polyhedral Transformations of Ex-

plicitly Parallel Programs,” in 5th International Workshop on Polyhedral Com-

pilation Techniques (IMPACT), (Amsterdam, Netherlands), Jan. 2015.

[69] S. Verdoolaege, S. Guelton, T. Grosser, and A. Cohen, “Schedule Trees,” in

Proceedings of the 4th International Workshop on Polyhedral Compilation Tech-

niques (S. Rajopadhye and S. Verdoolaege, eds.), (Vienna, Austria), January

2014.

[70] Y. Zhang, E. Duesterwald, and G. Gao, “Concurrency Analysis for Shared Mem-

ory Programs with Textually Unaligned Barriers,” in Languages and Compilers

for Parallel Computing (V. Adve, M. Garzarn, and P. Petersen, eds.), vol. 5234

of Lecture Notes in Computer Science, pp. 95–109, Springer Berlin Heidelberg,

2008.

97

[71] M. Griebl, Automatic Parallelization of Loop Programs for Distributed Memory

Architectures. University of Passau, 2004. Habilitation thesis.

[72] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, and Z. Yang, “Symbolic

Analysis of Concurrency Errors in OpenMP Programs,” in Proceedings of the

2013 42Nd International Conference on Parallel Processing, ICPP ’13, (Wash-

ington, DC, USA), pp. 510–516, IEEE Computer Society, 2013.

[73] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,

“Rodinia: A Benchmark Suite for Heterogeneous Computing,” in Proceed-

ings of the 2009 IEEE International Symposium on Workload Characterization

(IISWC), IISWC ’09, (Washington, DC, USA), pp. 44–54, IEEE Computer

Society, 2009.

[74] A. Darte, A. Isoard, and T. Yuki, “Liveness Analysis in Explicitly-

Parallel Programs,” Research Report RR-8839, CNRS ; Inria ;

ENS Lyon, Jan. 2016. Corresponding publication at IMPACT’16

(http://impact.gforge.inria.fr/impact2016).

[75] T. Yuki, P. Feautrier, S. Rajopadhye, and V. Saraswat, “Array Dataflow Anal-

ysis for Polyhedral X10 Programs,” in Proceedings of the 18th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’07,

2013.

[76] A. Cohen, A. Darte, and P. Feautrier, “Static Analysis of Open-

Stream Programs,” Research Report RR-8764, CNRS ; Inria ;

ENS Lyon, Jan. 2016. Corresponding publication at IMPACT’16

(http://impact.gforge.inria.fr/impact2016).

[77] T. Yuki, P. Feautrier, S. V. Rajopadhye, and V. Saraswat, “Checking Race

Freedom of Clocked X10 Programs,” CoRR, vol. abs/1311.4305, 2013.

[78] J.-F. Collard and M. Griebl, “Array Dataflow Analysis for Explicitly Parallel

98

Programs,” in Proceedings of the Second International Euro-Par Conference on

Parallel Processing, Euro-Par ’96, 1996.

[79] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy, S. Ver-

doolaege, A. Betts, A. F. Donaldson, J. Ketema, J. Absar, S. v. Haastregt,

A. Kravets, A. Lokhmotov, R. David, and E. Hajiyev, “PENCIL: A Platform-

Neutral Compute Intermediate Language for Accelerator Programming,” in

Proceedings of the 2015 International Conference on Parallel Architecture and

Compilation (PACT), PACT ’15, (Washington, DC, USA), pp. 138–149, IEEE

Computer Society, 2015.

[80] A. Pop and A. Cohen, “Preserving high-level semantics of parallel programming

annotations through the compilation flow of optimizing compilers,” in Proceed-

ings of the 15th Workshop on Compilers for Parallel Computers (CPC’10),

2010.

[81] “CLANG OMP: CLANG Support for OpenMP 3.1.” https://clang-

omp.github.io.

[82] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation,” in Proceedings of the International Sympo-

sium on Code Generation and Optimization: Feedback-directed and Runtime

Optimization, CGO ’04, (Washington, DC, USA), IEEE Computer Society,

2004.

[83] J. Mellor-Crummey, “Compile-time Support for Efficient Data Race Detection

in Shared-memory Parallel Programs,” in Proceedings of the 1993 ACM/ONR

Workshop on Parallel and Distributed Debugging, PADD ’93, (New York, NY,

USA), pp. 129–139, ACM, 1993.

[84] F. Yu, S.-C. Yang, F. Wang, G.-C. Chen, and C.-C. Chan, “Symbolic Con-

sistency Checking of OpenMp Parallel Programs,” in Proceedings of the 13th

99

ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,

Tools and Theory for Embedded Systems, LCTES ’12, (New York, NY, USA),

pp. 139–148, ACM, 2012.

[85] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrien, P. Quinton, and

D. Wonnacott, “ompVerify: Polyhedral Analysis for the OpenMP Program-

mer,” in Proceedings of the 7th International Conference on OpenMP in the

Petascale Era, IWOMP’11, (Berlin, Heidelberg), pp. 37–53, Springer-Verlag,

2011.

[86] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson, “GPUVerify:

A Verifier for GPU Kernels,” in Proceedings of the ACM International Con-

ference on Object Oriented Programming Systems Languages and Applications,

OOPSLA ’12, (New York, NY, USA), pp. 113–132, ACM, 2012.

[87] S. Atzeni, G. Gopalakrishnan, Z. Rakamarić, D. H. Ahn, I. Laguna, M. Schulz,

G. L. Lee, J. Protze, and M. S. Müller, “Archer: Effectively Spotting Data Races

in Large OpenMP Applications,” in Proceedings of the 30th IEEE International

Parallel and Distributed Processing Symposium (IPDPS), Chicago, 2016.

[88] A. J. Dorta, C. Rodriguez, F. d. Sande, and A. Gonzalez-Escribano, “The

OpenMP Source Code Repository,” in Proceedings of the 13th Euromicro

Conference on Parallel, Distributed and Network-Based Processing, PDP ’05,

(Washington, DC, USA), pp. 244–250, IEEE Computer Society, 2005.

[89] L.-N. Pouchet and T. Yuki, “PolyBench/C 3.2,” 2012.

[90] “Intel Inspector XE.” http://software.intel.com/en-us/intel-inspector-xe, 2015.

[91] S. Grauer-gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos, “Auto-

tuning a High-Level Language Targeted to GPU Codes,” in In Innovative Par-

allel Computing Conference. IEEE, 2012.

[92] M. Süßand C. Leopold, “Common Mistakes in OpenMP and How to Avoid

100

Them: A Collection of Best Practices,” in Proceedings of the 2005 and 2006

International Conference on OpenMP Shared Memory Parallel Programming,

IWOMP’05/IWOMP’06, (Berlin, Heidelberg), pp. 312–323, Springer-Verlag,

2008.

[93] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Scalable and Precise

Dynamic Data Race Detection for Structured Parallelism,” in Proceedings of

the 33rd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’12, (New York, NY, USA), pp. 531–542, ACM, 2012.

[94] A. Aiken and D. Gay, “Barrier Inference,” in Proceedings of the 25th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’98, (New York, NY, USA), pp. 342–354, ACM, 1998.

[95] A. Kamil and K. Yelick, “Concurrency Analysis for Parallel Programs with

Textually Aligned Barriers,” in Proceedings of the 18th International Confer-

ence on Languages and Compilers for Parallel Computing, LCPC’05, (Berlin,

Heidelberg), pp. 185–199, Springer-Verlag, 2006.

[96] Y. Zhang and E. Duesterwald, “Barrier Matching for Programs with Textually

Unaligned Barriers,” in Proceedings of the 12th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’07, (New York, NY,

USA), pp. 194–204, ACM, 2007.

[97] C.-W. Tseng, “Compiler Optimizations for Eliminating Barrier Synchroniza-

tion,” in Proceedings of the Fifth ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPOPP ’95, (New York, NY, USA),

pp. 144–155, ACM, 1995.

[98] H. Han, C.-W. Tseng, and P. Keleher, “Eliminating Barrier Synchronization

for Compiler-Parallelized Codes on Software DSMs,” Int. J. Parallel Program.,

vol. 26, pp. 591–612, Oct. 1998.

101

[99] R. Surendran, R. Raman, S. Chaudhuri, J. Mellor-Crummey, and V. Sarkar,

“Test-driven Repair of Data Races in Structured Parallel Programs,” in Proceed-

ings of the 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’14, (New York, NY, USA), pp. 15–25, ACM, 2014.

[100] R. O’Callahan and J.-D. Choi, “Hybrid Dynamic Data Race Detection,” in Pro-

ceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’03, (New York, NY, USA), pp. 167–178, ACM,

2003.

[101] C.-S. Park, K. Sen, P. Hargrove, and C. Iancu, “Efficient Data Race Detection

for Distributed Memory Parallel Programs,” in Proceedings of 2011 Interna-

tional Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’11, (New York, NY, USA), pp. 51:1–51:12, ACM, 2011.

	Abstract
	Acknowledgments
	List of Illustrations
	List of Tables
	Introduction
	Thesis Statement
	Contributions
	Outline

	Background
	Explicitly-Parallel Programs
	SPMD-style Parallelism
	Serial-elision Property

	Mathematical Foundations for the Polyhedral Model
	Polyhedral Model
	Polyhedral Representation of Programs
	Dependence Analysis
	Affine Program Transformations
	Code Generation

	Limitations of the Polyhedral Model

	Extensions to the Polyhedral Model for SPMD Programs
	Important Concepts in an SPMD Execution
	Space Mapping
	Phase Mapping
	May-Happen-in-Parallel (MHP) Analysis
	Past Work in Extending Polyhedral Model for Explicitly-Parallel Programs

	PolyOMP: A Polyhedral Framework for Debugging and Optimizations of SPMD Programs
	Overall Workflow

	Debugging Of SPMD Programs – Static Data Race Detection
	Motivation
	Our Approach
	An Algorithm to Identify Data Races

	Experimental Evaluation
	Experimental Setup
	OpenMP Source Code Repository
	PolyBench/ACC OpenMP Suite

	Strengths and Limitations of Our Approach
	Past Work on Race Detection

	Optimization Of SPMD Programs – Static Redundant Barrier Detection
	Motivation
	Our Approach
	An Algorithm to Identify Redundant Barriers
	A Greedy Approach to Compute a Set of Required Barriers

	Experimental Evaluation
	Experimental Setup
	OpenMP Source Code Repository
	PolyBench/ACC OpenMP Suite

	Strengths and Limitations of Our Approach
	Past Work on Analysis of Barriers

	 Conclusions & Future Work
	Bibliography

