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Abstract
Existing dynamic race detectors suffer from at least one of the
following three limitations:

(i) space overheadper memory location grows linearly with the
number of parallel threads [13], severely limiting the parallelism
that the algorithm can handle.

(ii) sequentialization: the parallel program must be processed in
a sequential order, usually depth-first [12, 24]. This prevents the
analysis from scaling with available hardware parallelism, inher-
ently limiting its performance.

(iii) inefficiency: even though race detectors with good theoret-
ical complexity exist, they do not admit efficient implementations
and are unsuitable for practical use [4, 18].

We present a new precise dynamic race detector that leverages
structured parallelism in order to address these limitations. Our
algorithm requires constant space per memory location, works in
parallel, and is efficient in practice. We implemented and evaluated
our algorithm on a set of 15 benchmarks. Our experimental results
indicate an average (geometric mean) slowdown of2.78× on a 16-
core SMP system.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—reliability, validation; D.2.5
[Software Engineering]: Testing and Debugging—monitors, testing
tools; D.3.4 [Programming Languages]: Processors—debuggers;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—program analysis

General Terms Algorithms, Languages, Verification

Keywords Parallelism, Program Analysis, Data Races
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1. Introduction
Data races are a major source of errors in parallel programs.Com-
plicating matters, data races may occur only in few of the possible
schedules of a parallel program, thereby making them extremely
hard to detect and reproduce. The importance of detecting races
has motivated significant work in the area. We briefly summarize
existing race detectors and the main contributions of our approach
below.

Existing Race Detectors FastTrack is a state-of-the art parallel
race detection algorithm which handles classic unstructured fork-
join programs with locks [13]. While versatile, a key drawback
of FastTrack is its worst-case space overhead ofO(n) per instru-
mented memory location, wheren is the number of threads in the
program. This space overhead implies that the algorithm cantypi-
cally only be used with a small number of parallel threads. Increas-
ing the number of threads can quickly cause space overheads and
slowdowns that render the algorithm impractical. FastTrack applies
some optimizations to reduce the overhead, but even for locations
that are read shared, the algorithm maintainsO(n) space. Unfor-
tunately, in domains where structured parallelism dominates, pro-
grams typically use a massive number of lightweight tasks (e.g.
consider a parallel-for loop on a GPU) and often the paralleltasks
share read-only data.

There have been various proposals for race detectors targeting
structured parallel languages, notably SP-bags [12] and All-Sets [8]
for Cilk and its extension ESP-bags [24] for subsets of X10 [7] and
Habanero-Java (HJ) [6]. The SP-bags, All-Sets, and ESP-bags algo-
rithms only needO(1) space per instrumented memory location but
are limited in that they must always process the parallel program
in a depth-first sequential manner. This means that the algorithms
cannot utilize and scale with the available hardware parallelism.
The SP-hybrid algorithm for Cilk [4] is an attempt to addressthe
sequentialization limitation of the SP-bags algorithm. However, de-
spite its good theoretical bounds, the SP-hybrid algorithmis very
complex and incurs significant inefficiencies in practice. The orig-
inal paper on SP-hybrid [4] provides no evaluation and subsequent
evaluation of an incomplete implementation of SP-hybrid [18] was
done only for a small number of processors; a complete empirical
study for SP-hybrid has never been done. However, the inefficiency
is clear from the fact that the CilkScreen race detector usedin Intel
Cilk++ [1] has chosen to use the sequential All-Sets algorithm over
the parallel but inefficient SP-hybrid. Further, the SP-hybrid algo-



rithm depends on a particular scheduling technique (i.e. a work-
stealing scheduler).

Collectively, these three limitations raise the followingques-
tion: Is there a precise dynamic race detector that works in par-
allel, uses O(1) space per memory location, and is suitable for
practical use?In this paper we introduce such dynamic race de-
tector targeting structured parallel languages such as Cilk [5],
OpenMP 3.0 [23], X10 [7], and Habanero Java (HJ) [6]. Our al-
gorithm runs in parallel, uses O(1) space per memory location, and
performs well in practice.

Structured Parallelism Structured parallel programming simpli-
fies the task of writing correct and efficient parallel programs in two
ways. First, a wide range of parallel programs can be succinctly
expressed with a few well-chosen and powerful structured paral-
lel constructs. Second, the structure of the parallel program can
be exploited to provide better performance, for instance, via bet-
ter scheduling algorithms. Third, structured parallelismoften pro-
vides guarantees of deadlock-freedom. Examples of languages and
frameworks with structured parallelism include Cilk [5], X10 [7],
and Habanero Java (HJ) [3].

Our Approach A key idea is to leverage the structured paral-
lelism to efficiently determine whether conflicting memory ac-
cesses can execute in parallel. Towards that end, we presenta new
data structure called the Dynamic Program Structure Tree (DPST).
With our algorithm, the time overhead for every monitoring op-
eration is independent of the number of tasks and worker threads
executing the program. Similarly to FastTrack, SP-bags andESP-
bags, our algorithm is sound and precise for a given input: ifthe
algorithm does not report a race for a given execution, it means that
no execution with the same input can trigger a race (i.e. there are
no false negatives). Conversely, if a race is reported, thenthe race
really exists (i.e. there are no false positives). These properties are
particularly attractive when testing parallel programs asit implies
that for a given input, we can study an arbitrary program schedule
to reason about races that may occur in other schedules. As wewill
demonstrate later, our algorithm is efficient in practice and signifi-
cantly outperforms existing algorithms.

Main Contributions The main contributions of this paper are:

• A dynamic data race detection algorithm for structured paral-
lelism with the following properties:

works in parallel.

uses only constant space per monitored memory location.

is sound and precise for a given input.

• A data structure called the Dynamic Program Structure Tree
(DPST) that keeps track of relationships between tasks and can
be accessed and modified concurrently.

• An efficient implementation of the algorithm together with a
set of static optimizations used to reduce the overhead of the
implementation.

• An evaluation on a suite of 15 benchmarks indicating an aver-
age (geometric mean) slowdown of2.78× on a 16-core SMP
system.

The rest of the paper is organized as follows: Section 2 discusses
the structured parallel setting, Section 3 presents the dynamic pro-
gram structure tree (DPST), Section 4 introduces our new race de-
tection algorithm, Section 5 presents the details of the implementa-
tion of our algorithm and the optimizations that we used to reduce
the overhead, Section 6 discusses our experimental results, Sec-
tion 7 discusses related work and Section 8 concludes the paper.

2. Background
In this section, we give a brief overview of the structured par-
allel model targeted by this paper. We focus on the async/finish
structured parallelism constructs used in X10 [7] and Habanero
Java (HJ) [6]. The async/finish constructs generalize the traditional
spawn/sync constructs used in the Cilk programming system [5]
since they can express a broader set of computation graphs than
those expressible with the spawn/sync constructs used in Cilk [15].

While X10 and HJ include other synchronization techniques
such as futures, clocks/phasers, and Cilk even includes locks, the
core task creation and termination primitives in these languages
are fundamentally based on the async/finish and spawn/sync con-
structs. The underlying complexity of a dynamic analysis algorithm
is determined by these core constructs. Once a dynamic analysis al-
gorithm for the core constructs is developed, subsequent extensions
can be built on top of the core algorithm. To underscore the impor-
tance of studying the core portions of these languages, a calculus
called Featherweight X10 (FX10) was proposed [20]. Also, the SP-
bags algorithm [12] for Cilk was presented for the core spawn/sync
constructs (the algorithm was later extended to handle accumula-
tors and locks [8]).

The algorithm presented in this paper is applicable to async/fin-
ish constructs (which means it also handles spawn/sync constructs).
The algorithm is independent of the sequential portions of the lan-
guage, meaning that one can apply it to any language where the
parallelism is expressed using the async/finish constructs. For ex-
ample, the sequential portion of the language can be based onthe
sequential portions of Java as in HJ or C/C++ as in Cilk [15],
Cilk++ [1], OpenMP 3.0 [23], and Habanero-C [9]. Next, we in-
formally describe the semantics of the core async/finish constructs.
A formal operational semantics can be found in [20].

Informal Semantics The statementasync { s } causes the
parent task to create a new child task to executes asynchronously
(i.e., before, after, or in parallel) with the remainder of the parent
task. The statementfinish { s } causes the parent task to ex-
ecutes and then wait until all async tasks created withins have
completed, including the transitively spawned tasks. Eachdynamic
instanceTA of anasync task has a uniqueImmediately Enclosing
Finish(IEF) instanceF of a finish statement during program execu-
tion, whereF is the innermost dynamicfinish scope containing
TA. There is an implicitfinish scope surrounding the body of
main() so program execution will only end after allasync tasks
have completed.

Thefinish statement is a restricted join: while in the general
unstructured fork-join case, a task can join with any other task,
with thefinish statement, a task can only join on tasks that are
created in the enclosed statement. This is a fundamental difference
between arbitrary unstructured fork-join and the async/finish (or
spawn/sync) constructs. It is such restrictions on the jointhat make
it possible to prove the absence of deadlocks for any program
in the language [20], and provide an opportunity for discovering
analysis algorithms that are more efficient than those for the general
unstructured fork-join case.

As mentioned earlier, async/finish constructs can express a
broader set of computation graphs than Cilk’s spawn/sync con-
structs. The key relaxation in async/finish over spawn/syncis the
way a task is allowed to join with other tasks as well as dropping
the requirement that a parent task must wait for all of its child tasks
to terminate. With spawn/sync, at any given sync point in a task ex-
ecution, the task must join withall of its descendant tasks (and all
recursive descendant tasks, by transitivity) created in between the
start of the task and the join point. In contrast, with async/finish it
is possible for a task to join withsomerather than all of its descen-
dant tasks: at the end of a finish block, the task only waits until the
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Figure 1. An example async/finish program and its final DPST.

descendant tasks created inside the finish scope have completed.
More details comparing spawn/sync and async/finish can be found
in [16].

Example Consider the example in Figure 1. For now, ignore the
tree on the right and the step annotations, both of which are dis-
cussed in the next section. Initially, the main task begins execution
with the main finish statement, labeled F1. It executes the first two
statements S1 and S2 and then forks a new task A1 using the async
statement. In turn, A1 executes statements S3, S4, S5 and forks task
A2 which executes statement S6. Note that statement S6 (in task
A2) and statements S7 and S8 in task A1 can execute in parallel.
After forking A1, the main task can proceed to execute statements
S9, S10 and S11 that follow A1. The main task then forks task A3
which executes statements S12 and S13. Note that the statement
S11 (in the main task) and statements S12, S13 (in task A3) cannot
execute in parallel because the task A3 will be forked only after the
completion of S11. After forking A3, the main task has to waitun-
til A1, A2, and A3 have terminated. Only after all these descendant
tasks complete, the main task can exit past the end of finish F1.

3. Dynamic Program Structure Tree
Any dynamic data race detection algorithm needs to provide mech-
anisms that answer two questions: for any pair of memory accesses
(with at least one write): (i) determine whether the accesses can ex-
ecute in parallel, and (ii) determine whether they access the same
location. In this section, we introduce the Dynamic ProgramStruc-
ture Tree (DPST), a data structure which can be used to answerthe
first question.

The DPST is an ordered rooted tree that is built at runtime to
capture parent-child relationships among async, finish, and step
(defined below) instances of a program. The internal nodes ofa
DPST represent async and finish instances. The leaf nodes of a
DPST represent the steps of the program. The DPST can also be
used to support dynamic analysis of structured parallel programs
written in languages such as Cilk and OpenMP 3.0.

We assume standard operational semantics of async/finish con-
structs as defined in FX10 [20]. The semantics of statements and
expressions other than async/finish is standard [30]. That is, each
transition represents either a basic statement, an expression eval-
uation or the execution of an async or a finish statement. For our
purposes, given a trace, we assume that the execution of eachstate-
ment is uniquely identified (if a statement executes multiple times,
each dynamic instance is uniquely identified). We refer to anexe-

cution of a statement as a dynamic statement instance. We saythat
a statement instance is an async instance if the statement performs
an async operation. Similarly for finish instances.

Definition 1 (Step). A step is a maximal sequence of statement
instances such that no statement instance in the sequence includes
an async or a finish operation.

Definition 2 (DPST). The Dynamic Program Structure Tree
(DPST) for a given execution is a tree in which all leaves are steps,
and all interior nodes are async and finish instances. The parent
relation is defined as follows:

• Async instanceA is the parent of all async, finish, and step
instances directly executed withinA.

• Finish instanceF is the parent of all async, finish, and step
instances directly executed withinF .

There is a left-to-right ordering of all DPST siblings that reflects the
left-to-right sequencing of computations belonging to their com-
mon parent task. Further, the tree has a single root that corresponds
to the implicit top-level finish construct in the main program.

3.1 Building a DPST

Next we discuss how to build the DPST during program execution.
When the main task begins, the DPST will contain a root finish
nodeF and a step nodeS that is the child ofF . F corresponds
to the implicit finish enclosing the body of the main functionin the
program andS represents the starting computation in the main task.

Task creation When a taskT performs an async operation and
creates a new taskTchild:

1. An async nodeAchild is created for taskTchild. If the imme-
diately enclosing finish (IEF)F of Tchild exists within taskT ,
thenAchild is added as the rightmost child ofF . Otherwise,
Achild is added as the rightmost child node of (the async) node
corresponding to taskT .

2. A step node representing the starting computations in task
Tchild is added as the child ofAchild.

3. A step node representing the computations that follow task
Tchild in taskT is added as the right sibling ofAchild.

Note that there is no explicit node in a DPST for the main task
because everything done by the main task will be within the implicit
finish in the main function of the program and hence all of the
corresponding nodes in a DPST will be under the root finish node.

Start Finish When a taskT starts a finish instanceF :

1. A finish nodeFn is created forF . If the immediately enclosing
finishF ′ of F exists within taskT (with corresponding finish
nodeF ′

n in the DPST), thenFn is added as the rightmost child
of F ′

n. Otherwise,Fn is added as the rightmost child of the
(async) node corresponding to taskT .

2. A step node representing the starting computations inF is
added as the child ofFn.

End Finish When a taskT ends a finish instanceF , a step node
representing the computations that followF in taskT is added as
the right sibling of the node that representsF in the DPST.

Note that the DPST operations described thus far only take
O(1) time. Thus, the DPST for a given program run grows mono-
tonically as program execution progresses and new async, finish,
and step instances are added to the DPST. Note that since all data
accesses occur in steps, it follows that all tests for whether two ac-
cesses may happen in parallel will only take place between two
leaves in a DPST.
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Figure 2. A part of a DPST. LCA is the Lowest Common Ancestor
of steps S1 and S2. A is the DPST ancestor of S1 which is the child
of LCA. S1 and S2 can execute in parallel if and only if A is an
async node.

Example We can now return to the example program in Figure 1
and study its steps and final DPST. Note the way statement in-
stances are grouped into steps. When the main task starts executing
finish F1, a node corresponding to F1 is added as the root node of
the DPST, and a step node step1 is added as the child of F1; step1
represents the starting computations in F1, i.e., instances of state-
ments S1 and S2. When the main task forks the task A1, an async
node corresponding to A1 is added as the right-most child of F1
(since the immediately enclosing finish of A1 is F1 and it is within
the main task), a step node step2 is added as the child of A1, and a
step node step5 is added as the right sibling of A1. step2 represents
the starting computations in A1 (i.e., instance of statements S3, S4,
and S5) and step5 represents the computation that follows A1in
the main task (i.e., instances of statements S9, S10, and S11). After
this point, the main task and the task A1 can execute in parallel.
Eventually, the DPST grows to the form shown in the figure.

3.2 Properties of a DPST

In this section, we briefly summarize some key properties of a
DPST. The proofs of these properties have been omitted due to
space limitations, but can be found in [25].

• For a given input that leads to a data-race-free execution of
a given async-finish parallel program, all executions of that
program with the same input will result in the same DPST.

• Let F be the DPST root (finish) node. Each non-root noden0

is uniquely identified by a finite path fromn0 toF :

n0

r0−→ n1

r1−→ n2

r2−→ . . .
rk−1

−−−→ nk

wherek ≥ 1, nk = F , and for each0 ≤ i < k, ni is therthi
child of nodeni+1. The path fromn0 toF stays invariant as the
tree grows. For a given statement instance, its path to the root
is unique regardless of which execution is explored (as longas
the executions start with the same state). This property holds up
to the point that a data race (if any) is detected.

• The DPST is amenable to efficient implementations in which
nodes can be added to the DPST in parallel without any syn-
chronization in O(1) time. One such implementation is de-
scribed in Section 5.

Definition 3. A nodeA is said to be to the left of a nodeB in a
DPST ifA appears beforeB in the depth first traversal of the tree.

As mentioned above, even though the DPST changes during
program execution, the path from a node to the root does not
change and the left-to-right ordering of siblings does not change.
Hence, even though the depth first traversal of the DPST is not
fully specified during program execution, theleft relation between
any two nodes in the current DPST is well-defined.

Definition 4. Two steps,S1 andS2, in a DPSTΓ that corresponds
to a programP with inputψ, may execute in parallel if and only if
there exists at least one scheduleδ of P with inputψ in whichS1

executes in parallel withS2.

The predicateDMHP(S1, S2) evaluates totrue if stepsS1 and
S2 can execute in parallel in at least one schedule of a program
and tofalseotherwise (DMHP stands for “Dynamic May Happen
in Parallel” to distinguish it from the MHP relation used by static
analyses). We now state a key theorem that will be important in
enabling our approach to data race detection.

Theorem 1. Consider two leaf nodes (steps) S1 and S2 in a DPST,
where S16= S2 and S1 is to the left of S2 as shown in Figure 2. Let
LCA be the node denoting the least common ancestor of S1 and S2.
Let nodeA be the ancestor of S1 that is the child of LCA. Then, S1
and S2 can execute in parallel if and only ifA is an async node.

Proof. Please refer to [25].

Example Let us now look at theDMHP relation for some pairs
of steps in the example program in Figure 1. First, let us consider
DMHP(step2, step5). Herestep2is to the left ofstep5, sincestep2
will appear beforestep5in the depth first traversal of the DPST.
The lowest common ancestor ofstep2and step5is the node F1.
The node A1 is the ancestor ofstep2(the left node) that is the child
of F1. Since A1 is an async node,DMHP(step2, step5)will evaluate
to true indicating thatstep2andstep5can execute in parallel. This
is indeedtrue for this program:step2is within A1, while step5
follows A1 and is within A1’s immediately enclosing finish.

Now, let us considerDMHP(step6, step5). Herestep5is to the
left of step6, sincestep5will appear beforestep6in the depth first
traversal of the DPST. Their lowest common ancestor is F1, and
the ancestor ofstep5which is the child of F1 isstep5itself. Since
step5is not an async instance,DMHP(step6, step5)evaluates to
false. This is consistent with the program becausestep6is in task
A3 and A3 is created only afterstep5completes.

4. Race Detection Algorithm
Our race detection algorithm involves executing the given program
with a given input and monitoring every dynamic memory access
in the program for potential data races. The algorithm maintains a
DPST as described in the previous section, as well as the relevant
access history for each shared memory location. The algorithm
performs two types of actions:

• Task actions: these involve updating the DPST with a new node
for each async, finish, and step instance.

• Memory actions: on every shared memory access, the algorithm
checks if the access conflicts with the access history for the
relevant memory location. If a conflict is detected, the algorithm
reports a race and halts. Otherwise, the memory location is
updated to include the memory access in its access history.

A key novelty of our algorithm is that it requires constant space
to store the access history of a memory location, while stillguaran-
teeing that no data races are missed. We next describe the shadow
memory mechanism that supports this constant space guarantee.

4.1 Shadow Memory

Our algorithm maintains a shadow memoryMs for every moni-
tored memory locationM . Ms is designed to store the relevant
parts of the access history toM . It contains the following three
fields, which are all initialized to null:

• w : a reference to a step that wroteM .

• r1 : a reference to a step that readM .



• r2 : a reference to another step that readM .

The following invariants are maintained throughout the execu-
tion of the program until the first data race is detected.

• Ms.w refers to the step that last wroteM .

• Ms.r1 & Ms.r2 refer to the steps that last readM . All the steps
(a1, a2, ..., ak) that have readM since the last synchronization
are in the subtree rooted atLCA(Ms.r1,Ms.r2).

The fields of the shadow memoryMs are updatedatomicallyby
different tasks that accessM .

4.2 Algorithm

The most important aspect of our algorithm is that it stores only
three fields for every monitored memory location irrespective of
the number of steps that access that memory location. The intuition
behind this is as follows: it is only necessary to store the last
write to a memory location because all the writes before the last
one must have completed at the end of the last synchronization.
This is assuming no data races have been observed yet during the
execution. Note that though synchronization due to finish may not
be global, two writes to a memory location have to be ordered by
some synchronization to avoid constituting a data race. Among
the reads to a memory location,(a1, a2, ..., ak), since the last
synchronization, it is only necessary to store two reads,ai, aj ,
such that the subtree underLCA(ai, aj) includes all the reads
(a1, a2, ..., ak). This is because every future read,an, which is in
parallel with any discarded step will also be in parallel with at least
one ofai or aj . Thus, the algorithm will not miss any data race by
discarding these steps.

Definition 5. In a DPST, a noden1 is dpst-greater than a noden2,
denoted byn1 >dpst n2, if n1 is an ancestor ofn2 in the DPST.
Note that, in this case,n1 is higher in the DPST (closer to the root)
thann2.

Algorithm 1: Write Check

Input : Memory locationM , StepS that writes toM
1 if DMHP(Ms.r1, S) then
2 Report a read-write race betweenMs.r1 andS
3 end
4 if DMHP(Ms.r2, S) then
5 Report a read-write race betweenMs.r2 andS
6 end
7 if DMHP(Ms.w, S) then
8 Report a write-write race betweenMs.w andS
9 else

10 Ms.w ← S

11 end

Algorithms 1 and 2 show the checking that needs to be per-
formed on write and read accesses to monitored memory locations.
When a stepS writes to a memory locationM , Algorithm 1 checks
if S may execute in parallel with the reader inMs.r1 by computing
DMHP(S,Ms.r1). If they can execute in parallel, the algorithm re-
ports a read-write data race betweenMs.r1 andS. Similarly, the
algorithm reports a read-write data race betweenMs.r2 andS if
these two steps can execute in parallel. Then, Algorithm 1 reports a
write-write data race betweenMs.w andS, if these two steps can
execute in parallel. Finally, it updates the writer field,Ms.w, with
the current stepS indicating the latest write toM . Note that this
happens only when the write toM byS does not result in data race
with any previous access toM .

Algorithm 2: Read Check

Input : Memory locationM , StepS that readsM
1 if DMHP(Ms.w, S) then
2 Report a write-read data race betweenMs.w andS
3 end
4 if ¬DMHP(Ms.r1, S) ∧ ¬DMHP(Ms.r2, S) then
5 Ms.r1 ← S

6 Ms.r2 ← null

7 else ifDMHP(Ms.r1, S) ∧ DMHP(Ms.r2, S) then
8 lca12 ← LCA(Ms.r1,Ms.r2)
9 lca1s ← LCA(Ms.r1, S)

10 lca2s ← LCA(Ms.r2, S)
11 if lca1s >dpst lca12 ∨ lca2s >dpst lca12 then
12 Ms.r1 ← S

13 end
14 end

When a stepS reads a memory locationM , Algorithm 2 reports
a write-read data race betweenMs.w andS if these two steps can
execute in parallel. Then, it updates the reader fields ofMs as fol-
lows: if S can never execute in parallel with either of the two read-
ers,Ms.r1 andMs.r2, then both these readers are discarded and
Ms.r1 is set toS. If S can execute in parallel with both the readers,
Ms.r1 andMs.r2, then the algorithm stores two of the these three
steps, whoseLCA is the highest in the DPST, i.e., ifLCA(Ms.r1,S)
or LCA(Ms.r2, S) is dpst-greater thanLCA(Ms.r1, Ms.r2), then
Ms.r1 is set toS. Note that in this caseS is outside the subtree
underLCA(Ms.r1, Ms.r2) and hence,LCA(Ms.r1, S) will be the
same asLCA(Ms.r2, S).

If S can execute in parallel with one of the two readers and not
the other, then the algorithm does not update the readers because,
in that case,S is guaranteed to be within the subtree under the
LCA(Ms.r1,Ms.r2).

The DMHP(Ms.r2, S) can be computed fromDMHP(Ms.r1,
S) in some cases. This can be used to further optimize Algorithms 1
and 2. We do not present the details of this optimization here.

Atomicity Requirements A memory action for an access to a
memory locationM involves reading the fields ofMs, checking
the predicates, and possibly updating the fields ofMs. Every such
memory action has to execute atomically with respect to other
memory actions for accesses to the same memory location.

Theorem 2. If Algorithms 1 and 2 do not report any data race in
some execution of a programP with inputψ, then no execution of
P withψ will have a data race on any memory locationM .

Proof. Please refer to [25].

Theorem 3. If Algorithm 1 or 2 reports a data race on a memory
locationM during an execution of a program P with inputψ, then
there exists at least one execution of P withψ in which this race
exists.

Proof. Please refer to [25].

Theorem 4. The race detection algorithm is sound and precise for
a given input.

Proof. From Theorem 2 it follows that our race detection algorithm
is sound for a given input. From Theorem 3 it follows that our race
detection algorithm is precise for a given input.



5. Implementation and Optimizations
This section describes the implementation of the differentparts of
our race detection algorithm.

5.1 DPST

The DPST of the program being executed is built to maintain
the parent-child relationship of asyncs, finishes and stepsin the
program. Every node in the DPST consists of the following 4 fields:

• parent: the DPST node which is the parent of this node.

• depth: an integer that stores the depth of this node. The root
node of the DPST has depth 0. Every other node in the DPST
has depth one greater than its parent. This field is immutable.

• numchildren: number of children of this node currently in the
DPST. This field is initialized to 0 and incremented when child
nodes are added.

• seqno: an integer that stores the ordering of this node among
the children of its parent, i.e., among its siblings. Every node’s
children are ordered from left to right. They are assigned se-
quence numbers starting from 1 to indicate this order. This field
is also immutable.

The use of depth for nodes in the DPST leads to a lowest
common ancestor (LCA) algorithm with better complexity (than
if we had not used this field). The use of sequence numbers to
maintain the ordering of a node’s children makes it easier tocheck
for may happen in parallel given two steps in the program.

Note that all the fields of a node in the DPST can be initial-
ized/updated without any synchronization: theparentfield initial-
ization is trivial because there are no competing writes to that field;
the depthfield of a node is written only on initialization, is never
updated, and is read only after the node is created; thenumchildren
field is incremented whenever a child node is added, but for a given
node, its children are always added sequentially in order from left
to right; theseqno field is written only on initialization, is never
updated, and is read only after the node is created.

5.2 ComputingDMHP

A large part of the data race detection algorithm involves checking
DMHP for two steps in the program. This requires computing the
Lowest Common Ancestor (LCA) of two nodes in a tree. The
functionLCA(Γ, S1, S2) returns the lowest common ancestor of
the nodesS1 andS2 in the DPSTΓ. This is implemented by starting
from the node with the greater depth (sayS1) and traversing upΓ
until a node with the depth same asS2 is reached. From that point,
Γ is traversed along both the paths until a common node is reached.
This common node is the lowest common ancestor ofS1 andS2.
The time overhead of this algorithm is linear in the length ofthe
longer of the two paths,S1 → L andS2 → L.

Algorithm 3 computesDMHP relation between two stepsS1

andS2. Algorithm 3 returnstrue if the given two stepsS1 andS2

may happen in parallel andfalse otherwise. This algorithm first
computes the lowest common ancestorL of the given two steps
using theLCA function. If the stepS1 is to the left ofS2, then the
algorithm returnstrue if the ancestor ofS1 (which is the child of
L) is an async andfalseotherwise. If the stepS2 is to the left of
S1, then the algorithm returnstrue if the ancestor ofS2 which is
the child ofL is an async andfalseotherwise. The time overhead
of this algorithm is same as that of theLCA function, since it only
takes constant time to find the node which is the ancestor of the left
step that is the child ofLCAnode and then check if that node is an
async.

Algorithm 3: Dynamic May Happen in Parallel (DMHP)
Input : DPSTΓ, StepS1, StepS2

Output : true/false
1 Nlca = LCA(Γ, S1, S2)
2 A1 = Ancestor ofS1 in Γ which is the child ofNlca

3 A2 = Ancestor ofS2 in Γ which is the child ofNlca

4 if A1 is to the left ofA2 in Γ then
5 if A1 is an Asyncthen
6 return true
7 else
8 return false // S1 happens before S2

9 end
10 else
11 if A2 is an Asyncthen
12 return true
13 else
14 return false // S2 happens before S1

15 end
16 end

5.3 Space and Time Overhead

The size of the DPST will beO(n), wheren is the number of tasks
in the program. More precisely, the total number of nodes in the
DPST will be3 ∗ (a + f) − 1, wherea is the number of async
instances andf is the number of finish instances in the program.
This is because a program with just one finish node will have just
one step node inside the finish of its DPST. When an async or a
finish node is subsequently added to the DPST, it will result in
adding 2 steps nodes, one as the child of the new node and the
other as its sibling. The space overhead for every memory location
is O(1), since we only need to store a writer step and two reader
steps in the shadow memory of every memory location.

The time overhead at task boundaries is O(1), which is the time
needed to add/update a node in the DPST. The worst case time
overhead on every memory access is same as that of Algorithm 3.

Note that the time overhead is not proportional to the number
of processors (underlying worker threads) that the programruns
on. Hence, the overhead is not expected to scale as we increase the
number of processors on which the program executes. This is an
important property as future hardware will likely have manycores.

5.4 Relaxing the Atomicity Requirement

A memory action for an access to a memory locationM involves
reading the fields of its shadow memory locationMs, computing
the necessaryDMHP information and checking appropriate predi-
cates, and possibly updating the fields ofMs. Let us refer to these
three stages asread, compute, andupdateof a memory action.

In our algorithm, every memory action on a shadow memory
Ms has to execute atomically relative to other memory actions
onMs. When there are parallel reads to a memory location, this
atomicity requirement effectively serializes the memory actions
due to these reads. Hence this atomicity requirement induces a
bottleneck in our algorithm when the program is executed on a
large number of threads. Note that the atomicity requirement does
not result in a bottleneck in the case of writes to a memory location
because the memory actions due to writes have no contention in
data race free programs. (In a data race free program, there is a
happens-before ordering between a write and every other access to
a memory location.)

We now present our implementation strategy to overcome this
atomicity requirement without sacrificing the correctnessof our
algorithm. This implementation strategy is based on the solution
to the reader-writer problem proposed by Leslie Lamport in [19].



Our implementation allows multiple memory actions on the same
shadow memory to proceed in parallel. This is done by adding
two atomic integers to every shadow memory, i.e.,Ms contains
the following two additional fields:

• startVersion: an atomic integer that denotes the version number
of Ms

• endVersion: an atomic integer that denotes the version number
of Ms.

Both startVersionand endVersionare initialized to zero. Ev-
ery time any of the fieldsMs.w, Ms.r1, or Ms.r2 is updated,
Ms.startVersionandMs.endVersionare incremented by one. The
following invariant is maintained on every shadow memoryMs

during the execution of our algorithm:any consistent snapshot of
Ms will have the same version number in both startVersion and
endVersion. Now, we show how the read, compute, and update
stages of a memory action onMs are performed. Note that these
rules use aCompareAndSet (CAS)primitive which isatomicrela-
tive to every operation on the same memory location.

Read:

• Read the version number inMs.startVersioninto a local
variable,X.

• Read the fieldsMs.w, Ms.r1, andMs.r2 into local vari-
ables,W ,R1, andR2.

• Perform a fence to ensure that all operations above are
complete.

• Read the version number inMs.endVersioninto a local
variable,Y .

• If X is not the same asY , restart thereadstage.

Compute:

• Perform the computation on the local variables,W ,R1, and
R2.

Update:

• Do the following steps if an update to any of the fields
Ms.w,Ms.r1, orMs.r2 is necessary.

• Perform aCASon the version number inMs.endVersion
looking for the valueX and updating it with an increment
of one.

• If the aboveCASfails, restart the memory action from the
beginning ofreadstage.

• Write to the required fields ofMs.

• Write the incremented version number toMs.startVersion.

When a memory action onMs completes theread stage, the
above rules ensure that a consistent snapshot ofMs was captured.
This is because thereadstage completes only when the same ver-
sion number is seen in bothMs.startVersionandMs.endVersion.

The CAS in the updatestage of the memory action onMs

succeeds only whenMs.endVersionhas the version number that
was found in thereadstage earlier. Theupdatestage completes by
writing to the reader and writer fields ofMs as necessary, followed
by incrementing the version number inMs.startVersion. When the
updatestage completes, bothMs.startVersionandMs.endVersion
will have the same version number and thus, the fields ofMs are
retained in a consistent state.

TheCASin theupdatestage of a memory actionα onMs also
ensures that the fields ofMs are updated only if it has not already
been updated by any memory action onMs, since thereadstage of
α. If this CASfails, then there has been some update toMs since
the read stage and hence, the computations are discarded and the

memory action is restarted from the beginning of theread stage.
Thus, the memory actions are guaranteed to be atomic relative to
other memory actions on the same memory location.

The main advantage of this implementation is that it allows mul-
tiple memory actions on the same shadow memoryMs to proceed
in parallel. But if more than one of them needs to update the fields
of Ms, then only one of them is guaranteed to succeed while the
others repeat the action. This is especially beneficial whenthere
are multiple parallel accesses toM whose memory actions do not
update the fields ofMs. In our algorithm, this occurs when there are
reads by stepS such thatS is in the subtree rooted atLCA(Ms.r1,
Ms.r2). These cases occur frequently in practice thereby empha-
sizing the importance of relaxing the atomicity requirement.

Our algorithm is implemented in Java and we use theAtomicIn-
tegerfrom Java Concurrency Utilities for the version numbers. The
CASonAtomic Integeris guaranteed to execute atomically with re-
spect to other operations on the same location. Also, theCASacts
as a barrier for the memory effects of the instructions on itseither
side, i.e., all the instructions above it are guaranteed to complete
before it executes and no instructions below it will executebefore
it completes. This is the same as the memory effects of thefence
that is used in the read stage. The read of anAtomicIntegerhas the
memory effects of the read of a volatile in Java. Hence, it does not
allow any instruction after it to execute until it completes. Simi-
larly, the write to anAtomicIntegerhas the memory effects of the
write to a volatile in Java. Hence, it does not execute until all the
instructions before it complete.

5.5 Optimizations

In the implementation of our algorithm, we also include the static
optimizations that were described in [24]. These optimizations
eliminate redundant updates to the shadow memory location due to
redundant reads and writes to the corresponding memory location
with a single step. These are static optimizations that perform data
flow analysis on the input program to identify redundant shadow
memory updates. The optimizations include: main-task check elim-
ination, read-only check elimination, escape analysis to eliminate
task-local checks, loop-invariant check optimizations, and read-
/write check elimination. We note that these optimizationscan be
used to improve the performance of any race detection algorithm.
We have also identified a number of dynamic optimizations that
can reduce the space and time overhead of theDMHP algorithm
even further. We leave those as future work.

6. Experimental Results
In this section, we present experimental results for our algorithm,
which for convenience we refer to asSPD3(Scalable Precise Dy-
namic Datarace Detection). The algorithm was implemented as
a Java library for detecting data races in HJ programs contain-
ing async and finish constructs [6]. Shadow locations were imple-
mented by extending thehj.lang.Object class with shadow
fields, and by usingarray views [6, 24] as anchors for shadow
arrays. Programs were instrumented for race detection during a
bytecode-level transformation pass implemented on HJ’s Parallel
Intermediate Representation (PIR) [31]. The PIR is an intermedi-
ate representation that extends Soot’s Jimple IR [29] with parallel
constructs such as async and finish. The instrumentation pass adds
the necessary calls to our race detector library at async andfinish
boundaries and on reads and writes to shared memory locations.

We also compareSPD3 with some race detectors from past
work, namely Eraser [26], FastTrack [13], and ESP-bags [24]. For
Eraser and FastTrack, we use the implementations included in the
RoadRunner tool [14]. Since the performance of the FastTrack im-
plementation available in the public RoadRunner download yielded
worse results than those described in [13], we communicatedwith
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Figure 3. Relative slowdown ofSPD3for all benchmarks on 1, 2, 4, 8, and 16 threads. Relative slowdown onn threads refers to the slowdown
of theSPD3version onn threads compared to the HJ-Base version onn threads.

Table 1. List of Benchmarks Evaluated
Source Benchmark Description

JGF
Series (C) Fourier coefficient analysis
LUFact (C) LU Factorisation
SOR (C) Successive over-relaxation

(Section 2)
Crypt (C) IDEA encryption
Sparse (C) Sparse Matrix multiplication

JGF MolDyn (B) Molecular Dynamics simulation

(Section 3)
MonteCarlo (B) Monte Carlo simulation
RayTracer (B) 3D Ray Tracer

Bots

FFT (large) Fast Fourier Transformation
Health (large) Simulates a country health system
NQueens (14) N Queens problem
Strassen (large) Matrix Multiply with Strassen’s method

Shootout
Fannkuch (10M) Indexed-access to tiny integer-sequence
Mandelbrot (8000) Generate Mandelbrot set portable bitmap

EC2 Matmul (1000ˆ2) Matrix Multiplication (Iterative)

the implementers and received an improved implementation of
FastTrack which was used to obtain the results reported in this pa-
per. For ESP-bags, we used the same implementation that was used
in [24].

Our experiments were conducted on a 16-core (quad-socket,
quad-core per socket) Intel Xeon 2.4GHz system with 30 GB mem-
ory, running Red Hat Linux (RHEL 5), and Sun Hotspot JDK1.6.
To reduce the impact of JIT compilation, garbage collectionand
other JVM services, we report the smallest time measured in 3runs
repeated in the same JVM instance for each data point. HJ tasks
are scheduled on a fixed number of worker threads using a work-
stealing scheduler with an adaptive policy [17]

6.1 Evaluation ofSPD3

We evaluatedSPD3 on a suite of 15 task-parallel benchmarks
listed in Table 1. It includes eight Java Grande Forum bench-
marks (JGF) [28], four Barcelona OpenMP Task Suites bench-
marks (BOTS) [11], two Shootout benchmarks [2], and one EC2
challenge benchmark.

All benchmarks were written using only finish and async con-
structs for parallelism, with fine grained one-async-per-iteration
parallelism for parallel loops. As discussed later, the original ver-
sion of the JGF benchmarks contained “chunked” parallel loops

with programmer-specified decomposition into coarse grained one-
chunk-per-thread parallelism. The fine grained task-parallel ver-
sions of the JGF benchmarks used for the evaluation in this section
were obtained by rewriting the chunked loops into “unchunked”
parallel loops. In addition, barrier operations in the JGF bench-
marks were replaced by appropriate finish constructs.

HJ-Base refers to the uninstrumented baseline version of each
of these benchmarks. All the JGF benchmarks were configured to
run with the largest available input size. All input sizes are shown
in Table 1.

No data race was expected in these 15 programs, andSPD3
found only one data race which turned out to be a benign race.
This was due to repeated parallel assignments of the same value
to the same location in the async-finish version of the MonteCarlo
benchmark, which was corrected by removing the redundant as-
signments. After that, all the benchmarks used in this section were
observed to be data-race-free for the inputs used.

Figure 3 shows the relative slowdown ofSPD3for all bench-
marks when executed with 1, 2, 4, 8, and 16 worker threads. (Recall
that these benchmarks create many more async tasks than the num-
ber of worker threads.) The relative slowdown onn threads refer to
the slowdown of theSPD3instrumented version of the benchmark
executing onn threads compared with the HJ-Base version execut-
ing onn threads. Ideally, a scalable race detector should have a con-
stant relative slowdown as the number of worker threads increases.
As evident from Figure 3, the slowdown for many of the bench-
marks decrease as the number of worker threads increases from 1
to 16. The geometric mean of the slowdowns for all the benchmarks
on 16 threads is2.78×.

Though the geometric mean is below3×, four of the 15 bench-
marks (Crypt, LUFact, RayTracer, and FFT) exhibited a slowdown
around10× for worker threads from 1 to 16. This is because these
benchmarks contain larger numbers of shared locations thatneed
to be monitored for race detection. As discussed later, other race
detection algorithms exhibit much larger slowdowns for these ex-
amples thanSPD3. Note that even in these cases the slowdowns are
similar across 1 to 16 threads. This clearly shows thatSPD3scales
well.

The slowdown for 1-thread is higher than that for all other
threads in many benchmarks. This is because our implementation
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Figure 4. Slowdown of ESP-bags andSPD3relative to 16-thread HJ-Base version for all benchmarks. Note that the ESP-bags version runs
on 1-thread while theSPD3version runs on 16-threads.

usescompareAndSetoperations on atomic variables. These oper-
ations are not optimized for the no contention scenario as with
1-thread. Instead, if we use a lock that is optimized for no con-
tention scenario, the slowdown for 1-thread cases would have been
a lot lower. But that implementation does not scale well for larger
numbers of threads. For example, the lock based implementation
is 1.8× slower (on average) than thecompareAndSetimplementa-
tion when running on 16-threads. While the two implementations
are close for many benchmarks (within a factor of 2), there isa
difference of upto7× for some benchmarks, when running on 16-
threads. ThecompareAndSetimplementation is always faster than
the lock based implementation for larger numbers of threads. Since
our aim was to make the algorithm scalable, we chose thecompare-
AndSetapproach.

6.2 Comparison with ESP-bags algorithm

In this section, we compare the performance ofSPD3with ESP-
bags [24]. Figure 4 shows the slowdown of ESP-bags andSPD3for
all the benchmarks, relative to the execution time of the 16-thread
HJ-Base version. Note that the ESP-bags version runs on 1-thread
(because it is a sequential algorithm) while theSPD3version runs
on 16-threads.

This comparison underscores the fact that the slowdown for
a sequential approach to datarace detection can be significantly
larger than that of parallel approaches, when running on a parallel
machine. For example, the slowdown is reduced by more than a
15× factor when moving from ESP-bags toSPD3for Series and
MatMul benchmarks and by more than a5× factor for benchmarks
like MolDyn and SparseMatMult that scale well. On the other hand,
the slowdown for Crypt is similar for ESP-bags andSPD3because
the uninstrumented async-finish version of Crypt does not scale
well. On average,SPD3is 3.2× faster than ESP-bags on our 16-
way system. This gap is expected to further increase on systems
with larger numbers of cores.

6.3 Comparison with Eraser and FastTrack

We only use the JGF benchmarks for comparisons with other algo-
rithms since those are the only common benchmarks with past work
on Eraser and FastTrack. However, since Eraser and FastTrack
work on multithreaded Java programs rather than task-parallel vari-

ants like HJ, they used the original coarse-grained one-chunk-per-
thread approach to loop parallelism in the JGF benchmarks with
one thread per core. Converting these programs to fine-grained
parallel versions using Java threads was not feasible sincecreat-
ing large numbers of threads quickly leads to OutOfMemoryEr-
ror’s. Further, it would also make the size of the vector clocks pro-
hibitively large in the program in order to provide the same sound-
ness and completeness guarantees asSPD3.

So, to enable an apples-to-apples comparison in this section,
we created coarse-grained async-finish versions of the JGF bench-
marks with chunked loops for the HJ versions. Since Eraser and
FastTrack were implemented in RoadRunner, we used the execu-
tion of the Java versions of these benchmarks on RoadRunner with-
out instrumentation (RR-Base) as the baseline for calculating the
slowdowns for Eraser and FastTrack. The differences between RR-
Base and HJ-Base arise from the use of array views in the HJ ver-
sion, and from the use of finish operations instead of barriers as
discussed below.

Our first observation when runningSPD3on the coarse grained
HJ versions of the eight JGF benchmarks was that data races were
reported for four of the benchmarks: LUFact, MolDyn, RayTracer,
and SOR. The data race reports pointed to races in shared arrays
that were used by the programmer to implement custom barriers.
However, all the custom barrier implementations were incorrect be-
cause they involved unsynchronized spin loops on shared array el-
ements. Even though the programmer declared the array references
as volatile, the volatile declaration does not apply to the elements of
the array. (In all fairness to the programmer, the JGF benchmarks
were written in the late 1990’s when many Java practitionerswere
unaware of the implications of the Java memory model.)

Our second observation is that the default Eraser and FastTrack
tools in the RoadRunner implementation did not report most of
these data races. The only race reported was by FastTrack forSOR.
After communication with the implementers of RoadRunner, we
recently learned that RoadRunner recognizes a number of common
barrier class implementations by default and generates special Bar-
rier Enter andBarrier Exit events for them which in turn enables
Eraser and FastTrack to take the barriers into account for race de-
tection (even though the barriers are technically buggy). Further a
“-nobarrier” option can be used to suppress this barrier detection.



We confirmed that all races were reported with the “-nobarrier”
option. However, all RoadRunner performance measurementsre-
ported in this paper were obtained with default settings i.e., without
the “-nobarrier” option.

Our third observation is that Eraser reported false data races for
many benchmarks. This is not surprising since Eraser is known to
not be a precise datarace detection algorithm.

To undertake a performance comparison, we converted the four
benchmarks to race-free HJ programs by replacing the buggy bar-
riers by finish operations. In some cases, this caused the HJ-base
version to be slower than the RR-base version as a result (since RR-
base measures the performance of the unmodified JGF benchmarks
with custom barriers). Before we present the comparison, itis also
worth noting that the implementation of Eraser and FastTrack in
RoadRunner include some optimizations that are orthogonalto the
race detection algorithm used [14]. Similarly, the static optimiza-
tions from [24] included in our implementation ofSPD3are also
orthogonal to the race detection algorithm. Both these setsof op-
timizations could be performed on any race detection algorithm to
improve its performance.

Table 2. Relative slowdown ofEraser, FastTrackand SPD3 for
JGF benchmarks on 16 threads. The slowdown of Eraser and Fast-
Track was calculated over their baseline RR-Base while the slow-
down ofSPD3was calculated over its baseline HJ-Base. For bench-
marks marked with *, race-free versions were used forSPD3but
the original versions were used for Eraser and FastTrack.

Benchmark RR-Base Eraser FastTrack HJ-Base SPD3
Time(s) Slowdown Time(s) Slowdown

Crypt 0.362 122.40 133.24 0.585 1.84
LUFact* 1.47 17.95 26.41 5.411 1.08

MolDyn* 16.185 8.39 9.59 3.750 13.56
MonteCarlo 2.878 10.95 13.54 5.605 1.86
RayTracer* 2.186 20.23 17.45 19.974 5.84

Series 112.515 1.00 1.00 88.768 1.00
SOR* 0.914 4.26 8.36 2.604 4.53
Sparse 2.746 14.29 20.59 4.607 1.72

GeoMean - 11.21 13.87 - 2.63

Table 2 shows the slowdowns of Eraser, FastTrack, andSPD3
for all the JGF benchmarks on 16 threads. Note that the slowdown
of Eraser and FastTrack were calculated relative to RR-Base(with
16 threads), and the slowdown ofSPD3was calculated over HJ-
Base (with 16 threads). For benchmarks marked with *, race-free
versions were used forSPD3but the original versions were used for
Eraser and FastTrack; this accounts for differences in the execution
times of RR-Base and HJ-Base for some benchmarks since the
async-finish versions include more synchronization to correct the
bugs in the original Java versions.

Table 2 shows that the relative slowdowns for Eraser and Fast-
Track are much larger than those forSPD3. On average (geometric
mean), the slowdown forSPD3relative to HJ-base is2.70× while
that for Eraser and FastTrack are11.21× and13.87× respectively
relative to RR-base. There is also a large variation. While the slow-
downs are within a factor of 2 for SOR, there is more than a60×
gap in slowdowns for Crypt and quite a significant differencefor
LUFact, MonteCarlo, and SparseMatMult as well. The slowdown
for SPD3on MolDyn is larger than the slowdowns for Eraser and
FastTrack because the baseline forSPD3 is more than4× faster
than the baseline for Eraser and FastTrack. For FastTrack, these
slowdowns are consistent with the fact that certain data access pat-
terns (notably, shared reads) can lead to large overheads because
they prevent the use of optimized versions of vector clocks.

For the case with the largest gap in Table 2 (Crypt), Figure 5
shows the slowdown (scaled execution time) of RR-Base, Eraser,
FastTrack, HJ-Base, andSPD3 for the chunked version of the
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Figure 5. Slowdown (relative to 16-threads RR-Base) of RR-Base,
Eraser, FastTrack, HJ-Base, andSPD3for Crypt benchmark (chun-
ked version) on 1-16 threads

Crypt benchmark on 1-16 threads relative to the 16-thread RR-
Base execution time. In this benchmark, RR-Base is the fastest for
16 threads as expected. The execution time of HJ-Base is1.9×
slower than RR-Base in the 1-thread case and1.6× slower than
RR-Base in the 16-thread case. Similarly, the execution time of
SPD3version is also very close; it is4.2× slower in the 1-thread
case and3× slower in the 16-thread case. The execution time
of Eraser and FastTrack are13.7× and 16.6× slower than RR-
Base in the 1-thread case but they increase to more than100×
for 8-threads and 16-threads. This example shows that for some
programs the performance overheads for Eraser and FastTrack can
increase dramatically with the number of threads (cores).

6.4 Memory Overhead

We now compare the memory overheads of the Eraser, FastTrack
and SPD3 algorithms on the coarse-grained JGF benchmarks.
Again, the baseline for Eraser and FastTrack was RR-Base and
the baseline forSPD3was HJ-Base. To obtain a coarse estima-
tion of the memory used, we used the-verbose:gcoption in the
JVM and picked the maximum heap memory used over all the GC
executions in a single JVM instance. All three instrumentedver-
sions trigger GC frequently, so this is a reasonable estimate of the
memory overhead.

Table 3. Peak heap memory usage of RR-Base, Eraser, FastTrack,
HJ-Base, andSPD3for JGF benchmarks on 16 threads. For bench-
marks marked with *, race-free versions were used forSPD3but
the original versions were used for Eraser and FastTrack.

Benchmark Memory (in MB)
RR-Base Eraser FastTrack HJ-Base SPD3

Crypt 209 8539 8535 149 6009
LUFact 80 1790 2455 47 203

MolDyn 382 1048 1040 9 35
MonteCarlo 1771 9316 9292 557 584

RayTracer 1106 4475 4466 43 88
Series 80 1067 1062 162 177
SOR 81 1161 1551 47 202

Sparse 225 2120 2171 88 714

Table 3 shows the estimated memory usage of these three algo-
rithms and their baselines for JGF benchmarks on 16 threads.The
table shows that the memory usage of HJ-Base is lower than that
of RR-Base in all the benchmarks except Series. In all cases,the
memory usage is lower forSPD3, compared to Eraser and Fast-
Track with significant variation in the gaps. The memory usage of
Crypt with SPD3is quite high because the benchmark has arrays
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Figure 6. Estimated heap memory usage (in MB) of RR-Base,
Eraser, FastTrack, HJ-Base, andSPD3for LUFact benchmark

of size 20 million and our algorithm maintains shadow locations
for all elements of these arrays. But the memory used bySPD3
for Crypt is still less than that of Eraser and FastTrack. Thehigh
memory usage for Eraser and FastTrack is not surprising because
Eraser has to maintain all the locks held while accessing a particu-
lar location, and FastTrack’s vector clocks may grow linearly in the
number of threads in the worst case.

For one of the benchmarks in Table 3 (LUFact), Figure 6 shows
the estimated memory usage of the three algorithms and theirbase-
lines as a function of the number of threads/cores used. Notethat
both the baselines (RR-Base and HJ-Base) are very close. While
the estimated heap usage of RR-Base remains constant at80M ,
the estimated usage of HJ-Base varies from33M to 47M as we go
from 1 thread to 16 threads. The estimated heap usage ofSPD3is
about6× larger than HJ-Base: it varies between192M and203M
across 16 threads. The estimated heap usage of Eraser increases
from 833M for 1 thread to1790M for 16 threads (2.1× increase).
Similarly, the estimated heap usage of FastTrack increasesfrom
825M for 1 thread to2455M for 16 threads (3× increase). This
clearly shows the increase in the memory usage for Eraser andFast-
Track as we increase the number of threads for this benchmark.

7. Related Work
In the introduction, we outlined the key differences between our al-
gorithm and FastTrack. In summary, on one hand, our algorithm
usesO(1) space per memory location, while in the worst-case,
FastTrack usesO(n). On the other, FastTrack handles more gen-
eral computation graphs than those supported by our model. The
time overhead of our algorithm is characteristic of the application,
since it depends on the height of the LCA nodes in the DPST. It is
independent of the number of threads (processors) the program ex-
ecutes on. On the other hand, FastTrack’s worst-case time overhead
is linear in the number of threads, which can grow very large with
increasing numbers of cores.

Schonberg [27] presented one of the earliest dynamic data race
detection algorithm for nested fork-join and synchronization oper-
ations. In this algorithm, a shared variable set is associated with
each sequential block in every task. There is also a concurrency list
associated with each shared variable set which keeps track of the
concurrent shared variable sets that will complete at a later time.
The algorithm detects anomalies by comparing complete concur-
rent shared variable sets at each time step. This algorithm applies
only to a single execution instance of a program, as mentioned
in [27]. The space required to store read information in the shared
variable sets is bounded byV ×N , whereV is the number of vari-

ables being monitored andN is the number of execution threads1.
This space requirement increases with an increase in the number of
threads the program is executed on, whereas our algorithm’sspace
requirement is independent of the number of threads the program is
executed on. A limitation of this work is that since access anoma-
lies are detected at synchronization points, it does not identify the
actual read and write operations involved in the data races.

Offset-Span (OS) labeling [21] is an optimized version of the
English-Hebrew (EH) labeling technique [10] for detectingdata
races. The idea behind both these techniques is to attach a label
to every thread in the program and use these labels to check if
two threads can execute concurrently. They also maintain the ac-
cess history for every shared variable that is monitored which is
then used to check for conflicts. The length of the labels associ-
ated with each thread can grow arbitrarily long in EH labeling2,
whereas the length of the labels in OS labeling is bounded by the
maximum nesting depth of fork-join in the program. While theEH
labeling technique needs an access history of size equal to the num-
ber of threads for every monitored variable in the program, the OS
labeling technique only needs constant size to store accesshis-
tory. While OS labeling algorithm supports only nested fork-join
constructs, our algorithm supports a more general set of dynamic
graphs. Further, though the OS labeling algorithm can execute the
input program in parallel, it has been evaluated in a sequential set-
ting only [22]. The effectiveness of this algorithm in a parallel im-
plementation is not clear.

A related work on data race detection for structured parallel pro-
grams was done as part of the Cilk project [4]. This work gives
an algorithm called SP-hybrid, which detects races in the pro-
gram with a constant space and time overhead. Their algorithm
has the best possible theoretical overheads for both space and time.
However, despite its good theoretical bounds, the SP-hybrid algo-
rithm is very complex and incurs significant inefficiencies in prac-
tice. The original paper on SP-hybrid [4] provides no evaluation
and subsequent evaluation of an incomplete implementationof SP-
hybrid [18] was done only for a small number of processors. One
indicator of the inefficiency of SP-hybrid can be seen in the fact
that the CilkScreen race detector used in Intel Cilk++ [1] uses the
sequential All-Sets algorithm [8] rather than the parallelSP-hybrid
algorithm. Another drawback of their algorithm is that it istightly
coupled with Cilk’s work-stealing scheduler. Hence, theiralgo-
rithm cannot be applied directly to other schedulers. In contrast,
our algorithm is amenable to an efficient implementation, performs
very well in practice, supports a more general set of computation
graphs than Cilk’s spawn/sync and is also independent of theun-
derlying scheduler.

There has also been work on data race detection algorithms for
spawn/sync [12] and async/finish models [24]. While they require
only O(1) space overhead per memory location, these algorithms
must process the program in a sequential depth-first manner,fun-
damentally limiting the scalability of these approaches. In contrast,
the algorithm presented in this work can process the programdur-
ing parallel execution, while still requiring onlyO(1) space per
memory location.

1 If N refers to the maximum number of threads possible in all executions
of a program for a given input, then this algorithm can guarantee data race
freedom for all executions of the program for that input. If not, then this
guarantee will not hold.
2 Note that the length of the labels is bounded by the maximum nesting
level of fork-join in EH labeling in the presence of an effective heuristic as
reported in [10]



8. Conclusion and Future Work
In this work, we presented a new dynamic data race detection algo-
rithm for structured parallel programs. The algorithm can process
the program in parallel, usesO(1) space per memory location and
admits an efficient implementation. The algorithm tracks what can
happen in parallel via a new data structure called the dynamic pro-
gram structure tree (DPST), and maintains two readers and a writer
for each shared memory location in order to track potential con-
flicts between different tasks. We implemented the algorithm and
demonstrated its effectiveness on a range of benchmarks. Infuture,
it could be interesting to extend the algorithm to other structured
parallel constructs such as HJ’s phaser construct [6].
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