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Abstract

Existing dynamic race detectors suffer from at least onehef t
following three limitations:

(i) space overheager memory location grows linearly with the
number of parallel threads [13], severely limiting the platesm
that the algorithm can handle.

(ii) sequentializationthe parallel program must be processed in
a sequential order, usually depth-first [12, 24]. This pnévehe
analysis from scaling with available hardware parallelismher-
ently limiting its performance.

(i) inefficiency even though race detectors with good theoret-
ical complexity exist, they do not admit efficient implematiins
and are unsuitable for practical use [4, 18].
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1. Introduction

Data races are a major source of errors in parallel progréms.-
plicating matters, data races may occur only in few of thesibs
schedules of a parallel program, thereby making them extyem
hard to detect and reproduce. The importance of detecticgsra
has motivated significant work in the area. We briefly sumpeari
existing race detectors and the main contributions of opragrh
below.

Existing Race Detectors FastTrack is a state-of-the art parallel
race detection algorithm which handles classic unstredtfiork-

join programs with locks [13]. While versatile, a key drawka

We present a new precise dynamic race detector that leverage of FastTrack is its worst-case space overheadpf) per instru-

structured parallelism in order to address these limitaticOur
algorithm requires constant space per memory locationksvior
parallel, and is efficient in practice. We implemented araleated
our algorithm on a set of 15 benchmarks. Our experimentaltes
indicate an average (geometric mean) slowdow®. @8 x on a 16-
core SMP system.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—reliability, validatip D.2.5
[Software EngineerifgTesting and Debugging—monitors, testing
tools; D.3.4 Programming LanguagésProcessors—debuggers;
F.3.2 |Logics and Meanings of PrografnsSemantics of Program-
ming Languages—program analysis

General Terms  Algorithms, Languages, Verification

Keywords Parallelism, Program Analysis, Data Races
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mented memory location, whefeis the number of threads in the
program. This space overhead implies that the algorithntygain
cally only be used with a small number of parallel threadsrdas-
ing the number of threads can quickly cause space overheads a
slowdowns that render the algorithm impractical. Fastegplies
some optimizations to reduce the overhead, but even fotitotsa
that are read shared, the algorithm maintaii{s:) space. Unfor-
tunately, in domains where structured parallelism doneisiapro-
grams typically use a massive number of lightweight taskg. (e
consider a parallel-for loop on a GPU) and often the parédigis
share read-only data.

There have been various proposals for race detectorsitayget
structured parallel languages, notably SP-bags [12] ah8étls [8]
for Cilk and its extension ESP-bags [24] for subsets of XJ@Gfd
Habanero-Java (HJ) [6]. The SP-bags, All-Sets, and ESBdigg-
rithms only need)(1) space per instrumented memory location but
are limited in that they must always process the parallefjizim
in a depth-first sequential manner. This means that the itigws
cannot utilize and scale with the available hardware pelrsith.
The SP-hybrid algorithm for Cilk [4] is an attempt to addréss
sequentialization limitation of the SP-bags algorithmwidaer, de-
spite its good theoretical bounds, the SP-hybrid algorithivery
complex and incurs significant inefficiencies in practicee Drig-
inal paper on SP-hybrid [4] provides no evaluation and sgiset
evaluation of an incomplete implementation of SP-hybrig] jdias
done only for a small number of processors; a complete ecapiri
study for SP-hybrid has never been done. However, the iregftiy
is clear from the fact that the CilkScreen race detector us&tel
Cilk++ [1] has chosen to use the sequential All-Sets algoribver
the parallel but inefficient SP-hybrid. Further, the SP+it/lalgo-



rithm depends on a particular scheduling technique (i.eogkw
stealing scheduler).

Collectively, these three limitations raise the followigges-
tion: Is there a precise dynamic race detector that works in par-
allel, uses O(1) space per memory location, and is suitabte f
practical use?In this paper we introduce such dynamic race de-
tector targeting structured parallel languages such ak [G]|
OpenMP 3.0 [23], X10 [7], and Habanero Java (HJ) [6]. Our al-
gorithm runs in parallel, uses O(1) space per memory logatind
performs well in practice.

Structured Parallelism  Structured parallel programming simpli-
fies the task of writing correct and efficient parallel progsan two
ways. First, a wide range of parallel programs can be suttginc
expressed with a few well-chosen and powerful structuredlpa
lel constructs. Second, the structure of the parallel nogcan
be exploited to provide better performance, for instanéz bet-
ter scheduling algorithms. Third, structured parallelisften pro-
vides guarantees of deadlock-freedom. Examples of laregpuaigd
frameworks with structured parallelism include Cilk [5]1& [7],
and Habanero Java (HJ) [3].

Our Approach A key idea is to leverage the structured paral-
lelism to efficiently determine whether conflicting memorg- a
cesses can execute in parallel. Towards that end, we prasent
data structure called the Dynamic Program Structure Tr&S(D.
With our algorithm, the time overhead for every monitoring- o
eration is independent of the number of tasks and workeatizre
executing the program. Similarly to FastTrack, SP-bagsESBE-
bags, our algorithm is sound and precise for a given inpuhef
algorithm does not report a race for a given execution, itmadaat
no execution with the same input can trigger a race (i.eethes
no false negatives). Conversely, if a race is reported, themace
really exists (i.e. there are no false positives). Thespet@es are
particularly attractive when testing parallel programstasiplies
that for a given input, we can study an arbitrary program dualee
to reason about races that may occur in other schedules. Agllwe
demonstrate later, our algorithm is efficient in practicd aignifi-
cantly outperforms existing algorithms.

Main Contributions The main contributions of this paper are:

e A dynamic data race detection algorithm for structured lpara
lelism with the following properties:

= works in parallel.
= uses only constant space per monitored memory location.
= is sound and precise for a given input.

e A data structure called the Dynamic Program Structure Tree
(DPST) that keeps track of relationships between tasks and ¢
be accessed and modified concurrently.

e An efficient implementation of the algorithm together with a
set of static optimizations used to reduce the overheadeof th
implementation.

e An evaluation on a suite of 15 benchmarks indicating an aver-
age (geometric mean) slowdown 2f78x on a 16-core SMP
system.

The rest of the paper is organized as follows: Section 2 disesi
the structured parallel setting, Section 3 presents thardicpro-
gram structure tree (DPST), Section 4 introduces our new dae
tection algorithm, Section 5 presents the details of thdempnta-
tion of our algorithm and the optimizations that we used thuoe
the overhead, Section 6 discusses our experimental reSdts
tion 7 discusses related work and Section 8 concludes thex.pap

2. Background

In this section, we give a brief overview of the structured-pa
allel model targeted by this paper. We focus on the asynsffini
structured parallelism constructs used in X10 [7] and Heaban
Java (HJ) [6]. The async/finish constructs generalize Huitional
spawn/sync constructs used in the Cilk programming systgm [
since they can express a broader set of computation graphs th
those expressible with the spawn/sync constructs usedkiiGi.

While X10 and HJ include other synchronization techniques
such as futures, clocks/phasers, and Cilk even includés ,|ae
core task creation and termination primitives in these Uaiggs
are fundamentally based on the async/finish and spawn/symc ¢
structs. The underlying complexity of a dynamic analysigpathm
is determined by these core constructs. Once a dynamicasaly
gorithm for the core constructs is developed, subsequeahsions
can be built on top of the core algorithm. To underscore theoim
tance of studying the core portions of these languages,caloal
called Featherweight X10 (FX10) was proposed [20]. Alse,3P-
bags algorithm [12] for Cilk was presented for the core sgaynt
constructs (the algorithm was later extended to handleracias
tors and locks [8]).

The algorithm presented in this paper is applicable to dfipac
ish constructs (which means it also handles spawn/syndrcots).
The algorithm is independent of the sequential portionhiefian-
guage, meaning that one can apply it to any language where the
parallelism is expressed using the async/finish constr&ctsex-
ample, the sequential portion of the language can be bas#teon
sequential portions of Java as in HJ or C/C++ as in Cilk [15],
Cilk++ [1], OpenMP 3.0 [23], and Habanero-C [9]. Next, we in-
formally describe the semantics of the core async/finisistroats.

A formal operational semantics can be found in [20].

Informal Semantics The statemenasync { s } causes the
parent task to create a new child task to exesussynchronously
(i.e., before, after, or in parallel) with the remainder loé tparent
task. The statemefi ni sh { s } causes the parent task to ex-
ecutes and then wait until all async tasks created witkithave
completed, including the transitively spawned tasks. Eetamic
instancel’s of anasync task has a uniqguenmediately Enclosing
Finish (IEF) instancéd- of a finish statement during program execu-
tion, whereF is the innermost dynamiti ni sh scope containing
Ta. There is an implicitf i ni sh scope surrounding the body of
main() so program execution will only end after @sync tasks
have completed.

Thef i ni sh statement is a restricted join: while in the general
unstructured fork-join case, a task can join with any otleeskt
with thef i ni sh statement, a task can only join on tasks that are
created in the enclosed statement. This is a fundamentatetice
between arbitrary unstructured fork-join and the asynisHiir(or
spawn/sync) constructs. It is such restrictions on thetjuiih make
it possible to prove the absence of deadlocks for any program
in the language [20], and provide an opportunity for discmge
analysis algorithms that are more efficient than those fg#neral
unstructured fork-join case.

As mentioned earlier, async/finish constructs can express a
broader set of computation graphs than Cilk’'s spawn/syne co
structs. The key relaxation in async/finish over spawn/sgrtbe
way a task is allowed to join with other tasks as well as drogpi
the requirement that a parent task must wait for all of itfdcfaisks
to terminate. With spawn/sync, at any given sync point irs& &x-
ecution, the task must join witall of its descendant tasks (and all
recursive descendant tasks, by transitivity) created iwéen the
start of the task and the join point. In contrast, with asfmish it
is possible for a task to join witsomerather than all of its descen-
dant tasks: at the end of a finish block, the task only waits tin&



finish {// F1
S } stepl
s2; P

async{// Al

S3;
]- step2

S4;

S5;

async {// A2
56;} step3

}// async A2

S7;

step4d
S8; } P

}// async Al

S9;
S10; ]- step5
S11;
async{// A3
S12;
S13;

}// async A3
}// finish F1

step6

Figure 1. An example async/finish program and its final DPST.

descendant tasks created inside the finish scope have dethple
More details comparing spawn/sync and async/finish canloedfo
in [16].

Example Consider the example in Figure 1. For now, ignore the
tree on the right and the step annotations, both of which &re d
cussed in the next section. Initially, the main task begkecetion
with the main finish statement, labeled F1. It executes thetfiro

cution of a statement as a dynamic statement instance. Waaty
a statement instance is an async instance if the statemdotms
an async operation. Similarly for finish instances.

Definition 1 (Step) A step is a maximal sequence of statement
instances such that no statement instance in the sequeciceés
an async or a finish operation.

Definition 2 (DPST) The Dynamic Program Structure Tree
(DPST) for a given execution is a tree in which all leaves teps,
and all interior nodes are async and finish instances. Thepar
relation is defined as follows:

e Async instanced is the parent of all async, finish, and step
instances directly executed withih

e Finish instanceF is the parent of all async, finish, and step
instances directly executed withiu

There is a left-to-right ordering of all DPST siblings theflects the
left-to-right sequencing of computations belonging tartloeem-
mon parent task. Further, the tree has a single root thatesponds
to the implicit top-level finish construct in the main progra

3.1 Building a DPST

Next we discuss how to build the DPST during program exenutio
When the main task begins, the DPST will contain a root finish
node I’ and a step nod¢ that is the child ofF". F' corresponds

to the implicit finish enclosing the body of the main functiorthe
program andb represents the starting computation in the main task.

Task creation When a taskl" performs an async operation and

statements S1 and S2 and then forks a new task Al using the asyn creates a new task.j;;q:

statement. In turn, Al executes statements S3, S4, S5 dstémk

A2 which executes statement S6. Note that statement S6gn ta
A2) and statements S7 and S8 in task Al can execute in parallel
After forking Al, the main task can proceed to execute statém
S9, S10 and S11 that follow Al. The main task then forks task A3
which executes statements S12 and S13. Note that the stdteme
S11 (in the main task) and statements S12, S13 (in task ABptan
execute in parallel because the task A3 will be forked ortigrahe
completion of S11. After forking A3, the main task has to wait

til A1, A2, and A3 have terminated. Only after all these destzat
tasks complete, the main task can exit past the end of finish F1

3. Dynamic Program Structure Tree

Any dynamic data race detection algorithm needs to providetm
anisms that answer two questions: for any pair of memoryssese
(with at least one write): (i) determine whether the accessa ex-
ecute in parallel, and (ii) determine whether they accesséme
location. In this section, we introduce the Dynamic Prog&tnuic-
ture Tree (DPST), a data structure which can be used to arisever
first question.

The DPST is an ordered rooted tree that is built at runtime to
capture parent-child relationships among async, finisd, step
(defined below) instances of a program. The internal nodes of

DPST represent async and finish instances. The leaf nodes of a

1. An async noded. 4 is created for taslcpiiq. If the imme-
diately enclosing finish (IEF}" of T¢p:4 exists within taskr',
then A 4 is added as the rightmost child &f. Otherwise,
Acnia is added as the rightmost child node of (the async) node
corresponding to task.

2. A step node representing the starting computations ik tas
Tenita 1s added as the child of.pi1q-
3. A step node representing the computations that follow tas

Terita in taskT is added as the right sibling of ;4.

Note that there is no explicit node in a DPST for the main task
because everything done by the main task will be within thaiicit
finish in the main function of the program and hence all of the
corresponding nodes in a DPST will be under the root finiskenod

Start Finish  When a task starts a finish instancg:

1. Afinish nodeF, is created forF'. If the immediately enclosing
finish F’ of I exists within taskl” (with corresponding finish
nodeF, in the DPST), ther, is added as the rightmost child
of F). Otherwise,F;, is added as the rightmost child of the
(async) node corresponding to taBk

2. A step node representing the starting computationg’ irs
added as the child af;,.

DPST represent the steps of the program. The DPST can also be

used to support dynamic analysis of structured parallgjjiaros
written in languages such as Cilk and OpenMP 3.0.

We assume standard operational semantics of async/finish co
structs as defined in FX10 [20]. The semantics of statemerds a
expressions other than async/finish is standard [30]. Bhagach
transition represents either a basic statement, an expnesgal-
uation or the execution of an async or a finish statement. &or o
purposes, given a trace, we assume that the execution obtdeh
ment is uniquely identified (if a statement executes mudttphes,
each dynamic instance is uniquely identified). We refer texat

End Finish When a taskl” ends a finish instancg, a step node
representing the computations that foll@win taskT is added as
the right sibling of the node that represeitsn the DPST.

Note that the DPST operations described thus far only take
O(1) time. Thus, the DPST for a given program run grows mono-
tonically as program execution progresses and new asyrnsh,fin
and step instances are added to the DPST. Note that sincatall d
accesses occur in steps, it follows that all tests for whiethe ac-
cesses may happen in parallel will only take place between tw
leaves in a DPST.



Definition 4. Two stepsS: and Sz, in a DPSTI that corresponds
to a programP with input«, may execute in parallel if and only if
there exists at least one scheddlef P with inpute in which S;

executes in parallel witl¥s.
° The predicatdbMHP(S1, S2) evaluates tdrue if stepsS; and
. @ S can execute in parallel in at least one schedule of a program
and tofalse otherwise DMHP stands for “Dynamic May Happen

@ in Parallel” to distinguish it from the MHP relation used kiatic

analyses). We now state a key theorem that will be important i

Figure 2. A part of a DPST. LCA is the Lowest Common Ancestor enabling our approach to data race detection.

of steps S1 and S2. A is the DPST ancestor of S1 which is thé chil Theorem 1. Consider two leaf nodes (steps) S1 and S2 in a DPST,

of LCA. S1 and S2 can execute in parallel if and only if A is an where S~ S2 and Sl is to the left of S2 as shown in Figure 2. Let

async node. LCA be the node denoting the least common ancestor of S1 and S2
Let nodeA be the ancestor of S1 that is the child of LCA. Then, S1
and S2 can execute in parallel if and only4fis an async node.

Example We can now return to the example program in Figure 1

and study its steps and final DPST. Note the way statement in- Proof. Please refer to [25]. O
stances are grouped into steps. When the main task stacigtiexg . .
finish F1, a node corresponding to F1 is added as the root rfode o Example  Let us now look at theMHP relation for some pairs
the DPST, and a step node stepl is added as the child of F1; step Of Steps in the example program in Figure 1. First, let us icens
represents the starting computations in F1, i.e., inseantstate- DMHP(step2, stepSHerestep2is to the left ofstep5 sincestep2
ments S1 and S2. When the main task forks the task A1, an asyncwnl appear beforestep5in the depth first traver_sal of the DPST.
node corresponding to Al is added as the right-most childlof F1he lowest common ancestor sfep2and stepSis the node F1.
(since the immediately enclosing finish of Al is F1 and it ishivi The node Al is the ancestor step2(the left node) that is the child
the main task), a step node step2 is added as the child of Algan  ©f F1. Since Alis an async nodeMHP(step2, stepSyill evaluate
step node steps5 is added as the right sibling of Al. step2septs to true indicating thatstep2andstep5can execute in parallel. This

the starting computations in Al (i.e., instance of statem8s, S4, is indeedtrue for this _progfam:step_2|s within A1, while step5

and S5) and step5 represents the computation that followmA1 ~ follows Al and is within Al's immediately enclosing finish.

the main task (i.e., instances of statements S9, S10, anjd Afdr Now, let us consideDMHP(step6, stepSHerestepsis to the

this point, the main task and the task Al can execute in @hrall  ft Of step§ sincestepSwill appear beforestep6in the depth first

Eventually, the DPST grows to the form shown in the figure. traversal of the DPST._ Thglr Iowes_t common anc_estor is Fd, an
the ancestor o$tep5which is the child of F1 istep5itself. Since

3.2 Properties of a DPST step5is not an async instanc®MHP(step6, step5Sgvaluates to

false This is consistent with the program becassep6is in task

In this section, we briefly summarize some key properties of a A3 and A3 is created only aftatepscompletes.

DPST. The proofs of these properties have been omitted due to
space limitations, but can be found in [25]. 4. Race Detection Algorithm
* For a given input that leads to a data-race-free execution of o, race detection algorithm involves executing the givegam

a given async-finish parallel program, all executions of tha i, 3 given input and monitoring every dynamic memory asces
program with the same input will result in the same DPST. in the program for potential data races. The algorithm radsta
Let F' be the DPST root (finish) node. Each non-root nade DPST as described in the previous section, as well as theargle

is uniquely identified by a finite path fromy to F: access history for each shared memory location. The atgorit
ro " o —_ performs two types of actions:
ng —ny —n2 — ... —> Nk . . . .
e Task actions: these involve updating the DPST with a new node
wherek > 1, ny = F, and for eacl) < i < k, n; is ther}h for each async, finish, and step instance.
child of noden; 1. The path fromm, to I stays invariant as the e Memory actions: on every shared memory access, the algorith
tree grows. For a given statement instance, its path to e ro checks if the access conflicts with the access history for the
is unique regardless of which execution is explored (as &g relevant memory location. If a conflict is detected, the gt
the executions start with the same state). This propertyshab reports a race and halts. Otherwise, the memory location is
to the point that a data race (if any) is detected. updated to include the memory access in its access history.

The DPST is amenable to efficient implementations in which A key novelty of our algorithm is that it requires constarasp
nodes can be added to the DPST in parallel without any syn- g store the access history of a memory location, whilegtitiran-
chronization in O(1) time. One such implementation is de- teeing that no data races are missed. We next describe tteveha
scribed in Section 5. memory mechanism that supports this constant space gaarant

Definition 3. A nodeA is said to be to the left of a nodB in a 4.1 Shadow Memory

DPST ifA f in th th first t | of the tree.
STifA appears befords in the depth first traversal of the tree Our algorithm maintains a shadow mematy, for every moni-

As mentioned above, even though the DPST changes duringtored memory locationV/. M, is designed to store the relevant
program execution, the path from a node to the root does not parts of the access history ff. It contains the following three
change and the left-to-right ordering of siblings does rwnge. fields, which are all initialized to null:

Hence, even though the depth first traversal of the DPST is not
fully specified during program execution, thedt relation between
any two nodes in the current DPST is well-defined. e r; : areference to a step that re&dl

e w: areference to a step that wraté.



e 5 : areference to another step that rédd

The following invariants are maintained throughout thecexe
tion of the program until the first data race is detected.

o M;.w refers to the step that last wrolé.

e Ms.r1 & Ms.ro refer to the steps that last readl. All the steps
(a1, az, ..., ax) that have read/ since the last synchronization
are in the subtree rooted BEA(M;s.r1, Ms.r2).

The fields of the shadow memony; are updatedtomicallyby
different tasks that accedd.

4.2 Algorithm

The most important aspect of our algorithm is that it stonely o
three fields for every monitored memory location irrespectf
the number of steps that access that memory location. Tiaiamt
behind this is as follows: it is only necessary to store tra la
write to a memory location because all the writes before #ise |
one must have completed at the end of the last synchronizatio
This is assuming no data races have been observed yet dheng t
execution. Note that though synchronization due to finisk ma

be global, two writes to a memory location have to be ordesed b
some synchronization to avoid constituting a data race. #gno
the reads to a memory locatiofg1, as, ..., ai), since the last
synchronization, it is only necessary to store two readsa;,
such that the subtree undeCA(a;, a;) includes all the reads
(a1, a2, ...,ax). This is because every future read,, which is in
parallel with any discarded step will also be in parallelht least
one ofa; or a;. Thus, the algorithm will not miss any data race by
discarding these steps.

Definition 5. In a DPST, a node; is dpst-greater than a node:,
denoted byh1 >gps¢ 12, if n1 is an ancestor ofz in the DPST.
Note that, in this casey; is higher in the DPST (closer to the root)
thanns.

Algorithm 1: Write Check
Input: Memory locationM, StepS that writes toM
if DMHP(M;.r1, S) then

| Report a read-write race betwesf,.r; andS
end
if DMHP(M,.r2, S) then

| Report aread-write race betwegfi,.r, andS
end
if DMHP(M.w, S) then

| Report a write-write race betweed;.w and.S
else

| Msw «— S
end

© 0 N O g B~ W NP

=
= O

Algorithms 1 and 2 show the checking that needs to be per-
formed on write and read accesses to monitored memory toati
When a stefy writes to a memory locatioft/, Algorithm 1 checks
if S may execute in parallel with the readerfify,.r1 by computing
DMHP(S, M;.r1). If they can execute in parallel, the algorithm re-
ports a read-write data race betwekfy.r; and S. Similarly, the
algorithm reports a read-write data race betwdénr, and S if
these two steps can execute in parallel. Then, Algorithnparte a
write-write data race betweel;.w and.S, if these two steps can
execute in parallel. Finally, it updates the writer fieM,.w, with
the current stefy' indicating the latest write td/. Note that this
happens only when the write f by .S does not result in data race
with any previous access .

Algorithm 2: Read Check

Input: Memory locationM, StepsS that reads\/
1 if DMHP(M;.w, S) then
2 | Reportawrite-read data race betwen.w and.S
3 end
4 if = DMHP(M;.r1, S) A -DMHP(M;.r2, S) then
5 MS.Tl — S
6
;
8
9

Ms.ro — null

else if DMHP(M,.r1, S) A DMHP(M;.r2, S) then
lecars «— LCA(Ms.r1, Ms.r2)

lcars «— LCA(Ms.r1, S)

lcaszs «— LCA(M;.ra, S)

if lcars >dapst lcarz V lcazs >apst lcar then
12 | Myri — S

end

When a stefs reads a memory locatial/, Algorithm 2 reports
a write-read data race betweéf,.w andS if these two steps can
execute in parallel. Then, it updates the reader fields/ofas fol-
lows: if S can never execute in parallel with either of the two read-
ers,M,.r1 and M,.ro, then both these readers are discarded and
Ms.ry is settoS. If S can execute in parallel with both the readers,
Ms.r1 and M;.rs, then the algorithm stores two of the these three
steps, whoseCAis the highest in the DPST, i.e. iCA(M;.r1, S)
or LCA(M;.r2, S) is dpst-greater thahCA(M,.r1, Ms.r2), then
M,.rq is set toS. Note that in this casé is outside the subtree
underLCA(M;.r1, Ms.r2) and hencel . CA(M,.r1, S) will be the
same a$ CA(M;.r2, S).

If S can execute in parallel with one of the two readers and not
the other, then the algorithm does not update the readessibec
in that case,S is guaranteed to be within the subtree under the
LCA(MS.T‘l, MS.T‘Q).

The DMHP(M;.r2, S) can be computed fro®MHP(M;.r1,
S) in some cases. This can be used to further optimize Algogthm
and 2. We do not present the details of this optimization.here

Atomicity Requirements A memory action for an access to a
memory locationM involves reading the fields af/, checking
the predicates, and possibly updating the fieldd/&f Every such
memory action has to execute atomically with respect torothe
memory actions for accesses to the same memory location.

Theorem 2. If Algorithms 1 and 2 do not report any data race in
some execution of a prograi with input), then no execution of
P with ¢ will have a data race on any memory locatidh.

Proof. Please refer to [25]. O

Theorem 3. If Algorithm 1 or 2 reports a data race on a memory
location M during an execution of a program P with inpyit then
there exists at least one execution of P wijthin which this race
exists.

Proof. Please refer to [25]. O

Theorem 4. The race detection algorithm is sound and precise for
a given input.

Proof. From Theorem 2 it follows that our race detection algorithm
is sound for a given input. From Theorem 3 it follows that aoe
detection algorithm is precise for a given input. |



5. Implementation and Optimizations Algorithm 3: Dynamic May Happen in ParalleDMHP)

This section describes the implementation of the diffepents of Input: DPSTT, StepSt, StepSa
our race detection algorithm. Output: true/false
1 Nlca = LCA(F, Sl, 52)
2 Aj = Ancestor ofS7 in T" which is the child ofN;..,
5.1 DPST 3 Ag = Ancestor ofS5 in I" which is the child ofN;.,,
The DPST of the program being executed is built to maintain 4 if A; is to the left ofdz in " then
the parent-child relationship of asyncs, finishes and stephke 5 if A1 is an Asynchen
program. Every node in the DPST consists of the following kiie 6 | retumn true
7 else
e parent the DPST node which is the parent of this node. 8 | . return false // .S1 happens before 5>
9 en
e depth an integer that stores the depth of this node. The root |/ ise

node of the DPST has depth 0. Every other node in the DPST ,; if A is an Asyndhen
has depth one greater than its parent. This field is immutable  ;, | retum true

e numchildren number of children of this node currently inthe 13 else
DPST. This field is initialized to 0 and incremented whenahil ~ ** | retum false// S> happens before S

nodes are added. 15 end
16 end

e segno: an integer that stores the ordering of this node among
the children of its parent, i.e., among its siblings. Eveodeis
children are ordered from left to right. They are assigned se
guence numbers starting from 1 to indicate this order. Thid fi 5.3 Space and Time Overhead

Is also immutable. The size of the DPST will b&(n), wheren is the number of tasks

in the program. More precisely, the total number of nodeshe t
DPST will be3  (a + f) — 1, wherea is the number of async
instances andg is the number of finish instances in the program.
This is because a program with just one finish node will hage ju
one step node inside the finish of its DPST. When an async or a
finish node is subsequently added to the DPST, it will result i
adding 2 steps nodes, one as the child of the new node and the
other as its sibling. The space overhead for every memoastitmt

is O(1), since we only need to store a writer step and two reade
steps in the shadow memory of every memory location.

The time overhead at task boundaries is O(1), which is the tim
needed to add/update a node in the DPST. The worst case time
overhead on every memory access is same as that of Algorithm 3

Note that the time overhead is not proportional to the number
of processors (underlying worker threads) that the prograns
on. Hence, the overhead is not expected to scale as we iadteas
5.2 ComputingDMHP number of processors on which the program executes. This is a
important property as future hardware will likely have maoyes.

The use of depth for nodes in the DPST leads to a lowest
common ancestor (LCA) algorithm with better complexityafth
if we had not used this field). The use of sequence numbers to
maintain the ordering of a node’s children makes it easiehtrk
for may happen in parallel given two steps in the program.

Note that all the fields of a node in the DPST can be initial-
ized/updated without any synchronization: thegrentfield initial-
ization is trivial because there are no competing writeb&b field;
the depthfield of a node is written only on initialization, is never
updated, and is read only after the node is createdjuhechildren
field is incremented whenever a child node is added, but faremg
node, its children are always added sequentially in orden fieft
to right; theseqno field is written only on initialization, is never
updated, and is read only after the node is created.

A large part of the data race detection algorithm involvescking
DMHP for two steps in the program. This requires computing the
Lowest Common Ancestor (LCA) of two nodes in a tree. The
function LC'A(T", S1, S2) returns the lowest common ancestor of A memory action for an access to a memory locatidninvolves
the nodesS; andS> inthe DPSTI. Thisisimplemented by starting  reading the fields of its shadow memory locatibfy, computing
from the node with the greater depth (s&) and traversing up’ the necessarMHP information and checking appropriate predi-
until a node with the depth same 8sis reached. From that point,  cates, and possibly updating the fields\df. Let us refer to these
T'is traversed along both the paths until a common node iseglach  three stages asad compute andupdateof a memory action.

5.4 Relaxing the Atomicity Requirement

This common node is the lowest common ancesta$,0and S5. In our algorithm, every memory action on a shadow memory
The time overhead of this algorithm is linear in the lengtthef M, has to execute atomically relative to other memory actions
longer of the two paths§; — L andSs — L. on M. When there are parallel reads to a memory location, this
Algorithm 3 computeDMHP relation between two stepS; atomicity requirement effectively serializes the memocgjians
and S». Algorithm 3 returndrue if the given two steps; and.S- due to these reads. Hence this atomicity requirement irsdace

may happen in parallel anflse otherwise. This algorithm first bottleneck in our algorithm when the program is executed on a
computes the lowest common ancesitoof the given two steps large number of threads. Note that the atomicity requirgrdeas

using theLCA function. If the stepS; is to the left ofSs, then the not result in a bottleneck in the case of writes to a memorgtioa
algorithm returngrue if the ancestor ofS; (which is the child of because the memory actions due to writes have no contemtion i
L) is an async anfhlse otherwise. If the stef: is to the left of data race free programs. (In a data race free program, thexe i
S1, then the algorithm returnigsue if the ancestor ofS; which is happens-before ordering between a write and every othesado

the child of L is an async anéalseotherwise. The time overhead a memory location.)

of this algorithm is same as that of th€A function, since it only We now present our implementation strategy to overcome this
takes constant time to find the node which is the ancestoredéth atomicity requirement without sacrificing the correctnessour

step that is the child dfCAnode and then check if that node is an algorithm. This implementation strategy is based on thetkwi
async. to the reader-writer problem proposed by Leslie Lamportl®j



Our implementation allows multiple memory actions on theea
shadow memory to proceed in parallel. This is done by adding
two atomic integers to every shadow memory, i#.,, contains
the following two additional fields:

e startVersionan atomic integer that denotes the version number
of M

e endVersionan atomic integer that denotes the version number
of M.

Both startVersionand endVersionare initialized to zero. Ev-
ery time any of the fields\/s.w, Ms.r1, or Ms.ro is updated,
M, .startVersionand M;.endVersiorare incremented by one. The
following invariant is maintained on every shadow memar;
during the execution of our algorithnany consistent snapshot of
M, will have the same version number in both startVersion and
endVersion Now, we show how the read, compute, and update
stages of a memory action ol are performed. Note that these
rules use &ompareAndSet (CAPyimitive which isatomicrela-
tive to every operation on the same memory location.

Read

e Read the version number if/;.startVersioninto a local
variable, X .

e Read the fieldsV/,.w, M,.r1, and M,.ro into local vari-
ables, W, R1, andRs.

e Perform afenceto ensure that all operations above are
complete.

e Read the version number if/;.endVersioninto a local
variable,Y'.

e |f X is not the same as, restart theeadstage.
Compute

e Perform the computation on the local variablés, R;, and
Ro.

Update

e Do the following steps if an update to any of the fields
Ms.w, Ms.ry, or Ms.ro iS necessary.

e Perform aCASon the version number id/;.endVersion
looking for the valueX and updating it with an increment
of one.

o If the aboveCASfails, restart the memory action from the
beginning ofread stage.

e Write to the required fields af/.
o \Write the incremented version numberify.startVersion

When a memory action o/, completes theead stage, the
above rules ensure that a consistent snapshéf ofvas captured.
This is because theead stage completes only when the same ver-
sion number is seen in botl; .startVersiorand M .endVersion

The CASin the update stage of the memory action oh/,
succeeds only when/,.endVersionhas the version number that
was found in theead stage earlier. Thapdatestage completes by
writing to the reader and writer fields 8f; as necessary, followed
by incrementing the version number M, .startVersion When the
updatestage completes, both/,.startVersionand M;.endVersion
will have the same version number and thus, the fieldd/efare
retained in a consistent state.

The CASin the updatestage of a memory actiam on M, also
ensures that the fields @f/; are updated only if it has not already
been updated by any memory actionify, since theeadstage of
«. If this CASfails, then there has been some updatdfosince

memory action is restarted from the beginning of tbad stage.
Thus, the memory actions are guaranteed to be atomic ekativ
other memory actions on the same memory location.

The main advantage of this implementation is that it allows$-m
tiple memory actions on the same shadow menidiyto proceed
in parallel. But if more than one of them needs to update thesfie
of Ms, then only one of them is guaranteed to succeed while the
others repeat the action. This is especially beneficial wthene
are multiple parallel accessesAé whose memory actions do not
update the fields a#/s. In our algorithm, this occurs when there are
reads by stey such thatS is in the subtree rooted &CA(M,.71,
Ms.r2). These cases occur frequently in practice thereby empha-
sizing the importance of relaxing the atomicity requiremen

Our algorithm is implemented in Java and we useAt@nicln-
tegerfrom Java Concurrency Utilities for the version numberse Th
CASon Atomic Integeis guaranteed to execute atomically with re-
spect to other operations on the same location. AlsoC#h8acts
as a barrier for the memory effects of the instructions owiitser
side, i.e., all the instructions above it are guaranteectoptete
before it executes and no instructions below it will execugéore
it completes. This is the same as the memory effects ofehee
that is used in the read stage. The read oAtomiclntegelhas the
memory effects of the read of a volatile in Java. Hence, isdus
allow any instruction after it to execute until it complet&mi-
larly, the write to anAtomicintegerhas the memory effects of the
write to a volatile in Java. Hence, it does not execute utitihe
instructions before it complete.

5.5 Optimizations

In the implementation of our algorithm, we also include tteis
optimizations that were described in [24]. These optiniirest
eliminate redundant updates to the shadow memory locatierial
redundant reads and writes to the corresponding memoryidoca
with a single step. These are static optimizations thaoperidata
flow analysis on the input program to identify redundant sinad
memory updates. The optimizations include: main-taskickém-
ination, read-only check elimination, escape analysiditoieate
task-local checks, loop-invariant check optimizationsd aead-
/write check elimination. We note that these optimizatioas be
used to improve the performance of any race detection aéfgori
We have also identified a number of dynamic optimizations tha
can reduce the space and time overhead oftkBHP algorithm
even further. We leave those as future work.

6. Experimental Results

In this section, we present experimental results for ouoraigm,
which for convenience we refer to &°D3(Scalable Precise Dy-
namic Datarace Detection). The algorithm was implemented a
a Java library for detecting data races in HJ programs aontai
ing async and finish constructs [6]. Shadow locations weg@dm
mented by extending thiej . | ang. Obj ect class with shadow
fields, and by usingrray views[6, 24] as anchors for shadow
arrays. Programs were instrumented for race detectiomglai
bytecode-level transformation pass implemented on HXallea
Intermediate Representation (PIR) [31]. The PIR is an mésli-
ate representation that extends Soot’s Jimple IR [29] wéttalel
constructs such as async and finish. The instrumentaticnguius
the necessary calls to our race detector library at asyndiaisth
boundaries and on reads and writes to shared memory losation
We also comparé&SPD3with some race detectors from past
work, namely Eraser [26], FastTrack [13], and ESP-bags [2di
Eraser and FastTrack, we use the implementations includéi
RoadRunner tool [14]. Since the performance of the Fasklirae
plementation available in the public RoadRunner downlaaftigd

the read stage and hence, the computations are discarded and theworse results than those described in [13], we communicait
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Figure 3. Relative slowdown oEPD3for all benchmarks on 1, 2, 4, 8, and 16 threads. Relativeddam onn threads refers to the slowdown
of the SPD3version om threads compared to the HJ-Base versiom threads.

Table 1. List of Benchmarks Evaluated

with programmer-specified decomposition into coarse gone-
chunk-per-thread parallelism. The fine grained task-perakr-
sions of the JGF benchmarks used for the evaluation in tbigose
were obtained by rewriting the chunked loops into “unchutike
parallel loops. In addition, barrier operations in the JGIdh-
marks were replaced by appropriate finish constructs.

HJ-Base refers to the uninstrumented baseline versionatf ea
of these benchmarks. All the JGF benchmarks were configored t
run with the largest available input size. All input sizes ahown
in Table 1.

No data race was expected in these 15 programs,Siio3
found only one data race which turned out to be a benign race.

This was due to repeated parallel assignments of the same val
to the same location in the async-finish version of the Moat&C

[ Source [ Benchmark [ Description
Series (C) Fourier coefficient analysis
JGF LUFact (C) LU Factorisation
SOR (C) Successive over-relaxation
. Crypt (C IDEA encryption
(Section 2) Sp?;ﬁst(a ()C) Sparse Mgltpr)ix multiplication
JGF MolDyn (B) Molecular Dynamics simulation
. MonteCarlo (B Monte Carlo simulation
(Section 3) RayTracer (é)) 3D Ray Tracer
FFT (large) Fast Fourier Transformation
Bots Health (large) Simulates a country health system
NQueens (14) N Queens problem
Strassen (large) Matrix Multiply with Strassen’s method
Shootout Fannkuch (10M) Indexed-access to tiny integer—sequgnca
Mandelbrot (8000) | Generate Mandelbrot set portable bitmap
EC2 Matmul (1000°2) Matrix Multiplication (lterative)

the implementers and received an improved implementatfon o
FastTrack which was used to obtain the results reportedsmtx
per. For ESP-bags, we used the same implementation thatsees u
in [24].

benchmark, which was corrected by removing the redundant as
signments. After that, all the benchmarks used in this geatiere
observed to be data-race-free for the inputs used.

Figure 3 shows the relative slowdown $PD3for all bench-
marks when executed with 1, 2, 4, 8, and 16 worker threadsalRe
that these benchmarks create many more async tasks thamthe n
ber of worker threads.) The relative slowdownrothreads refer to

Our experiments were conducted on a 16-core (quad-socket,the slowdown of the&SPD3instrumented version of the benchmark

quad-core per socket) Intel Xeon 2.4GHz system with 30 GB mem
ory, running Red Hat Linux (RHEL 5), and Sun Hotspot JD.

To reduce the impact of JIT compilation, garbage collecaod
other JVM services, we report the smallest time measuredun$

executing om threads compared with the HJ-Base version execut-
ing onnthreads. Ideally, a scalable race detector should have-a con
stant relative slowdown as the number of worker threadeases.

As evident from Figure 3, the slowdown for many of the bench-

repeated in the same JVM instance for each data point. H§ task marks decrease as the number of worker threads increased fro

are scheduled on a fixed number of worker threads using a work-

stealing scheduler with an adaptive policy [17]

6.1 Evaluation of SPD3

We evaluatedSPD3 on a suite of 15 task-parallel benchmarks
listed in Table 1. It includes eight Java Grande Forum bench-
marks (JGF) [28], four Barcelona OpenMP Task Suites bench-
marks (BOTS) [11], two Shootout benchmarks [2], and one EC2
challenge benchmark.

All benchmarks were written using only finish and async con-
structs for parallelism, with fine grained one-async-peraition
parallelism for parallel loops. As discussed later, thgiagl ver-
sion of the JGF benchmarks contained “chunked” parallebsoo

to 16. The geometric mean of the slowdowns for all the bencksna
on 16 threads i8.78 x.

Though the geometric mean is bel8w, four of the 15 bench-
marks (Crypt, LUFact, RayTracer, and FFT) exhibited a slomwd
around10x for worker threads from 1 to 16. This is because these
benchmarks contain larger numbers of shared locationsnted
to be monitored for race detection. As discussed later,r otee
detection algorithms exhibit much larger slowdowns forsthex-
amples tharsPD3 Note that even in these cases the slowdowns are
similar across 1 to 16 threads. This clearly shows 8RiD3scales
well.

The slowdown for 1-thread is higher than that for all other
threads in many benchmarks. This is because our implen@mtat
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Figure 4. Slowdown of ESP-bags arg@PD3relative to 16-thread HJ-Base version for all benchmarkiefhat the ESP-bags version runs

on 1-thread while th&PD3version runs on 16-threads.

usescompareAndSebperations on atomic variables. These oper-
ations are not optimized for the no contention scenario ab wi
1-thread. Instead, if we use a lock that is optimized for no-co
tention scenario, the slowdown for 1-thread cases would baen

a lot lower. But that implementation does not scale well &sgér
numbers of threads. For example, the lock based impleniemtat
is 1.8x slower (on average) than tltempareAndSémplementa-
tion when running on 16-threads. While the two implementsi
are close for many benchmarks (within a factor of 2), thera is
difference of uptdr x for some benchmarks, when running on 16-
threads. TheompareAndSdmplementation is always faster than
the lock based implementation for larger numbers of threBuee
our aim was to make the algorithm scalable, we chosedhgare-
AndSegpproach.

6.2 Comparison with ESP-bags algorithm

In this section, we compare the performanceS&fD3with ESP-
bags [24]. Figure 4 shows the slowdown of ESP-bags3#id3for
all the benchmarks, relative to the execution time of thehtéad
HJ-Base version. Note that the ESP-bags version runs oreaeth
(because it is a sequential algorithm) while 8i@D3version runs
on 16-threads.

ants like HJ, they used the original coarse-grained oneiciper-
thread approach to loop parallelism in the JGF benchmarkis wi
one thread per core. Converting these programs to fineegtain
parallel versions using Java threads was not feasible sirez-
ing large numbers of threads quickly leads to OutOfMemoryEr
ror’'s. Further, it would also make the size of the vector k$opro-
hibitively large in the program in order to provide the saroersi-
ness and completeness guaranteeSRi33

So, to enable an apples-to-apples comparison in this sectio
we created coarse-grained async-finish versions of the é6€hb
marks with chunked loops for the HJ versions. Since Erasér an
FastTrack were implemented in RoadRunner, we used the -execu
tion of the Java versions of these benchmarks on RoadRuntrer w
out instrumentation (RR-Base) as the baseline for caliogldhe
slowdowns for Eraser and FastTrack. The differences betRée
Base and HJ-Base arise from the use of array views in the HJ ver
sion, and from the use of finish operations instead of barrer
discussed below.

Our first observation when runnirgPD3on the coarse grained
HJ versions of the eight JGF benchmarks was that data rages we
reported for four of the benchmarks: LUFact, MolDyn, RaycEia
and SOR. The data race reports pointed to races in shargg arra

This comparison underscores the fact that the slowdown for that were used by the programmer to implement custom baurrier

a sequential approach to datarace detection can be sigifica
larger than that of parallel approaches, when running orrallph

However, all the custom barrier implementations were irexirbe-
cause they involved unsynchronized spin loops on shareg at¥

machine. For example, the slowdown is reduced by more than a @ments. Even though the programmer declared the arragnefes

15x factor when moving from ESP-bags &PD3for Series and
MatMul benchmarks and by more thai a factor for benchmarks
like MolDyn and SparseMatMult that scale well. On the othemdh,
the slowdown for Crypt is similar for ESP-bags aBBD3because
the uninstrumented async-finish version of Crypt does natesc
well. On averageSPD3is 3.2x faster than ESP-bags on our 16-
way system. This gap is expected to further increase onragste
with larger numbers of cores.

6.3 Comparison with Eraser and FastTrack

We only use the JGF benchmarks for comparisons with other alg
rithms since those are the only common benchmarks with pagt w

on Eraser and FastTrack. However, since Eraser and FastTrac

work on multithreaded Java programs rather than task{pavari-

as volatile, the volatile declaration does not apply to feenents of
the array. (In all fairness to the programmer, the JGF beacksn
were written in the late 1990’s when many Java practitiomese

unaware of the implications of the Java memory model.)

Our second observation is that the default Eraser and Feacst Tr
tools in the RoadRunner implementation did not report mdst o
these data races. The only race reported was by FastTraSkofier
After communication with the implementers of RoadRunneg, w
recently learned that RoadRunner recognizes a number ahcom
barrier class implementations by default and generatesad|Bar-
rier Enter andBarrier Exit events for them which in turn enables
Eraser and FastTrack to take the barriers into account &er de-
tection (even though the barriers are technically buggyjthier a
“-nobarrier” option can be used to suppress this barrieeain.



We confirmed that all races were reported with the “-nobdrrie o FastTrack B Eraser P03 My Base  ——RR.Base
option. However, all RoadRunner performance measurenments
ported in this paper were obtained with default settingswighout

the “-nobarrier” option.

Our third observation is that Eraser reported false datesrfar
many benchmarks. This is not surprising since Eraser is krtow
not be a precise datarace detection algorithm.

To undertake a performance comparison, we converted the fou
benchmarks to race-free HJ programs by replacing the buggy b
riers by finish operations. In some cases, this caused theabk-
version to be slower than the RR-base version as a resute(RR-
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worth noting that the implementation of Eraser and FasKac Number of Threads

RoadRunner include some optimizations that are orthogortale

race detection algorithm used [14]. Similarly, the staptimiza- Figure 5. Slowdown (relative to 16-threads RR-Base) of RR-Base,
tions from [24] included in our implementation 8PD3are also Eraser, FastTrack, HJ-Base, é@D3for Crypt benchmark (chun-
orthogonal to the race detection algorithm. Both these cetp- ked version) on 1-16 threads

timizations could be performed on any race detection algarito

improve its performance.
P P Crypt benchmark on 1-16 threads relative to the 16-thread RR

Base execution time. In this benchmark, RR-Base is thedakie

16 threads as expected. The execution time of HJ-Badedis
slower than RR-Base in the 1-thread case ariick slower than
RR-Base in the 16-thread case. Similarly, the executior toh
SPD3version is also very close; it i6.2x slower in the 1-thread
case and3x slower in the 16-thread case. The execution time
of Eraser and FastTrack aig.7x and 16.6x slower than RR-

Table 2. Relative slowdown oEraser, FastTrackand SPD3for

JGF benchmarks on 16 threads. The slowdown of Eraser and Fast
Track was calculated over their baseline RR-Base while lthe-s
down of SPD3was calculated over its baseline HIJ-Base. For bench-
marks marked with *, race-free versions were usedSBD3but

the original versions were used for Eraser and FastTrack.

Benchmark ‘ RR-Base ‘ Eraser | FastTrack | HJ-Base SPD3 Base in the 1-thread case but they increase to more thar
Time(s) Slowdown Time(s) | Slowdown for 8-threads and 16-threads. This example shows that fmeso
Crypt 0362 | 122.40 133.24 0.585 1.84 programs the pe_rformar)ce overheads for Eraser and Falstdaac
LUFact 147 | 17.95 26.41 5.411 1.08 increase dramatically with the number of threads (cores).
MolDyn* 16.185 8.39 9.59 3.750 13.56
MonteCarlo 2.878 10.95 13.54 5.605 1.86 6.4 Memory Overhead
RayTracer* 2.186 | 20.23 17.45 19.974 5.84
Series | 112.515 1.00 1.00 88.768 1.00 We now compare the memory overheads of the Eraser, FastTrack
SOR* 0.914 4.26 8.36 2.604 4.53 and SPD3 algorithms on the coarse-grained JGF benchmarks.
conarse] 2740|1429 2050 | a0 L Again, the baseline for Eraser and FastTrack was RR-Base and
i i i the baseline foiSPD3was HJ-Base. To obtain a coarse estima-
tion of the memory used, we used thesrbose:gcoption in the
Table 2 shows the slowdowns of Eraser, FastTrack, $PDB3 JVM and picked the maximum heap memory used over all the GC
for all the JGF benchmarks on 16 threads. Note that the slwdo  executions in a single JVM instance. All three instrumentett
Of Eraser and FaStTraCk were Calculated relaUVe to RR'Bﬂ&b Sions trigger GC frequentlyl (e} th|s is a reasonab|e ewmblhe

16 threads), and the slowdown 8PD3was calculated over HJ-  memory overhead.
Base (with 16 threads). For benchmarks marked with *, raee-f
versions were used f&PD3but the original versions were used for
Eraser and FastTrack; this accounts for differences inxeetgion
times of RR-Base and HJ-Base for some benchmarks since the
async-finish versions include more synchronization toemrthe
bugs in the original Java versions.

Table 3. Peak heap memory usage of RR-Base, Eraser, FastTrack,
HJ-Base, an&PD3for JGF benchmarks on 16 threads. For bench-
marks marked with *, race-free versions were usedSBD3but

the original versions were used for Eraser and FastTrack.

Table 2 shows that the relative slowdowns for Eraser and Fast Benchmark Memory (in MB)
Track are much larger than those #PD3 On average (geometric RR-Base | Eraser | FastTrack | HJ-Base | SPD3
mean), the slowdown fd8PD3relative to HJ-base i2.70x while Crypt 209 8539 8535 149 | 6009
that for Eraser and FastTrack are21x and13.87x respectively LUFact 80 1790 2455 47 203
relative to RR-base. There is also a large variation. Whitestow- Momgchngo 13% 32‘112 éggg 5597 sgi
dowr)s are within a factor of 2 for SQR, th_ere_ is more thait a RayTracer 1106 1475 1166 13 as
gap in slowdowns for Crypt and quite a significant differefme Series 30 1067 1062 162 177
LUFact, MonteCarlo, and SparseMatMult as well. The slowdow SOR 81 1161 1551 47 202
for SPD3on MolDyn is larger than the slowdowns for Eraser and Sparse 225 | 2120 2171 88 714
FastTrack because the baseline &?D3is more thandx faster
than the baseline for Eraser and FastTrack. For FastTraeket Table 3 shows the estimated memory usage of these three algo-
slowdowns are consistent with the fact that certain datasscpat- rithms and their baselines for JGF benchmarks on 16 thrééms.
terns (notably, shared reads) can lead to large overheadsidee table shows that the memory usage of HJ-Base is lower than tha
they prevent the use of optimized versions of vector clocks. of RR-Base in all the benchmarks except Series. In all cdkes,

For the case with the largest gap in Table 2 (Crypt), Figure 5 memory usage is lower fdBPD3 compared to Eraser and Fast-
shows the slowdown (scaled execution time) of RR-Base,eras Track with significant variation in the gaps. The memory &safj
FastTrack, HJ-Base, an8PD3for the chunked version of the  Crypt with SPD3is quite high because the benchmark has arrays
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Figure 6. Estimated heap memory usage (in MB) of RR-Base,
Eraser, FastTrack, HJ-Base, @®BD3for LUFact benchmark

of size 20 million and our algorithm maintains shadow |owagi
for all elements of these arrays. But the memory useSB{D3
for Crypt is still less than that of Eraser and FastTrack. figh
memory usage for Eraser and FastTrack is not surprisinguseca
Eraser has to maintain all the locks held while accessingtacpa
lar location, and FastTrack’s vector clocks may grow lihegrthe
number of threads in the worst case.

For one of the benchmarks in Table 3 (LUFact), Figure 6 shows
the estimated memory usage of the three algorithms anditasa-
lines as a function of the number of threads/cores used. tate
both the baselines (RR-Base and HJ-Base) are very closde Whi
the estimated heap usage of RR-Base remains const&80tVat
the estimated usage of HJ-Base varies fB3M to 47M as we go
from 1 thread to 16 threads. The estimated heap usa§®DRBis
about6 x larger than HJ-Base: it varies betweEy2 M and203M
across 16 threads. The estimated heap usage of Erasersegrea
from 833 M for 1 thread tol 790 for 16 threadsZ.1x increase).
Similarly, the estimated heap usage of FastTrack increfieas
825M for 1 thread to2455M for 16 threads Ix increase). This
clearly shows the increase in the memory usage for Erasd¥astel
Track as we increase the number of threads for this benchmark

7. Related Work

In the introduction, we outlined the key differences betweer al-
gorithm and FastTrack. In summary, on one hand, our algarith
usesO(1) space per memory location, while in the worst-case,
FastTrack use®(n). On the other, FastTrack handles more gen-
eral computation graphs than those supported by our modiel. T
time overhead of our algorithm is characteristic of the eayion,
since it depends on the height of the LCA nodes in the DPSS. Iti
independent of the number of threads (processors) thegrogk-
ecutes on. On the other hand, FastTrack’s worst-case tisrbead

is linear in the number of threads, which can grow very largé w
increasing numbers of cores.

Schonberg [27] presented one of the earliest dynamic dega ra
detection algorithm for nested fork-join and synchrorimabper-
ations. In this algorithm, a shared variable set is assediatith
each sequential block in every task. There is also a conuyriest
associated with each shared variable set which keeps tfatie o
concurrent shared variable sets that will complete at a tatee.
The algorithm detects anomalies by comparing completewenc
rent shared variable sets at each time step. This algoritipties
only to a single execution instance of a program, as mendione
in [27]. The space required to store read information in theered
variable sets is bounded By x N, whereV is the number of vari-

ables being monitored arid is the number of execution threatls
This space requirement increases with an increase in thbewoh
threads the program is executed on, whereas our algorigpase
requirement is independent of the number of threads the@nogs
executed on. A limitation of this work is that since accessnaa-
lies are detected at synchronization points, it does nattifyethe
actual read and write operations involved in the data races.

Offset-Span (OS) labeling [21] is an optimized version & th
English-Hebrew (EH) labeling technique [10] for detectidata
races. The idea behind both these techniques is to attadbek la
to every thread in the program and use these labels to check if
two threads can execute concurrently. They also maintarath
cess history for every shared variable that is monitorecthvig
then used to check for conflicts. The length of the labels@sso
ated with each thread can grow arbitrarily long in EH labgfin
whereas the length of the labels in OS labeling is boundedéy t
maximum nesting depth of fork-join in the program. While tid
labeling technique needs an access history of size equs toum-
ber of threads for every monitored variable in the progrdma,@S
labeling technique only needs constant size to store adisss
tory. While OS labeling algorithm supports only nested fpmia
constructs, our algorithm supports a more general set cdrdin
graphs. Further, though the OS labeling algorithm can exrettie
input program in parallel, it has been evaluated in a seiplegt-
ting only [22]. The effectiveness of this algorithm in a ghatam-
plementation is not clear.

A related work on data race detection for structured pdnaite
grams was done as part of the Cilk project [4]. This work gives
an algorithm called SP-hybrid, which detects races in the pr
gram with a constant space and time overhead. Their algorith
has the best possible theoretical overheads for both spadinae.
However, despite its good theoretical bounds, the SP-thydigo-
rithm is very complex and incurs significant inefficienciegprac-
tice. The original paper on SP-hybrid [4] provides no evatma
and subsequent evaluation of an incomplete implementafiSi-
hybrid [18] was done only for a small number of processorse On
indicator of the inefficiency of SP-hybrid can be seen in thet f
that the CilkScreen race detector used in Intel Cilk++ [Hathe
sequential All-Sets algorithm [8] rather than the paradBthybrid
algorithm. Another drawback of their algorithm is that itightly
coupled with Cilk's work-stealing scheduler. Hence, thalgo-
rithm cannot be applied directly to other schedulers. Intremt,
our algorithm is amenable to an efficient implementatiomfqrens
very well in practice, supports a more general set of contjmuta
graphs than Cilk’'s spawn/sync and is also independent ofithe
derlying scheduler.

There has also been work on data race detection algorithms fo
spawn/sync [12] and async/finish models [24]. While theyunex
only O(1) space overhead per memory location, these algorithms
must process the program in a sequential depth-first mafurer,
damentally limiting the scalability of these approachasdntrast,
the algorithm presented in this work can process the progham
ing parallel execution, while still requiring onlg(1) space per
memory location.

L1f N refers to the maximum number of threads possible in all dicsi

of a program for a given input, then this algorithm can guesarata race
freedom for all executions of the program for that input. dt,nthen this

guarantee will not hold.

2Note that the length of the labels is bounded by the maximustirg
level of fork-join in EH labeling in the presence of an effeetheuristic as
reported in [10]



8. Conclusion and Future Work

In this work, we presented a new dynamic data race detedtjon a
rithm for structured parallel programs. The algorithm caocpss
the program in parallel, us&€3(1) space per memory location and
admits an efficient implementation. The algorithm tracksatdan
happen in parallel via a new data structure called the dynana-
gram structure tree (DPST), and maintains two readers anitex w
for each shared memory location in order to track potentalc
flicts between different tasks. We implemented the algoridnd
demonstrated its effectiveness on a range of benchmarkstuire,

it could be interesting to extend the algorithm to other ctrced
parallel constructs such as HJ’s phaser construct [6].
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