
SCnC: Efficient Unification of Streaming
with Dynamic Task Parallelism

Dragoş Sbı̂rlea Jun Shirako Ryan Newton† Vivek Sarkar
Rice University, Indiana University†

dragos@rice.edu shirako@rice.edu rrnewton@indiana.edu vsarkar@rice.edu

Abstract
Stream processing is a special form of the dataflow execution
model that offers extensive opportunities for optimization and auto-
matic parallelization. To take full advantage of the paradigm, how-
ever, typically requires programmers to learn a new language and
re-implement their applications. This work shows that it is possible
to exploit streaming as a safe and automatic optimization of a more
general dataflow-based model—one in which computation kernels
are written in standard, general-purpose languages and organized
as a coordination graph.

We propose Streaming Concurrent Collections (SCnC), a stream-
ing system that can efficiently run a subset of programs supported
by Concurrent Collections (CnC). CnC is a general purpose par-
allel programming paradigm with a task-parallel look and feel but
based on dataflow graph principles. Its expressivity extends to any
arbitrary task graph. Integration of these models would allow appli-
cation developers to benefit from the performance and tight mem-
ory footprint of stream parallelism for eligible subgraphs of their
application.

In this paper we formally define the requirements (streaming ac-
cess patterns) needed for using SCnC, and outline a static decision
procedure for identifying and processing eligible SCnC subgraphs.
We present initial results on an prototype implementation that show
that transitioning from general CnC to SCnC leads to a throughput
increase of up to 40× for certain benchmarks, and also enable pro-
grams with large data sizes to execute in available memory for cases
where CnC execution may run out of memory.

1. Introduction
As multicore computing becomes the norm, rather than the ex-
ception, exploiting parallelism in applications becomes paramount.
Parallel programming models based on stream processing are of
particular interest because they offer some of the best examples of
high-performance, fully automatic parallelization of implicitly par-
allel code. However, programming languages built around stream
programming, such as StreamIt, have not become widespread,
even for application areas where they offer clear benefits. This
may be due to the intrinsic adoption barrier for new programming
languages—especially those with a narrow range of applicability
or which do not compose with larger software systems.

We propose a new solution to this problem that can enable ef-
ficient stream processing within general applications written using
standard languages (in this paper, Java). We do not, however, at-
tempt to optimize streaming patterns within a fully general-purpose
language. Rather, we advocate targeting stream-processing patterns
implemented within a more general-purpose graph-based parallel
model. To that end we target the Concurrent Collections model.

Concurrent Collections (CnC) is unique in exposing a task-
parallel “look and feel” while retaining determinism. CnC allows
the user to dynamically launch tasks(“steps”) which read and write
from single-assignment key-value stores (“collections”).

CnC is an effective parallel programming model for many prob-
lems. For streaming applications, however, it is rather inefficient,
incurring task scheduler overhead and further overhead to store
stream elements in heavy-weight geernal-purpose collections.

In this paper we introduce Streaming CnC (SCnC), which iden-
tifies streaming patterns based on metadata already available in the
CnC program. For compliant programs, SCnC uses an alternative
code generation and runtime tool to enable improved performance
and memory usage. We show the equivalence of the streaming and
task-based execution of the same program and identify the addi-
tional restrictions needed to make streaming a safe optimization, in-
suring deadlock-freedom. The streaming CnC extension proposed
is more general than many stream-parallel programming languages.
We report ongoing work on the SCnC prototype implementation,
including a performance comparison against the baseline CnC exe-
cution and expressiveness compared to the StreamIt.

This paper offers the following main contributions:

• The identification of a small number of restrictions to the CnC
language that allow the switch from a task-based to a streaming
runtime while maintaining determinism and the representing a
wider range of graph than the usual pipeline/split join / loop-
back streaming graphs. To our knowledge, no other streaming
system supports this kind of streaming graph shapes.
• An novel analysis to identify when a program is streaming (i.e.

will run correctly on the streaming runtime).
• A new analysis to determine if the streaming execution is

deadlock-free even in the presence of variable input / output
rates and to determine safe bound for the streaming buffers.
• Experimental results showing compelling performance and

memory improvements compared to the task-based execution
of the same application code.

2. CnC Terminology
The Concurrent Collections(CnC) programming model [8] on
which Streaming Concurrent Collection is a prerequisite to un-
derstanding the paper and is described in short in this section.

CnC has three main building blocks: item collections, control
collections and step collections. These collections and their rela-
tionships are defined statically for each application in a CnC tex-
tual graph specification file, but the code of the application, the
step implementations, can be written in any one of multiple host
languages.

Step collections correspond to particular functions defined in
the host language. A step instance is analogous to a task being
spawned (or a streaming filter iteration). Where we would say a task
has been spawned, we say a step instance has been prescribed. In
contrast to streaming, the CnC model does not imply any ordering
constraints between execution of step instances of the same step
collection; however, steps read and write data which introduce
dependencies (items). Steps are stateless and have no side effects

Edge type Source
Collection

Destination
Collection

Meaning

Item Put Step Item a source step may put items in
the destination item collection

Control Put Step Control a source step instance may put
control tags in the destination
collection

Item Get Item Step A destination stepmay get items
from the source collection

Prescription Control Step Any tag put in the source con-
trol collection leads to the ex-
ecution of a step instance from
the destination collection.

Table 1. Types of edges in a CnC graph

outside of item production/consumption. The main program that
initiates a CnC graph, provides its inputs, and reads its outputs is
referred to as the environment for the CnC graph.

Item collections are CnC’s data layer and accessing items is the
sole means of synchronization between steps. Item collections are
“append-only” key-value stores with the keys referred to as item
tags. Any step collection that shares an edge with an item collec-
tion in the application graph can perform a Put or Get operation
to access items in that collection, according to the direction of the
edge. However, individual items are single-assignment and cannot
be overwritten. Further, reading an unavailable item requires block-
ing until the item is provided by another step instance.

With step collections for computation and item collections stor-
ing data, the final collection type, control collections, serve as
broadcast nodes, sending invocation messages (also called control
tags) to one or more step collections, prescribing an instance of
each to execute. The only operation on control collections is thus a
Put(controlTag) whose parameter is passed to the step instance as
an argument.

The CnC graph specification is a textual representation of the
statically known structure of the application, relating the applica-
tion’s step, item, and control collections, as well as including meta-
data about item tag indexing relationships (data access patterns).
The graph is used to generate code for the item and control col-
lections and to construct and execute the graph, so that the user
need write only step implementations. For graphical representa-
tions in this paper, we use the following shapes, following stan-
dard CnC conventions: step collections are circles, item collections
are squares and control collections are triangles. Table 2 shows the
various types of edges forming a CnC application graph.

To execute general CnC programs a task based runtime is
needed. Currently, the runtime spawns task for each step instance,
uses hashmaps to implement item collections and locks for syn-
chronization on items.

Dataflow programming models and indeed any programming
model have to establish a compromise between expressiveness and
analyzability [14].

CnC supports a wide range of application graphs and provably
supports more parallel execution graphs than Cilk: while Cilk sup-
ports fully strict computations[4] that are also terminally strict [2],
CnC can express any terminally strict computation [12].

3. Streaming CnC
Streaming CnC (SCnC) provides a restricted version of the CnC
model (including the graph specification, corresponding code gen-
erator, and runtime library) that allows efficient streaming execu-
tion of CnC programs, as opposed to task based execution used
for non-streaming CnC applications. Ultimately, SCnC will execute

CnC application

Is the graph
well formed?

Convert graph to well formed shape
(Section 8)

Success in
converting?

Check streaming
access pattern

(Section9)

Map to HJ & streaming phasers
(Section 12)

Streaming
CnC application

Yes

YesNo

Ok

Fail

No

Map to task based runtime

Task based
CnC application

Identify deadlock safety bounds
(Section 10)

Figure 1. The high level algorithm needed to convert a CnC appli-
cation to streaming form

CnC applications using the same source code and specifications as
CnC. (But our present prototype has minor API differences, de-
scribed in Section 6.2.)

A theoretical description of the SCnC subset of CnC applica-
tion is presented in Section 3.1 and the engineering considerations
behind our choice is presented in section 6. The process of run-
ning applications in the presence of CnC and SCnC is illustrated in
Figure 1. As reflected in the Figure, our current prototype makes
an all-or-nothing decision as to whether an application is stream-
ing. However, there is no reason that SCnC sub-programs cannot
execute alongside their CnC counterparts in the future.

SCnC is based on a mapping between CnC and streaming con-
cepts (as in Table 2). We identify a subset of CnC graphs where
this mapping is valid and efficient which we call well-formed [for
SCnC]. We show how analyze applications to test well-formedness
of applications in Section 4. If the application data accesses are
streaming, we identify buffer sizes that eliminate the possibility of
deadlocks (Section 5). As a last step, mapping to the actual stream-
ing runtime is performed, as discussed in Section 6.

This paper compares the performance of running the same ap-
plications on the streaming and task-based runtimes. We also com-
pare the performance of SCnC against StreamIt to identify how
much of the streaming performance benefit we were capable of
extracting automatically, while allowing the programmer to use a
single, high level language for both streaming and non-streaming
applications.

3.1 Streaming CnC graphs
The SCnC runtime cannot run an arbitrary CnC graph. This is be-
cause of the nature of streaming (not any application is a stream-
ing application), because of implementation considerations, and be-
cause of language design restrictions (compromise between gener-
ality and safety guarantees such as determinism and deadlock free-
dom). We named this subset well-formed, defined as follows:

Definition A well-formed SCnC graph is a CnC graph that respects
the following conditions:

1. Control collections have only one producing step collection and
one prescribed step collection.

2. Item collections have only one producing and one consuming
step collections.

3. The environment only puts control tags into a single control
collection and has no other put-edge. The control tags can be
pairs that include the value of any items that for convenience,
are produced by the environment.

CnC name Streaming name
Item collection Queue between filters

Control collection No exact match in streaming
Step collection Filter
Environment Input stream

Table 2. Mapping between CnC concepts and streaming concepts

Definition The CnC control graph is the CnC graph with the item
collections, item put-edges and item get-edges removed.

THEOREM 3.1. For a well formed CnC graph, the CnC control
graph with root the entry control collection is a directed tree.

Proof We first prove the absence of cycles. We know the CnC
control graph is weakly connected and that both step and control
collections have only one predecessor and can be reached from
the environment. If there was a cycle, the nodes in that cycle
would have a predecessor in the cycle, so either the environment
is in the cycle (impossible, as the environment does not have any
incoming edges) or the cycle is unreachable from the environment
(impossible). Because it does not have cycles, the CnC control
graph with entry control collection as root is a directed tree.

We know that there is a path from the environment to each step
collection . As the entry control collection is the singular child of
the environment, all paths must pass through it, so there must be a
path from the entry control collection to every node.

We now check for the proper direction of the edges: control
graph edges are either from control collections to step collections
or from step collections to control collections. Each step collection
has only one incoming edge (the prescription edge) witch connects
the step collection to its parent in the tree, leaving the ether edges
to connect the step collection to children.2

The SCnC runtime supports a large subset of general CnC ap-
plications, as long as the application has streaming access patterns
for items, as defined in Section 4.

SCnC introduces the separation of control streams (CnC control
collections) and item streams(CnC item collections), where control
streams are similar to the variables that guide the flow through the
basic blocks of a control flow graph in program analysis. By The-
orem 3.1 the CnC control graph of a SCnC program is a directed
graph. Furthermore, any tree can be a CnC control graph; we can
obtain the CnC control graph by expanding all of the directed tree
nodes to a pair of control collection connected to a step collection
and keeping all the original tree edges as edges from the step col-
lection of the source to the control collection of the destination.

On this directed tree backbone, adding any item stream with any
single source and any single destination step collections keeps the
result a legal CnC program.

The generality of the supported graph shapes was a priority, and
allows streaming a larger set of applications than other streaming
frameworks. A comparison of the expressiveness of SCnC and
other streaming languages, is in the Related Work section.

3.2 Streaming CnC vs. CnC vs. StreamIt
Some CnC concepts map naturally to streaming concepts: item col-
lections seem like the streaming queues and steps look like filters.
Of course, there are differences such as the explicit control flow in
CnC and the formalization of the environment. The mapping be-
tween streaming constructs and SCnC constructs is in Table 2.

SCnC restriction to single producer for item collections forces
the distribution/duplication operations to be explicit in the SCnC
graphs, which in turn helps solve the determinism problems that
might arise in a multiple producer/consumer scenarios with implicit

API DescriptionSCnC Streaming
collection.get(0) pop() remove and return the next ele-

ment in the queue
collection.get(x),
with x > 0

peek(y) get(x) returns the element that
has been popped by the x-th
previous get(0) on that collec-
tion; peek(y) return the item at
offset y in the queue

Table 3. Item get API: mapping between streaming and SCnC

joins. Because in SCnC the join step explicitly states the order
of the gets and puts from each of the input collections, based on
the value of the control tag it receives from its control collection,
determinism is maintained and this allows for arbitrary split/join
patterns compared to StreamIt.

The API of the item collection operations are similar to those
on streaming queues, as Table 3 shows, with get(0) corresponding
to a pop() operation. A get with a parameter different than 0 is
similar to a ”reverse peek” operation that allows access to the
element obtained M pop operations ago; using it, we can express
any operation that can be expressed with a traditional peek.

In many applications, one pattern that appears in the graph
is the item collection - step collection cycle. This means that a
single step collection is both producer and consumer of an item
collection and for well-formed graph the step collection, being the
single producer and consumer, is the single entity to interact with
the item collection. We call such item collections step-local item
collections.

We have identified the cause of this pattern to be the restric-
tion of CnC that the steps are stateless (that is, there is not state
information preserved between different step instance executions).
If the application access pattern is streaming, these collections can
be transformed back to variables as state is permitted in SCnC.

4. Streaming access pattern identification
SCnC only runs streaming programs; as the streaming runtime is
more restricted than general CnC, additional checks have to be
performed before using it. This section deals with the required
checks for automatic identification of the streaming access patterns
on a well-formed graph. In this section, we take the well-formed
shape of the application graph as a given and use the theorems
in section 3.1 to support our analysis. There is no corresponding
transformation, just a boolean answer that ensures the application
will run on the streaming runtime.

The algorithm is a completely new and has two parts: graph
analysis and condition testing. The testing phase can throw errors
that mean the application does not respect the item restrictions that
we define as streaming.

In the following algorithm, any step that requires the computa-
tion of a function that cannot be identified (for example if the out-
put value is not dependent only on the parameters specified) will
fail and lead to early termination of the algorithm and output of
FALSE (application cannot be converted to streaming form using
simple rewrite rules).

The functions that annotate edges in this algorithm are user writ-
ten. The identification of functions and equation solving needed to
make the analysis work can be implemented using symbolic execu-
tion methods, specifically symbolic evaluation, from systems such
as Magma [6]. Such mathematical modeling has now made its way
into commercial tools like Matlab [1]. In CnC applications these
functions are typically not complicated, usually linear functions,
which considerably simplifies analysis.

The analysis phase of the algorithm consists of these steps:

1. Require the control tags of the EntryStep (the Env− >
EntryTags edge) to be consecutive integers starting from 0.
These are iteration numbers and work like time steps.

2. Require all item and control tags of to have an integer or-
dering component, unique in the tags of the particular item
or control collection. This ordering component and should be
monotonously increasing. In the following steps of the algo-
rithm for simplicity , we refer only to this ordering component
as the tag, even though there may be other information used in
the real tag.

3. The following steps compute labels on the application graph
that map control tags of producers or consumers to the item or
control tags that get produced/consumed by that step:
• Annotate each item put-edge between a step T and an item

collection O with at least one item put-function with do-
main equal to the possible control tags for step T and co-
domain equal to the tags of the items that are put. If a step
instance can put k items, there have to be k distinct put-
functions, to model the relationship between the tag of the
step and the possible tags of the items produced.
If the number of item-puts a step instance can perform is
not bounded, the algorithm fails. If the functions cannot be
identified statically, for example when the item tags depend
on the value of other data items, it also fails.
• Annotate each control put-edge with similar control (tag)

put functions f i
controlPut.

• Annotate each item get-edge with similar item get func-
tions f i

itemGet.
• Label each prescription edge with the identity function

4. Compute meta-functions that map iteration numbers (entry con-
trol tags for the streaming graph) to item and control tag values
that get produced by composing the previously defined func-
tions.
• Do a traversal of the CnC control graph(which is an arbores-

cence according to Theorem 3.1), labelling each step collec-
tion and item collections with the result of the composition
of the functions through which the path from the root of the
tree passes to reach that particular step. We call this label
function a producer function for that step, control or item
collection.
For example, if the path from the EntryStep collection to a
step collection S goes through the edges labeled, in order,
with the control put functions f1 to fn, the producer func-
tionfor that control collection is: fS

controlPut = fn ◦fn−1 ◦
fn−2 ◦ ... ◦ f1 . If the step collection S produces items in
the item collection I, and the item put edge between them is
labelled with item-put function fS−I

itemPut, then the producer
functionfor item collection I is: fI

producer = fS−I
itemPut ◦

fS
controlPut

The traversal is easily done in a pre-order traversal, thus
incurring only a linear complexity cost.
For each item collection, there will result a set of producer
functions, that map iteration numbers (tags coming from
the environment) to item tags. The intuition behind these
functions is that they give the item tags that are produced at
a certain iteration.
• In addition to creating a function representing all item in-

stances produced in an iteration, we create a similar function
for all items consumed. That is, we compose the producer

function of each step with each of its item Get functions:
for example fI

consumer = fS−I
itemGet ◦ f

S
producer gives the

item consumer function for an item collection I consumed
by step collection S.

5. For each item-put or item-get edge in the graph, compute the
minimum consumer function, defined as the minimum of
the values of all the consumer functionsfor a step instance.
fI
min consumer(y) = minx(fcx(y)) The intuition is that they

identify the smallest tag that a step can get from the item
collection I, as a function of the time iterations used as entry
control tags for the graph.

Note that, according to Theorem 3.1 if there are item-put and
item-get functions, the composition of the functions required for
the existence of producer functionsand consumer functionsexists.

The purpose of the test phase is to test the fact that the graph
functions respect the streaming access restrictions to items. It con-
sists of testing that the producer and consumer function pairs for all
item collections respect the following constraints:

1. “producer precedence” constraint: any item is produced in an
earlier iteration that it is consumed. If fc and fp annotate edges
that share a common item collection vertex and y is an item tag,
then f−1

p (y) ≤ f−1
c (y), ∀y ≥ 0. If there is no inverse for either

functions of any item collection or if the previous relationship
simply does not hold, return FALSE.

2. “bounded buffer” constraint: there is a constant N1 such that
for any pair of consumer functions fc1 and fc2 of a step col-
lection, the difference between the value of the consumer func-
tions is smaller than N1. A step that respects this constraint will
never consume items that are more than N1 items apart. The
corresponding equation is: |(fc1 − fc2)(x)| < N, ∀x and
∀fc1 and fc2 consumer functions of a single step collection

3. “sliding window” constraint: For a single step collection and
consecutive step instances tagged y and y+1, the minimum
value of the tag that can be consumed by the step tagged y+1 is
no lower than the minimum value that can be consumed by step
instance tagged y: fcmin(y) ≤ fcmin(y + 1)

4. “bounded lifetime” constraint: For any item tagged t, produced
in iteration t1 and consumed in iteration t2, there is N2 constant
such that t2 − t1 < N2 Bounded buffer, sliding window and
bounded lifetime assure that we will not need a buffer size
larger than N1 or N2 to satisfy get calls on an item collection.

5. “unique timestep” constraint: Each step instance performs no
more than a single put in each of its output control collections.
This constrain assures us that, for a given step collection there
will never be more than one step instance with the same itera-
tion number (started by a single ancestor).

If the functions of all item collections respect the previous
constraint, then the algorithm outputs TRUE. Otherwise it outputs
FALSE.

5. Deadlock
SCnC must not introduce deadlocks to correct CnC programs.
There are three possible causes of deadlock in SCnC, as follows:

• If a step blocks attempting to get an item that cannot be pro-
duced because it requires the current step to complete (filter
iteration ordering constraint). We show this cannot happen with
SCnC.
• If a step performs a get on an item that is no longer in the

streaming buffer (streaming access pattern constraint). We show
this cannot happen with SCnC.

• The full-empty buffer problem [15, 20].Lets say one of the
streaming buffer queues (called A) becomes full, blocking the
producer and thus prevents him from producing items in another
queue (B). If the consumer will block too waiting on B because
of this (and cannot unblock A), then there is a deadlock. We
describe a technique that finds a sufficiently large bound for the
streaming buffers so that they never fill up.

The first scenario is a direct contradiction of the “producer
precedence” rule. If the item is unavailable, its producer must not
be able to run until a later iteration (counted by global “ticks” from
the environment). But, by the “producer precedence” rule an item’s
consumption sites must happen at the same or later iteration than
the item was produced.

We must take some care with the situation where production and
consumption of an item fall in the same iteration. In this case both
the consuming and producing step instances will begin execution
during the iteration in question. To deadlock, they each would have
to wait for an item produced by the other one, which means both
of them block on get calls followed at some point by put calls
that would unblock the other one. This situation, however, would
deadlock in a normal CnC execution, contradicting our assumption
that the program is correct under a regular CnC execution.

The second scenario occurs only if the buffer size selected is
too small, which is prevented by the upper-bound determination
method described in the next section. Finally, the full-empty buffer
problem has been previously studied in the literature [15, 20] and
is characteristic of any streaming application with filtering capa-
bilities. Previously proposed deadlock avoidance algorithms can be
applied to SCnC applications.

5.1 Sizing Item Collection Stream Buffers
The third bullet in the list of deadlock causes needs attentive anal-
ysis. This subsection describes how to statically identify a safe size
of the streaming buffers such that this full-empty buffer deadlock
can never manifest. First, it is important to notice that a program
having only Control and Step Collections cannot deadlock, as the
control graph is always a tree.

For an item with tag t produced with the restrictions of a well-
formed CnC application we have the following equation: t =
f i
producer(it1) = f j

consumer(it2) illustrating that the item was
produced in time iteration it1 and consumed in time iteration it2.
If there are multiple possible consumer functions, all combinations
must be considered and the final buffer size should be the maximum
of those identified through the following computation.

The required buffer size for item t is (it2−it1)∗maxt=it1..it2 POR(t),
where POR(it) is the producer output in iteration it.

The item rate is upperbound by a limit R, where R is less than
the cardinality of the set of put functions corresponding to the
producer and item collection.

Also, there is an integer constant k fixed such that t2 − t1 < k
which means that the items consumed by a step are produced a fixed
number of time-steps before(“bounded lifetime” constraint). Note
that the it2 − it1 difference is always positive , as per “producer
precedence” rule.

The item collection buffer size is thus upper-bound by L =
(it2−it1)∗R = k∗R. If the actual buffer size of the item collection
buffer is larger than L, the buffer will never fill, thus the producer
and consumer edges cannot participate in a deadlock cycle.

This condition is not enough though, as, even though there is
space in the item buffer, there might not be space in the control
collection buffers somewhere on the path between the producer and
the consumer (as shown previously, the control graph is a tree, so
there is only one such path). To find an upper-bound for the size
of the buffers on this path, we should consider that each step can
produce at most one control tag per iteration per destination control

collection (“unique timestamp” rule). The maximum number of
tags that need storage is thus M = it2 − it1 but this limit applies
for all control collections on the path between the producer and
consumer steps. As for the item buffer size, we need to consider all
pairs it1 and it2 that can produce, respectively consume any item
tagged t and take the maximum of the different M values obtained.

The combination of using sufficiently large buffers for item col-
lections (L) and control buffers (M) leads to the deadlock freedom
property of a SCnC program.

6. Implementation
Here we describe our prototype implementation of SCnC, which
currently has certain restrictions. Only complete programs are han-
dled by SCnC (not yet subsets of CnC programs), and some phases
must be performed by hand, notably converting to use the slightly
different put and get API described in previous sections. The pro-
grammer workflow for SCnC usage is in Figure 2.

6.1 Habanero Java
The step code of SCnC programs and the SCnC runtime system it-
self are written using Habanero Java (HJ), a language derived from
X10 which offers primitives for productive and easy to use par-
allel programming. The basis for parallel programming are asyn-
chronously forked tasks called asyncs, which are synchronized by
an enclosing finish block. Habanero Java supports a superset of the
Cilk [5] spawn-sync parallelism; it eliminates the Cilk requirement
that parallel computations should be fully strict(in HJ, join edges
don’t have to go to the parent in the spawn tree) [?].

For producer consumer synchronization we use phasers. Phasers [23]
are synchronization constructs that offer scalable synchronization
between a dynamically variable number of tasks The phaser regis-
tration mode models the type of synchronization required: signal-
only and wait-only modes for producer consumer and signal-wait
for barrier synchronization. In our work, we use the producer-
consumer form of synchronization.

Phaser accumulators [22] are a reduction construct built over the
synchronization capabilities of Habanero phasers. Each producer
(which is registered in signal mode) sends a value to be reduced
and then, when all producers have signaled to the phaser , the
consumer (which is registered in wait mode) can be unblocked and
use the reduced value. An accumulator is associated with a phaser
and needs to know the type of the values it is reducing (e.g. int)
and what is the reduction operation (e.g. SUM). The producers can
send their values and then signal the phaser. The producer’s will
proceed after all signals have been received and it can access the
reduced value through the accumulator result call.

An extension of the accumulators and phasers for streaming,
called streaming phasers or phaser beams, improves the use of
these constructs for streaming programs by adding support for
bounded-buffer synchronization in phasers and accumulators. For
phasers, the producer can signal at most k times more than the
consumer waited. Accumulator now contain an internal circular
buffer whose size reflects the bound k that is used to store the
additional items before they are consumed. Access to previously
consumed elements is permitted, within the limits of the internal
buffer, by providing an additional offset parameter to the result call.
This feature underlies the SCnC reverse peek operation.

6.2 Mapping SCnC onto Habanero Java
The implementation of streaming item and control collections is
based on phaser accumulators for poarallelism between step col-
lections. For data-parallelism within a step collection we also use
dynamic split-join nodes that split the step instances into a user-
controllable, stateful number of tasks.

Listing 1. Item collection implementation code fragment
p u b l i c a b s t r a c t c l a s s O b j e c t I t e m C o l e c t i o n {

p u b l i c p h a s e r ph ;
p u b l i c a c c u m u l a t o r a ;
p u b l i c O b j e c t Get (i n t no) {

O b j e c t v a l u e = n u l l ;
i f (no == 0) {

ph . doWait () ;
v a l u e = a . o b j R e s u l t () ;

} e l s e { . . . }
re turn v a l u e ;

}
p u b l i c vo id Put (O b j e c t p) {

a . send (p) ;
ph . s i g n a l () ;

}}

Listing 2. Code fragment of the abstract base class for a step
p u b l i c vo id s t a r t (WrappedIn t t a g) {

f i n a l Tag f t a g = t a g ;
a sync phased (

pCont ro lC . ph<Mode . WAIT>, / / p r e s c r i b i n g c o l l e c t i o n
producedI temC1 . ph<Mode . SIG> ,
p r odu ced Con t ro lC1 . ph<Mode . SIG>) {
run (f t a g) ;

}}
p u b l i c vo id run (WrappedIn t p t a g) {

WrappedIn t t a g = c o n t r o l C . Get (0) ;
whi le (t a g . v a l u e != endSt ream) {

s t e p (t a g) ; / / run t h e u s e r w r i t t e n s t e p code
t a g = c o n t r o l C . Get (0) ; / / pop t h e n e x t c o n t r o l t a g

}}

Each collection has a phaser and accumulator pair that allow
synchronization and communication between the producer and
consumer of an item collection. The SCnC code generator cre-
ates a class with these two members and corresponding put and get
operations. There are separate classes for primitive types for per-
formance reasons and a specialized class for the actual type of the
data items is generated by inheritance and performs the necessary
type-casting from Object to the particular item type.

Populating the EntryTag control collection with initial values is
done through the init function in which the user adds code with Put
operations. We generate both the graph class and the main program
for the CnC application, which can be modified by the user, so the
user only writes the step code.

The difference in API compared to CnC is in put and get opera-
tions. Put operations always put the next item in the item collection
(stream) and get operations take as input, not an absolute tag, but
an offset relative to the position of the item produced by the last
wait operation on the phaser of the item collection.

Thus, the API for an item get operation are: if the desire is to
access an already used item (an item that has already been gotten
at least once), use get with an offset larger than 0. If the intent is to
access the next item in the stream, then do a get with parameter 0,
which means for the runtime that a new item has to be obtained and
it inserts the proper wait operation on the item collection phaser.
The essential operations of the functions are found in Listing 1.

As described above, the phaser synchronization construct needs
to be registered on the task that uses it. In our Habanero Java imple-
mentation, step collections are modeled through asyncs containing
a loop, whose iterations correspond to step instances. The imple-
mentation is hidden from the user through auto-generated code and
using object oriented class hierarchy. The translator creates a base
abstract class for each step collection and the template for the ac-
tual user step class. The user only works with the user step class, in
which he inserts code in only one function, as shown in Listing 2.

Figure 2. The tool workflow for streaming a CnC app. Blocks
marked with a star are manual, in the current implementation.

7. Experimental Results
The SCnC translator and runtime have been tested on a total of
six applications: three StreamIt benchmarks (BeamFormer, Filter-
Bank and FMRadio), a clustering application (FacilityLocation),
the well known mathematical algorithm Sieve of Eratosthenes and a
video processing application (EdgeDetection). Throughput results
are shown in Table 4 for four of the applications; because of space
constraints, the other benchamrks show only the additional speedup
brought by exploiting dynamic parallelism (“SCnC dynamic” with
dynamic split-join nodes), compared to an execution that fixes at
compile-time the amount of data-parallelism exploited by a split-
join construct (fixed graph).

Results are reported for CnC, hand optimized phaser beams,
and SCnC versions of the application. The work stealing scheduler
of CnC has also been shown to perform well against other task-
parallel implementations [10], and yet here we see a large opportu-
nity for improved performance on streaming applications.

Applications were initially implemented in CnC. Porting to
SCnC by hand helped to validate our algorithm for transforming a
CnC spec to SCnC. In this evaluation, we performed the analysis by
hand and we manually refactored step code as well: first, changing
Puts and Gets use the SCnC tags (offets rather than absolute time
iterations), and, second, promoting step-local item collections to
normal mutable state. The test results have been encouraging, with
increases in throughput of up to 40x. In addition, SCnC showed
it can support larger problem sizes than CnC due to memory foot-
print. The input sizes listed for CnC are the largest supported (given
a 2GB Java heap). The SCnC results show the throughput for the
same input size as CnC, but also for higher input size that is enabled
by using SCnC.

The tests have been performed on a system with four quad-
core Xeon processors and 16GB RAM . The performance anal-
ysis focuses on the variation of throughput between implementa-
tions and not on absolute timing of applications, as the current CnC
implementation has memory collection problems that lead to Out-
OfMemory exceptions for long running programs such as stream-
ing ones [7]. The size of the problem used for CnC is the maximum
size for which the garbage collection does not go over 10% of ap-
plication runtime. One thread per core is used for the CnC runtime,
which is based on a global work queue, whereas the streaming pro-
gram instead employs one thread per node in the application graph
(step). Therefore graph topology, and in particular the splitting fac-
tor at data-parallel split-join nodes, can have an impact on perfor-
mance.

Input size Model Run Time Throughput
(elements) (seconds) (items/second)

Fi
lte

rb
an

k 50,000 CnC 44 1136
50,000 SCnC 9 5555

5,000,000 SCnC 400 12500
5,000,000 Stream phasers 34 147058

B
ea

m
fo

rm 30,000 CnC 60 500
30,000 SCnC 7.8 3846

3,000,000 SCnC 140 20270
3,000,000 Stream phasers 51 58823

FM
R

ad
io 100,000 CnC 102 980

100,000 SCnC 3.4 29411
1,000,000 SCnC 29 34482
1,000,000 Stream phasers 5 200000

Fa
ci

lit
y

L
oc

at
io

n 300,000 CnC 54 5454
300,000 SCnC 13.2 22727

3,000,000 SCnC 150 20000
3,000,000 Stream phasers 65 46154

Table 4. Performance results for StreamIt benchmarks (Filterbank,
Beamformer, FMRadio) and FacilityLocation (16 core Xeon)

Execution Time (seconds) Speedup
Consumer Delay SCnC SCnC dynamic

none 90 94 0.95
1ms every 50th 212 101 2.1
1ms every 25th 414 131 3.16
1ms every 12th 857 250 3.4

Table 5. Facility Location: Speedup using dynamic parallelism
feature comapred with fixed parallel SCnC baseline, 16 core Xeon

The experimental results were performed according to the
methodology suggested by Georges et al. [11].

7.1 Benchmarks with fixed graph structure
This section addresses benchmark behavior under a compile-time
determination of splitting degree for split-join nodes: i.e. a fixed
graph structure. The FilterBank StreamIt application implements
a filter bank for signal processing.

The Beamformer version we implemented has deterministic
output ordering and four parallel beams, as in the StreamIt imple-
mentation.

7.2 Dynamic parallelism benchmarks
The facility location application is a data mining application that
solves the problem of optimum placement of production and supply
facilities. Formally [16], we are given a metric space and a facility
cost for each node as well as a stream of demand points. The
problem is finding the minimum number and positioning of nodes
such that it minimizes a cost function. This problem occurs in
placing production facilities, networking and classification.

In such a producer/consumer example, speedup by running mul-
tiple consumers in parallel is not possible, as they would block
waiting for input to consume. We modeled the computation of
such statistics by adding artificial wait times for consumers, start-
ing from 0 to 1ms for every 12th point. The additional time is small,
but it is enough to show some scalability of the parallel implemen-
tation of FacilityLocation. Higher values might correspond better
to real world implementation but we decided to be conservative in
our analysis, using at most 83.(3) microseconds per point. The re-
sults in Table 5 and show an additional speedup of 3.4 compared to
a “fixed” parallel implementation.

Variant Execution Time (seconds) Speedup
Variant SCnC SCnC Dynamic Speedup
M=N 238 40 5.95

M=2*N 863 80 10.78

Table 6. Sieve: Comparison of SCnC performance with and with-
out dynamic parallelism on the 16 core Xeon system, N= 1,000,000

Frame
Extractor

Environment

Input
Frames

Edge
Detector

DetectedEdes
Count
edges

No.
edges

Frame
Extractor

Environment

Input
Frames

DetectedEdes

Count
edges

No.
edges

Detector
0 Detector

30 Detector
60 Detector

90

Generator

Prime
Filter

Prime
Filter

Prime
Filter

PrimeSelector
ItemCollection Distributor

PrimeOwner
ItemCollection

Environment
A B C

Figure 3. A: the static CnC graph of EdgeDetection. B: the dy-
namic behavior of SCnC, using 4 parallel places. C: the dynamic
behavior of Sieve, with 3 places.

The Sieve of Eratosthenes is an algorithm for finding the prime
numbers, attributed to the Greek mathematician Eratosthenes. Our
implementation (Figure 3) uses a dynamic split-join with feedback
loop. There is one producer that streams in consecutive numbers
starting at 2; the numbers are then sent to several parallel filters
that check if the number is divisible with any of the prime numbers
that each filter stores. If a filter finds a divisor, it sends to the join
node a 1, if not, it sends 0. The join node performs a sum reduction
and if the result is 0, the number is prime. It then sends back to the
filters the id of the filter that should add the newly discovered prime
number to its prime number store.

Here the number of branches of the dynamic splitter can be
adjusted to the number of cores in the machine. Each place stores
a chunk of the primes previously found. Performance results are
found in Table 6 for 15 filters and a cyclic distribution of primes to
filters.

We also implemented an extension of the Sieve that not only
finds the prime numbers up to N, but also counts the numbers
between N and M that are not divisible by any prime number less
than N. With it we analyze the speedup of the split-join pattern
without the overhead of variable granularity and added feedback
synchronization as shown in Table 6.

Our implementation of image edge detection application [9,
18, 19]: detectors rotate the image a certain angle and then apply
a one dimensional convolution kernel. Because the convolution de-
tects edges on a single dimension, the image is rotated to different
degrees, edges are detected, the image is rotated back. Then, a join
overlaps the result of the detectors and sums the pixels. This num-
ber is used to increase or decrease the number of detectors (angles)
we will use for the next frame, to improve accuracy. The sum is
sent through a loopback to the dynamic splitter which adjusts the
number of detectors accordingly, as shown in Figure 7.2.

For results, the number of edge detection filters was fixed to 2
,4 and 8), although in practice it varies frame to frame, so that we
can analyze the relationship between performance and the number
of cores used. The relatively small speedup of SCnC compared to
CnC for this application comes from the relatively small number
of streaming operations performed: because the granularity of the
tasks is higher (each iteration processes an full input image frame),

No. Detector Filters Throughput (items/second
Streaming phasers SCnC CnC

2 14.3 14.3 15.8
4 2.63 2.38 1.88
8 1.25 1.15 0.61

Table 7. EdgeDetection on the 16 core Xeon system

the time consumed by the communication and synchronization, be
it for a task-based or streaming runtime, pales in comparison.

8. Related Work
The Lime project[3] allows loopback streams but only to destina-
tions upstream from the source, disallowing streams to filters that
are not on the path from the source to the root (input node) of the
streaming graph.

The stereo MP3 decoder described in Task Transaction Level
Interface (TTL) system [13], is yet another example of stream-
ing graph that cannot be represented using StreamIt easily. Because
sinks consume streams from both sources, it is difficult to transform
this shape to a hierarchical split-join one. The authors of the TTL
paper focus more on the embedded implementation with limited re-
sources and on reconfiguration and less on performance improve-
ment due to streaming. No performance numbers and no compari-
son results are shown and the system is limited to streaming only.

A comparison between the task-based dataflow model and
streaming is started in [17], but their work relies on special lan-
guage and the comparison with data-flow can only be taken as a
guideline, as their dataflow implementation is not tweaked for per-
formance, relying on the general Cilk model for short-lived tasks.
The use of a single and synthetic benchmark, their use of different
input language representations for the benchmark differentiate out
work. Furthermore the results for the benchmark they propose are
not entirely positive for their system. We show that consistently
better results are possible for a larger number of real applications,
even without using a custom-built streaming language, compiler
and intermediate representation and while keeping the claim for de-
terminism. Furthermore, we start from a dataflow language whose
task-based implementation offers proved performance [10].

The closest work to our approach towards automatic streaming
of task based programs is through extensions to OpenMP [21],
but the OpenMP annotations, even though simple, are not easy
to automatically infer and the generality of streaming graphs that
can be expressed is limited by the use of OpenMP as foundation.
Furthermore, the resulting program is not deadlock-free.

9. Conclusion and future work
We have introduced a streaming model that enlarges the category
of application graphs that can be considered streaming, compared
with previous projects. We identified the constraints that an appli-
cation should respect in order to adhere to the streaming model
and proposed algorithmic analyses to check for these conditions,
including deadlock avoidance. Complete implementation of this
work would make streaming a safe and automatic optimization of
general CnC programs.

We showed the model offers significant performance improve-
ment compared to the previous task-based approach of running
such applications, with our without the dynamic streaming paral-
lelism extension that we introduced through stateful places.

Future work will consist of implementation of the analysis de-
scribed in this paper and integrating SCnC with the task-based CnC
runtime, so that the system can choose the streaming or task-based
executions without any outside help. Our technique for dynamic

parallelism has a natural extension in dynamic pipelines where the
Sieve results showed that even better speedups are possible.

References
[1] MathWorks Symbolic Math Toolbox Documentation. URL

www.mathworks.com/help/toolbox/symbolic/f1-82523.html.
[2] S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K. Shyamasundar,

and K. Yelick. Deadlock-free scheduling of x10 computations with
bounded resources. SPAA ’07, New York, NY, USA. ACM.

[3] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime: a java-
compatible and synthesizable language for heterogeneous architec-
tures. OOPSLA ’10, pages 89–108, New York, NY, USA. ACM.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded com-
putations by work stealing. J. ACM, 46:720–748, September 1999.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime system.
PPOPP ’95, pages 207–216, New York, NY, USA. ACM.

[6] W. Bosma, J. Cannon, and C. Playoust. The magma algebra system i:
the user language. J. Symb. Comput., 24:235–265, October 1997.

[7] Z. Budimlic, A. M. Chandramowlishwaran, K. Knobe, G. N. Lowney,
V. Sarkar, and L. Treggiari. Declarative aspects of memory man-
agement in the concurrent collections parallel programming model.
DAMP ’09, pages 47–58, New York, NY, USA. ACM.

[8] Z. Budimlic, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton,
J. Palsberg, D. M. Peixotto, V. Sarkar, F. Schlimbach, and S. Tasirlar.
Concurrent collections. Scientific Programming, 18(3-4), 2010.

[9] J. Canny. A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell., 8:679–698, November 1986.

[10] A. Chandramowlishwaran, K. Knobe, and R. Vuduc. Performance
evaluation of concurrent collections on high-performance multicore
computing systems. IPDPS, pages 1 –12, april 2010.

[11] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java
performance evaluation. OOPSLA’07, pages 57–76. ACM.

[12] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and help-first
scheduling policies for async-finish task parallelism. IPDPS’09.

[13] T. Henriksson, J. Kang, and P. van der Wolf. Implementation of dy-
namic streaming applications on heterogeneous multi-processor archi-
tectures. CODES+ISSS ’05, New York, NY, USA. ACM.

[14] E. A. Lee. Balancing expressiveness and analyzability in stream
formalisms, July 2008.

[15] P. Li, K. Agrawal, J. Buhler, and R. D. Chamberlain. Deadlock
avoidance for streaming computations with filtering. SPAA ’10, pages
243–252, New York, NY, USA. ACM.

[16] A. Meyerson. Online facility location. FOCS ’01, pages 426–,
Washington, DC, USA. IEEE Computer Society.

[17] C. Miranda, A. Pop, P. Dumont, A. Cohen, and M. Duranton. Erbium:
a deterministic, concurrent intermediate representation to map data-
flow tasks to scalable, persistent streaming processes. CASES ’10,
pages 11–20, New York, NY, USA. ACM.

[18] M. Nijhuis. A Framework for Parallel Stream-
ing Applications. Ph.D. dissertation, 2007. URL
dare.ubvu.vu.nl/bitstream/1871/16168/1/dissertation.pdf.

[19] M. Nijhuis, H. Bos, and H. E. Bal. A component-based coordination
language for efficient reconfigurable streaming applications. ICPP ’07,
Washington, DC, USA. IEEE Computer Society.

[20] L. Peng, A. Kunal, B. Jeremy, C. Roger D., and L. Joseph M.
Deadlock-avoidance for streaming applications with split-join struc-
ture: Two case studies. In ASAP, pages 333–336, 2010.

[21] A. Pop and A. Cohen. A stream-computing extension to openmp.
HiPEAC ’11, pages 5–14, New York, NY, USA. ACM.

[22] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phaser
accumulators: A new reduction construct. IPDPS 09, .

[23] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers: a
unified deadlock-free construct for collective and point-to-point syn-
chronization. ICS ’08, pages 277–288, New York, NY, USA, . ACM.

