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Abstract—While GPUs are increasingly popular for high-
performance computing, optimizing the performance of GPU
programs is a time-consuming and non-trivial process in general.
This complexity stems from the low abstraction level of stan-
dard GPU programming models such as CUDA and OpenCL:
programmers are required to orchestrate low-level operations
in order to exploit the full capability of GPUs. In terms of
software productivity and portability, a more attractive approach
would be to facilitate GPU programming by providing high-level
abstractions for expressing parallel algorithms.

OpenMP is a directive-based shared memory parallel pro-
gramming model and has been widely used for many years.
From OpenMP 4.0 onwards, GPU platforms are supported
by extending OpenMP’s high-level parallel abstractions with
accelerator programming. This extension allows programmers to
write GPU programs in standard C/C++ or Fortran languages,
without exposing too many details of GPU architectures.

However, such high-level parallel programming strategies gen-
erally impose additional program optimizations on compilers,
which could result in lower performance than fully hand-tuned
code with low-level programming models.To study potential
performance improvements by compiling and optimizing high-
level GPU programs, in this paper, we 1) evaluate a set of
OpenMP 4.x benchmarks on an IBM POWERS8 and NVIDIA
Tesla GPU platform and 2) conduct a comparable performance
analysis among hand-written CUDA and automatically-generated
GPU programs by the IBM XL and clang/LLVM compilers.

Index Terms—Parallel programming

I. INTRODUCTION

Graphics processing units (GPUs) can achieve significant
performance and energy efficiency for certain classes of ap-
plications, assuming sufficient tuning efforts by expert pro-
grammers. A key challenge in GPU computing is the improve-
ment of programmability: reducing the programmers’ burden
in writing low-level GPU programming languages such as
CUDA [19] and OpenCL [10] without sacrificing performance.
This burden is mainly because programmers have to not
only 1) develop efficient compute kernels using the single
instruction multiple thread (SIMT) model but also 2) manage
memory allocation/deallocation on GPUs and data transfers
between CPUs and GPUs by orchestrating low-level API
calls. Additionally, performance tuning with such low-level
programming models is often device-specific, thereby reducing
performance portability. To improve software productivity and
portability, a more efficient approach would be to provide
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high-level abstractions of GPUs that hide GPUs’ architectural
details while retaining sufficient information for optimizations
and code generation.

The OpenMP [23] is a de facto standard parallel program-
ming model for shared memory CPUs, supported on a wide
range of SMP systems for many years. The OpenMP model
offers directive-based parallel programming for C/C++ or For-
tran, which successfully integrated bulk-synchronous SPMD
parallelism including barriers/parallel loops and asynchronous
dynamic task parallelism. The newly introduced OpenMP 4.x
accelerator model is an extension to the standard OpenMP
parallel programming model and aims at not exposing too
many details of underlying accelerator architectures by pro-
viding a set of high-level device constructs. As for GPUs, the
OpenMP 4.x target constructs create a GPU environment and
the distribute parallel for and parallel for con-
structs are used for expressing the block-level and thread-level
parallelism on GPUs respectively. Additionally, the map clause
enables data transfers between CPUs and GPUs. We believe
that these high-level abstractions by the OpenMP 4.x accelera-
tor model enable improved programmability and performance
portability in current and future GPU programming. As of this
writing, development/beta versions of IBM XL C/C++/Fortran
and clang+LLVM compilers support the accelerator model on
GPUs .

However, aside from the improved programmability and
performance portability, mapping the high-level OpenMP pro-
grams to GPUs imposes technical challenges on compiler
optimizations: generating highly-tuned code in consideration
of the GPUs’ architectural details such as two distinct levels
of parallelism (blocks and threads) and deep/diverse memory
hierarchy. As an initial step to address these challenges, we 1)
evaluate a set of OpenMP 4.x programs on GPUs and then 2)
analyze the results and generated code for exploring further
optimization opportunities.

To study potential performance improvements by compiling
and optimizing high-level GPU programs, this paper makes the
following contributions:

« Performance evaluation of OpenMP 4.x benchmarks on
an IBM POWERS and NVIDIA Tesla GPU platform.

o Detailed performance analysis among hand-written
CUDA and automatically generated GPU programs by

Iclang+LLVM also supports Intel Xeon Phi.



development/beta versions of the IBM XL C and clang+
LLVM compilers to exlore future performance improve-
ment opportunities. Our key findings from the study are
summarized as follows:

— The OpenMP versions are in some cases faster,
in some cases slower than straightforward CUDA
implementations written without complicated hand-
tuning.

— Additionally, results show that more work must be
done for OpenMP-enabled compilers to match the
performance of highly-tuned CUDA code for some
cases examined. The possible compiler optimization
strategies for OpenMP programs are:

1) avoiding state machine execution on GPUs [4],
[3] when possible.

2) constructing a good data placement policy for the
read-only cache and the shared memory on GPUs.

3) improving code generation for math and fused
multiply-add operations.

4) performing high-level loop transformation (e.g.
using the polyhedral model [24]).

Because our results and analyses can apply to both OpenMP
4.0 and 4.5 programs, we don’t distinguish them. In the
following, we refer to OpenMP 4.0 and 4.5 as OpenMP 4.x
unless otherwise indicated.

The paper is organized as follows. Section II provides back-
ground information on GPUs and the OpenMP 4.x accelerator
model. Section III shows an overview of clang+LLVM and
XL C compilers that compile OpenMP 4.x programs to GPUs.
Section IV presents an extensive performance evaluation and
analysis on a single GPU paltform. Section V, Section VI, and
Section VII summarize related work, conclusions, and future
work.

II. Tue OPENMP AcCELERATOR MODEL
A. GPUs

NVIDIA GPU architecture consists of global memory and
an array of streaming multiprocessors (SMXs). Each SMX
comprises many single- and double- precision cores, special
function units, and load/store units to execute hundreds of
threads concurrently. L1 cache, read-only cache, and shared
memory are shared among these cores/units to improve data
locality within a single SMX. Also, global memory data
requested from each SMX are cached by L2 cache.

CUDA [19] is a standard parallel programming model
for NVIDIA GPUs. In CUDA, kernels are C functions that
will be executed on GPUs. A block is a group of threads
executed on the same SMX and is organized in a collection
of blocks called a grid that corresponds to a single kernel
invocation. All blocks within a grid are indexed as a 1- or
2-D array. Similarly, all threads within each block are indexed
as 1-, 2-, or 3-D array. While barrier synchronizations
among threads in the same block are allowed, no support
exists for inter-block (global) barrier synchronizations. Instead,
global barriers can be simulated by separating the phases into

// Combined Construct Version

#pragma omp target teams distribute parallel for \
map (from: C) map(to: B, A) \
num_teams (N/1024) thread_limit(1024) \
dist_schedule(static, distChunk) \
schedule (static, 1)

for (int i = 0; 1 < N; i++) {
C[i] = A[i] + B[il;

—_
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// Non-Combined Construct Version

#pragma omp target map(from: C) map(to: B, A)

#pragma omp teams num_teams(N/1024) \

thread_limit (1024)

#pragma omp distribute parallel for \
dist_schedule(static, distChunk) \
schedule (static, 1)

17 for (int i = 0; i < N; i++) {

C[i] = A[i] + B[i];

—
[ S O S

—_
=)
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Listing 1. Vector Addition Example.

separate kernel invocations. For memory optimizations, the
programmer and compiler must utilize registers and shared
memory for improving data locality. Also, it is important
to note that global memory accesses for adjacent memory
locations are coalesced into a single memory transaction if
consecutive global memory locations are accessed by a number
of consecutive threads (normally 32 threads) and the starting
address is aligned. This is called memory access coalescing
and code transformations for improved coalescing can be
performed by both programmers and compilers.

B. OpenMP 4.x directives

The OpenMP accelerator model, which consists of a set of
device constructs for heterogeneous computing, was originally
introduced in the OpenMP 4.0 specification. We give a brief
summary of the OpenMP device constructs used in this paper.

The target construct specifies the program region to be
offloaded to a target device, e.g., GPU grid. The map clause
attached to the target construct maps variables to/from the
device data environment. The teams construct, which must
be perfectly nested in a target construct, creates a league
of thread teams. The number of teams and number of threads
per team are respectively specified by the num teams and
thread limit clauses. A thread team corresponds to a
thread block on a GPU, and there is a master thread in each
team. The distribute construct is a device construct to
be associated with loops, whose iteration space is distributed
across master threads of a teams construct. On the other hand,
the loops associated with the parallel for worksharing
construct are distributed across threads within a team.

These constructs can be specified as individual constructs,
or can be compounded as a single combined construct when
they are immediately nested. Listing | shows a vector ad-
dition kernel with both the combined and non-combined
constructs. The whole loop kernel is specified with the
target construct and offloaded to a GPU. According to
the map clauses, arrays A, B, C are mapped to/from the
GPU device memory and the compiler generates required data
transfers. The teams construct with num teams(N/1024)
and thread 1imit(1024) clauses creates a league of
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Fig. 1. Compilation flow of clang+LLVM and XL compilers for C/C++ and C/C++/Fortran respectively.

#pragma omp target teams { // GPU region
// sequential region 1 executed
// by the master thread of each team
if (...) {
// parallel region 1
#pragma omp parallel for
for O {}
} else {

,

— OOV W —

—_—

}

Listing 2. OpenMP 4.x code that requires multiple execution modes on GPUs.

N/1024 teams each of which contains 1024 threads. As
with the schedule clause attached on for construct, the
dist schedule clause for the distribute construct allows
users to specify chunk size when distributing iterations across
teams. In this example, the whole N iterations are divided
into chunks of distChunk iterations, and the iterations per
chunk are distributed across threads per team according to the
schedule clause.

III. CompiLiNG OPENMP 4.x To GPUs

This section describes a brief overview of the OpenMP 4.x
compilers and their optimizations and code generation used
for performance evaluation in this paper.

A. Compilers

Figure 1 illustrates the compilation flow of the clang+LLVM
and IBM XL C compilers.

1) clang+LLVM Compiler: LLVM [11] is a widely used
compiler infrastructure and clang is a C language family front-
end for LLVM. Clang first transforms OpenMP 4.x programs
to LLVM’s intermediate representation (LLVM IR) and then
the LLVM compiler applies language- and target-independent
optimization passes to LLVM IR [1].

To support GPU code generation, the clang compiler out-
lines GPU kernels specified by OpenMP 4.x target directives
as separate LLVM functions and the LLVM functions are
fed into standard LLVM passes followed by the NVPTX
backend [14] for PTX assembly [20] code generation. Also,
the LLVM compiler generates CPU code that invokes CUDA

1| bool finished = false;

2| while (!finished) {

3 switch (labelNext) {

4 case SEQUENTIAL_REGIONI1:

5 if (threadIdx.x != MASTER) break;
6 // code for sequential region 1
7 if (...0) {

8 .

9 labelNext = PARALLEL_REGIONI1;
10 }

11 break;

12 case PARALLEL_REGION1:

13 // code for parallel region 1
14 A

15 if (threadIdx.x == MASTER) {

16 // update labelNext;

17 }

18 break;

19 // other cases

20 .
21 case END:

22 labelNext = -1;
23 finished = true;
24 break;

25 }
26 __syncthreads () ;

27|

Listing 3. An example of the state machine execution on GPUs.

API calls to perform memory allocations/deallocations on
GPUs, data transfers between CPUs and GPUs, and kernel
launches.

2) IBM XL Compiler: Our beta XL compiler for OpenMP
4.x CPU/GPU execution is built on top of a production
version of the IBM XL C/C++ and XL Fortran compilers.
First, the compiler front-end transforms OpenMP programs to
Wcode, which is an IR used by IBM compiler components.
Then, the Toronto portable optimizer (TPO) performs high-
level optimizations over the Wcode in a language- and target-
independent manner.

In the case where OpenMP 4.x target directives are
found, the GPU partitioner partitions the Wcode into CPU
Wcode and GPU Wcode analogous to how the clang+LLVM
outlines kernels as functions. Finally, the POWER Low-level
optimizer optimizes CPU Wcode and generates a PowerPC
binary including CUDA API calls for controlling GPUs. For
GPU code generation, one fundamental difference between
the XL and the clang+LLVM compilers is that GPU Wcode



Benchmark Description Data Size Target Directives
VecAdd Vector Addition (C=A+B) 67,108,864 1-level
Saxpy Single-Precision scalar multiplication and vector addition (Z=AxX+Y) 67,108,864 1-level
MM Matrix Multiplication (C=AxB) 2,048 x 2,048 1-level
BlackScholes Theoretical estimation of the European style options 4,194,304 1-level
OMRIQ 3-D MRI reconstruction from SPEC ACCEL™ [25] 262,114 1-level
SP-xsolve3 Scalar Penta-diagonal solver from SPEC ACCEL™ [25] 5 X 255 x 256 x 256 2-level

TABLE I
BencaMarks FrRoM PoryBencH anp SPEC ACCEL USED IN OUR EVALUATION

is translated into an NVVM IR [18] in the XL compiler,
whereas the clang+LLVM compiler generates PTX directly.
The NVVM 1R is eventually fed into libNVVM library to
generate PTX assembly code [20].

B. Optimizing OpenMP 4.x programs for GPUs

This section describes possible optimizations for OpenMP
4.x programs. We mainly focus on significant optimizations
affecting performance as shown in the performance results in
Section IV.

1) Simplifying the OpenMP Execution Model on GPUs:
In OpenMP 4.x specifications, target regions may include
sequences of sequential, parallel, and potentially nested par-
allel regions. Consider an example of the target directive
shown in Listing 2. First, the master thread of each team needs
to execute the if-statement in Line 4. Then, if the branch is
taken, the program execution switches to the parallel region
(parallel for loop in Line 6-7) executed by threads within a
team. In general, OpenMP 4.x programs can switch back and
forth between sequential and parallel regions, thereby code
generation for such program is challenging because it can
require state machine code generation on GPUs (see Listing 3).

This can increase register pressure and incur performance
penalties due to control-flow instructions. The detailed infor-
mation on GPU code generation with state transitions can be
found in [4], [3]. In the following, “control-loop” is referred
to as a loop that controls state transition on GPUs.

For the purpose of optimizations, the control-loop can be
eliminated when the body of the target region satisfies the
following conditions [3]:

« There is no “team master only” region, where only master

threads need to execute it (e.g. Line 4-10 in Listing 3).

« There is no data sharing among threads in a team.

« There are no nested OpenMP pragmas through function

calls.

o schedule(static, 1) is specified on the #pragma

omp parallel for construct.

The clang+LLVM compiler additionally requires program-
mers to use a combined construct [23], a shortcut for specify-
ing multiple constructs in a single line (see also Section II-B),
whereas the XL C compiler can remove the control-loop even
with a non-combined construct.

2) Leveraging GPU’s Memory Hierarchy: GPU memory
optimizations such as utilizing the shared memory and the
read-only data cache are essential for improving kernel per-
formance. For OpenMP 4.x programs, it is the compiler’s

responsibility to perform such optimizations since OpenMP
4.x does not provide a way to place data on a particular GPU
memory. However, neither the clang nor the XL C compiler
performs such optimization as of this writing.

The NVPTX backend and the libNVVM library utilize the
read-only cache for all data that is guaranteed to be read-
only when the target architecture is sm_ 35 or later. However,
placing all possible data on the read-only data cache can also
generate a harmful effect on performance; a more attractive
approach would be to selectively optimize data placement as
a part of high-level loop transformations guided by proper cost
models. Further discussions can be found in Section IV-C7.

3) Maximizing ILP: Leveraging instruction-level paral-
lelism (ILP) is also an important optimization strategy to
increase GPU utilization. While SMXs on GPUs can take
advantage of ILP interchangeably with thread-level parallelism
(TLP), in some cases, it is easier to increase ILP by performing
loop unrolling and other transformations. The clang+LLVM
compiler, the NVPTX backend, and the libNVVM library
unroll sequential loops to increase ILP. Further discussions
on finding an optimal unrolling factor can be found in Sec-
tion IV-C7.

IV. PERFORMANCE EVALUATION

This section presents the results of an experimental eval-
uation of the XL C and the clang+LLVM compilers on an
IBM POWERS and NVIDIA Tesla K80 platform. The GPU’s
error-correcting code (ECC) feature was turned on in our
experiment.

A. Experimental protocol

Purpose: Our goal is to study potential compiler optimizations
for OpenMP 4.x programs in terms of kernel performance. We
do not focus on data transfers between the host and GPU
devices in this paper. Note that OpenMP 4.x has support
for optimizing communications using the map clause. For
that purpose, we focus on the performance difference among
CUDA and OpenMP variants of benchmarks. The CUDA
variant employs straightforward GPU parallelization strategies
without complicated hand-tuning. However, we also discuss
the performance difference between highly-tuned CUDA code
and the OpenMP variants in Section IV-C6.

Machine: The platform consists of a multicore IBM POWERS
CPU and an NVIDIA Tesla K80. The platform has two 12-
core IBM POWERS CPUs (S824), operating at up to 3.52GHz
with a total 1TB of main memory. Each core is capable of
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Fig. 2. Relative performance over CUDA-baseline (non-ROC version) on the IBM POWERS + NVIDIA Tesla K80 platform.

running eight SMT threads, resulting in 192 CPU threads per
platform. The NVIDIA K80 GPU has 13 SMXs, each with
192 CUDA cores, operating at up to 875MHz with 12GB of
global memory, and is connected to the POWERS by using
PCI-Express.

Benchmarks: Table I lists six benchmarks that were used
in the experiments. We chose typical numerical computing,
medical, and financial applications for the purpose of the
compiler optimization exploration. For all the benchmarks,
we used the variants with the float data type. For “Data
Size”, Table I only shows the largest array size evaluated.
For “Target Directives”, “l1-level” shows we only parallelized
the outermost loop, where the OpenMP compilers accept both
“combined” and ‘“non-combined (control-loop)” versions. “2-
level” means we parallelized nested loops at different levels,
which only generates the “control-loop” version.
Experimental variants: Each benchmark was evaluated by
comparing the following versions relative to a parallel GPU
execution of a baseline CUDA version:

« CUDA: Reference CUDA implementations

— CUDA (baseline): A CUDA version with the read-
only data cache disabled because the read-only cache
does not always contribute to performance improve-
ments (see IV-C2).

— CUDA-ROC: all read-only arrays within a kernel are
accessed through the read-only data cache’. Since the
OpenMP compilers utilize the read-only data cache
by default, we focus on the performance difference
between CUDA-ROC and the OpenMP variants be-
low.

« OpenMP: Combined and non-combined constructs ver-
sions compiled by the following compilers. For more
details, see Section II-B and Section III.

— clang+LLVM compiler
— XL C compiler

2read-only arrays are specified with const* _ restrict .

For fair and clear comparisons, we carefully 1) prepared the
syntactically same CUDA and OpenMP source code and 2) we
used the same block and grid size among these variants. For
the VecAdd, Saxpy, MM and BlackScholes cases, we used a
grid size of 512 and a block size of 1024. For OMRIQ we
used a grid size of 512 and a block size of 256. Also, a grid
size of 254 and a block size of 254 were used for SP.

For the CUDA variants, we used the CUDA compiler
driver (nvcc) 7.5.17 with -03 -arch=sm_35. For OpenMP
variants, a development version of clang 3.8 with -03-target
powerpc64le-ibm-1linux-gnu-mcpu=pwr8 -fopenmp
=libomp -omptargets=nvptx64sm_ 35-nvidia-linux
and IBM XL C/C++ compiler version 13.1.4 with -03
-gsmp=omp’ were used. For single-precision floating point
operations, -ftz=false --prec-div=true --prec-sqrt
=true was used for all variants. Also, -maxrregcount 64
was specified to limit the number of registers per thread for
OpenMP variants.

Performance was measured in terms of elapsed milliseconds
from the start of the first loop(s) to the completion of all loops.
Since our primary focus is on kernel performance, our
measurements only include kernel execution time on the
GPU (for all the variants) which is obtained with NVIDIA
CUDA profiler, or nvprof [21], and exclude host-device data
transfer times.

B. Summary of Results

This section outlines the results shown in Figure 2, which
shows speedup factors relative to the baseline CUDA imple-
mentation (CUDA) on the NVIDIA Tesla K80 GPU.

Overall, for both clang and XL C compilers, the combined
version is comparable to the CUDA-ROC version in many
cases. While the non-combined (control-loop) version with
clang is slower than the combined version due to state machine
execution on GPUs in general, the non-combined version

3This option internally specifies -arch=compute 35 and -opt=3 for the
libNVVM library.



using XL C does not show any performance degradation (see
Section IV-C1 for more details). Also, the results show that
utilizing the read-only data cache does not always improve
GPU kernel performance (see Section IV-C2). For MM, the
OpenMP variants show performance improvements of up to
1.45%. This is mainly due to better read-only data cache
accesses (see Section IV-C2 as well). For BlackScholes and
OMRIQ, the CUDA variants are better than the OpenMP
variants due to more efficient math function code generation
(see Section IV-C3). For SP, the OpenMP variants show better
performance than the CUDA variant due to selecting proper
unrolling factors (see Section IV-C4).

Also, Section IV-C5 conducts additional experiments to
show the impact of performing high-level loop transforma-
tions, and Section IV-C6 discusses the performance compar-
isons with hand-optimized CUDA code.

Section IV-C7 summarizes our insights on compiler opti-
mizations for OpenMP 4.x programs.

C. Key Insights

This section discusses our insights on future compiler
optimizations for OpenMP 4.x accelerator programs targeting
GPUs. Also, we quantitatively analyze the impact of each
factor using HW counter numbers obtained with nvprof
shown in Table VI.

1) Remove control-loops when possible: As we discussed
in Section III-B1, the non-combined version may require
state machine execution on GPUs. An important compiler
optimization is the removal of the state machine code if
possible. The XL C compiler supports such an optimization,
which resulted in no performance degradation even with non-
combined constructs as shown in Figure 2.

The impact of state machine code removal is obvious by
comparing the combined and non-combined versions by the
clang compiler shown in Figure 2. The non-combined version
is 23.6% slower than the combined version on average among
VecAdd, Saxpy, BlackScholes, and OMRIQ. The primary
cause of this is the increased number of instructions by
the state transitions code. For example, consider VecAdd in
Table VI. The number of integer, control flow, and load
store instructions for the non-combined version is 2.96X,
2.38%, and 1.18x larger than that for the combined version
respectively. Also, the non-combined version requires addi-
tional registers for state transitions - i.e. 56 regs for the non-
combined version and 10 regs for the combined version. This
can incur an additional performance degradation on CUDA
devices with compute capability 3.5 or lower due to less
achieved occupancy”.

2) Utilize the read-only data cache carefully: While the
read-only data cache can improve memory access efficiency, it
does not always contribute performance improvements since
the benefit fully depends on memory access patterns during
the GPU execution. Based on results of the CUDA versions

“achived _occupancy in Table VI is not worse since compute capability
3.7 device allows 128 integer registers per thread.

shown in Figure 2, OMRIQ and SP benefit from the read-only
data cache, whereas such is not the case with VecAdd, Saxpy,
and BS, which has poor temporal locality. However, despite
its potential spatial and temporal locality, the read-only data
cache version of MM in CUDA is 2% slower than the version
without it. These observations emphasize the importance of
data placement optimization.

Let us focus on the OpenMP versions of MM that out-
perform the CUDA versions. In that case, some of the com-
piler optimizations can inhibit/improve GPU performance. On
closer examinations, we observed two important things that
current GPU compilers do not handle perfectly:

How to determine an optimal unrolling factor? We first
analyze the performance difference between the CUDA-ROC
version (0.98x over the baseline) and the clang-combined
version (1.38x over the baseline). Based on our analysis, we
see that a bigger loop unrolling factor can decrease L2 cache
hit rate for read requests from the read-only data cache in MM.
To be more specific, consider the following source code:

1| for (int k = 0;
2 // one offset access and one stride access
3 sum += A[i*N+k] * B[k*N+j];

41}

k < N; k++) {

Listing 4. The inner most loop of MM

For the CUDA-ROC version, the nvcc compiler unrolls the
loop by a factor of 8, which results in 14.5% L2 hit rate
from the read-only data cache. However, the clang compiler
unrolls the loop by a factor of 2, which achieves 91.9% L2
hit rate and 1.41x performance improvement compared to the
CUDA-ROC version (look for L2 Hit (Texture Read) for
MM in Table VI). It is worth mentioning that the CUDA-
ROC version shows the same performance as the clang-
combined version if #pragma unroll 2 is specified. While
loop unrolling can increase instruction-level parallelism (ILP)
and amortize loop overheads, in this case, multiple offset and
stride access requests issued simultaneously had incurred the
performance penalty due to the read-only data cache’s line
conflicts.

How to optimize memory access patterns under dis-
tributed chunking? Next, we investigate why the clang-non-
combined version outperforms the clang-combined version. A
key difference between them is shown in the dist schedule
clause. The current implementation of the clang compiler
ignores the dist schedule clause in the case of combined
constructs, which could incur poor memory access patterns.
To be more specific, consider pseudo code in Listing 5 that
are equilavent to the CUDA variants and the clang-combined
variants. idx is used to delinearize the 1-D global iteration
space to 2-D space and blockDim.x * gridDim.x is the
stride for the next element accessed on the same thread. If the
stride is too long, this could cause poor L2 cache rate. Table II
shows details of the stride size and the unrolling factor for MM.
Since the stride size in the CUDA and clang-combined version
is 524k elements (= 512 x 1024), this is the primary cause of
the lower L2 cache rate discussed above. On the other hand, in



// each thread delinearizes idx to (i, j)
int 1 = idx / N;
idx % N;

1| // NxN Matrix

2| int UB = N*N;

3| // CUDA, CUDA-ROC, clang-combined

4| int gid = blockDim.x * blockIdx.x + threadIdx.x;
5|if (gid < UB) {

6 for (int idx = gid; j < UB;

7 idx += blockDim.x * gridDim.x) {
8

9

0

1

—_—

int j =

Listing 5. Pseudo code for MM

Table II the clang-combined and the XLC version has a smaller
stride, which can relatively fit the read-only data cache.

CUDA | clang-combined clang-control [ XL C
S 524,288
the stride size (blockDim.x * gridDim.x) 1,024
unrolling factor@PTX 8 ] 2 2 [ 8
who did unroll? nvee | clang clang | TibNVVM
TABLE II

DETAILS OF THE STRIDE SIZE AND THE UNROLLING FACTOR FOR MM.

To summarize, selecting an optimal unrolling factor and
distribute chunk size is still an open question and we believe
that an analytical/empirical model would be required so as to
address this important challenge.

3) Improve math function code generation: Let us consider
the BlackScholes and OMRIQ cases where many math oper-
ations are performed. Figure 2 shows that the CUDA version
is the fastest, the XL C version is the second fastest, and the
clang version is the slowest in both benchmarks.

This is due to the dynamic number of double-precision
instructions (see Table VI). For example, BlackScholes shows
the dynamic numbers of double-precision instructions exe-
cuted by CUDA, clang, and XL C are 2.9 x 107, 5.8 x 108,
and 4.1 x 10% respectively. To understand this, consider the fol-
lowing OpenMP program and suppose we have an equivalent
CUDA program:

// al[] and b[] are float arrays
#pragma omp target teams distribute parallel for ...
for (int 1 = 0; i < N; i++) {
float T = exp(al[il);
b[i] =

// double exp(double)
(float)log(al[il)/T; // double log(double)

[V R S S

Listing 6. A synthetic Math benchmark.

The first row in Table III shows absolute performance for
each variant where N = 4, 194, 304 on the GPU, which shows
similar trends to BlackScholes and OMRIQ.

CUDA | clang-combined | xlc-combined
Compiler S515us | 933 us 922 us
Hand Conversion 515 us | link error 721 us
(expf, logf)
TABLE III

GPU KERNEL TIME FOR THE SYNTHETIC MATH BENCHMARK.

One key issue on the programs is the use of double-precision
versions of the exp and the log functions even though their
argument and the resulting value is single-precision. Our anal-
ysis shows that the clang compiler keeps the original double-

precision math functions, and these functions are not inlined
even at SASS assembly code level®, which is why the clang
version is the slowest. However, the nvcc and XL C com-
pilers 1) generate the single-precision version instead when
possible, which significantly eliminates redundant double-
precision operations, and 2) also inline these functions in the
PTX assembly code to increase opportunities for additional
compiler optimizations. For the XL C version, the compiler
only generates the expf and keeps the 1log function. That is
why the XL C version is a bit faster than the clang version.

However, there is a still performance gap between the
CUDA and OpenMP versions even if we perform hand-
conversion (see the second row of Table III). This can stem
from the difference between the CUDA Math API [17] used
by the nvcc compiler and the Libdevice [16] used by the clang
and XL C compilers.

4) Other importatnt insights: This section discusses other
important factors affecting GPU performance.

Perform FMA contraction: The Fused-Multiply-Add
(FMA) instruction computes multiply and add operations in a
single step. Saxpy is one of the benchmarks that benefit from
FMA and the impact of using it can be seen when comparing
the combined versions of clang and XL C because the clang
compiler does not generate FMA by default (2% performance
improvement in this case). Table VI shows the dynamic num-
ber of floating point instructions made by the clang version is
approximately 2x larger than by the other variants. Note that
the clang shows the same performance as the XL C combined
version when -mllvm -nvptx-fma-level=1or2 is enabled.

Loop unrolling for better ALU utilization: Besides what
we discussed in Section IV-C2, loop unrolling can increase
ILP and reduce control-flow instruction overheads. SP has two
sequential loops and the unrolling factors affect overall kernel
performance. To reiterate, finding an optimal unrolling factor is
very important for future compiler optimizations for OpenMP
programs on GPUs.

Use schedule(static, 1) for memory access coalesc-
ing: In terms of global memory access coalescing, it is usually
better to specify a chunk size of 1 so that consecutive global
memory locations can be accessed by a number of consecutive
threads. This is also suitable for removing control-loops as we
discussed in Section III-B1.

5) Additional Experiments: Impact of high-level loop trans-
formations: High-level loop transformations are compiler op-
timizations to transform loop structures in sequential and
parallel programs while keeping program semantics. Let us
take the original implementation of xsolve3 kernel in SP as
an example of high-level loop transformation (Listing 7). Since
1hsX in the loop2 (Line 10-13) is accessed contiguously by
consecutive threads, memory accesses for 1hsX are coalesced.
However, such is not the case with rhonX. Our measurements
shown in Table VI indicate that the original version written in
CUDA achieved an average number of memory transactions
per request of 31.8 for loads and 7.0 stores. Note that 32 is the

SSASS is the lowest level assembly code accessible from programmers.



1| #pragma omp target teams distribute ...

2| for (int k = 1; k <= nz2; k++) {

3 #pragma omp parallel for ...

4 for (int j = 1; j <= ny2; j++) {

5 // loopl

6 for (int i = 0; i <= gpOl; i++) {

7 rhonX[k*RHONX1 + j*RHONX2 + i] = ...;
8 }

9 // loop2

10 for (int i = 1; i <= nx2; i++) {

11 lhsX[0*LHSX1 + k*LHSX2 + i*LHSX3 + j] = 0.0;
12 .

13 }

14 }

15]}

Listing 7. xsolve3 kernel in SP

worst possible value and this is caused by uncoalesed memory
accesses made in the loopl.

For better memory coalescing accesses and additional mem-
ory optimizations, we performed the following optimizations
manually:

Loop transformations: Perform loop distribution to break
the original loop into two parts: the first part only contains
loopl and the second part only contains loop2, each of
which is individually enclosed by the k-loop and j-loop.
Then, only for the first part, permute i-loop and j-loop for
improving memory coalescing efficiency. This can be applied
to both CUDA and OpenMP versions.

Shared memory utilization: Perform loop tiling to allocate
tiles on the shared memory for additional memory optimiza-
tions. This can be applied to the CUDA version only because
OpenMP 4.x does not provide a way to allocate variables
on the shared memory. We used 32x32 tile size, but the tile
size exploration is another important research problem to be
addressed in future work.

The impact of the optimizations is summarized in Table IV:

CUDA clang XL C

Original | 91.9 ms | 80.0 ms | 89.9 ms

Transformed | 21.6 ms | 30.2 ms | 28.9 ms

Transformed+SharedMemory 9.1 ms - -
TABLE IV

THE IMPACT OF ADDITIONAL OPTIMIZATIONS

The results show that the “Transformed” version is much
faster than the “Original” version. The CUDA profiler shows
that the “Transformed” version achieved an average number
of memory transactions per request of 1.9 for loads and 1.0
for stores. This is almost ideal indicating that almost all
memory accesses were coalesced (1 is the best possible value).
Also, the “Transformed+SharedMemory” version achieves ad-
ditional performance improvements by exploiting the shared
memory.

6) Additional Experiments: Performance Comparison with
Hand-tuned Code: This section discusses the performance
differences between 1) a hand-optimized CUDA program and
2) the CUDA and OpenMP variants. For the hand-optimized
CUDA program, we evaluated a hand-tuned 2048x2048 matrix

multiply CUDA code available from the CUDA SDK [26]. Ta-
ble V shows absolute performance numbers for these variants
on the IBM POWERS with Tesla K80 platform in descending
order.

Lang. Variants | Absolute Performance
CUDA Straightforward (w/ ROC) 228.4 ms
CUDA Straightforward (w/o ROC) 223.0 ms

OpenMP clang+LLVM (combined) 161.5 ms
OpenMP | clang+LLVM (non-combined) 158.0 ms
OpenMP XL C 153.9 ms
CUDA hand-tuned (w/o ROC) 70.6 ms
CUDA hand-tuned (w/ ROC) 64.3 ms

TABLE V
ABSOLUTE PERFORMANCE cOMPARISON (MM)

Based on results shown in Table V, the hand-tuned matrix
multiply CUDA code is the fastest. The primary cause of the
performance gap is that the hand-tuned version performs loop
tiling to allocate tiles on the shared memory as we discussed
in Section IV-C5.

7) Overall Summary & Discussion: While some of the
OpenMP variants show comparable performance to the origi-
nal CUDA implementation, there are still several missing parts
for OpenMP 4.x compilers for GPUs. As we discussed in
Section IV-C5 and IV-C6, one open question is how to exploit
GPU’s memory hierarchy more efficiently by performing high-
level loop transformations. Specifically, OpenMP 4.x compil-
ers are required to carefully determine several factors including
1) unrolling factors, 2) distribute chunk sizes, and 3) tile sizes
for the read-only cache and the shared memory, 4) leveraging
faster Math functions and FMA instructions. Note that 1)-3)
are still open questions in the high-performance computing
community. One possible solution would be to construct a
high-level loop transformation framework with a certain cost
model for proper optimization selection. For instance, the use
of the polyhedral and AST-based transformation [24] could be
an option for such an optimization framework.

V. ReLATED WORK

A. OpenMP 4.x Accelerator Model

There have been several studies on the efficient support of
the OpenMP accelerator model on GPUs. Bercea et al. [2]
presented detailed performance analysis of OpenMP 4.0 im-
plementations of LULESH, a proxy application provided by
DOE as part of the CORAL benchmark suite. Mitra et al. [15]
explored challenges encountered while migrating the general
matrix multiplication kernel using an early prototype of the
OpenMP 4.0 accelerator model on the TI Keystone II Archi-
tecture.

B. Compiling High-level/Directive-based Languages to GPUs

Many previous studies aim to facilitate GPU programming
by providing high-level abstractions of GPU programming.
They often introduce directives and/or language constructs



expressing parallelism for semi-/fully- automated code gener-
ation and optimizations for GPUs. OpenACC [22] is a widely-
recognized directive-based programming model for heteroge-
neous systems. OpenMPC[12] transforms extended OpenMP
programs into CUDA applications. For JVM-based languages,
many approaches [13], [5], [7], [9] provide high-level ab-
stractions of GPU programming. Velociraptor [6] compiles
MATLAB and Python to GPUs.

VI. ConcLusioN

To study potential performance improvements by compiler
optimizations for high-level GPU programs, this paper eval-
uates and analyzes OpenMP 4.x benchmarks on an IBM
POWERS + NVIDIA Tesla K80 platform. For that purpose, we
performed in-depth analysis of hand-written CUDA codes and
automatically generated GPU codes by IBM XL and clang/L-
LVM compilers from the high-level OpenMP 4.x programs.

Results show that the OpenMP versions are in some cases
faster, in some cases slower than straightforward CUDA im-
plementations written without complicated hand-tuning. Ad-
ditionally, we conclude further advancements are necessary
for OpenMP-enabled compilers to match the performance of
highly-tuned CUDA code for some cases examined. Based on
our analysis, the possible compiler optimizations to improve
OpenMP programs’ performance on GPUs are as follows:

1) avoiding the state machine execution on GPUs [4], [3]
when possible.

2) constructing a good data placement policy for the read-
only cache and the shared memory on GPUs.

3) improving code generation for math and fused multiply-
add operations.

4) performing high-level loop transformation (e.g. using the
polyhedral model [24]).

We believe that OpenMP 4.x compilers have to carefully
perform these optimizations, but some of them are still open
questions. Further investigation will be required for better
compiler optimizations for OpenMP 4.x programs.

VII. FuturRe WORK

For future work, we plan to implement all optimizations we
mentioned in this paper. However, there are several unsolved
challenges to do so. To tackle these challenges, our initial
focus is to build a high-level loop transformation framework.

Also, selection of the preferred computing resource between
CPUs and GPUs for individual kernels remains one of the most
important challenges since GPU execution is not always faster
than CPUs. Ideally, a preferrable device could be choosen
compiler/runtime using analytical/empirical model. We first
plan to add such a capability to the OpenMP 4.x runtime by
extending prior approaches such as [8].
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CUDA OpenMP (clang) OpenMP (XL C)
Metrics w/ ROC | w/o ROC | combined control -
Kernel Time 6.3 ms 6.1 ms 6.3 ms 8.1 ms 6.3 ms
Registers 10 12 10 56 33
Occupancy 98.1% 94.7% 98.2% 99.3% 98.3%
Global Load Transactions per request 0.0 1.0 0.0 32 0.0
VecAdd (see Section 1V-C1) Global Store Transactions per request 1.0 1.0 1.0 1.4 1.0
Float-Point Instructions (Single) 6.7E+07 6.7E+07 6.7E+07 6.7E+07 6.8E+07
Integer Instructions 5.4E+08 5.4E+08 5.4E+08 1.6E+09 1.2E+09
Control Flow Instructions 6.7E+07 6.7E+07 6.7E+07 1.6E+08 6.8E+07
Load Store Instructions 2.7E+08 2.0E+08 2.7E+08 3.2E+08 2.7E+08
S Section IV-C4 Kernel Time 6.3 ms 6.1 ms 6.4 ms 8.1 ms 6.3 ms
axpy (see Section IV-C4) Float-Point Instructions (Single) 67E+07 | 6.7E+07 | 1.3E+08 | L.3E+08 6.8E+07
Kernel Time 228.4 ms 223.0 ms 161.5 ms 158.0 ms 153.9 ms
Registers 36 29 24 61 52
Occupancy 98.4% 98.4% 98.8% 99.6% 99.7%
Texture Cache Hit Rate 74.6% N/A 74.8% 74.8% 74.8%
L2 Hit (Texture Read) 14.5% N/A 91.9% 93.1% 77.2%
MM (see Section IV-C2) Global Load Transactions per request 1.0 1.0 1.0 2.6 1.0
Global Store Transactions per request 1.0 1.0 1.0 3.7 1.0
Float-Point Instructions (Single) 8.6E+09 8.6E+09 1.7E+10 1.7E+10 8.6E+09
Integer Instructions 3.8E+10 8.1E+09 | 4.73E+10 | 4.74E+10 4.3E+10
Control-Flow Instructions 5.4E+08 5.4E+08 4.29E+09 | 4.31E+09 1.1E+09
Load/Store Instructions 2.4E+10 1.7E+10 2.57E+10 | 2.58E+10 2.57TE+10
Kernel Time 1.93 ms 1.85 ms 3.16 ms 4.87 ms 2.58 ms
Registers 29 29 36 64 56
Occupancy 97.5% 97.6% 97.8% 99.1% 98.1%
Global Load Transactions per request 0.0 1.0 0.0 32 0.0
. - Global Store Transactions per request 1.0 1.0 1.0 3.0 1.0
BlackScholes (see Section IV-C3) Float-Point Instructions (Sirr’lgle) . 7.0E+08 7.0E+08 4.5E+08 4.5E+08 3.4E+08
Float-Point Instructions (Double) 2.9E+07 2.9E+07 5.8E+08 5.8E+08 4.1E+08
Integer Instructions 2.4E+08 2.4E+08 2.6E+08 3.7E+08 3.8E+08
Control-Flow Instructions 1.9E+08 1.9E+08 2.9E+08 3.3E+08 2.0E+08
Load/Store Instructions 1.7E+07 1.3E+07 1.7E+07 1.0E+08 2.5E+07
Kernel Time 522.5 ms 526.5 ms 780.3 ms 933.4 ms 638.4 ms
Registers 26 26 29 64 41
Occupancy 98.8% 98.7% 98.2% 96.9% 97.1%
Texture Cache Hit Rate 99.9% N/A 99.8% 99.9% 99.9%
L2 Hit (Texture Read) 98.6% N/A 98.3% 97.8% 96.5%
. Global Load Transactions per request 1.0 1.0 1.0 2.1 1.0
OMRIQ (see Section IV-C3) Global Store Transactions per request 1.0 1.0 1.0 2.5 1.0
Float-Point Instructions (Single) 1.8E+11 1.8E+11 2.1E+11 | Overflow 1.8E+11
Float-Point Instructions (Double) 6.6E+09 6.6E+09 6.6E+09 6.6E+09 6.6E+09 + 900K
Integer Instructions T4E+11 T14E+11 [.7E+11 L.7E+11 T4E+11
Control-Flow Instructions 6.6E+09 6.6E+09 5.9E+10 5.9E+10 6.6E+09
Load/Store Instructions 5.2E+10 2.6E+10 52E+10 5.2E+10 5.2E+10
Kernel Time 91.9 ms 102.5 ms - 80.0 ms 89.9 ms
Registers 22 21 - 64 64
Occupancy 98.4% 98.5% - 99.2% 99.6%
Texture Cache Hit Rate 23.1% N/A - 29.5% 24.1%
L2 Hit (Texture Read) 3.8% N/A - 8.5% 7.6%
SP (see Section IV-C5) Global Load Transactions per request 31.8 31.8 - 31.3 31.3
Global Store Transactions per request 7.0 7.0 - 6.9 6.9
Float-Point Instructions (Single) 1.8E+08 1.8E+08 - 2.8E+08 1.8E+08
Integer Instructions 2.3E+08 1.5E+08 - 6.9E+08 4.0E+08
Control-Flow Instructions 8.1E+06 8.1E+06 - 1.8E+07 2.6E+07
Load/Store Instructions 2.5E+08 2.0E+08 - 2.5E+08 2.6E+08
TABLE VI

PERFORMANCE BREAKDOWN USING THE NVIDIA CUDA ProriLER. XL C ONLY HAS ONE COLUMN BECAUSE THE COMBINED AND NON-COMBINED VERSIONS SHOW THE SAME HW
COUNTER NUMBERS. NUMBERS IN BOLD CHARACTER ARE PARTICULARY IMPORTANT FACTORS MENTIONED IN EACH SECTION.
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