Exploration of Supervised Machine Learning
Techniques for Runtime Selection of
CPU vs. GPU Execution in Java Programs

Gloria Y.K. Kim', Akihiro Hayashi?, and Vivek Sarkar®

! Rice University
gloria.kim®@ricealumni.net
ORCiD: 0000-0003-1623-1818
2 Rice University
ahayashi@rice.edu
ORCiD: 0000-0001-6861-6272
3 Georgia Institute of Technology
vsarkar@gatech.edu

Abstract. While multi-core CPUs and many-core GPUs are both vi-
able platforms for parallel computing, programming models for them
can impose large burdens upon programmers due to their complex and
low-level APIs. Since managed languages like Java are designed to be
run on multiple platforms, parallel language constructs and APIs such as
Java 8 Parallel Stream APIs can enable high-level parallel programming
with the promise of performance portability for mainstream (“non-ninja”)
programmers. To achieve this goal, it is important for the selection of
the hardware device to be automated rather than be specified by the
programmer, as is done in current programming models. Due to a variety
of factors affecting performance, predicting a preferable device for faster
performance of individual kernels remains a difficult problem. While a
prior approach uses machine learning to address this challenge, there is
no comparable study on good supervised machine learning algorithms
and good program features to track. In this paper, we explore 1) program
features to be extracted by a compiler and 2) various machine learning
techniques that improve accuracy in prediction, thereby improving per-
formance. The results show that an appropriate selection of program
features and machine learning algorithm can further improve accuracy.
In particular, support vector machines (SVMs), logistic regression, and
JA8 decision tree are found to be reliable techniques for building accu-
rate prediction models from just two, three, or four program features,
achieving accuracies of 99.66%, 98.63%, and 98.28% respectively from
5-fold-cross-validation.

Keywords: Java, Runtime, GPU, Performance heuristics, Supervised machine-
learning



2 Gloria Y.K. Kim, Akihiro Hayashi, and Vivek Sarkar

1 Introduction

Multi-core CPUs and many-core GPUs are both widely used parallel computing
platforms but have different advantages and disadvantages that make it difficult
to say that one is comprehensively better than the other. In a multi-core CPU,
since threads exclusively occupy each core, each core can handle the execution
of completely different tasks at once. On the other hand, in a many-core GPU,
hundreds or thousands of cores can run hundreds or thousands of threads si-
multaneously. Since each workgroup of threads in each GPU core is executed
together, all threads belonging to the same workgroup must be synchronized
for coordinated data processing. Because of the differences between the two
platforms, parallelism can vary drastically based on the selection of multi-core
CPU or many-core GPU for a particular program.

Many prior approaches explore a good mix of productivity advantages and
performance benefits from CPUs and GPUs. Many of them are capable of
generating both CPU and GPU code from high-level languages. For example,
from OpenMP 4.0 onwards [24], GPU platforms are supported by extending
OpenMP’s high-level parallel abstractions with accelerator programming. Lime [2]
and Habanero-Java [8] accept user-specified parallel language constructs and
directives. In addition, IBM’s Java compiler [14] supports Java 8 parallel stream
APIs, which enables programmers to express parallelism in a high level and
machine-independent manner in a widely-used industry standard programming
language.

Unfortunately, programmers still have to make the important decision of
which hardware device to run their programs on. This method not only relies on
programmers to understand low-level issues to make a thoughtful selection, but
the nature of non-data-driven prediction also does not guarantee that the full
capability of the underlying hardware is utilized. In recent work, the possibility of
using supervised machine learning to automate the selection of the more optimal
hardware device as a capability in IBM’s Java 8 just-in-time (JIT) compiler was
explored with success [10]. In [10], a set of program features such as the number
of arithmetic/memory instructions is extracted at JIT compilation time, and
then a binary prediction model that chooses either the CPU or GPU is generated
using LIBSVM (a library of support vector machines) after obtaining training
data by running different applications with different data sets.

However, to the best of our knowledge, there is no comparable study on 1) good
machine learning algorithms and 2) good program features to track. The focus of
this paper is to improve the prediction heuristic in accuracy and time overhead
by exploring a variety of supervised machine learning techniques and different
sets of program features. Finding the ideal set of features and algorithm can
allow us to achieve better accuracy, which can also improve overall performance,
and using fewer features to achieve high accuracy can reduce overheads of feature
extraction and runtime prediction.

We collected 291 samples from 11 Java applications, each containing ten pro-
gram features to serve as training data. However, instead of using this information
as one training data to build a single binary prediction model, we generated



Machine Learning for Runtime Selection of CPU vs. GPU Execution 3

C—Accuracy =E=Time
Bar: Higher is better, Line : Lower is better
120 10.0
98.282 99.656
A100 80 o
& 80 E
- 6.0 7o
(4] oo
g 60 =
3 40 2=
8 40 2.278 2.107 3
< - a
20 N 2.0
0 0.0
10 Features, Prior Work 3 Features, This Work

Fig. 1. The impact of changing a set of program features that is fed into LIBSVM on
an IBM POWERS and NVIDIA Tesla platform.

separate training data sets for every possible subset of the original ten features

to explore good program features, resulting in a 102 order of training data sets.

Distinct binary prediction models were trained on these data for every unique

supervised machine learning technique: decision stump, J48 decision tree, k nearest

neighbors, LIBSVM, logistic regression, multi-layer perceptron, and naive bayes.
This paper makes the following contributions:

— Exploration of supervised machine learning based binary prediction mod-
els with various program features for runtime selection of CPU vs. GPU
execution.

— Quantitative evaluation of performance heuristics with 5-fold-cross-validation.

— Detailed discussion on implementing prediction models into runtime systems.

The rest of the paper is organized as follows. Section 2 summarizes the
background on runtime CPU/GPU selection. Section 3 describes our compilation
framework for Java 8 programs. Section 4 discusses how we explore different
supervised machine learning algorithms and various program features. Section 5
presents an experimental evaluation. Section 6 discusses related work and Section 7
concludes.

2 Motivation

While optimal hardware selection for heterogeneous platforms is a challenging
problem because a wide variety of factors affect performance, it is the program-
mer’s responsibility to select a preferable device even in well-established program-
ming models. We believe that automating the process of runtime CPU/GPU
selection can greatly improve productivity and performance portability.

One approach is to build a cost/prediction model to predict a device that could
run faster. In this regards, analytical cost models [12,20] can be very accurate,



4 Gloria Y.K. Kim, Akihiro Hayashi, and Vivek Sarkar

Listing 1.1. An example of a parallel stream.

1 IntStream.range(0, 100).parallel().forEach(i —> a[i] = i);

JIT compiler ]:l Our modules for GPU :Module by NVIDIA

Our AN ' GPU

Target machine \ PowerPC : NVIDIA GPU
code generation 1~ native code | native code
NVVM | ey Sl

untlme Helpers PTXZBinaw
PTX module

Java
bytecode

parallel streams
identification in IR

IRfor K] Analysis and
parallel streams| optimizations

Fig. 2. JIT compiler overview.

assuming deep understandings of target programs and underlying architectures,
but are often device-specific. Another direction is to build cost/prediction models
empirically [7,10,16-19, 29]. Since empirical cost/prediction models are often
based on historical performance data, they are platform neutral and can be built
without device-specific knowledge.

Prior empirical approaches demonstrated that the use of machine learning
algorithms (e.g., linear regression and support vector machines) is a promising
way to empirically build prediction models. However, to the best of our knowledge,
there is no comparable study on 1) good machine learning algorithms and 2)
good program features to use for runtime CPU/GPU selection.

Figure 1 shows the impact of changing a set of program features that is fed
into support vector machines (SVMs) on an IBM POWERS and NVIDIA Tesla
platform. Detailed information on the platform can be found in Section 5. The
results show that a set of program features can improve the accuracy by 1.374%
and the overhead of making a prediction by 8.116% compared to our prior work.
Hence, an appropriate selection of program features and a machine learning
algorithm can further improve the accuracy and the overheads of prediction
models. This motivates us to explore various different machine learning algorithms
with different sets of features.

3 Compiling Java to GPUs

This section explains an overview of a parallel loop in Java and compilation of
the parallel loop that is used in our framework.

3.1 Java Parallel Stream API

From Java 8 onwards, Stream APIs are available for manipulating a sequence of
elements. Elements can be passed to a lambda expression to support functional-
style operations such as filter, map, and reduce. This sequence can also be used



Machine Learning for Runtime Selection of CPU vs. GPU Execution 5

to express loop parallelisms at a high level. If a programmer explicitly specifies
parallel() to a stream, a Java runtime can process each element with the lambda
expression in this sequence of the stream in parallel.

Listing 1.1 shows an example of a program using a parallel stream. In this
case, a sequence of integer elements i = 0,1,2,...,99 is firstly generated. Then,
the sequence is passed with parallel() to a lambda parameter i in the lambda
expression in forEach(). The lambda body alil = i in the lambda expression can
be executed with each parameter value in parallel. While this lambda expression
can be executed in parallel by multiple threads on CPUs (e.g., by using Java
fork/join framework), the specification of the Stream API does not explicitly
specify any hardware device or runtime framework for parallel execution. This
allows the JIT compiler to generate a GPU version of the parallel loop and
execute it on GPUs at runtime.

In general, the performance of this parallel execution can be accelerated only
when a Java runtime appropriately select one of the available hardware devices.

3.2 JIT Compilation for GPUs

Our framework is built on top of the production version of the IBM Java 8
runtime environment [13] that consists of the J9 Virtual machine and Testarossa
JIT compiler [5]. Fig. 2 shows an overview of our JIT compiler.

First, the Java runtime environment identifies a method to be compiled based
on runtime profiling information. The JIT compiler transforms Java bytecode
of the compilation target method to an intermediate representation (IR), and
then applies state-of-the-art optimizations to the IR. The JIT compiler reuses
existing optimization modules such as dead code elimination, copy propagation,
and partial redundancy elimination.

The JIT compiler looks for a call to the java.util.Stream.IntStream.forEach()
method with parallel() in the IR. If it finds the method call, the IR for a lambda
expression in forEach() with a pair of lower and upper bounds is extracted. After
this extraction, the JIT compiler transforms this parallel forEach into a regular
loop in the IR. Then, the JIT compiler analyzes the IR and applies optimizations
to the parallel loop.

The optimized IR is divided into two parts. One is translated into an NVVM
IR [21], which is fed into a GPU code generation library (libNVVM) for GPU
execution. Features are extracted from the corresponding IR from this part.
The other part is translated into a PowerPC binary, which includes calls to
make a decision on selecting a faster device from available devices and to CUDA
Drive APIs. The latter includes memory allocation on GPUs, data transfer
between the host and the GPU, and a call to GPU binary translator with PTX
instructions [22]. When the former call decides to use the GPU, the PowerPC
binary calls a CUDA Driver API to compile PTX instructions to an NVIDIA
GPU’s binary, then the GPU binary is executed.

Currently, the JIT compiler can generate GPU code from the following two
styles of an innermost parallel stream code to express data parallelism:



6 Gloria Y.K. Kim, Akihiro Hayashi, and Vivek Sarkar

JIT compiler _
1
war_ & e (B
e Machine
data2 s byiecode A feature feature 2 Learning -
AppA ! extraction - Algorithm N Prediction
i i ST i i Model
! i H i (J48 Decision Tree,
bytacode (1 — LIBSVM, Logistic
data 3 + App B 4‘\9 et Regression)
Training run with JIT Compiler Offline Model Construction

Fig. 3. Supervised machine learning based binary prediction model construction.

Listing 1.2. Supported parallel streams.

1 IntStream.range(low, up).parallel().forEach(i —> <lambda>)
2 IntStream.rangeClosed(low, up).parallel().forEach(i —> <lambda>)

The function rangeClosed(low, up) generates a sequence within the range of
low < i < up, where i is an induction variable, up is upper inclusion limit and
low is lower inclusion limit. (lambda) represents a valid Java lambda body with
a lambda parameter ¢ whose input is a sequence of integer values. In the current
implementation, only the following constructs are allowed in (lambda):

— types: all of the Java primitive types

— variable: local, parameters, one-dimensional array whose references are a
loop invariant, and a field in an instance

— expression: all of the Java expressions for Java primitive types

— statements: all of the Java statements except all of the following: try-catch-finally

and throw, synchronized, a interface method call, and other aggregate op-
erations of the stream such as reduce()

— exceptions: ArrayIndexOutOfBoundsException, NullPointerException, and

ArithmeticException (only division by zero)

4 Exploring Supervised Machine Learning Algorithms

This section discusses the supervised machine learning algorithms and various
program features explored. We provide descriptions of the algorithms and features,
then give an overview of the work flow for constructing models on various subsets
of features using each algorithm.

4.1 Supervised Machine Learning

Supervised machine learning is a technique of inferring a function using labeled
training data. Typically, regression algorithms are used for inferring a real number



Machine Learning for Runtime Selection of CPU vs. GPU Execution 7

]Kind Feature [Description
Size range Size of parallel loop
arithmetic| ALU instructions such as addition and multiplication
branch Unconditional/conditional branch instructions
Instruction |math Math methods in java.lang.Math

memory |Load and store instructions to and from memory
otherl Other types of instructions
coalesced |Aligned array access with zero offset

offset Misaligned array access with non-zero offset
Array Access - — - -

stride Misaligned array access with stride

other2 Other types of array accesses

Table 1. Description of Program Features

value (e.g., predicting housing prices) and classification algorithms are used for
inferring a boolean value (e.g., zero or one). In this paper, we explore classification
algorithms to infer a preferable device for a given parallel loop - i.e. CPUs or
GPUs.

Figure 3 summarizes our approach to build a binary prediction model. In
constructing supervised machine learning based performance heuristics, program
features served as the predictors on which the binary prediction models were
trained on. Program features were dynamically extracted in the JIT compiler.

4.2 Generating Subsets of Features

Table 1 summarizes program features extracted by the JIT compiler. These
features are essentially the dynamic numbers of our IR instructions, which have
a strong relationship with execution time. More details on the feature extraction
part can be found in our prior work [10]. Every possible subset of features from
the union of the sets {range}, {arithmetic, branch, math, memory, otherl} and
{coalesced, offset, stride, other2} - where the first set with just range refers to the
number of iterations of a parallel loop, the second set of features refers to the
number of such instructions per iteration, and the third set of features refers to
the number of such array accesses per parallel loop - was used to create a separate
prediction model. Subsets of features (1024 combinations) - as opposed to only
the full set of features - were explored to determine which program features more
critically contributed to an accurate prediction model.

4.3 Constructing Prediction Models

Algorithms Used Supervised machine learning with each of decision stump, J48
decision tree, k nearest neighbors, LIBSVM, logistic regression, multi-layer perceptron,
and naive bayes, was performed to obtain multiple binary prediction models:

— Decision Stump: Divide data points into two groups (CPU vs GPU) based
on one feature to create the most distinct groups as possible. Results in a



8 Gloria Y.K. Kim, Akihiro Hayashi, and Vivek Sarkar

single-level decision tree where the root node represents the feature and the
leaf nodes represent either CPU or GPU.

— J48 Decision Tree: For each feature, divide data points into two groups
(CPU vs GPU) to create the most distinct groups as possible. Results in a
multilevel pruned decision tree where non-leaf nodes represent features and
the leaf nodes represent either CPU or GPU.

— K-nearest Neighbors: Map each data point in relation to one another
using a distance function. Classify a new data point by assigning it to the
class (CPU vs GPU) that is most common amongst its k nearest neighbors.

— LIBSVM/SVM (Support Vector Machines): Plot data as points in an
n-dimensional space where n is the number of features, then find an optimal
hyperplane that splits the data for classification (CPU vs GPU). Prediction
on new data is based on which side of the hyperplane it lands when plotted.

— Logistic Regression: Predict the probability of an outcome (CPU vs GPU)
by fitting data to a logit function. The log odds of binary prediction are
modeled as a linear combination of features, which serve as predictor variables.

— Multi-layer Perceptron: Build a network of sigmoid nodes and classify
instances (CPU vs GPU) using backpropagation.

— Naive Bayes: Compute the posterior probability of a class (CPU vs GPU)
given features using Bayes’ theorem.

These algorithms were deemed appropriate for our context of binary selection
(GPU vs CPU) using supervised machine learning (training data includes both
predictors as well as the outcomes), and were explored to determine the best
algorithm for our model. All prediction models except for those from LIBSVM
were built using the Weka software [28] offline. Afterwards, the models were used
to make predictions for unseen programs.

Detailed Steps The following steps explain the basic workflow for each model
construction:

Step 1: Formatting training data

Training data was formatted for proper processing. In the case of Weka, an
ARFF file was formatted as an array of attribute values (features and outcome)
for each data sample like such:

(valuel), (value2), ..., (outcome)

where every value is an integer representing the number of times a feature
appears in the sample program, and (outcome) is a string "GPU’ or *CPU’)
representing which hardware device was the better choice for this particular
program.

Step 2: Training

Supervised machine learning was performed with the training data to generate
a binary prediction model.

Step 3: Cross Validation

5-fold-cross-validation was used to evaluate the accuracy of the prediction
model. In n-fold-cross-validation, data is divided into n sections, then n-1 sections



Machine Learning for Runtime Selection of CPU vs. GPU Execution 9

are used as data to train the model while the remaining section is used as new
data to test the accuracy of the model.

Step 4: Additional Testing

The prediction model was used on other testing data to evaluate the accuracy
of the model on data unrelated to what was used to build the model.

4.4 Integrating Prediction Models

To integrate a prediction model into the JVM runtime, we first prepare an
equivalent C function that takes features and returns a boolean value (CPU
or GPU). For example, we put a sequence of if-then-else statements for doing
J48 decision tree predictions and put some library calls (e.g., LIBSVM). The
JIT compiler generates both CPU and GPU versions of a parallel loop and the
runtime selects an appropriate one on the output of the prediction function.

5 Experimental Results

5.1 Experimental Protocol

Purpose: The goal of this experiment is to study how program features and
supervised machine learning algorithms affect the accuracy of runtime CPU/GPU
selection. For that purpose, we constructed binary prediction models on various
subsets of features using the following algorithms: decision stump, J48 decision
tree, k nearest neighbors, LIBSVM, logistic regression, multi-layer perceptron, and
naive bayes.

Datasets: We used a training dataset from our previous work [10] and an
additional dataset obtained on IBM POWERS and NVIDIA Tesla platform with
Ubuntu 14.10 operating system. The platform has two 10-core IBM POWERS
CPUs at 3.69GHz with 256GB of RAM. Each core is capable of running eight
SMT threads, resulting in 160-threads per platform. One NVIDIA Tesla K40m
GPU at 876 MHz with 12GB of global memory is connected over PCI-Express
Gen 3. Error-correcting code (ECC) feature was turned off at the time to evaluate
this work. The option was either 160 workers on IBM POWERS or NVIDIA Tesla
K40m GPU. The training dataset from [10] was obtained by running the eleven
benchmarks shown in Table 2 with different data sets. The additional dataset
consisting of 41 samples was obtained by running Bitonic Sort, KMeans, and an
IBM’s confidential application. In the following, the training dataset from [10]
is referred to as the original dataset and the additional dataset is referred to as
the unknown testing dataset. Each sample has the class label showing a faster
configuration (160 workers threads on CPU vs. GPU).

5.2 Overall Summary

The binary prediction models were evaluated based on three measures of accuracy:
1) accuracy from 5-fold-cross-validation with the original dataset, 2) accuracy on



10 Gloria Y.K. Kim, Akihiro Hayashi, and Vivek Sarkar

[Benchmark[Summary | Maximum Data Size [Data Type

Blackscholes |Financial application which| 4,194,304 virtual options double
calculates the price of Euro-
pean put and call options
Crypt Cryptographic  application|Size C with N= 50,000,000 byte
from the Java Grande
Benchmarks [15]

SpMM Sparse matrix multiplication| Size C with N = 500,000 double
from the Java Grande Bench-
marks [15]

MRIQ  |Three-dimensional medical| large size(64x64x64) float
benchmark from Parboil [25],
ported to Java

Gemm Matrix multiplication: C = 2,048 x2,048 int
a.A.B + p.C from Poly-
Bench [26], ported to Java
Gesummv |Scalar, Vector and Matrix 2,048%2,048 int
Multiplication from Poly-
Bench [26], ported to Java
Doitgen |Multiresolution analysis ker- 256x256%x256 int
nel from PolyBench [26],
ported to Java

Jacobi-1D [1-D Jacobi stencil compu- N =4,194304 T =1 int
tation from Polybench [26],
ported to Java

MM A standard dense matrix mul- 2,048%2,048 double
tiplication: C = A.B

MT A standard dense matrix 2,048%2,048 double
transpose: B = AT

VA A standard 1-D vector addi- 4,194,304 double
tion C = A+ B

Table 2. A list of benchmarks used to create the dataset from [10].

prediction of the original dataset, and 3) accuracy on prediction of the unknown
testing dataset.

The rest of this section is organized as follows: we first present and discuss
accuracies on the full set of features in Section 5.3. Then, in Section 5.4, we
present and discuss accuracies on subsets of features. Through deeper analysis
and comparison of models, we see how the features included and the algorithm
used affect the accuracy of runtime CPU/GPU selection.

5.3 Accuracies on the Full Set of Features

Models trained on the full set of features yielded very different accuracies across
different algorithms. The Naive Bayes-trained model performed the worst with
a 42.268% accuracy from 5-fold-cross-validation, while LIBSVM and J48 Tree-



Machine Learning for Runtime Selection of CPU vs. GPU Execution 11
LIBSVM |J48 Tree |Logistic |Multilayer|k Nearest|Decision |Naive
Regres- |Percep- |Neigh- Stump Bayes
sion tron bors
Accuracy (98.282% (98.282% (97.595% |88.660% |88.316% [88.316% [42.268%
from
5-fold-CV
Accuracy [99.656% [98.969% (98.969% |96.220% |90.034% |88.316% |42.268%
on  orig-
inal
training
data
Accuracy |98.282% (92.683% |80.488% [92.683% [92.683% (82.927% |2.439%
on other
testing
data

Table 3. Accuracies achieved by binary prediction models generated using each ML
algorithm from full set of features

LIBSVM |Logistic Re-{J48 Tree |Multilayer |k Nearest|Naive Decision
gression Perceptron |Neighbors |Bayes Stump
99.656% [98.6256% [98.282% (96.907% |95.876% |91.753%  |88.316%

Table 4. Highest 5-fold-cross-validation accuracies achieved by binary prediction models
generated using each ML algorithm

trained models performed the best with 98.282%, followed by the Logistic Regres-
sion-trained model with 97.595% accuracy. The other models achieved accuracies
in the 88.3-88.7% range. A summary of the accuracy results are shown in Table 3
and visually represented in Figure 4.

5.4 Exploring ML Algorithms by Feature Subsetting

Models were also trained on different subsets of features to determine the features
that most significantly contribute to high accuracy - the ideal case being the
smallest subset of features resulting in the highest accuracy possible. We compared
the important features for each algorithm from (1) the subsets achieving highest
accuracy and (2) the full set of features. By subsetting, we were able to build
models that achieved higher accuracy than those built from the full set of features.

Subsets achieving Highest Accuracy A summary of the accuracy results are
shown in Table 4. Here, each of the accuracies refers to the prediction model(s)
- based on some subset of features - that achieved the highest accuracy among
all other models built using the same algorithm. The result suggests that the
top three algorithms are LIBSVM, logistic regression, and J48 tree, all of which
achieved highest accuracies of >98.282% from 5-fold-cross-validation.



12 Gloria Y.K. Kim, Akihiro Hayashi, and Vivek Sarkar

B Accuracy from 5-fold CV O Accuracy on original training data
B Accuracy on unknown testing data

Higher is better
0 1 N

N

90
80 1
70
60
50
40
30 1
20
10 7

Accuracy (%)
ALY
ARIRRNRNRNNNNNNN

AU

LIBSVM J48 Tree Logistic Multilayer kNearest Decision Naive Bayes
Regression  Perceptron Neighbors Stump

Fig. 4. Accuracies of models with full set of features

99 models built using LIBSVM, 30 models built using logistic regression, and
256 models built using J48 tree achieved highest accuracies of 99.656%, 98.969%,
and 98.969% respectively. For each of these top three algorithms, we further
analyzed the models based on the smallest subset of features that achieved
highest accuracy. For LIBSVM, the smallest subset size was three, for logistic
regression four, and for J48 tree two. The results are shown in Table 5 and visually
represented in Figure 5.

Comparison of important features and accuracies of models generated using
these algorithms led to several key findings. First, the features identified as
important were inconsistent across algorithms and slightly differed between subset
and full set models for the same algorithm. Second, including more features in
the prediction model did not correlate to a higher accuracy.

LIBSVM Logistic Regression |J48 Tree
# of features in-3 4 2
cluded in model
Accuracy from 5-fold-99.656% 98.625% 98.282%
cross-validation
Accuracy on original|99.656% 98.969% 98.282%
training data
Accuracy on other|99.656% 82.927% 92.683%
testing data

Table 5. Analysis of binary prediction models with smallest subset of features that
achieved highest 5-fold-cross-validation accuracies



Machine Learning for Runtime Selection of CPU vs. GPU Execution 13

® Accuracy from 5-fold CV OAccuracy on original training data

@Accuracy on unknown testing data
Higher is better
99.656 99.656 99.656 98.625 98.969 98.282 98.282

100
90 \Q 82.927

Accuracy (%)
(&
o

DA\

LIBSVM (# of features = 3) Logistic Regression (# of features = 4) J48 Tree (# of features = 2,

Fig. 5. Accuracies of models with smallest subset size that achieved highest 5-fold-
cross-validation accuracies

Comparison of Important Features The models that achieved highest ac-
curacy using LIBSVM, logistic regression, and J48 tree were not built from the
same subset of features. To determine which features were important for each
algorithm, we analyzed the features of models that achieved the highest accuracy
from 5-fold-cross-validation. Although models of various combinations of features
achieved the same level of accuracy, for each algorithm, there was at least one
feature that was necessarily present in all models. For LIBSVM, this feature
is parallel loop range; for logistic regression, coalesced array accesses and other
array accesses; for J48 decision tree, parallel loop range and other array accesses.
Table 6, Table 7, and Table 8 detail the number of these models respective to
each algorithm that incorporated each feature.

To identify the important features from models trained on the full set of
features, the odds ratio of features in logistic regression and the branches repre-
senting features in the J48 tree were analyzed. In logistic regression, offset was the
most important feature; in the J48 tree, math, range, and other2 were the most
important features. Our analyses indicate that important features identified by
subsetting did not exactly match features suggested by the model (e.g., weight
vectors) trained on the full set of features. Analyzing the model from LIBSVM was
difficult as the model trained on the full set of features produced a (non-)linear
hyperplane in a 10-dimensional space.

Comparison of Accuracy As mentioned in Section 5.4, the smallest subset
size of the highest accuracy achieved was three for LIBSVM, four for logistic
regression, and two for J48 tree. On the other hand, models built from the full
set of features at best achieved equivalent accuracy as those built from these
subsets. These accuracies are visually represented in Figure 6. A comparison
of accuracies between the subset-trained and full-set-trained models suggests
that including more features in the prediction model not only fails to improve



14 Gloria Y.K. Kim, Akihiro Hayashi, and Vivek Sarkar

Feature Number of Models with Fea- Percentage of Models with
ture Feature
range 99 100.0%
stride 96 97.0%
arithmetic 65 65.7%
other2 56 56.6%
memory 56 56.6%
offset 55 55.6%
branch 54 54.5%
math 46 46.5%
otherl 43 43.4%
coalesced 0 0.0%

Table 6. Feature analysis on highest accuracy (5-fold-cross-validation) subset models
built using LIBSVM.

Feature Number of Models with Fea{Percentage of Models with
ture Feature
other2 30 100.0%
coalesced 30 100.0%
offset 25 83.3%
arithmetic 20 66.7%
stride 18 60.0%
range 16 53.3%
memory 16 53.3%
branch 9 30.0%
math 9 30.0%
otherl 6 20.0%

Table 7. Feature analysis on highest accuracy (5-fold-cross-validation) subset models
built using Logistic Regression.

accuracy, but in fact decreases the accuracy of the model. This is because as the
complexity of a model increases, the risk of overfitting and curse of dimensionality
potentially increases. Specifically for LIBSVM, with fewer features (assuming the
ideal /appropriate combination of them), the smaller the dimension of space and
constraints imposed by each additional dimension as the algorithm searches for
an optimal non-linear hyperplane that has the largest separation between two
classes.

Analysis of Runtime Prediction Overheads The relationship between sub-
set size and runtime prediction overheads is shown in Table 9. The results show
that a smaller subset size can reduce runtime prediction overheads and improve
accuracy in general. For J48 decision tree, there was no significant difference in
runtime overheads by subsetting because the algorithm does not fully consider all
the given features. Also, it is worth noting that each kernel takes at least several



Machine Learning for Runtime Selection of CPU vs. GPU Execution 15

Feature Number of Models with Fea- Percentage of Models with
ture Feature
other2 256 100.0%
range 256 100.0%
arithmetic 128 50.0%
memory 128 50.0%
branch 128 50.0%
math 128 50.0%
coalesced 128 50.0%
otherl 128 50.0%
stride 128 50.0%
offset 128 50.0%

Table 8. Feature analysis on highest accuracy (5-fold-cross-validation) subset models
built using J48 Decision Tree.

B Subset of Features BFullset of features
Higher is better
100 99.656 98.282 98.625 97.595 98.282 98.282

:\;80
260
(]
3 40
(2]
< 20

0

LIBSVM Logistic Regression J48 Tree

Fig. 6. The impact of feature subsetting

milliseconds, which is several orders of magnitude larger than the prediction
overhead shown in Table 9.

5.5 Lessons Learned

Results show that an appropriate selection of program features and machine
learning algorithm can improve accuracy and reduce runtime overheads. Based
on our analysis, our suggestions for utilizing machine learning techniques for
runtime CPU/GPU selection are as follows:

1. LIBSVM, Logistic Regression, and J48 Decision Tree are machine learning
techniques that produce models with best accuracies.

2. Range, coalesced, and other2 are particularly important features. In particular,
since range is a good metric to measure the amount of work, which in



16 Gloria Y.K. Kim, Akihiro Hayashi, and Vivek Sarkar

general significantly correlates to execution time, it is an important feature
to incorporate in the prediction models. range was present in all models built
with LIBSVM or J48 Decision Tree that achieved highest accuracy; coalesced
was present in all models built with Logistic Regression that achieved highest
accuracy; other2 was present in all models built with Logistic Regression or
J48 Decision Tree that achieved highest accuracy. Additionally, arithmetic
was present in most of the models built with LIBSVM, J48 Decision Tree, or
Logistic Regression that achieved highest accuracy.

3. While LIBSVM shows excellent accuracy in prediction, runtime prediction
overheads are relatively large compared to other algorithms.

4. J48 Decision Tree shows comparable accuracy to LIBSVM. Also, compared to
other approaches, the output of the J48 Decision Tree is more human-readable
and fine-tunable because it is a sequence of if-then-else statements.

LIBSVM |Logistic Regression|J48 Tree

nFeatures 10 10 10
Fullset of Features|Accuracy from 5-fold-CV  [98.282%(97.595% 98.282%
Prediction Overheads 2.278 us [0.158 us 0.020 us

nFeatures 3 4 2
Subset of Features|Accuracy from 5-fold-CV ~ [99.656%(98.625% 98.282%
Prediction Overheads (usec)|2.107 us |0.106 us 0.020 us

Table 9. Overheads of Runtime Prediction

6 Related Work

6.1 GPU Code Generation from High-level Languages

GPU code generation is supported by several JVM-compatible language compila-
tion systems.

Many previous studies support explicit parallel programming by programmers
on GPU. JCUDA [30] provides a special interface that allows programmers to
write Java code that calls user-written CUDA kernels. The JCUDA compiler
automatically generates the JNI glue code between the JVM and CUDA runtime
by using this interface. Some other tools like JaABEE [31], RootBeer [27], and
Aparapi [1] perform runtime generation of CUDA or OpenCL code from a code
region within a method declared inside a specific class/interface (e.g. run() method
of Kernel class/interface).

Other previous work provide higher-level programming models for ease of
parallel programming. Hadoop-CL and Hadoop-CL2 [6,7] are built on top of
Aparapi and integrates OpenCL into the Hadoop system. Lime [2] is a Java-
compatible language that supports map/reduce operations on CPU/GPU through
OpenCL. Firepile [23] translates JVM bytecode from Scala programs to OpenCL



Machine Learning for Runtime Selection of CPU vs. GPU Execution 17

kernels at runtime. HJ-OpenCL [8, 9] generates OpenCL from Habanero-Java
language, which provides high-level language constructs such as parallel loop
(forall), barrier synchronization (next), and high-level multi-dimensional array
(ArrayView). Some other work (e.g. [3,4]) has proposed the use of high-level
array programming models for heterogeneous computing that can also be built
on top of the Java 8 parallel stream API.

These approaches leave the burden of selecting the preferred hardware device
on the programmer. While they also provide impressive support for making
the development of Java programs for GPU execution more productive, these
programming models lack the portability and standardization of the Java 8
parallel stream APIs.

6.2 Offline Model Construction

OSCAR [11] is an automatic parallelizing compiler that takes user-provided
cost information for heterogeneous scheduling. Some approaches automate this
process by constructing performance prediction models offline (e.g., when the
JIT compiler is installed on the machine) and making decisions at runtime. For
example, Qilin [19] empirically builds a cost model offline for the hybrid execution
between CPUs and GPUs. In the context of managed languages like in [18],
the runtime predicts absolute performance numbers for CPUs and GPUs with
linear models constructed by running micro-benchmarks with different datasets
beforehand. Similarly, in [10], the JIT compiler extracts a set of features of a
parallel loop (e.g., the number of arithmetic instructions, memory instructions,
etc.) at JIT compilation time and the runtime selects the faster device based on
a binary prediction model trained on applications with different datasets using
support vector machines.

Some of the prior approaches utilize hardware counter information [17,29]
for offline performance model construction, but such information is not usually
available.

7 Conclusions

Due to a variety of factors affecting performance, selecting the optimal platform
for parallel computing (multi-core CPU vs many-core GPU) for faster performance
of individual kernels is a difficult problem. To automate this process and remove
the burden from programmers to make the decision between CPU and GPU,
we built prediction heuristics from different combinations of program features
using a variety of supervised machine learning techniques. Our models achieved
accuracies of 99.656% with LIBSVM from three features, 98.625% with logistic
regression from four features, and 98.282% with J48 tree from two features. These
prediction models can be incorporated into runtime systems to accurately predict,
on behalf of the programmers, the more optimal platform to run their parallel
programs on, thereby improving performance.



18

Gloria Y.K. Kim, Akihiro Hayashi, and Vivek Sarkar

In subsequent work, we plan to increase the training and test data set, then

use our prediction-model-based automated selection of CPU vs GPU to compare
improvements in runtime performance. In the future, we plan to apply our
technique to AOT-compiled programs like OpenMP and OpenACC programs.
One challenging problem is how to accurately collect performance metrics since
feature extraction is done statically. Another direction of this work is to build
prediction models for the systems that have recent GPUs such as Tesla K80,
P100, and V100.

A

Appendix

Backpropagation: In a Multilayer Perceptron (an artificial neural net), the
repeated process of adjusting the weight of each neuron node in order to
minimize error.

Logit function: In Logistic Regression, the cumulative distribution function
of the logistic distribution.

Overfitting: In machine learning, an undesired occurrence when noise in
the training data is learned by the model as concepts, negatively impacting
the model's ability to make predictions on new data.

Sigmoid node: In a Multilayer Perceptron (an artificial neural net), a node
that is activated based on the Sigmoid function, a special kind of logistic
function.

References

. APARAPIL: API for Data Parallel Java (2011), [online] http://code.google.com/p/

aparapi/ (Accessed 20 June 2017)

. Dubach, C., Cheng, P., Rabbah, R., Bacon, D.F., Fink, S.J.: Compiling a high-

level language for gpus: (via language support for architectures and compilers). In:
Proceedings of the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation. pp. 1-12. PLDI ’12, ACM, New York, NY, USA (2012),
http://doi.acm.org/10.1145/2254064.2254066

. Fumero, J.J., Remmelg, T., Steuwer, M., Dubach, C.: Runtime code generation

and data management for heterogeneous computing in java. In: Proceedings of the
Principles and Practices of Programming on The Java Platform. pp. 16-26. PPPJ 15,
ACM, New York, NY, USA (2015), http://doi.acm.org/10.1145/2807426.2807428

. Fumero, J.J., Steuwer, M., Dubach, C.: A Composable Array Function Interface for

Heterogeneous Computing in Java. In: Proceedings of ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming. pp.
44:44-44:49. ARRAY 14, ACM, New York, NY, USA (2014), http://doi.acm.org/
10.1145/2627373.2627381

. Greevski, N.; Kielstra, A., Stoodley, K., Stoodley, M., Sundaresan, V.: Javatm

just-in-time compiler and virtual machine improvements for server and middleware
applications. In: Proceedings of the 3rd Conference on Virtual Machine Research
And Technology Symposium - Volume 3. pp. 12-12. VM’04, USENIX Association,
Berkeley, CA, USA (2004), http://dl.acm.org/citation.cfm?id=1267242.1267254


http://code.google.com/p/aparapi/
http://code.google.com/p/aparapi/
http://doi.acm.org/10.1145/2254064.2254066
http://doi.acm.org/10.1145/2807426.2807428
http://doi.acm.org/10.1145/2627373.2627381
http://doi.acm.org/10.1145/2627373.2627381
http://dl.acm.org/citation.cfm?id=1267242.1267254

10.

11.

12.

13.

14.

15.

16.

17.

18.

Machine Learning for Runtime Selection of CPU vs. GPU Execution 19

. Grossman, M., Breternitz, M., Sarkar, V.: HadoopCL: MapReduce on Distributed

Heterogeneous Platforms Through Seamless Integration of Hadoop and OpenCL.
In: Proceedings of the 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum. pp. 1918-1927. IPDPSW ’13,
IEEE Computer Society, Washington, DC, USA (2013), http://dx.doi.org/10.1109/
IPDPSW.2013.246

. Grossman, M., Breternitz, M., Sarkar, V.: Hadoopcl2: Motivating the design of a

distributed, heterogeneous programming system with machine-learning applications.
IEEE Transactions on Parallel and Distributed Systems 27(3), 762-775 (March
2016)

. Hayashi, A., Grossman, M., Zhao, J., Shirako, J., Sarkar, V.: Accelerating Habanero-

Java Programs with OpenCL Generation. In: Proceedings of the 2013 International
Conference on Principles and Practices of Programming on the Java Platform:
Virtual Machines, Languages, and Tools. pp. 124-134. PPPJ ’13 (2013)

. Hayashi, A., Grossman, M., Zhao, J., Shirako, J., Sarkar, V.: Speculative execution

of parallel programs with precise exception semantics on gpus. In: CalZcaval,
C., Montesinos, P. (eds.) Languages and Compilers for Parallel Computing, pp.
342-356. LCPC ’13, Springer International Publishing (2014), http://dx.doi.org/
10.1007/978-3-319-09967-5_20

Hayashi, A., Ishizaki, K., Koblents, G., Sarkar, V.: Machine-learning-based perfor-
mance heuristics for runtime cpu/gpu selection. In: Proceedings of the Principles
and Practices of Programming on The Java Platform. pp. 27-36. PPPJ ’15, ACM,
New York, NY, USA (2015), http://doi.acm.org/10.1145/2807426.2807429
Hayashi, A., Wada, Y., Watanabe, T., Sekiguchi, T., Mase, M., Shirako, J., Kimura,
K., Kasahara, H.: Parallelizing Compiler Framework and API for Power Reduction
and Software Productivity of Real-Time Heterogeneous Multicores, pp. 184-198.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011), http://dx.doi.org/10.1007/
978-3-642-19595-2_ 13

Hong, S., Kim, H.: An analytical model for a gpu architecture with memory-level and
thread-level parallelism awareness. In: Proceedings of the 36th Annual International
Symposium on Computer Architecture. pp. 152-163. ISCA ’09, ACM, New York,
NY, USA (2009), http://doi.acm.org/10.1145/1555754.1555775

IBM Corporation: IBM SDK, Java Technology Edition, Version 8. [online] https:
//developer.ibm.com/javasdk/downloads/ (Accessed 20 June 2017)(2015)
Ishizaki, K., Hayashi, A., Koblents, G., Sarkar, V.: Compiling and optimizing
java 8 programs for gpu execution. In: 2015 International Conference on Parallel
Architecture and Compilation (PACT). pp. 419-431 (Oct 2015)

JGF: The Java Grande Forum benchmark suite.
https://www.epcc.ed.ac.uk/research /computing /performance-characterisation-
and-benchmarking/java-grande-benchmark-suite

Kaleem, R., Barik, R., Shpeisman, T., Lewis, B.T., Hu, C., Pingali, K.: Adaptive het-
erogeneous scheduling for integrated gpus. In: Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation. pp. 151-162. PACT ’14,
ACM, New York, NY, USA (2014), http://doi.acm.org/10.1145/2628071.2628088
Karami, A., Mirsoleimani, S.A., Khunjush, F.: A statistical performance prediction
model for opencl kernels on nvidia gpus. In: The 17th CSI International Symposium
on Computer Architecture Digital Systems (CADS 2013). pp. 15-22 (Oct 2013)
Leung, A., Lhotdk, O., Lashari, G.: Automatic parallelization for graphics processing
units. In: Proceedings of the 7th International Conference on Principles and Practice
of Programming in Java. pp. 91-100. PPPJ 09 (2009)


http://dx.doi.org/10.1109/IPDPSW.2013.246
http://dx.doi.org/10.1109/IPDPSW.2013.246
http://dx.doi.org/10.1007/978-3-319-09967-5_20
http://dx.doi.org/10.1007/978-3-319-09967-5_20
http://doi.acm.org/10.1145/2807426.2807429
http://dx.doi.org/10.1007/978-3-642-19595-2_13
http://dx.doi.org/10.1007/978-3-642-19595-2_13
http://doi.acm.org/10.1145/1555754.1555775
https://developer.ibm.com/javasdk/downloads/
https://developer.ibm.com/javasdk/downloads/
http://doi.acm.org/10.1145/2628071.2628088

20

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Gloria Y.K. Kim, Akihiro Hayashi, and Vivek Sarkar

Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. pp. 45-55. MICRO 42, ACM, New
York, NY, USA (2009), http://doi.acm.org/10.1145/1669112.1669121

Luo, C., Suda, R.: A performance and energy consumption analytical model for
gpu. In: 2011 IEEE Ninth International Conference on Dependable, Autonomic and
Secure Computing. pp. 658-665 (Dec 2011)

NVIDIA: NVVM IR specification 1.3. [online] http://docs.nvidia.com/cuda/pdf/
NVVM_IR_ Specification.pdf (Accessed 20 June 2017) (2017)

NVIDIA: PARALLEL THREAD EXECUTION ISA v5.0 (2017), [online] http:
//docs.nvidia.com/cuda/pdf/ptx_isa_5.0.pdf (Accessed 20 June 2017)
Nystrom, N., White, D., Das, K.: Firepile: Run-time compilation for gpus in scala.
SIGPLAN Not. 47(3), 107-116 (Oct 2011), http://doi.acm.org/10.1145/2189751.
2047883

OpenMP: OpenMP Application Program Interface, version 4.5 (2015), [on-
line] http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf (Accessed 20
June 2017)

Parboil: Parboil benchmarks. http://impact.crhc.illinois.edu/parboil/parboil.aspx
PolyBench: The polyhedral benchmark suite. http://www.cse.ohio-state.edu/
~pouchet/software/polybench

Pratt-Szeliga, P., Fawcett, J., Welch, R.: Rootbeer: Seamlessly Using GPUs from
Java. In: 14th IEEE International Conference on High Performance Computing and
Communication & 9th IEEE International Conference on Embedded Software and
Systems, HPCC-ICESS 2012, Liverpool, United Kingdom, June 25-27, 2012. pp.
375-380. HPCC-ICESS 12 (June 2012)

at the University of Waikato, M.L.G.: Weka3: data mining software in java. [online]
http://www.cs.waikato.ac.nz/ml/weka/ (Accessed 20 June 2017) (2017)

Wu, G., Greathouse, J.L., Lyashevsky, A., Jayasena, N., Chiou, D.: Gpgpu per-
formance and power estimation using machine learning. In: 2015 IEEE 21st Inter-
national Symposium on High Performance Computer Architecture (HPCA). pp.
564-576 (Feb 2015)

Yan, Y., Grossman, M., Sarkar, V.: Jcuda: A programmer-friendly interface for
accelerating java programs with cuda. In: Proceedings of the 15th International Euro-
Par Conference on Parallel Processing. pp. 887-899. Euro-Par '09, Springer-Verlag,
Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-03869-3_82
Zaremba, W., Lin, Y., Grover, V.: JaBEE: Framework for Object-oriented Java
Bytecode Compilation and Execution on Graphics Processor Units. In: Proceed-
ings of the 5th Annual Workshop on General Purpose Processing with Graph-
ics Processing Units. pp. 74-83. GPGPU-5, ACM, New York, NY, USA (2012),
http://doi.acm.org/10.1145/2159430.2159439

All links were last followed on December 9, 2017.


http://doi.acm.org/10.1145/1669112.1669121
http://docs.nvidia.com/cuda/pdf/NVVM_IR_Specification.pdf
http://docs.nvidia.com/cuda/pdf/NVVM_IR_Specification.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_5.0.pdf
http://docs.nvidia.com/cuda/pdf/ptx_isa_5.0.pdf
http://doi.acm.org/10.1145/2189751.2047883
http://doi.acm.org/10.1145/2189751.2047883
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.cse.ohio-state.edu/~pouchet/software/polybench
http://www.cse.ohio-state.edu/~pouchet/software/polybench
http://www.cs.waikato.ac.nz/ml/weka/
http://dx.doi.org/10.1007/978-3-642-03869-3_82
http://doi.acm.org/10.1145/2159430.2159439

	Exploration of Supervised Machine Learning Techniques for Runtime Selection of CPU vs. GPU Execution in Java Programs

