
Exploiting Parallelism in Mobile Devices

Arghya Chatterjee,Timothy Newton, Tom Roush, Hunter Tidwell, Vivek Sarkar
Department of Computer Science, Rice University, USA
(arghya, kgmstwo, twr1, wht1, vsarkar) @rice.edu

1. Motivation
The computational heart of modern mobile devices such as
smartphones, tablets, and wearables is a powerful system-
on-chip (SoC) with rich parallelism and heterogeneity.
While the hardware parallelism of these mobile systems
continues to increase year-over-year, they remain resource
constrained with respect to power consumption and thermal
dissipation. Efficient use of multi-core processors in mobile
devices is a key requirement for improving performance,
while staying within the power and thermal limits of mo-
bile devices. The state of the art approach is to re-use or
develop custom computing libraries such as OpenIMAJ [2]
and OpenCV [6] with their own specific parallel program-
ming abstractions. However, this approach suffers from the
fact that the programmers need to understand the library spe-
cific abstractions for development, tune their applications
accordingly, and learn different approaches to parallelism in
different libraries.

To address this challenge, we explore parallel program-
ming for mobile devices by using the Habanero Java parallel
programming library (HJlib) [7]. HJlib offers a wide variety
of general structured parallel programming abstraction, that
make extensive use of Java 8’s lambda expressions and can
be composed with each other with well-defined semantics.
This single-library approach shortens the learning curve for
adding parallelism to a wide range of Android applications,
since the same set of HJlib primitives can be used in differ-
ent application domains. Prior to this work, it was unknown
if HJlib would work on Android’s Dalvik VM. This work
demonstrates that HJlib provides a viable approach for ap-
plication developers to exploit the multi-core architecture of
modern mobile devices more productively than with existing
approaches.

Keywords Mobile devices, parallel programming, multi-
core, Habanero Java library, abstraction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SPLASH ’15 Companion, October 25–30, 2015, Pittsburgh, PA, USA.
Copyright c© 2015 ACM 978-1-4503-3722-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2814189.2817273

2. Habanero Java Library (HJlib)
This work uses HJlib, developed at Rice University as a
part of the Habanero Extreme Scale Software Research
Project [4], as our research vehicle. HJlib is a JVM-based
parallel programming library that integrates a wide range of
parallel programming constructs (async, finish, for-

all, isolated, futures, actors, phasers) into a
single programming system, there by enabling unique and
rich combinations of these constructs. As a high-level par-
allel programming model, HJlib makes it easier to focus on
general parallel programming concepts without getting into
the low-level details. We choose HJlib for two primary rea-
sons: a) its library-based implementation in Java 8, and b)
its ease of programmability on Android platforms.

3. Evaluation
As part of the exploration of HJlib for parallelism on An-
droid phones, we investigated the Android Image Manipu-
lation, the Android Image Filtration and the Face Replace
applications. These applications are parallelized using the
Habanero programming model constructs (such as async,
finish) by adding HJlib as one of the third-party libraries
to the development flow. Our evaluation uses a Nexus 4
smart phone with a quad-core Qualcomm Snapdragon S4
Pro (APQ8064) processor [1] on Android 4.1. The remain-
der of this section summarizes the characteristics and perfor-
mance evaluation of each of these applications.

3.1 Android Image Manipulation
Android Image Manipulation is an existing application built
with OpenCV, a well-known computer vision library [5], to
apply various filters to a real-time image using the phone’s
camera. The most time-consuming task in the application
is applying a sepia filter on the image. We parallelized the
sepia filter module using the async and finish constructs
available in HJlib.
Figure 1 shows the performance (speedup relative to sequen-
tial) of the parallelized application on a Nexus 4 while ap-
plying the sepia filter. As can be seen from the figure, the
parallel version of the application on four worker threads
performs 1.89× faster relative to the sequential version. This
speedup is reflected in a visible improvement in the respon-
siveness of the application running on the phone.

Figure 1: Speedup of the Image Manipulation with diff numbers of
worker threads. Seq. execution time is 3.897 frames per sec

3.2 Android Image Filtration
Android Image Filtration is another application that applies
various effects such as adding different filters, adjusting
color, and adjusting contrast. This application is written in
pure Java, and it loops through all pixels one after another to
alter an image. As updating a pixel is independent of other
pixels, we parallelize the application by spawning a task for
each row of pixels in the image using the parallel program-
ming constructs (async, finish) provided by HJlib.

Figure 2 shows the speedup value of the parallel appli-
cation when the number of worker threads and size of the
image are varied. As can be seen from the figure, we achieve
a maximum speedup of 2.61× with the parallel version on
four worker threads relative to the sequential version of the
application.

Figure 2: Speedup of the Image Filtration with different numbers
of worker threads

3.3 Face Replace
FaceReplace is another existing application which consid-
ers two input image files (source, target) and matches a face
(smaller sub image) from source to the face on the target.
The original application was implemented in the earlier Ha-
banero Hava language based on Java 5, as a part of the
Parachute Project [3]. In this work, we rewrote the appli-
cation using HJlib. Figure 3 shows 3× speedup of the appli-
cation written using the actors constructs from HJlib with
four threads.

Figure 3: Speedup of the Face Replace application with different
numbers of worker threads

4. Conclusions and Future work
This work is motivated by the observation that modern mo-
bile devices are equipped with heterogeneous and multi-core
processors for rich parallelism. In this work, we enable ap-
plication developers to effectively exploit the parallel com-
puting capabilities of modern mobile platforms while re-
ducing programmer burden. The benefits of our approach
are expected to increase as the number of cores in mo-
bile devices increases. In the future, we like to explore us-
ing some advanced constructs offered by HJlib such as
barriers, phasers and data-driven tasks for bet-
ter performance and scalability of the mobile applications.
Exploring heterogeneous workloads, usage of our custom
runtime/thread scheduler, and portability of the applications
on different mobile architectures are also of future interest.

Acknowledgments
We would like to thank Shams Imam, Max Grossman, and
Prasanth Chatarasi for discussions on HJlib, and for their
feedback on earlier drafts of this paper.

References
[1] LG Nexus 4 E960 - Full Phone Specs. http://www.

gsmarena.com/lg_nexus_4_e960-5048.php, 2012.

[2] OpenIMAJ:Intelligent Multimedia Analysis in Java. http://

www.openimaj.org/tutorial/parallel-processing.

html, 2014.

[3] Parachute Project. http://formalverification.cs.

utah.edu/parachute, 2014.

[4] Habanero extreme scale software research project.
https://wiki.rice.edu/confluence/display/

HABANERO/Habanero+Extreme+Scale+Software+

Research+Project, 2014. Accessed: 2014-07-25.

[5] Android Image Manipulations using OpenCV.
http://opencv.org/platforms/android/

opencv4android-samples.html, 2015.

[6] OpenCV. opencv.org, 2015.

[7] S. Imam and V. Sarkar. Habanero-Java Library: a Java 8
Framework for Multicore Programming. In PPPJ’14. ACM,
2014. ISBN 978-1-4503-2926-2.

http://www.gsmarena.com/lg_nexus_4_e960-5048.php
http://www.gsmarena.com/lg_nexus_4_e960-5048.php
http://www.openimaj.org/tutorial/parallel-processing.html
http://www.openimaj.org/tutorial/parallel-processing.html
http://www.openimaj.org/tutorial/parallel-processing.html
http://formalverification.cs.utah.edu/parachute
http://formalverification.cs.utah.edu/parachute
https://wiki.rice.edu/confluence/display/HABANERO/Habanero+Extreme+Scale+Software+Research+Project
https://wiki.rice.edu/confluence/display/HABANERO/Habanero+Extreme+Scale+Software+Research+Project
https://wiki.rice.edu/confluence/display/HABANERO/Habanero+Extreme+Scale+Software+Research+Project
http://opencv.org/platforms/android/opencv4android-samples.html
http://opencv.org/platforms/android/opencv4android-samples.html
opencv.org

	Motivation
	Habanero Java Library (HJlib)
	Evaluation
	Android Image Manipulation
	Android Image Filtration
	Face Replace

	Conclusions and Future work

