

ABSTRACT

Distributed Communication Middleware for an Selector Model

by

Bing Xue

The problem sizes that the community is dealing with today in both scientific re-

search and day-to-day use computing exceed the capacity of modern shared-memory

systems. With the increasing prevalence of powerful multi-core/heterogenous pro-

cessors on portable devices and cloud computing clusters, the demand for portable

mainstream programming models supporting scalable, portable and extensible dis-

tributed computing is also rapidly growing.

In this dissertation, we present the distributed selector model enabled distributed

programming runtime library: cluster-based Habanero Java Distributed Selector and

the mobile platform based Distributed Actor Model for Mobile Platforms by extending

the HJDS implementation. This work focuses on enabling distributed message passing

through building the communication middleware for a actor/selector model by sup-

porting a fully actor-based runtime communication layer on clusters and a highly de-

coupled and customizable communication middleware and publish-subscribe enabled

application-level runtime event handling on mobile devices that addresses the need

for an easy-to-use, portable, reusable and scalable framework for small to medium

sized distributed applications. We demonstrated the scalability of computationally

intensive applications using distributed cluster-based and mobile-based platforms,

and discuss the future steps for expanding the HJDS and DAMMP framework.

Acknowledgments

Firstly, I would like to express my deepest gratitude and appreciation to my advisor

Prof. Vivek Sarkar for his invaluable support and guidance throughout this journey.

I’m extremely grateful for the opportunity to be part of the Habanero Extreme Scale

Research Group.

I would also like to thank my committee member, Prof. Dave Johnson and Prof.

Lin Zhong for their insightful and inspirational advice and feedback for this project.

I want to thank all of my co-authors in the works presented in this thesis, Arghya

Chatterjee, Zoran Budimlić, Branko Gvoka, Shams Imam and Srdjan Milaković. This

work would not have been possible without teamwork.

I would like to thank my colleagues and friends for their continuous support and in-

spiration. Special thanks to Prasanth Chatarasi for his advice and feedback, to Wanjia

Liu, Ziguang Niu and Mengchen Tang for their support and friendship throughout

my time here at Rice.

Finally, I would like to thank my parents for their continuous support throughout

the years and their belief in me.

Contents

Abstract ii

Acknowledgments iii

List of Illustrations vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1

1.2 Thesis statement . 4

1.3 Contributions . 4

1.4 Organization . 5

2 Background 6
2.1 Selector Model . 6

2.2 Habanero Java Runtime Library . 9

2.3 Bootstrap and Global Termination in Distributed Selector Model . . 10

2.4 Wireless Communication . 11

3 Communication Middleware for clusters 13
3.1 Distribution for Habanero Java . 13

3.1.1 HJDS Design Overview . 13

3.1.2 Selector Interface . 16

3.1.3 Proxy Actor . 19

3.1.3.1 Remote Selector Creation 20

3.1.3.2 Message exchange between remote places 21

v

3.1.4 System bookkeeping . 22

3.2 Communication Middleware . 23

3.2.1 JVM Serializers . 23

3.2.2 Netty . 24

4 Communication Middleware on Android 25
4.1 DAMMP design overview . 25

4.2 Mobile Communication Layer design 26

4.3 Network status control at Application level 29

4.4 Off-the-grid mobile network formation 31

4.4.1 Wi-Fi enabled mobile communication manager 31

4.4.2 Wi-Fi Direct enabled mobile communication manager 33

5 Experimental Evaluation 35
5.1 Evaluation on Cluster Implementation 35

5.1.1 Hardware Setup . 35

5.1.2 Microbenchmarks . 35

5.1.2.1 Trapezoidal Approximation 35

5.2 Evaluation on Mobile Implementation 36

5.2.1 Hardware Setup . 37

5.2.2 Benchmarks . 38

5.2.2.1 Cannon’s Algorithm 38

5.2.2.2 Pi Precision . 40

5.2.3 Thermal effect of task offloading 42

6 Related Work 46
6.1 Actor-based distribution on clusters 46

6.1.1 Akka Cluster . 46

6.1.2 Microsoft Orleans . 47

vi

6.2 Actor-based projects on mobile platform 48

6.2.1 AmbientTalk . 48

6.2.2 ActorNet . 49

7 Conclusion and Future Work 51
7.1 Conclusion . 51

7.2 Future Work . 52

7.2.1 Selector Migration . 52

7.2.2 Distributed extensions of the Habanero Exectuion Model . . . 54

7.2.3 Thermal aware task offloading on heterogeneous devices 55

Bibliography 57

Illustrations

2.1 Selector Model Decomposition . 8

3.1 HJDS system overview . 14

3.2 Sample configuration file . 15

3.3 Distributed Selector class hierarchy 16

3.4 The SelectorHandle class . 18

3.5 Remote selector creation through proxy actor 21

3.6 Message exchange between remote places 22

4.1 DAMMP overview . 26

4.2 IMobileCommunicationManager class 28

4.3 Sample usage of WiFiCommunicationManager 30

4.4 Publish-Subscribe enabled runtime system notification 32

4.5 Example for system message subscription 33

5.1 Trapezoidal Approximation weak scaling on cluster 37

5.2 Cannon’s algorithm with task offloading on Android using Wi-Fi . . . 39

5.3 Pi Precision task offloading on mobile devices 41

5.4 Pi Precision task offloading on mobile devices with realistic

environments . 43

Tables

5.1 Pi Precision benchmark with task offloading shows thermal effects on

mobile devices . 44

1

Chapter 1

Introduction

1.1 Motivation

The problem sizes that the community is dealing with today in both scientific re-

search and day-to-day use computing exceed the capacity of modern shared-memory

systems. With the increasing prevalence of multi-core/heterogeneous processors on

portable hand-held devices and the proliferation of cloud computing clusters, the

demand for mainstream programming models supporting scalable, portable and ex-

tensible distributed computing is also rapidly growing. Along with these trends,

distributed software systems and applications are shifting towards service oriented

architectures (SOA) that consist of largely decoupled, dynamically replaceable com-

ponents and connected via loosely coupled, interactive networks that may exhibit

more complex coordination and synchronization patterns. These trends have en-

couraged the adoption of distributed computing systems composed of computational

nodes with internal parallelism that cooperate by communicating over a network.

Low-level message-passing based protocols have matured over the past couple of

decades for distributed software design and many domain-specific high-level abstrac-

tions such as MapReduce[1] and distributed file systems, as well as more general

purposed large-scale distributed application frameworks like Apache Thrift[2] and

Apache Spark[3] are on the rise. However, there still seem to a gap to be filled for a

set of general purpose, easy-to-use, unified easy-to-use unified distributed program-

2

ming paradigm to enable reusable and portable small to medium scale distributed

application development. Moreover, despite the popularization of hand-held comput-

ing devices through smartphones and wearable devices, there still lacks a reasonable

parallel and distributed application framework and most applications remain single-

device with shared-memory.

With mobile computing seeing a trend towards miniaturization and energy sav-

ings for a number of years, the available hardware parallelism in mobile devices has

at the same time continued to increase. Overall, mobile devices still remain resource

constrained physically in terms of power consumption and thermal dissipation. Com-

bining the computing capabilities of multiple mobile devices in a distributed and

dynamic setting can open up the possibilities for performance improvements, longer

aggregated battery life for traditionally single-node applications as well as dynamic

mobile network based applications. However, when distributed system and applica-

tion developers build on clusters through RPCs, message passing and event-streams

with enormous scales, mobile developers tend to be limited by the hardware and

have to rely largely on Bluetooth or server-end coordination for peer-to-peer infor-

mation exchange. The discrepancy in technologies and low-level protocols have pre-

vented small and medium scale distributed applications become portable and reusable

across different platforms. Therefore, an efficient runtime system that supports both

single-node and distributed multi-node systems that can bridge between cluster-based

environments and mobile platforms is a highly desirable goal, since such a paradigm

can ease the transition from single-node to multi-node parallelism.

The Actor Model, formally described by Gul Agha [4] and having appeared in

many modern programming languages and frameworks, is a go-to option as a basis

for building distributed software with numerous dynamically interacting units.

3

The Selector Model (SM) [5] is an extension of the Actor Model and represents

isolated units of a distributed system that interact only through message passing with

multiple guarded mailboxes. It can be viewed as a generalization of actors and is an

expressive primitive for concurrency and distribution and can be a platform-agnostic

model for both clusters and mobile-based parallelism. Selectors allows synchroniza-

tion patterns that relies on different messages types and the order of messages re-

ceived, such as join patterns and bounded buffers. The expressiveness selectors grants

is ideal as a foundation towards building more complex synchronization primitives and

higher-level parallel abstractions.

The Selector Model has been integrated as a part of Habanero Java Runtime Li-

brary, a successful shared-memory parallel library that implements multiple parallel

primitives in Habanero Execution Model such as the Async-Finish primitives [6], gen-

eralized barriers and point-to-point synchronization with phasers [7], mutual exclusion

synchronization etc., many of which are also desirable in a distributed environment as

unified programming primitives for parallel and distributed applications. Therefore,

the Habanero Java Runtime Library is an ideal subject to expand to the distributed

world as a portable, reusable and easy-to-use runtime system with an unified paral-

lel programming model (Habanero Execution Model) that can be built on top of a

selector model enabled distribution and message passing.

In this thesis, we design and implement the communication middle-wares for Ha-

banero Java Distributed Selector (HJDS)[8] and Distributed Actor Model for Mobile

Platforms (DAMMP), two distributed runtime environment based on adaptations

of the HJlib selectors, each on cluster-based and mobile-based platforms, experiment

with and analyze the performance of these two runtimes and discuss future distributed

extensions of the HJlib based on the selector-enabled distributed runtimes.

4

1.2 Thesis statement

Distributed communication for the selector model can be implemented productively

and efficiently on both servers and devices

1.3 Contributions

This thesis makes the following contributions:

• Implementations of distributed selector-based runtime for clusters (HJDS) and

mobile Android devices (DAMMP), developed jointly with co-authors [9]

• Light-weight Selector reference design enabling better object encapsulation and

location agnostic referencing

• Cluster-based run-time communication layer (Proxy Actor) design that enables

location transparent selector creation and message exchange

• Android-based run-time communication middleware (IMobileCommunication-

Manager) design and implementation, fully-decoupled and readily replaceable

• Experimental evaluation of performance benefits with distributed selectors on

clusters, and experimental evaluation of performance benefits and thermal ef-

fects of distributed selectors on mobile hand-held devices

5

1.4 Organization

This thesis is organized as follows:

• Chapter 2 introduces the Selector Model, Habanero Java Runtime Library, and

wireless communication technologies.

• Chapter 3 describes how location transparent selector creation and message ex-

change is achieved on the cluster-based runtime through the communication

middleware. This chapter focuses on the design of the Proxy Actor, a sys-

tem service actor that coordinates the communication for a single node in a

distributed selector system.

• Chapter 4 describes how location transparency is preserved in the mobile im-

plementation of distributed selectors and introduces a fully decoupled, readily

replaceable communication middleware design. This chapter also introduces

two off-the-grid wireless communication layer implementations based on Wi-Fi

and Wi-Fi Direct technology.

• Chapter 5 evaluates the performance and scalability of our runtime on cluster-

based and mobile-based implementations.

• Chapter 6 discusses related efforts in distribution of actor-based runtime/appli-

cations.

• Chapter 7 summarizes the work and contribution in this thesis and discusses

next steps in our work.

6

Chapter 2

Background

This chapter introduces the Habanero Selector model in Section 2.1, explains the joint

work on distributed adaptation of selector based on Habanero Runtime Library and

summarizes the work by [9] on distributed bootstrap and termination in Section 2.3

2.1 Selector Model

The Selector model [5] is an extension of the Actor programming model [4]. Instead

of a single mailbox like Actors, selectors have multiple guarded mailboxes that can

be disabled or enabled individually and each mailbox has a priority associated with

it. It directly inherits the start and exit semantics of the Actor model, and can be

viewed as a generalization of the actor model. The Selector model was created to

overcome difficulties in actor synchronization and coordination patterns.

Proposed by Carl Hewitt et al. [10] in 1973 as part of a research on artificial

intelligence agents, the original Actor Model was designed to address decentralized

agent interactions and has since been developed to be a powerful abstraction for

structuring highly concurrent programs that scales to many-core processes as well as

clusters and the cloud. Actors. An actor has a mailbox where it stores incoming

messages. Communication between actors is purely asynchronous and non-blocking.

An actor also maintains a local state which is initialized during creation. An actor can

only process at most one message at a time which allows actors to avoid data races and

7

the need for synchronization. When an actor receives a message it may perform any of

the following operations: a) Send message to another actor asynchronously, b) Create

a new actor by passing the parameters from the message and c) Modify internal state

of the actor, which may affect how subsequent messages are processed [11].

The Actor Model, since its first adaptation in Scala standard library in 2006 [12,

13], has been adopted in multiple forms, including actor-based languages like SALSA [14]

and runtime library implementations in and Habanero Java library [15] in the Akka

event-driven middleware [16].

The first Selector Model implementation was introduced in the Habanero Java

Runtime Library [15]. The Habanero Selector implementation provides selectors

as an asynchronous concurrency primitive that operates on message passing among

multiple selectors. The results in [5] show that Selectors can also be implemented effi-

ciently, since that work includes performance comparisons with Scala, Akka, Jetlang,

Scalaz, Functional-Java and Habanero actor libraries. However, the implementation

described in [5] focused on a single-node (shared-memory) implementation of the

Selector model.

A Distributed Selector runtime library for Java based applications (HJDS) based

on the shared-memory implementation of Habanero runtime library (HJlib) is pre-

sented in [8] and shows a unified runtime that supports both shared-memory and

distributed multi-node execution of a program. The HJDS runtime allows the pro-

grammer to focus on implementing algorithms for solving a problem without worrying

about whether the application should run on a shared-memory or distributed-mem-

ory system. The runtime also provides automated system bootstrap and distributed

global termination by terminating the distributed system when all tasks of the user

code have been successfully executed.

8

Figure 2.1 : Internals of a selector. A selector contains multiple guarded mailboxes, which

can be enabled or disabled. A processing logic that handles the incoming messages in all

enabled mailboxes, and a collection of local states retained throughout the selector lifetime.

Figure 2.1 shows the decomposition of a selector. A selector consists of multiple

guarded mailboxes, which are either enabled or disabled. Messages can enter an

enabled mailbox and be processed by the selector, while a disabled mailbox continues

to receive and buffer messages directed to it but is unavailable for the processing

logic to pick up any message to process. The selector contains a processing logic that

specifies how each type of messages are processed, and can be viewed as the "main"

method for the selector process. A selector in HJlib also allows local states, which

are persistent states throughout the selector’s lifetime.

A selector’s life-cycle consists of three stages: 1. created: the selector has been

created in the system, but does not process any messages while able to receive and

buffer all incoming messages 2. started: the selector is started and is able to process

9

messages as well as receiving and sending messages 3. exited: the selector is exited,

unable to process or receive any message sent after its call to exit(), however the

selector instance is subject to regular Java GC and can be inspected for record keeping

and cleanups The HJlib also implements API such as pause(), resume() to allow for

halting the whole selector and resuming execution, and preStart(), postExit() for

initialization and bookkeeping.

2.2 Habanero Java Runtime Library

Habanero-Java (HJLib), developed at Rice University, implements the Habanero ex-

ecution model [6]. Habanero Java Runtime Library APIs include async, forasync,

asyncAt, asyncPut, asyncGet, and asyncAwait, and finish as general primitives for

creating and awaiting the completion of asynchronous computation and data transfer

tasks. These Async-Finish primitives enable any (block) statement to be executed as

a parallel task, including for-loop iterations and method calls [6]. HJLib also supports

generalized barriers and point-to-point synchronization with phasers [7], mutual ex-

clusion synchronization within tasks using delegated isolation [17] and object-based

isolation [18] and shared-memory implementation of actors and selectors [5].

These primitives can be used to obtain programmability, parallelism, and scalabil-

ity benefits across a wide range of task-level parallel algorithms. HJLib implements

a priority-based lock-free work-stealing algorithm [19] with multiple thread pools to

support priority scheduling of tasks.

10

2.3 Bootstrap and Global Termination in Distributed Selector

Model

The design of our Distributed Selector (DS) model is based on the Habanero Java Run-

time Library (HJlib) [6]. We expand the shared-memory implementation of the Selec-

tor Model to achieve remote message passing, remote selector creating and bounded

global termination in a transparent manner. The DS model refers to each single HJ

runtime instance as a place. A physical computing node can serve as a single or mul-

tiple places, given each place has its own logically isolated address space. In general,

selectors are located at the same place to show logical affinity and/or to exploit data

locality

The global termination is initiated by the master node and is performed in stages

to detect when the user program becomes quiescent. Stage 1, starts the termination

process when all connected nodes report idleness. In Stage 2, the master node passes

a signal to all nodes to verify whether a node is still idle or active. If active, Stage

2 is repeated until all nodes are in idle state. Finally, in Stage 3, when all nodes

are guaranteed to be idle, the master node initiates the shutdown process of all

nodes and finally terminates itself. The authors claim to guarantee shutdown of

the system successfully provided the application developers shutdown the respective

Actor/ Selector instances on each node. The design and implementation of automated

bootstrap and global termination of HJDS is described by joint-author of the HJDS [8]

in [9].

11

2.4 Wireless Communication

As the IEEE 802.11 standard has become one of the most successful wireless protocols

to access the Internet, the Wi-Fi technology extends itself to accommodate P2P device

connections beyond the traditional requirement of the presence of an Access Point

(AP). The Wi-Fi Direct technology is developed by the Wi-Fi Alliance to expand the

use cases for Wi-Fi technology to device-to-device communication. It builds upon

the IEEE 802.11 infrastructure mode and uses devices as logical SoftAP (software-

enabled access point) for connectivity, without relying on external AP support as in

the ad-hoc mode [20]. Device-to-device communication in a typical Wi-Fi network

has to be supported by the external APs. However, in a Wi-Fi Direct P2P network,

the logical role of AP is specified as dynamic and can exist simultaneously on a client

device. Devices with Wi-Fi Direct capabilities can communicate by forming P2P

groups.

The group formation process has several phases. Before group establishment,

devices are in a discovery phase, which is performed by a traditional Wi-Fi scan. A

device can either discover an existing P2P Group or a few devices can discover each

other. When a device discovers an existing P2P group, it may choose to query the

set of current services on the group and join based on the information. A device

that did not discover any existing P2P group, or other devices to form a group can

autonomously create a group and become the Group Owner (GO). When devices

discover each other, they may enter a negotiation phase to determine which device

would be the Group Owner (GO) and serve as a Soft-AP [21]. The negotiation process

is dependent on individual implementations. Once the GO role is established, clients

can choose to join the P2P group through discovery of the GO.

Comparing to traditional device-to-device connectivity technologies such as Blue-

12

tooth and ZigBee with nominal ranges from 10 meters to 100 meters, and transfer

speed between 250 kbps to 25 Mbps, Wi-Fi Direct inherits all the capabilities from

IEEE 802.11 standards, and claims to provide nominal range up to 200 meters and

transfer speed up to 250 Mbps [22, 23]. With its inherited power saving support and

extended QoS capabilities, Wi-Fi Direct can be considered one of the most promis-

ing candidate for wide range device-to-device communication, and suitable for our

purpose of distribution across mobile devices.

Android 4.0 and versions after, complies with the Wi-Fi Direct certification pro-

gram and allows applications to interact inter-device without an external network

connection [24]. The Android Wi-Fi Direct interface (WifiP2pManager) allows de-

velopers to discover, request and connect to peers and provides listeners that detect

the success or failure of connect, dropped connections and newly discovered peers.

The Android API does not implement any specific GO negotiate algorithm and each

client can only belong to one P2P group at a given time.

After the maturation of client-server based wireless communication, energy ef-

ficient and high bandwidth direct device-to-device communication will be the new

challenge that mobile platforms face in creating more secure and more accessible

distributed applications and systems. With its inherited power saving support and

extended QoS capabilities, Wi-Fi Direct can be considered one of the most promis-

ing candidates for wide range device-to-device communication, and suitable for our

purpose of distribution across mobile devices. Because Wi-Fi Direct technology is

not widely readily available at the implementation level, in this work we also con-

sider Wi-Fi Hotspot (Soft AP) on Android as a proxy due to their common hardware

support.

13

Chapter 3

Communication Middleware for clusters

3.1 Distribution for Habanero Java

3.1.1 HJDS Design Overview

The design of the Habanero Java Distributed Selector Runtime is based on the Ha-

banero Java Runtime Library (HJlib). We expand the shared-memory implementa-

tion of the Selector Model to achieve remote message passing, remote selector creation

and bounded global termination in a transparent manner [9].

A HJDS runtime instance consists of multiple JVM instances, each referred to as

a place, typically located on multiple physical nodes, with at least one place on a

single physical node.

Figure 3.1 shows a system overview with four places. The internals of a single

place consists of the developer view which contains user-defined selectors, and the

runtime system, which is managed by the System Actor and the Proxy Actor. The

System Actor monitors and maintains place status and is responsible for global boot-

strap and global termination of the system [8, 9], the Proxy Actor is responsible for

coordinating message passing between remote places, and also mediates between the

HJlib runtime and the communication layer instantiated outside the HJlib runtime

as detailed in Section 3.1.3. The low-level communication layer is instantiated out

side the HJlib runtime as detailed in Section 3.2

In a HJDS runtime instance, a Master Place maintains the internal state of the

14

Figure 3.1 : An overview of the Habanero Java Distributed Selector runtime system. A

distributed selector system consists of multiple places (four in this figure), each place has

a developer view which contains the user-level selectors, and a runtime system view where

a system actor and a proxy actor manages the place status and message exchange between

remote places.

system in its System Actor and is responsible for the bootstrap and global termination

of the system, while each place maintains its internal state with the individual System

Actors and complies to the bootstrap and global termination protocols detailed in [9,

8]. Each Proxy Actor manages all communications to and from its residing place to

other places in the runtime and is responsible for maintaining local user-level selector

15

states. For a HJDS based application, user provides a configuration file that specifies

available physical hosts as shown in Figure 3.2, where IP addresses (or host names)

and ports for all computing nodes are specified. If two places are assigned the same

node.

1 selectorSystem {

2 i n i t {

3 place : p0 ,

4 hostname : cn1 . davinci . rice . edu ,

5 port : 5000 ,

6 }

7 remote : [

8 {place : p1 , hostname : cn2 . davinci . rice . edu , port : 5001} ,

9 {place : p2 , hostname : cn2 . davinci . rice . edu , port : 5002} ,

10 {place : p3 , hostname : cn3 . davinci . rice . edu , port : 5000} ,

11]

12 }

Figure 3.2 : Sample configuration file for a HJDS system. The init place is the designated

master place of the system, and will start the global bootstrap. Note in this example, a

single physical node can host more than one places.

When the application launches, the system will run on multiple JVM instances

(using different ports) on the same node. The init keyword specifies the bootstrap

master node, while the remote keyword indicates other predefined places in the boot-

strap. The runtime reads information from the configuration file and boots up the

system. By ensuring that the master node has the program executable and SSH ac-

cess to all places specified in the configuration file, the runtime stages all executable

on all remote nodes and initiates the bootstrap sequence. The runtime will exit

the program after all user created selectors have safely terminated. The current im-

plementation requires user to set the user name and password for remote hosts as

16

environment variables. The runtime can be extended to support more configurations

like memory usage limit and thread count in the bootstrap Config files.

3.1.2 Selector Interface

Figure 3.3 shows the design for the new ISelector interface for distribution. Both

hj.distributed.Select orHandle and hj.distributed.DistributedSelector in-

herits from the hj.distributed.ISelector interface. The hj.distributed.Select-

orHandle is the single point of access to a Selector object in user programs, while

hj.distributed.DistributedSelector extends its shared-memory predecessor but

remains exclusive to access internally to the package.

1 pub l i c c l a s s HJSelector{

2 pubic SelectorHandle newSelector (Class<T> classType ,

3 Object . . . args) ;

4 pubic SelectorHandle newSelector (i n t placeId ,

5 Class<T> classType , Object . . . args) ;

6 }

8 pub l i c i n t e r f a c e ISelector { . . . }

10 pub l i c ab s t r a c t c l a s s DistributedSelector<MessageType>

11 extends Selector<MessageType> implements ISelector {

12 pr i va t e SelectorHandle _handle ;

13 pub l i c f i n a l void send (i n t mailboxId ,

14 f i n a l MessageType message) ;

15 pub l i c f i n a l void start () ;

16 pub l i c f i n a l void exit () ;

17 }

Figure 3.3 : The HJ Distributed Selector class hierarchy. The DistributedSelector class

is not accessible to users

17

A user program can use the factory method hj.distributedHJSelector.newSe-

lector to obtain a SelectorHandle instance. The factory method abstracts away

the difference between creating a selector locally or at a remote location by allow-

ing the user to omit the location of the selector to be created. The introduction

of hj.distributed.SelectorHandle eliminates any possibility of sharing state by

disallowing the user to directly interact with Selector references. More importantly,

the separation of Selector object and the access handle gives a lightweight vehicle

of communicating Selector object information across the distributed system, as well

as routing messages when needed. Given the lightweight handle, programmers will

not have the need to deal explicitly with the low-level complexities of distributed

coordination.

The HJDS interface provides users with a Selector Handle as the access point to a

selector object. A Selector Handle is designed to be lightweight for sending across the

network. It consists of a globally unique identifier for the selector object, and method

handles for sending messages to the selector. Since we do not differentiate between

selectors that are created to reside locally or on remote places, the selector will need

an identifier that can be constructed upon the request of creation and unique across

the entire distributed system. Selectors can only be accessed through these handles by

invoking the send method, shown in Figure 3.4 A Selector Handle contains a globally

unique identifier for the selector object and method handle for sending messages to

the selector to act as a global reference for the selector instance. No differentiation

is made between selectors that are created to reside locally or on remote places in

the user application and the selector handle GUID encodes the actual location of the

selector instance.

The Selector Handle GUID is constructed upon a request for selector creation and

18

is unique across the entire distributed system. The GUID is a 32-bit integer that

encodes three pieces of information:1) an 8-bit value encoding the place p on which

the selector is created; 2) an 8-bit value encoding the place q on which the selector

instance resides; and 3) a 16-bit integer value representing a unique identifier for

the selector on p. The length of the GUID is chosen arbitrarily for small networks,

however it can be elongated to allow secure distributed assignment of selector GUID

and place UID.

2 pub l i c c l a s s SelectorHandle<MessageType>

3 implements ISelector , Serializable {

4 pr i va t e long _UID ;

5 pub l i c void send (f i n a l i n t mailboxId ,

6 f i n a l MessageType message) ;

7 pub l i c long getUID () ;

8 }

Figure 3.4 : The HJDS Selector Handle Class. The Selector Handle consists of a GUID that

encodes the location of the selector instance and send method for communicating with the

selector instance.

19

3.1.3 Proxy Actor

In an HJDS application, one Proxy Actor exists for each place in the system. The

Proxy Actor is responsible for coordinating messages among local and remote selec-

tors. The Proxy Actor passes messages to remote selectors to the correct place, keeps

track of status of all user-level selectors to update the System Actor and handles

remote selector creation.

For any application-level message sent to a selector through its selector handle,

the selector handle passes the messages and its selector GUID to its local proxy actor.

The proxy actor, upon receiving a message, decodes the GUID to get the selector’s

residence place p. If p is a remote place, the proxy actor sends the message and

selector GUID directly to place p. If p is the local place id, the proxy actor checks

its local registry for the 16-bit ID to get the local selector instance and passes the

message. In practice, we try to minimize the number of hash map look-up by adding

a transient field to a selector handle that directly references its local selector instance.

However the method does not eliminate the need for proxy actor local registry because

a selector handle to a local selector can be obtained through remote messaging, where

the local selector reference would be lost.

The proxy actor may not be able to find a local instance for a selector message

that is directed to a local selector. In this case, the proxy actor assumes the selector

is to be created on local place and creates a mailbox instance as a buffer to place the

message.

For any system-level message directed to the system actor (e.g. place status up-

dates, bootstrap and termination protocol messages), the proxy actor directly passes

the messages to the System Actor.

20

3.1.3.1 Remote Selector Creation

When creating a new selector, the factory method newSelector in Figure 3.3 checks

the residence place. If the selector is to be created locally, the factory methods creates

the local selector instance and returns the selector handle directly. If the selector is to

be created on a remote place, the factory method creates a selector handle instance

with its GUID, constructs a system-level message for remote selector creation, passes

the message to the proxy actor and returns the selector handle. The system-level

remote selector creation message contains a message type field and the selector handle

and is sent to the residence place through proxy actor. The proxy actor keeps a record

of all sent remote creation messages until a confirmation is received.

Figure 3.5 shows the decomposition of a remote selector creation in a simple ping-

pong program.

21

Figure 3.5 : In a simple ping-pong program. The ping selector on p0 tries to create a new

pong selector on p1, the request is sent to the Proxy Actor, which creates a local handle

and returns the handle to ping selector, as well as sending the handle along with a remote

creation request to p1, the communication manager decodes the command and the proxy

actor creates the pong selector instance based on the handle information and sends back a

confirmation reply.

3.1.3.2 Message exchange between remote places

Upon receiving a selector creation message, the proxy actor checks if a selector in-

stance with the GUID already exists in its local registry. If present, the proxy actor

sends a reply confirming creations. If not, it creates a local selector and maps the

selector GUID to the instance in its local registry. The proxy actor also checks its

local mailbox buffers for the selector GUID, if found the mailbox buffer associated

with the GUID is attached to the local selector instance. After the creation com-

22

Figure 3.6 : In a simple ping-pong program. The ping selector on p0 sends a message to the

pong selector on p1. The message goes through the proxy actor who identifies the message to

be on a remote place by decoding the pong selector handle GUID, and sends to p1 through

the communication manager. On p1, the proxy actor finds the destination through its local

registry and sends the message to pong selector.

pletes, the proxy actor constructs a reply messages confirming creation. A selector

starts processing messages right after its creation. Figure 3.6 shows the decomposi-

tion of message exchange between remote places through the proxy actor in a simple

ping-pong program.

3.1.4 System bookkeeping

The proxy actor is also responsible for keeping track of selector status on its place.

The proxy actor keeps a counter for the number of active local selector instances,

incremented at each selector instance creation and decremented at each selector in-

23

stance exit. When there is no active local selector instance, no mailbox buffers for

expected selector creation and no remote creation messages waiting for a reply, the

proxy actor decides that the place is "idle". Otherwise the place is regarded as "not

idle". Upon any place status change, the proxy actor notifies the System Actor with

a system message, which the System Actor may use to determine whether to initiate

the global termination protocol or not.

3.2 Communication Middleware

For a HJDS application, the communication middleware for serialization and data

transmission are instantiated outside the HJlib runtime.

3.2.1 JVM Serializers

We choose the Kryo serialization framework [25], which has been shown to be faster

than the Java serializer [26]. As a Java-oriented framework, it is better suited for our

purpose than other high-performance serialization tools such as Google’s Protocol

Buffers [27], Apache Avro [28], or Apache Thrift [2], which work across multiple

languages and platforms and have more restrictions on the data that can be sent [29].

Most cross-platform serialization tools ask for primitive types (sometimes with the

addition of nested arrays) in serializable datagrams, however, a selector should be

able to send and receive any message that implements java.serializable.

Our system does not limit the message types that could be sent across the selectors.

While Kryo provides compression to reduce the size the serialized object, it will be

up to the developer to decide whether to include objects that may result in massive

data transfer.

24

3.2.2 Netty

We choose to use The Netty Project [30] to provide asynchronous communication

between places. The Netty Project provides a unified interface for blocking and non-

blocking socket communications that simplifies implementation of stream-based data

transport, and is popular among client-server based network applications. It is also

used by AKKA Cluster for its distributed actor framework.

The Netty communicator is instantiated with the start of each place, and its

reference is kept by the Proxy Actor to send and receive messages to/from other

places. For each place, a different channel is created and is kept open until global

termination completes. Netty provides a multi-threaded even loop that handles I/O

operation to manage multiple open channels.

25

Chapter 4

Communication Middleware on Android

4.1 DAMMP design overview

The Distributed Actor Model for Mobile Platform (DAMMP) is an extension to the

HJDS runtime as described in Chapter 3. The DAMMP design addresses the unpre-

dictable nature of connectivity with mobile devices by introducing a separate commu-

nication middleware for mobile devices shown in Section 4.2 to provide flexibility for

wireless connections. The automated bootstrap and global termination features from

HJDS is replaced with manual operations to allow for decentralized application de-

sign on volatile mobile networks. Instead, we introduce a publish-subscribe interface

to communication system events between the runtime and application, thus allowing

application specific control on intermittently connected mobile networks. An system

overview is shown in Figure 4.1, the major difference from Figure 3.1 is the inclusion

of MobileCommunicationManager for a more complex communication layer in mobile

platforms.

The DAMMP design supports all selector features from HJDS including remote se-

lector creation. Due to the limited computing capabilities of mobile devices, DAMMP

assumes a single physical device to host only one place. Places can dynamically join

and leave the network to allow for dynamic topological changes and reconfiguration.

A seamless computational offloading model using the master-worker paradigm with

heterogeneous devices is introduced with the DAMMP design and is detailed in [9].

26

Figure 4.1 : An overview of the DAMMP distributed selector system. The runtime system

is now responsible for lower-level communication manager.

4.2 Mobile Communication Layer design

The HJDS implementation is intended for cluster-based distribution and assumes net-

work connection to be stable with low transmission costs using asynchronous TCP

socket servers. In a mobile network with often intermittent wireless connection and

a much higher data transmission cost, however, the communication middleware be-

comes a main source of system overhead and needs to be readily replaceable to meet

27

the needs of specific hardware with different wireless modules. In the DAMMP design,

we introduce the IMobileCommunicationManager interface in Figure 4.2 as a stand

alone communication layer, readily to be replaced by any customized wireless com-

munication middleware. On top of the communication middleware, the system actor

and proxy actor on a single place will behave the same as described in Chapter 3,

apart from omitting the global bootstrap and termination protocol.

The IMobileCommunicationManager interface defines the DAMMP communica-

tion middleware and has three methods: start() to initiate the communication man-

ager, stop() to end communication manager, and send(place, message) for sending any

message to a target place. After the stop() method is called, a mobile communication

manager closes all existing connection and leaves the wireless network. This process

cannot be reversed, but the IMobileCommunicationManager object is still subject to

normal garbage collection and can be used for bookkeeping. Alternatively a set of

pause/resume function can be implemented with specific wireless modules, however

our interface does not require such functions. It also includes a callback handle for

communication with the local runtime system. Figure 4.3 shows an example to cre-

ate a selector system by passing in the WifiCommunicationManager our DAMMP

implementation provides. The ISystemCallback handle is installed at application

bootstrap, and is to be invoked for any change in the network status.

At the creation time of a selector system instance, the selector system calls

start() to initiate the communication manager, and after initialization, the com-

munication manager calls ISystemCallback.onConnectionReady once the device is

ready to join a network. To guarantee asynchronous data transmission, the commu-

nication manager is forced to run on a separate thread at creation time of a selector

system instance.

28

1 pub l i c i n t e r f a c e IMobileCommunicationManager {

3 i n t e r f a c e ISystemCallback {

4 void onConnectionReady (Place localNode) ;

5 void onMessage (Message message) ;

6 void onPlaceJoin (Place place) ;

7 void onPlaceLeft (Place place) ;

8 }

10 void start () ;

11 void stop () ;

13 boolean send (Place place , Message message) ;

14 void setSystemCallback (ISystemCallback callback) ;

16 }

Figure 4.2 : The communication API for mobile platform. The IMobileCommunicationMan-

ager interface defines the communication middleware for device-to-device communication in

a DAMMP application. A mobile communication manager implements this interface and

initializes its wireless connection when start() is invoked. The mobile communication man-

ager routes a message to place i when send() is invoked. The mobile communication manager

terminates all connections and stops routing messages to remote places when stop() is in-

voked, the communication manager cannot be resumed after. Depending on specific wireless

modules, a separate set of pause/resume functions can be implemented, but is not required

for our interface

When a neighbor leaves the network, the communication manager notifies the

local selector system by invoking ISystemCallback.onPlaceLeft, where the selec-

tor system will notify the application with a system status message through the

publish-subscription mechanism described in Section 4.3. When a new neighbor

29

joins the network, the communication manager notifies the local place by invoking

ISystemCallback.onPlaceJoin, where the selector system will notify the application

with a system status message. The ISystemCallback.onMessage

A place can, in principle, join the network again after leaving without terminating

its local place. In such case, the mobile communication manager is responsible for

identifying if the joining place has already been assigned a place id in the current

session through implementation specific techniques. The DAMMP implementation

provides two implementations of IMobileCommunicationManager that can achieve

this as detailed in Section 4.4.1 and Section 4.4.2.

In essence, the introduction of IMobileCommunicationManager interface with the

omission of global bootstrap and termination asks for the application to be partially

responsible of system resilience and recovery, resulting in a decentralized distribu-

tion that differs from the monolithic approach on HJDS where network stability is

assumed.

4.3 Network status control at Application level

In the DAMMP design we introduce network status control at application level

through a publish-subscribe mechanism. As described in Section 4.2, by omitting

the global bootstrap and termination features available at a stable network environ-

ment like HJDS assumes, the communication manager notifies the application level

of network status change including the availability of the mobile connections and the

join/leave of neighbor places.

The DAMMP system utilizes the availability of multiple mailboxes in the selector

model, and proposes a publish-subscribe mechanism for delivery of system messages

to applications that is non-blocking and even-driven. We introduce the Subscription

30

1 /∗ A Wi−Fi based implementation f o r mobile communication middleware ∗/

2 pub l i c c l a s s WiFiCommunicationManager implements ←↩

IMobileCommunicationManager { . . . }

4 /∗ Appl i ca t ion that c r e a t e s a DAMMP s e l e c t o r system ∗/

5 pub l i c c l a s s MainActivity extends AppCompatActivity {

6 . . .

8 launchHabaneroApp (new HjSuspendable () {

9 pub l i c void run () throws SuspendableException {

11 . . .

12 f i n a l SelectorSystem example =

13 SelectorSystem . createInstance (new ←↩

WifiCommunicationManager ()) ;

14 example . start () ;

15 }

16 }) ;

17 }

Figure 4.3 : An example on how to start a selector system by specifying a mobile commu-

nication manager on Android. A mobile communication manager is passed to the Selector

System at creation time, and the system callback handle for the local place is set. Upon

any network status change, the mobile communication manager should notify the runtime

through the system callback handle.

class decorator. For any selector class it could choose to subscribe to system mes-

sages with a designated mailbox. Currently available system notification classes are

NodeJoined and NodeLeft. The local selector system registers all subscription by as-

sociating the subscribed mailbox instances at start time, when network status change

is propagated by the mobile communication manager through system callback handle,

the selector system will produce the corresponding system messages and sends the

31

message to all subscribed mailboxes. We build on the Selector model, which supports

multiple mailboxes for each selector and can also assign processing priority to each

mailbox. Specific applications could choose different mailboxes based on its priority

of network status change and failure model. The mailbox guards can be turned on/off

and multiple mailboxes can subscribe to different system message class, giving more

flexibility to application level network status control.

As shown in Figure 4.5, applications subscribe to different system messages (as

Topics) with designated mailboxes. The example shows messages to be processed

with top priority, but applications can choose to react to different categories of run-

time and communication events in different ways. By assigning mailbox priorities,

developers can implement application-specific resilience models without changing the

underlying actor-based program semantics. Figure 4.4 shows how a network change

(a node leaving the network) travels to application-level selectors through publish-

subscribe pattern.

4.4 Off-the-grid mobile network formation

We introduce the two IMobileCommunicationManager implementations based on Wi-

Fi and Wi-Fi Direct technology detailed in Section 2.4 the current DAMMP imple-

mentation provides.

4.4.1 Wi-Fi enabled mobile communication manager

The Wi-Fi based implementation for communication manager requires an external

access point to aid the cluster formation. In most cases, one of the mobile devices

to initiate a DAMMP application (often the master device) will serve as a SoftAP

for the group before launching the application. Our implementation is based on the

32

Figure 4.4 : An example of publish-subscribe enabled system notification traveling from the

communication middleware to application-level selectors subscribed to the message. Place

3 have left the network, which is detected by the MobileCommunicationManager. The

communication middleware sends a message to the topic (NodeLeft), which selectors S1

and S2 are subscribed to. The topic distributes a copy of the messages to every selector

subscribed to it, which proxy actor directly delivers to the instances.

SoftAP interface on Android and asks the master place act as the access point.

To prepare for application launch, the master broadcasts a service name as its

SoftAP SSID. The service name consists of the application name and a session ID

33

1 /∗∗

2 ∗MySelector s ub s c r i b e s to NodeJoined and NodeLeft messages with i t s mailbox 0

3 ∗/

4 @Subscription (topics = {

5 @Topic (messageClass = NodeJoined . c l a s s , mailbox = 0) ,

6 @Topic (messageClass = NodeLeft . c l a s s , mailbox = 0)

7 })

8 pub l i c c l a s s MySelector extends DistributedSelector { . . . }

Figure 4.5 : A selector class can subscribe to different alerts from runtime.

generated from current date. Nearby mobile devices will be able to join the network

through recognizing the application name from the SSID. Upon connection to the

access point, the master place obtains an IP address for the device and opens a

socket connection. The master place then send a list of currently available IP address

in the network for the newly joined device to connect, and sends the newly joined

device IP address to all other devices in the network. After establishing connection

to all available places in the network, the newly joined device sends a PlaceReady

message to the master place, and becomes available for computation offloading.

The master place, unlike in the cluster HJDS implementation where it has to wait

for a fixed set of places to bootstrap, can start the user code manually at any given

time. As places dynamically join or leave the network, the application has to rely on

obtaining the list of available place ids from the proxy actor to create remote actors.

4.4.2 Wi-Fi Direct enabled mobile communication manager

The Wi-Fi direct based implementation for communication manager does not require

external access points [20]. By using the Wi-Fi Direct interface, a mobile device is

designated as group owner by the application. In our implementation the Master

34

Place in a distributed selector system is the default Wi-Fi Direct group owner.

The master place at launch time will start a Wi-Fi Direct group and designate

itself to be the group owner. The master place broadcasts its service ID consisting

of the application name and its session ID. Mobile devices that are not the master

place, at application launch time, search for a nearby Wi-Fi Direct service, where

the service ID corresponds to its application name and tries to join the network as a

group member. Upon joining the Wi-Fi Direct group, the group member is assigned

a new place id and can obtain a list of all other available places in the group from the

group owner, then establish socket-level connection to all the places. Upon joining

the Wi-Fi Direct group, the group member remembers the application session ID

that associates with its place ID assignment. A system message PlaceReady is then

sent to the master place, indicating the new group member is ready for computation

offloading.

Any device that disconnects from the group but have not exit the application

will be able to rejoin with the same place ID after matching the cached session ID

associated its assigned place ID and resume computation as the application specifies.

35

Chapter 5

Experimental Evaluation

5.1 Evaluation on Cluster Implementation

5.1.1 Hardware Setup

The experiments were conducted on 12 core, 2.8GHz Westmere nodes with 48GB of

RAM per node (4 GB per core), running Red Hat (RHEL 6.5).On each node equal

number of selectors are created. Each benchmark was run 20 times, and we report

the mean and the best execution times across these runs for a given number of nodes.

5.1.2 Microbenchmarks

We designate each physical computing node to be a single place, and each place to

have 12 workers (equal to the number of cores on each node). All implementations

uses multiple mailboxes to differentiate between control messages and actual com-

putational tasks where control messages (start and end messages for each task) are

placed in the mailbox of highest priority.

5.1.2.1 Trapezoidal Approximation

The Trapezoidal Approximation benchmark approximates an integral function over

an interval using the trapezoidal approximation algorithm [31, 32]. The implemen-

tation is adapted from the Savina benchmark [33]. The approximation is calculated

with a master-worker based parallelism by dividing the large interval of the approxi-

36

mation task into a fixed number of small intervals. Each worker is an application-level

selector that computes the integral approximation of each small interval in parallel

and send their results back to the master selector. The master selector collects the

results from all the worker selectors, adds them up, terminates all worker selectors

after all works are completed, and displays the final result before terminating itself

(thus the whole program).

The communication between works and the master selector in this benchmark is

fairly limited. The amount of work for each worker is divided up among workers with

configuration parameters from the master along with their activation signal. Each

worker processes all computation tasks assigned to it to report to the master, and

the master signals its workers to exit after collecting all results. In such scenario,

the system is less affected by the overhead resulting from system setup and remote

message transfer; thus we set up the experiment to explore the weak scaling property

by keeping the computation effort constant on each node. The result in Figure 5.1

shows steady scalability over 2 to 12 nodes with increasing workload under minimal

communication among selectors.

5.2 Evaluation on Mobile Implementation

The DAMMP runtime is implemented on Android 5.1.1 at API level 22. The DAMMP

implementation includes both standard Wi-Fi enabled and Wi-Fi Direct based com-

munication layer. The Wi-Fi enabled communication layer requires one of the devices

in the network to act as SoftAP for the cluster formation. External access points

could also be used under this mode. Due to the limitations of Android Wi-Fi Direct

interface, only a single group owner is allowed for any Wi-Fi Direct groups.

37

2 4 6 8 10 12

10

20

30

40

50

No. of Nodes

E
xe
cu
ti
on

T
im

e
(s
)

Mean Execution Time
Best Execution Time

Figure 5.1 : Trapezoidal Approximation : Shows weak scaling computing approximation

with 10,000,000 pieces to calculate for each worker. Number of workers per node is constant

(12), and as the number of nodes increases we increase the total number of pieces to keep

the amount of work on each node constant. Mean Execution time in milliseconds from 20

iterations. The error bar on mean execution time plot shows the standard deviation of the

20 iterations.

5.2.1 Hardware Setup

Our experiments are conducted on five Nexus 5 devices, each with Quad-core 2260

MHz Krait 400 processor and a Qualcomm Snapdragon 800 MSM8974 system chip,

and three Nexus 4 devices, each with a Quad-core 1500 MHz Krait processor and a

Qualcomm Snapdragon S4 Pro APQ8064 system chip.

38

5.2.2 Benchmarks

5.2.2.1 Cannon’s Algorithm

Dense matrix multiplication is one of the most basic operations in scientific compu-

tations and is often at the core of many image processing algorithms. Cannon’s

Algorithm is a memory-efficient distributed matrix multiplication usually imple-

mented on toroidal mesh interconnections [34]. It is designed for execution on a

virtual N ×N grid of processors, where matrices A and B are mapped onto the pro-

cessors in a block-based fashion, with sub-blocks Aij and Bij mapped to processor

pij.

The algorithm executes in two phases. In the first phase, the sub-blocks are aligned

through an initial skew, where each sub-block Aij is shifted left by some number of

positions along the row and each sub-block Bij is shifted up by some number of

positions along the column. Each processor pij receives Ai,(j+i)modN and B(i+j)modN,j.

The second phase is a series of circular shift by one processor and computation of

partial results. During each step the sub-blocks are shifted one processor up or left,

each processor multiplies the newly received sub-blocks and add the results to the

sub-block Cij, maintained at processor pij.

The loose coupling among processors and the message-passing nature of the al-

gorithm make it a natural candidate for an actor-based implementation. Our im-

plementation of the Cannon’s algorithm uses one actor to represent one independent

processor. The scaling experiment is done on one to eight phones, with a matrix size

of 1680× 1680. The first five devices are Nexus 5s, with three Nexus 4 devices added

after that. To achieve a N × N actor grid, each device hosts the same number of

actors and to the number of devices in the network (e.g., for a three device network,

39

each device hosts three actors). These results were obtained using the Wi-Fi Soft AP

based communication layer, and only a Nexus 5 device (not a Nexus 4 device) was

used as the Soft AP for all configurations.

0 2 4 6 8
0

200

400

600

800

1,000

1,200

Five Nexus5s

Five Nexus5s and Three Nexus4s

No. of Devices

E
xe
cu
ti
on

T
im

e
(s
ec
)

Best Execution Time
Average Execution Time

Figure 5.2 : Cannon’s algorithm: Shows the best and average time (over 20 executions) to

multiply two matrices of size = 1680 × 1680. For each experiment with N devices, each

device hosts N actors (processors). The first five devices are Nexus 5s, and three Nexus 4

devices are added thereafter, as in Figure 5.3.

Figure 5.2 shows the experimental results for a matrix size of 1680× 1680 on one

to eight mobile devices. For each experiment with N devices, each device hosts N

actors to make an N ×N processor grid in the original Cannon’s algorithm. For one

device, there will be a single processor, making the matrix multiplication serial in

effect.

40

We can observe that the two device experiment achieves a 4x speedup, and the four

device experiment achieves a 8x speedup compared to the serial execution. This is

due to the fact that multiple actors on the same device also utilize intra-device multi-

core computing power. As more devices are added to the network the performance

improvement diminishes, due to the increased synchronization from the quadratically

increasing number of processors. Further optimization can be made with a more

generalized matrix multiplication algorithm.

5.2.2.2 Pi Precision

The Pi Precision benchmark computes the value of Pi to a specified precision us-

ing a digit extraction algorithm. This benchmark uses a master-worker pattern with

dynamic work distribution much like the Trapezoidal Approximation mentioned

in Section 5.1.2.1. The implementation is also an adaptation from the Savina Bench-

mark [33]. Unlike the Trapezoidal Approximation the amount of communication

between the master and its workers are much more frequent where the master sends

more work (if available) to a worker that sends a reply with results.

Figure 5.3 shows the experimental results for calculating Pi to the 15,000 decimal

place on increasing number of Android devices. For each devices there are two worker

actors and the total amount of work remains constant, giving each devices less work

as the number of devices increases. The experiments are done with Wi-Fi Hotspot

based IMobileCommunicationManager implementation where a Nexus 5 devices (the

master place in all experiments) also serve as a SoftAP.

The chart in Figure 5.3 starts with a single Nexus 5 device running the Pi precision

approximation, and each data point shows the execution time after adding one more

device. After five Nexus 5 devices are added, we add one Nexus 4 device incrementally

41

0 2 4 6 8
0

20

40

60

80

100

Five Nexus5s

Five Nexus5s and Three Nexus4s

No. of Devices

E
xe
cu
ti
on

T
im

e
(s
ec
)

Best Execution Time
Average Execution Time

Figure 5.3 : Pi Precision Computation: Shows the best and average time (over 20 executions)

to compute the value of Pi to 15,000 decimal points . The x-axis shows the number of devices

used for the computation, the y-axis shows the execution time. Each device runs two worker

actors, and only one device also runs a master actor. From single device to five devices

the results are obtained using Nexus 5, from six to eight devices the additional devices are

Nexus 4.

for each of the remaining data points. We can observe the near linear scaling effect

with the first five Nexus 5 devices, with the scaling effect slowing down after that. This

is due to the fact that Nexus 4 devices are only half as powerful as Nexus 5 devices,

adding modest increase in computing power, while still increasing the communication

traffic to the AP host device. In spite of the limited computing capability of Nexus

4s, due to the dynamic nature of the generated work and the effective load balancing

42

technique implemented by the application, the total execution time is still improved

by adding slower Nexus 4’s to the computation.

5.2.3 Thermal effect of task offloading

We conduct an experiment with the Pi Precision benchmark introduced in Sec-

tion 5.2.2.2 without temperature control in a more realistic usage scenario for mobile

hand held devices. While the experiment explores the thermal dissipation impact

with the master-worker task offloading mechanism, we also discuss the implications

on power consumption. Figure 5.4 shows the average execution time for the bench-

mark under room temperature without a device cooling system against the average

execution time of the benchmark in temperature controlled environment. The large

discrepancy in total execution time is partially attributed to the large amount of heat

dissipation.

Table 5.1 shows the thermal difference on the master device for five iterations

of the Pi precision benchmark, with the same configuration as Section 5.2.2.2 for

each experiment. The total execution time for five iterations are recorded and the

temperature difference shown in the table. The temperature data are taken at the

begin and end of each experiment on the device that hosts the Soft AP and master

actor, on the 11 on-chip thermal sensors in the devices. The arithmetic mean is

calculated with the difference between average of 11 sensors at begin and end of the

experiment, the maximum and minimum temperature difference is calculated with

individual sensor data. All of the devices are fully charged and at room temperature

at the beginning of each experiment.

We can observe the temperature increase goes down for the host device, as more

devices are added to the network for work offloading, showing that the offloading

43

0 2 4 6 8
0

100

200

300

400

500

Five Nexus5s

Five Nexus5s and Three Nexus4s

No. of Devices

E
xe
cu
ti
on

T
im

e
(s
ec
)

Room temperature
Temperature controlled

Figure 5.4 : Pi Precision Computation: Shows the best and average time (over 20 executions)

to compute the value of Pi to 15,000 decimal points . The experiment under room temper-

ature has a significantly longer execution time than in temperature controlled environment

overall. The graph shows the average execution time for realistic room temperature envi-

ronments and the average execution time for the same benchmark under The x-axis shows

the number of devices used for the computation, the y-axis shows the execution time. Each

device runs two worker actors, and only one device also runs a master actor. From single

device to five devices the results are obtained using Nexus 5, from six to eight devices the

additional devices are Nexus 4.

pattern reduces the heat dissipation of such intensive computation to some degree. We

also observe a steadily increasing execution time for each iteration of the benchmark,

as the temperature increases on the device, showing that the on-device OS thermal

44

Nexus 5 Nexus 4
Total Exec.

Time

on Host (sec)

Temperature increase ()

Arith.

Mean
Max Min

1 0 448.259 16.82 N/A N/A

2 0 253.818 13.205 22.18 12.91

3 0 163.376 15.850 22.27 13.91

4 0 124.659 16.113 19.73 13.73

5 0 104.100 16.144 20.64 14.73

5 1 91.793 14.940 19.64 12.00

5 2 88.566 13.817 19.45 10.27

5 3 75.202 12.906 15.00 10.45

Table 5.1 : Pi Precision benchmark under a realistic usage scenario. Each experiment

is executed with 5 iterations and total execution time is recorded on the Soft AP host

device (Nexus 5). The temperature of each device is recorded at the beginning and at

the end of the experiment with the 11 on-chip thermal sensors. The average temperature

difference is calculated with the arithmetic average of the 11 sensors, while the best and

worst temperature difference is calculated based on the individual sensor data.

management may be limiting the processor frequency. As [35] discussed, the thermal

behavior of the mobile SoC demonstrates complex behavior affected by both the

application processor and the battery. The power consumption on mobile devices, in

45

reverse, can also be heavily impacted by the thermal dissipation [36]. As multiple

scheduling and power management techniques are developed with the thermal limit in

consideration, the effort concentrates on thermal dissipation control through software

based task scheduling [37], and architecture based improvements [38].

Our experiment shows a new possibility for thermal aware applications in user

software by offloading computationally intensive tasks to nearby mobile devices with

a small communication cost.

46

Chapter 6

Related Work

The Actor Model was a large influence in distributed software design ever since its

introduction. With the powerful abstraction of asynchronous processing logic and its

advantages in structuring highly concurrent complex systems with inherent scalability,

the Actor Model has been a go-to option for building large-scale distributed appli-

cations and platforms for decades. The Habanero Java Runtime Library, the Scala

language[13] and the Akka event-driven middleware[16] are all known long-term ef-

forts to bring the actor model to main-stream shared-memory parallel programming.

In recent years, Actors have been introduced to distributed computing by multiple

efforts including the Virtual Actors by Microsoft Orleans project[39](Section 6.1.2),

the Akka cluster Module[40](Section 6.1.1), and mobile-platform based efforts such

as the AmbientTalk language[41] (Section 6.2.1) and the ActorNet[42] project for

wireless sensor networks (Section 6.2.2).

6.1 Actor-based distribution on clusters

6.1.1 Akka Cluster

Akka is an open-source toolkit and runtime using the Actor Model and at its core

for building highly concurrent, fault-tolerant and distributed systems on the JVM,

available for both Scala and Java. Akka is known as one of the first attempts to bring

actors to mainstream programming languages, and have been one of the most widely

47

used actor-based frameworks.

The Akka runtime consist of a system of actors and requires users to explicitly ter-

minate each subsystems. For distributed application, Akka provides the Akka.cluster

module, which is dedicated to enabling actor-based distributed programming and

achieves location transparency with a strict adaptation of the Actor Model [40]. Akka

actors also partially support priority-enabled mailbox by allowing the Akka prioritized

mailbox to associate with a specific message class or value to a predefined priority.

The priority processing of messages is limited on generic-typed messages with spe-

cific binding to an actor. While still maintaining a single mailbox, Akka runtime

effectively changes the order of received messages in an actor’s mailbox based on pre-

defined priorities and have been shown to be have some inefficiencies. In our selector

model, it is more flexible to implement message prioritization and the model permits

applications to pass the same message type to different mailboxes with different pri-

orities, rid of any hard-defined association between the mailboxes and the messages

types they hold. The distributed selector model, therefore, reduces the complexity to

implement sophisticated synchronization and interaction patterns between actors [5].

6.1.2 Microsoft Orleans

Project "Orleans" is an open-source .NET framework built at Microsoft Research

that specifically targets actor-based distributed applications. The project was ini-

tialled developed to aid the development of streaming applications focusing on high

scalability and low latency[39].

Project "Orleans" utilizes the Actor Model, and introduces the Virtual Actor ab-

straction. While adapting a traditional approach with actor life-cycles and sequential

processing for actor instances, it introduces Actors as virtual entities, rather than

48

physical ones. An Orleans actor always exists virtually. It cannot be explicitly in-

stantiated or destroyed, and transcends the lifetime of any particular server or host.

An Orleans application automatically instantiate actors, while the programmer

access a virtual abstraction of the actor, without explicit knowledge of the number

of instances available. The instantiation of an actor can be triggered by a message

sent to it, and an unused instance is automatically reclaimed as part of the runtime

resource management. An actor thus never fails in this sense: a message to an

actor on a failed server only triggers the instantiation on another. By using such

indirection, the runtime addresses actor placement, load balancing, migration that

must be otherwise explicitly handled by developers. The indirection is supported by

a distributed directory mapping from virtual actor to its instances.

The Orleans API is used extensively in the Halo franchise on Microsoft Azure

since 2011, and is provided as an Actor library in the Microsoft Azure Service Fabric

as Service Fabric Reliable Actors[43].

6.2 Actor-based projects on mobile platform

6.2.1 AmbientTalk

The AmbientTalk language, an actor-based programming language, is specifically de-

signed to run on mobile ad hoc networks [44]. Its grammar inherits from Erlang

and features distributed implementation of λ calculus based functional elements and

reduction computations, and object-oriented elements including isolated objects with

pass-by-value semantics and regular objects with pass-by-reference semantics. The

AmbientTalk language bases its semantics for concurrent and distributed program-

ming soley on the Actor Model.

49

In the AmbientTalk semantics, actors are used as containers of a set of regular

objects. Each VM instance hosts multiple number of actors running concurrently,

where each actor is treated as an event loop that uses the run-to-completion seman-

tics to invoke methods on its hosted objects. The AmbientTalk actor model is mostly

compatible with the classic actor model, though it allows the use of far reference

(inherited from the E language [45]), which can break the pure message-passing se-

mantics in traditional actors.

The AmbientTalk language provides a cluster-based implementation and a pre-

liminary Android-based implementations that focus on high-level abstractions for dis-

tributed programming based on distributed reduction through actors and distributed

method invocation through far references. Our work on distributed selectors focus on

supporting a pure actor/selector model at the high-level, with distributed mechanisms

supported in configurations and decoupled communication middleware and separated

from the programming application logic. By enabling multiple guarded mailboxes the

distributed selector can achieve elegant distributed reduction implementation through

master-worker paradigm without limiting to it as the single distribution pattern. Fur-

ther, our model does not limit ourselves to mobile ad-hoc networks as the distributed

runtime design supports communications within and across mobile devices and server

devices.

6.2.2 ActorNet

The ActorNet project implements an actor-based mobile agent platform for wire-

less sensor networks (WSNs) based on the Scheme language [42]. ActorNet aims to

use high-level abstractions for concurrent and asynchronous programming on WSNs

specifically designed for the limited hardware resources on each mobile sensor. It im-

50

plements a Scheme interpreter optimized for wireless sensors to maximally utilize the

limited processing power and memory available on-chip. For its version of distributed

actor-based programming, ActorNet introduces new language primitives for actor

message passing, queries and program continuation access. Comparing to the specific

emphasis of ActorNet on optimization for limited hardware resources on WSNs, the

work in HJDS and DAMMP addresses the portability and versatility of mobile appli-

cations on a wider range of platforms through a more generalized model. The HJDS

and DAMMP design goes beyond mobile devices with limited hardware resources,

and aim to support versatile combinations of both mobile-based and cluster-based

networks. It should be noted that the distributed selector work is intended for mod-

ern day powerful consumer devices such as tablets and smartphones and can not fulfill

the specific needs on distributed actor-based applications on WSNs.

51

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation we address the communication and location transparency chal-

lenges in HJDS in both cluster-based and mobile-based designs by providing a fully

decoupled, readily replaceable communication middleware and introduce a lightweight

Selector reference with global unique identifier that encodes its location.

We have developed the cluster-based HJDS runtime library that allows program-

mers to focus on implementing the algorithm for solving the problem their appli-

cation is trying to solve, without worrying whether their application will run on a

shared-memory or distributed-memory system. Our runtime implementation sup-

ports Selectors (a strictly more powerful version of Actors) on both shared-memory

and distributed-memory systems. This framework provides automated system boot-

strap and global termination, unlike any other distributed approaches. Our experi-

mental evaluation using the Savina benchmark suite shows promising strong scaling

results, making a strong case for the DS model as a viable alternative to the existing,

much harder to program and port, parallel programming models.

We have developed a mobile platform based Java runtime library (DAMMP) by

extending the HJDS implementation. Our work focuses on decentralized distributed

applications using the actor/selector model by supporting a highly decoupled and

customizable communication middleware and publish-subscribe enabled application-

52

level runtime event handling. We provide a hierarchical, heterogeneous concurrency

and distribution model by extending the actor model in HJDS for shared-memory and

distributed parallelism. We presented a task offloading pattern based on the selector

model and the Master-Worker paradigm.

We demonstrated the scalability of computationally intensive applications us-

ing distributed mobile platforms, examined the message passing overheads with two

promising off-the-grid wireless communication technologies, and showed decreased

thermal dissipation while maintaining scalability for compute-intensive applications

in a realistic ad-hoc mobile network environment. Our empirical results expose some

of the limitations of the current state-of-the-art in device-to-device wireless connectiv-

ity This work also provides network researchers an intuitive and easy to use platform

for connectivity experiments.

7.2 Future Work

In this section we describe the future works to be explored based on the next stage

of the distributed selector-based runtime adaption of the Habanero Java Runtime

Library.

7.2.1 Selector Migration

In the current HJDS design, selectors are created either locally or remotely through

a selector creation message and remains on the same place throughout its lifetime.

Many actor-based distributed system, on the other hand, introduces the ability to

migrate selector instances from node to node enabled by providing a global naming

service[32][40]. Migration of selector instances provides further benefits including

aids on software resilience and failure recovery design and allowing dynamic load-

53

balancing for system task scheduling. The HJDS does not provide a separate global

naming services like most actor-based distributed design, but encodes the location

information in the selector reference (SelectorHandle) as a GUID. To enable selector

instance migration and reserve the location-transparent selector semantics in HJDS,

we can utilize the fact that a physical node can host more than one place and extend

the definition of a place to allow a single place to be "virtually hosted" on multiple

physical places.

As described in Section 3.1.2, a selector GUID keeps the place Id which requested

the creation of the selector, the place Id on which the selector instance resides, and a

unique Id for the selector instance on the creation place. To migrate a selector instance

from its residing place p to a different place q, place q sends a remote creation message

to place q giving the selector handle as described in Section 3.1.3, where the selector

handle’s residence place id is changed from p to q. The selector GUID will be able to

remain unique because the combination creation place id and an unique identifier on

the creation place guarantees the global uniqueness of selector GUID. Place p, after

sending the selector creation message, disables all mailboxes on the current selector to

stop message processing and changes the selector instance in its local registry to map

to the new selector handle, therefore forwarding all messages to this selector directly

to place q. Place p, after receiving confirmation on the new selector creation on place

q, sends the selector’s mailboxes over to place q, which associates the mailboxes to

the new selector instance.

For this initial design, further mechanism need to be developed to reserve the

selector messaging semantics where the message sequence between the same pair of

sender and receiver are sorted in the message sending order, and since the old residence

place will be responsible for a lot of message forwarding when messages are sent to

54

an old selector handle with GUID before migration, a better mechanism needs to

be developed for propagating the selector migration to all existing selector handle

instances.

7.2.2 Distributed extensions of the Habanero Exectuion Model

The shared-memory HJLib (discussed in Section 2.2 implementation includes multi-

ple high-level parallel abstractions from the Habanero Execution Model [6]. It im-

plements the Async-Finish model, in which async represents a general primitive for

creating asynchronous computation and data transfer tasks. HJLib APIs include

async, forasync, asyncAt, asyncPut, asyncGet, and asyncAwait, and finish as

general primitives for creating and awaiting the completion of asynchronous compu-

tation and data transfer tasks. These Async-Finish primitives enable any (block)

statement to be executed as a parallel task, including for-loop iterations and method

calls. The shared-memory HJLib also supports generalized barriers and point-to-point

synchronization with phasers [7], mutual exclusion synchronization within tasks us-

ing delegated isolation [17] and object-based isolation [18]. The rich concurrency and

parallelism abstractions can be used to obtain programmability, parallelism, and scal-

ability benefits across a wide range of task-level parallel algorithms.HJLib implements

a priority-based lock-free work-stealing algorithm [19] with multiple thread pools to

support priority scheduling of tasks and integrates with the Actor Model [46].

Our work in HJDS lays the foundation for distributed extensions of these task-

parallel abstractions by coordinating tasks through anonymous selector instances

across physical nodes and multiple places. The first few task-parallel concurrent

abstractions we plan to implement are data driven futures[15] and phasers[7], both

fine-grained synchronization primitives that can be implemented with the synchro-

55

nization and join patterns in the Selector Model.

7.2.3 Thermal aware task offloading on heterogeneous devices

The DAMMP design is created with the intention of mitigating the hardware lim-

itations of hand-held mobile devices in mind. As battery capacities remain as a

key physical constraint for mobile devices, energy efficiency is an important software

design consideration. While distributed programming abstractions are becoming a

prevalent integrated part of mobile software platforms, the energy consumption char-

acteristics are not well understood yet often is one of the major issues concerning

distributed mobile applications. Thermal emission often pose the most threat to bat-

tery over-consumption and is especially common in distributed applications due to

intensive usage of the wireless modules. Thermal emission both causes faster bat-

tery drain and can trigger cpu thermal-throttling that causes inefficient computation.

Yet, developers in many cases have to rely on trial-and-error for coordinating data

exchange and computation on such limited resources.

The effort of HJDS has provided a flexible and expressive high-level abstraction

for efficient distributed software development, and with the Android-based design in

DAMMP providing readily replaceable communication middleware we believe there

is a potential to enable research on thermal aware distributed software design on mo-

bile platform with much faster turnaround time. The Android-based implementation

allows testing with most main-stream devices and wireless modules and the read-

ily replaceable communication middleware gives software portability across different

hardware.

As shown in Section 5.2.3 distribution on multiple mobile devices can shown

observable reduction on thermal emission for each device, we’d like to continue this

56

study further to see the effect of computation offloading to heterogeneous devices.

Since the communication middleware is fully decoupled in both cluster-based and

Android-based implementation for HJDS and the runtime system control remain the

same for proxy actor and system actor with exception for global bootstrap and ter-

mination, the cluster-based system would be able to seamlessly interact with the

mobile version given manual bootstrap and termination. It would be interesting to

research the impact on thermal emission and battery drain when tasks are offloaded

to nearby desktops or tablets with more computational capabilities, and require less

data exchange resulted from multi-device coordination as well as less wait time on the

master device. Further evaluation on different wireless technologies can also provide

beneficial heuristics for mobile development.

57

Bibliography

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large

clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[2] “Apache thrift.”

[3] “Apache spark.”

[4] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems.

Cambridge, MA, USA: MIT Press, 1986.

[5] S. M. Imam and V. Sarkar, “Selectors: Actors with multiple guarded mailboxes,”

in Proceedings of the 4th International Workshop on Programming Based on Ac-

tors Agents and Decentralized Control, AGERE! ’14, (New York, NY, USA),

pp. 1–14, ACM, 2014.

[6] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-java: The new adventures

of old x10,” in Proceedings of the 9th International Conference on Principles and

Practice of Programming in Java, PPPJ ’11, (New York, NY, USA), pp. 51–61,

ACM, 2011.

[7] J. Shirako and V. Sarkar, “Hierarchical phasers for scalable synchronization and

reductions in dynamic parallelism,” in in 24th IEEE International Parallel and

Distributed Processing Symposium, 2010.

58

[8] A. Chatterjee, B. Gvoka, B. Xue, Z. Budimlic, S. Imam, and V. Sarkar, “A

Distributed Selectors Runtime System for Java Applications,” in Proceedings of

the 13th International Conference on Principles and Practices of Programming

on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ ’16, (New

York, NY, USA), pp. 3:1–3:11, ACM, 2016.

[9] A. Chatterjee, “Enabling distributed reconfiguration in an actor model,” April

2017.

[10] C. Hewitt, P. Bishop, and R. Steiger, “Artificial Intelligence A Universal Modular

ACTOR Formalism for Artificial Intelligence.” Proceedings of the 3rd Interna-

tional Joint Conference on Artificial Intelligence, Stanford, CA.

[11] N. Raja and R. K. Shyamasundar, “Actors as a Coordinating Model of Compu-

tation,” in Proceedings of the 2nd International Andrei Ershov Memorial Confer-

ence on Perspectives of System Informatics, pp. 191–202, Springer-Verlag, 2004.

[12] P. Haller and F. Sommers, Actors in Scala. USA: Artima Incorporation, 2012.

[13] “The Scala Programming Language.” Home page.

[14] T. Desell and C. A. Varela, “A Performance and Scalability Analysis of Actor

Message Passing and Migration in SALSA Lite,” in Agere Workshop at ACM

SPLASH 2015 Conference, 2015.

[15] S. Imam and V. Sarkar, “Habanero-java library: A java 8 framework for multicore

programming,” in Proceedings of the 2014 International Conference on Princi-

ples and Practices of Programming on the Java Platform: Virtual Machines,

Languages, and Tools, PPPJ ’14, (New York, NY, USA), pp. 75–86, ACM, 2014.

59

[16] Typesafe Inc., “Akka framework.”

[17] R. Lublinerman, J. Zhao, Z. Budimlić, S. Chaudhuri, and V. Sarkar, “Delegated

isolation,” in Proceedings of the 2011 ACM International Conference on Object

Oriented Programming Systems Languages and Applications, OOPSLA ’11, (New

York, NY, USA), pp. 885–902, ACM, 2011.

[18] S. Imam, J. Zhao, and V. Sarkar, “A composable deadlock-free approach to

object-based isolation,” in Euro-Par 2015: Parallel Processing (J. L. TrÃďff,

S. Hunold, and F. Versaci, eds.), vol. 9233 of Lecture Notes in Computer Science,

pp. 426–437, Springer, 2015.

[19] S. Imam and V. Sarkar, “Habanero-java library: A java 8 framework for multicore

programming,” in Proceedings of the 2014 International Conference on Princi-

ples and Practices of Programming on the Java Platform: Virtual Machines,

Languages, and Tools, PPPJ ’14, pp. 75–86, ACM, 2014.

[20] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device commu-

nications with wi-fi direct: overview and experimentation,” IEEE Wireless Com-

munications, vol. 20, pp. 96–104, June 2013.

[21] K. Jahed, O. Farhat, G. Al-Jurdi, and S. Sharafeddine, “Optimized group owner

selection in wifi direct networks,” in 2016 24th International Conference on Soft-

ware, Telecommunications and Computer Networks (SoftCOM), pp. 1–5, Sept

2016.

[22] “Wi-Fi Direct | Wi-Fi Alliance.” Available at http://www.wi-fi.org/

discover-wi-fi/wi-fi-direct.

http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct

60

[23] J. S. Lee, Y. W. Su, and C. C. Shen, “A comparative study of wireless protocols:

Bluetooth, uwb, zigbee, and wi-fi,” in IECON 2007 - 33rd Annual Conference of

the IEEE Industrial Electronics Society, pp. 46–51, Nov 2007.

[24] “Wi-Fi Peer-to-Peer | Android Developers.” Avaialble at https://developer.

android.com/guide/topics/connectivity/wifip2p.html.

[25] Esoteric Software, “Kryo : Graph serialization framework for Java ,” 2015. [latest

commit 31-Oct-2015].

[26] Esoteric Software, “Kryo: V1 Benchmarks,” 2012. [Online; accessed 3-April-

2012].

[27] G. Inc., “Protocol buffer.”

[28] “Apache avro.”

[29] Eishay Smith, “Object graph serializers - performance evaluation ,” 2015. [On-

line; accessed 11-Aug-2015].

[30] “Netty project.”

[31] J. Ayres and S. Eisenbach, “Stage: Python with Actors,” in Proceedings of

IWMSE ’09, (Washington, DC, USA), pp. 25–32, IEEE Computer Society, 2009.

[32] C. Varela and G. Agha, “Programming Dynamically Reconfigurable Open Sys-

tems with SALSA,” ACM SIGPLAN Notices, vol. 36, pp. 20–34, Dec. 2001.

[33] S. Imam and V. Sarkar, “Savina - An Actor Benchmark Suite,” in Proceedings of

the 4th International Workshop on Programming based on Actors, Agents, and

Decentralized Control, AGERE! 2014, October 2014.

https://developer.android.com/guide/topics/connectivity/wifip2p.html
https://developer.android.com/guide/topics/connectivity/wifip2p.html

61

[34] H. Gupta and P. Sadayappan, “Communication efficient matrix-multiplication

on hypercubes.,” Technical Report 1994-25, Stanford Infolab, 1994.

[35] Q. Xie, J. Kim, Y. Wang, D. Shin, N. Chang, and M. Pedram, “Dynamic thermal

management in mobile devices considering the thermal coupling between battery

and application processor,” in Proceedings of the International Conference on

Computer-Aided Design, ICCAD ’13, (Piscataway, NJ, USA), pp. 242–247, IEEE

Press, 2013.

[36] U. Y. Ogras, R. Z. Ayoub, M. Kishinevsky, and D. Kadjo, “Managing mobile

platform power,” in Proceedings of the International Conference on Computer-

Aided Design, ICCAD ’13, (Piscataway, NJ, USA), pp. 161–162, IEEE Press,

2013.

[37] T. Chantem, R. P. Dick, and X. S. Hu, “Temperature-aware scheduling and

assignment for hard real-time applications on mpsocs,” in Proceedings of the

Conference on Design, Automation and Test in Europe, DATE ’08, (New York,

NY, USA), pp. 288–293, ACM, 2008.

[38] O. Khan and S. Kundu, “Hardware/software co-design architecture for thermal

management of chip multiprocessors,” in 2009 Design, Automation Test in Eu-

rope Conference Exhibition, pp. 952–957, April 2009.

[39] Microsoft Research, “Microsoft Orleans,” 2015.

[40] Typesafe Inc., “Akka Cluster Documentation,” 2014.

[41] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter,

“Ambient-oriented programming,” in Companion to the 20th Annual ACM SIG-

62

PLAN Conference on Object-oriented Programming, Systems, Languages, and

Applications, OOPSLA ’05, (New York, NY, USA), pp. 31–40, ACM, 2005.

[42] Y. Kwon, S. Sundresh, K. Mechitov, and G. Agha, “Actornet: An actor platform

for wireless sensor networks,” in Proceedings of the Fifth International Joint

Conference on Autonomous Agents and Multiagent Systems, AAMAS ’06, (New

York, NY, USA), pp. 1297–1300, ACM, 2006.

[43] Microsoft, “Service Fabric Reliable Actors,” 2017.

[44] T. Van, C. Christophe, S. D. Harnie, and W. D. Meuter, “An operational seman-

tics of event loop concurrency in ambienttalk.”

[45] M. S. Miller, E. D. Tribble, and J. Shapiro, Concurrency Among Strangers,

pp. 195–229. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[46] S. Imam and V. Sarkar, “Integrating Task Parallelism with Actors,” in Proceed-

ings of the ACM international conference on Object Oriented Programming Sys-

tems Languages and Applications, OOPSLA ’12, (New York, NY, USA), pp. 753–

772, ACM, 2012.

	Abstract
	Acknowledgments
	List of Illustrations
	List of Tables
	Introduction
	Motivation
	Thesis statement
	Contributions
	Organization

	Background
	Selector Model
	Habanero Java Runtime Library
	Bootstrap and Global Termination in Distributed Selector Model
	Wireless Communication

	Communication Middleware for clusters
	Distribution for Habanero Java
	HJDS Design Overview
	Selector Interface
	Proxy Actor
	Remote Selector Creation
	Message exchange between remote places

	System bookkeeping

	Communication Middleware
	JVM Serializers
	Netty

	Communication Middleware on Android
	DAMMP design overview
	Mobile Communication Layer design
	Network status control at Application level
	Off-the-grid mobile network formation
	Wi-Fi enabled mobile communication manager
	Wi-Fi Direct enabled mobile communication manager

	Experimental Evaluation
	Evaluation on Cluster Implementation
	Hardware Setup
	Microbenchmarks
	Trapezoidal Approximation

	Evaluation on Mobile Implementation
	Hardware Setup
	Benchmarks
	Cannon's Algorithm
	Pi Precision

	Thermal effect of task offloading

	Related Work
	Actor-based distribution on clusters
	Akka Cluster
	Microsoft Orleans

	Actor-based projects on mobile platform
	AmbientTalk
	ActorNet

	Conclusion and Future Work
	Conclusion
	Future Work
	Selector Migration
	Distributed extensions of the Habanero Exectuion Model
	Thermal aware task offloading on heterogeneous devices

	Bibliography

