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GPU Computing
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• Graphics Processing Units (GPUs) 
• Significant performance and energy efficiency 
• Large burden on programmers due to low-level programming   

(e.g., CUDA and OpenCL) 
• Efficient parallelization for thousands of clustered cores 
• Explicit managements of data transfer and shared/local memories 
• Device-specific, low performance portability & productivity 

• High-level abstractions for GPU programming 
• Users: programming in simple & platform-independent manner 
• Compilers: optimize/customize code for specific target systems



Compiler Optimizations for GPUs using Polyhedral Model
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• Polyhedral model 
• Algebraic framework for affine program optimizations 

• Unified view that captures arbitrary loop structures 
• Generalized loop transformations as form of affine transform 

• Significant advancements over traditional AST-based transformations 
• Polyhedral compilation for GPUs (focus area for this work) 

• End-to-end frameworks 
• C-to-CUDA [M. Baskaran, et al., CC 2010] 
• R-Stream [A. Leung, et al., GPGPU 2010] 
• PPCG [S. Verdoolaege, et al., TACO 2013] 

• Input: sequential C.  Output: optimized CUDA/OpenCL.



CUDA Thread Execution & Memory Model
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shared memory

block 0

Grid

global memory

threads with sync

shared memory

block 1

threads with sync ...
shared memory

block N-1

threads with sync

No synchronization supported among blocks

• Two-level GPU parallelism 
• Blocks :  No/limited inter-block synchronization 
• Threads :  Inter-thread barrier supported within a block 

• Coalesced memory accesses  — i.e., contiguous threads to access 
contiguous elements — are critical to performance 

• Memory hierarchy management 
• Explicit data transfers between global and shared (local) memories
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// Input (variant of Jacobi-2d)
for (t = 0; t < T; t++) {
  for (i = 1; i < N-1; i++)
    for (j = 1; j < N-1; j++)
      B[i][j] = (A[i][j] + A[i][j-1]
               + A[i][j+1]) / 3.0;
  for (i = 1; i < N-1; i++)
    for (j = 1; j < N-1; j++)
      A[i][j] = B[i][j];
}

• i-loop 
• synchronization-free forall 

• j-loop 
• cross-iteration dependence 
• accessing inner array dimension

// Output of PPCG (CUDA kernel)
b0 = blockIdx.x;    // i-tile (block-x)
t0 = threadIdx.x;   // i      (thread-x)
for (c1 = 0; c1 <= T-1; c1+=32)
 for (c2 = 2 * c1; c2 <= ...; c2+=32) {
  if (...)
   for (c4 = ...; c4 <= ...; c4+=1)
    for (c5 = ...; c5 <= ...; c5+=1) {
     if (N + 2 * c1 + 2 * c4 >= c2 + c5 + 2)
      B[32*b0+t0][-2*c1+c2-2*c4+c5] = ...;
     if (g7+c3 >= 2*g5+2*c2+2)
      A[32*b0+t0][-2*g5+g7-2*c2+c3-1] = ...;
    }
 }

mapped to blocks & threads

sequentially executed; 
absence of memory coalescing

// Output of PPCG (CUDA kernel)
b0 = blockIdx.x;    // i-tile (block-x)
t0 = threadIdx.x;   // i      (thread-x)
for (c1 = 0; c1 <= T-1; c1+=32)         // t-tile
 for (c2 = 2 * c1; c2 <= ...; c2+=32) { // j-tile
  if (...)
   for (c4 = ...; c4 <= ...; c4+=1)     // t
    for (c5 = ...; c5 <= ...; c5+=1) {  // j
     if (N + 2 * c1 + 2 * c4 >= c2 + c5 + 2)
      B[32*b0+t0][-2*c1+c2-2*c4+c5] = ...;
     if (g7+c3 >= 2*g5+2*c2+2)
      A[32*b0+t0][-2*g5+g7-2*c2+c3-1] = ...;
    }
 }

Past work: PPCG Polyhedral Optimizer
• Coarse-grained parallelization policy [TACO 2013] 

• Compute schedule — i.e., transformations — based on PLuTo algorithm 
• Map the outermost parallelism in schedule to both blocks & threads 

• Fundamentally same parallelization for blocks & threads
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• Existing polyhedral approaches to GPUs 
• Compute schedule — i.e., transformations — based on PLuTo algorithm 
• Map the outermost parallelism in schedule to blocks & threads 

• Fundamentally same optimizations between block and thread 
• Block-level :  synchronization-free parallelism is mandatory 
• Thread-level :  can include barriers, important to coalesce memory accesses 

• Our approach: two-level parallelization for GPUs 
• Compute two schedules with different optimization policies 

• Block-level :  outermost synchronization-free parallelism 
• Thread-level :  parallelism with good coalescing + inter-thread synchronizations 

• Superposition to integrate block-level and thread-level schedules 
• DL memory cost model to maximize coalesced memory access for threads

Our Work: Optimized Two-level Parallelization for GPUs



Outline
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• Introduction 
• Background 

• Overview of polyhedral model 

• Polyhedral transformations and parallelization 

• Optimization framework 
• Overview of optimization flow 

• Superposition for GPU two-level parallelizations 

• GPU memory cost model for thread-level transformations 

• Experimental results 
• Conclusions



Polyhedral Compilation Framework
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• Polyhedral model 

• Algebraic framework for affine program representations & transformations 

• Unified view that captures arbitrary loop structures 

• Generalize loop transformations as form of affine transform 

• Polyhedral representations (SCoP format) 

• Domain !Si : set of statement instances for statement Si 

• Access "Si :  mapping an instance to array element(s) to be accessed 

• Schedule #Si :  mapping an instance to lexicographical time stamp



Domain
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     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

S1:      C[i][j] = 0.0;
     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

         for (k = 0; k < K; k++)

S2:        C[i][j] = C[i][j] + A[i][k] * B[k][j];

!S1 = { (i, j) :      0 ≤ i ≤ M-1,  0 ≤ j ≤ N-1 } 
!S2 = { (i, j, k) :  0 ≤ i ≤ M-1,  0 ≤ j ≤ N-1,  0 ≤ k ≤ K-1 }

• Domain !Si :  set of statement instances for statement Si



Schedule (time mapping)
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     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

S1:      C[i][j] = 0.0;
     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

         for (k = 0; k < K; k++)

S2:        C[i][j] = C[i][j] + A[i][k] * B[k][j];

• Schedule #Si(i):  mapping statement instance i to time stamp vector 
• To capture the sequential execution order of a program 
• Statement instances are executed in lexicographical order of schedules

#S1(i, j)   =   (0, i, j) 
#S2(i, j, k) = (1, i, j, k)

     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

S1:      C[i][j] = 0.0;
     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

         for (k = 0; k < K; k++)

S2:        C[i][j] = C[i][j] + A[i][k] * B[k][j];

#S1(i, j)   =   (0, i, j) 
#S2(i, j, k) = (1, i, j, k)

0:

1:

     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

S1:      C[i][j] = 0.0;
     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

         for (k = 0; k < K; k++)

S2:        C[i][j] = C[i][j] + A[i][k] * B[k][j];

#S1(i, j)   =   (0, i, j) 
#S2(i, j, k) = (1, i, j, k)

i:     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

S1:      C[i][j] = 0.0;
     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

         for (k = 0; k < K; k++)

S2:        C[i][j] = C[i][j] + A[i][k] * B[k][j];

#S1(i, j)   =   (0, i, j) 
#S2(i, j, k) = (1, i, j, k)

j:
     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

S1:      C[i][j] = 0.0;
     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

         for (k = 0; k < K; k++)

S2:        C[i][j] = C[i][j] + A[i][k] * B[k][j];

#S1(i, j)   =   (0, i, j) 
#S2(i, j, k) = (1, i, j, k)

k:

i:
j:
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Schedule (time mapping)
     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

S1:      C[i][j] = 0.0;
     for (i = 0; i < M; i++)

       for (j = 0; j < N; j++)

         for (k = 0; k < K; k++)

S2:        C[i][j] = C[i][j]
             + A[i][k] * B[k][j];

#S1(i, j)   =   (0, i, j) 
#S2(i, j, k) = (1, i, j, k)

#S1(i, j)   =   (0, i, j, 0) 
#S2(i, j, k) = (0, i, j, 1, k)

transformation

     for (i = 0; i < M; i++) {

       for (j = 0; j < N; j++) {

S1:      C[i][j] = 0.0;
         for (k = 0; k < K; k++)

S2:        C[i][j] = C[i][j]
             + A[i][k] * B[k][j];

     } }

codegen

• Schedule #Si(i):  mapping statement instance i to time stamp vector 
• To capture the sequential execution order of a program 
• Statement instances are executed in lexicographical order of schedules 
• Transformation = find a new schedule under dependence constraints



Space-mapping
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• Space-mapping #Si(i):  mapping instance i to (logical) processor id 
• Represent parallelism 
• No sequential order among instances 
• Annotated with subscripts x, y, and z to represent GPU thread/block dimensions

// high-level forall
     forall (i = 0; i < M; i++)

       forall (j = 0; j < N; j++)

S1:      C[i][j] = 0.0;

// CUDA threads
     i = threadIdx.y;

     j = threadIdx.x;

S1:  C[i][j] = 0.0;

#S1(i, j)   =   (iy, jx)



Composition of Time- and Space-mapping
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• Scattering function 
• In a multidimensional scattering function, some dimensions represent 

schedule (time-mapping) while others are space-mapping 
• Capture both sequential loop transformations and parallelization

#S1  =  (t, 0, iy, jx) 
#S2  =  (t, 1, iy, jx)

// Jacobi-2d kernel (CUDA threads)
    for (t = 0; t < T; t++) {
      i = threadIdx.y + …;
      j = threadIdx.x + …;
S1:   B[i][j] = (A[i][j] + A[i][j-1]
               + A[i][j+1]) / 3.0;
      __syncthreads();
      i = threadIdx.y + …;
      j = threadIdx.x + …;
S2:     A[i][j] = B[i][j];
      __syncthreads();
    }

* Space-mapping dimension is annotated with subscripts

// Jacobi-2d kernel (high-level forall)
    for (t = 0; t < T; t++) {
      forall (i = …; i < …; i++)
        forall (j = …; j < …; j++)
S1:       B[i][j] = (A[i][j] + A[i][j-1]
                   + A[i][j+1]) / 3.0;
      barrier;
      forall (i = …; i < …; i++)
        forall (j = …; j < …; j++)
S2:       A[i][j] = B[i][j];
      barrier;
    }



Outline
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• Introduction 
• Background 

• Overview of polyhedral model 

• Polyhedral transformations and parallelization 

• Optimization framework 
• Overview of optimization flow 

• Superposition for GPU two-level parallelizations 

• GPU memory cost model for thread-level transformations 

• Experimental results 
• Conclusions



Overall Flow
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SCoP thread & block 
transformations

shared memory 
& register opt

Optimized 
SCoP

• Transformations and parallelization 
• Thread-level transformations 

• Extended memory cost model (DL model) to GPU memory warps 
• Detect loop parallelism with good coalesced memory access;                           

map to the innermost thread dimension 
• Block-level transformations (independent of thread-level transformations) 

• Detect & map sync-free parallelism to block dimensions 
• Superposed into final scattering function 

• Shared memory and register optimizations 
1. Individual tiles are identified after superposition 
2. Array elements to be used/modified within each tile are computed 
3. Insert data transfers to/from shared memory or registers



Superposition
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• Two scattering functions per statement 

• Block-level scattering function, #Sout(i) 

• Many-to-one function to assign multiple instances i to same value 

• Must be fully permutable 

• Thread-level scattering function, #S(i) 

• One-to-one function to assign each instance i to a unique value 

• Superposition as loop tiling 
• Block-level: specify inter-tile schedule (individual tiles) 

• Thread-level: specify intra-tile schedule (iterations within a tile)



Superposition
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Schedule for original code: 
#S1  =  (t, 0, i, j) 
#S2  =  (t, 1, i, j)

// Input (variant of Jacobi-2d)
for (t = 0; t < T; t++) {
  for (i = 1; i < N-1; i++)
    for (j = 1; j < N-1; j++)
S1:   B[i][j] = (A[i][j] + A[i][j-1]
               + A[i][j+1]) / 3.0;
  for (i = 1; i < N-1; i++)
    for (j = 1; j < N-1; j++)
S2:   A[i][j] = B[i][j];
}

Block scattering function: 
#S1 out  =  (ix) 
#S2 out  =  (ix)

Thread scattering function: 
#S1  =  (t, 0, iy, jx) 
#S2  =  (t, 1, iy, jx)

Superposed scattering function: 
#S1  =  (⎣ix / 32⎦, t, 0, iy, jx) 
#S2  =  (⎣ix / 32⎦, t, 1, iy, jx)

* Tile size 32 is used

superposition

// Superposed (final code)
c1 = blockIdx.x;                 // i-tile (blk-x)
for (c5 = 0; c5 <= T-1; c5++) {  // t
  c3 = 32 * c1 + threadIdx.y;    // i      (thrd-y)
  if (c3 >= 1 && c3 <= N-2) {
   for (c7 = 0; c7 <= …; c7++) { // j-tile
     c9 = 32 * c7 + threadIdx.x; // j      (thrd-x)
     if (c9 >= 1 && c9 <= N-2)
S1:   B[c3][c9] = …
  }}
  __syncthreads();
  c3 = 32 * c1 + threadIdx.y;    // i      (thrd-y)
  if (c3 >= 1 && c3 <= N-2) {
   for (c7 = 0; c7 <= …; c7++) { // j-tile
     c9 = 32 * c7 + threadIdx.x; // j      (thrd-x)
     if (c9 >= 1 && c9 <= 1998)
S2:   A[c3][c9] = B[c3][c9];
  }}
   __syncthreads();
}}}

codegen



Analytical Model for Coalescing Memory Access
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• DL model for CPU memory cost analysis 
• Originally proposed for cache (and TLB) 
• Assumption: loop tiling is applied 

• All data per tile fits within target cache 
• DL = estimation of # distinct cache lines per tile 

• Function of tile sizes, T1, T2, ..., Td 
• DL(T1, T2, ..., Td)  ≤  total cache miss count per tile 

• Extensions to GPU memory warp 
• Additional assumption: shared memory transfer 

• per-tile data is optimally prefetched & kept on shared/cache memory 
• Extended DL = estimation of # memory transactions per tile 

• DL(T1, T2, ..., Td)  ≤  total memory transaction count per tile



Analytical Model for Coalescing Memory Access
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// Sequential
for ti = 0, N-1, T1
  for tj = 0, M-1, T2
    for tk = 0, K-1, T3

      for i = ti, ti+T1-1
        for j = tj, tj+T2-1
          for k = tk, tk+T3-1
            A[i][j] += B[k][i];

A[T1][T2] B[T3][T1]

T2

T1 T3

T1

DL(T1, T2, T3)  =  DLA(T1, T2, T3)  +  DLB (T1, T2, T3)  =  T1 ×⎡T2 / L⎤ +  T3 ×⎡T1 / L⎤

L : warp size (e.g., 32 for NVIDIA GPUs),

• Extended DL = estimation of # optimal memory transactions per-tile 
• Per-tile data is optimally prefetched & kept on shared/cache memory 

// Mapped to CUDA
int ti = blockIdx.y * T1;
  int tj = blockIdx.x * T2;
    for tk = 0, K-1, T3
      … // prefetch A/B to shared mem
      int i = ti + threadIdx.z;
        int j = tj + threadIdx.y;
          int k = tk, threadIdx.x;
            s_A[i][j] += s_B[k][i]; j

i

i

k

mem_cost(T1, T2, ..., Td)  =
Costtrans × DL(T1, T2, ..., Td)

T1 × T2 × ... × Td

Costtrans : cost of single memory transaction

• Memory cost = total memory transaction count (normalized as per-iteration)



Profitability Analysis via DL Memory Cost
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• Loop with best memory coalescing 
• Partial derivative of memory cost w.r.t. Tk : 

• Reduction rate of memory cost when increasing Tk 
• Parallel loop with most negative value 

 → most profitable loop for memory cost minimization  
 → mapped to innermost thread dimension 

• Profitability of loop fusion 
• Comparing mem_cost(T1, T2, ..., Td) before and after fusion 

• Memory cost decreased → fusion is profitable 
• Other criteria, e.g., loss of parallelism, are also considered

∂mem_cost(T1, T2, ..., Td)

∂Tk



Experimental Setting
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• Platforms 
• Intel Xeon X5660 + NVIDIA Tesla M2050 GPU (Fermi) 

• 13SM x 32-core, total 448 CUDA Cores 

• IBM POWER8 + NVIDIA Tesla K80 GPU (Kepler) 
• 14SMX x 192-core, total 2496 CUDA Cores 

• Benchmarks 
• PolyBench-C 3.2 
• SPEC Accel :  314.omriq and 357.sp (two kernels from x_solve) 

• Experimental variants 
• Sequential :  gcc -O3 on CPU 
• PPCG :  Polyhedral Parallel Code Generator from INRIA 
• PolyAST+GPU :  Two-level parallelization for GPUs (proposed)



Speedup vs. CPU sequential GCC (Fermi 448-core)
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• block-level : PolyAST+GPU has same schedule as PPCG 
• thread-level : different schedules due to superposition and coalescing policy 
• PPCG has more efficient code generation method (e.g., # threads can be ≤ block size) 
• Geometric mean speedup :  44.8× by PPCG  and  85.9× by PolyAST+GPU 

• Relative improvement of our work over PPCG ~ 1.8x



Speedup vs. CPU sequential GCC (Kepler 2496-core)
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• block-level : PolyAST+GPU has same schedule as PPCG 
• thread-level : different schedules due to superposition and coalescing policy 
• PPCG has more efficient code generation method (e.g., # threads can be ≤ block size) 
• Geometric mean speedup :  45.6× by PPCG  and  95.5× by PolyAST+GPU 

• Relative improvement of our work over PPCG ~ 2.1x



Conclusions
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• Graphics Processing Units (GPUs) 
• Massively parallel architecture consisting of thousands of cores 

• Large burdens upon programmers, comparing with SMP programming 

• Automatic C-to-CUDA transformations for productive GPU computing 

• Existing polyhedral approaches to GPUs 
• Focus on sync-free parallelism; less attention to generating threads with barriers 

• Use same schedule for both blocks and threads 

• Two-level parallelizations for GPUs 
• Allows block-level and thread-level schedules with different optimization policies 

• Superposition to integrate block-level and thread-level schedules 

• An analytical memory cost model for GPU memory warp analysis 

• 1.8× and 2.1× geometric mean improvements on NVIDIA Fermi and Kepler over PPCG


