CC 2017 - Austin, Texas
February 5th, 2017
Jun Shirako, Akihiro Hayashi, Vivek Sarkar

* Graphics Processing Units (GPUS)

e Significant performance and energy efficiency

 Large burden on programmers due to low-level programming
(e.g., CUDA and OpenCL)

« Efficient parallelization for thousands of clustered cores
o Explicit managements of data transfer and shared/local memories

* Device-specific, low performance portability & productivity

* High-level abstractions for GPU programming

e Users: programming in simple & platform-independent manner

 Compilers: optimize/customize code for specific target systems

e Polyhedral model
* Algebraic framework for affine program optimizations

e Unified view that captures arbitrary loop structures

 (Generalized loop transformations as form of affine transform

* Significant advancements over traditional AST-based transformations

* Polyhedral compilation for GPUs (focus area for this work)

* End-to-end frameworks
e (C-to-CUDA [M. Baskaran, et al., CC 2010]
 R-Stream [A. Leung, et al., GPGPU 2010]
« PPCG [S. Verdoolaege, et al., TACO 2013]
* |nput: sequential C. Output: optimized CUDA/OpenCL.

Grid

block O

threads with sync

block 1 block N-1

RIS || SRRRR8855 RS

threads with sync threads with sync

shared memory

shared memory shared memory

No synchronization supported among blocks

global memory

e Two-level GPU

parallelism

* Blocks : No/limited inter-block synchronization

 Threads : Inter-thread barrier supported within a block

* (Coalesced memory accesses — i.e., contiguous threads to access
contiguous elements — are critical to performance

* Memory hierarchy management
» Explicit data transfers between global and shared (local) memories

* Coarse-grained parallelization policy [TACO 2013]
« Compute schedule — i.e., transformations — based on PLuTo algorithm

* Map the outermost parallelism in schedule to both blocks & threads

 Fundamentally same parallelization for blocks & threads

// Output of PPCG (CUDA kernel)

b0 = blockIdx.x; // i-tile (block-x)
// Input (variant of Jacobi-2d) t0 = threadlIdx.x; // i (thread-x)
for (t = 0; t < T; t++) { for (cl = 0; cl <= T-1; cl+=32) // t-tile
for (i = 1; i < N-1; i++) for (c2 = 2 * ¢cl; €2 <= ...; c2+=32) { // j-tile
for (j = 1; j < N-1; j++) if (...)
B[i][j] = (A[i][F] + A[i][j-1] for (c4 = ...; c4d <= ...; c4+=1) // t
+ A[i][j+1]1) / 3.0; for (¢5 = ...; ¢5 <= ...; ¢c5+=1) { // 3
for (i = 1; i < N-1; i++) if (N+ 2 * cl + 2 * c4d > c2 + c5 + 2)
for (j = 1; j < N-1; j++) B[32*b0+t0] [-2*cl+c2-2*c4+c5] = ...;
A[i1[F1 = B[il[71; if (g7+c3 >= 2*%g5+2%c2+2)
} A[32*b0+t0] [-2*g5+g7-2*c2+c3-1] = ...;
}
}
* I-loop
* synchronization-free forall » mapped to blocks & threads
* |-loop
e cross-iteration dependence ' sequentially executed;
absence of memory coalescing

e accessing inner array dimension

e Existing polyhedral approaches to GPUs

 Compute schedule — i.e., transformations — based on PLuTo algorithm

 Map the outermost parallelism in schedule to blocks & threads

 Fundamentally same optimizations between block and thread
* Block-level : synchronization-free parallelism is mandatory

 Thread-level : can include barriers, important to coalesce memory accesses

e QOur approach: two-level parallelization for GPUs

 Compute two schedules with different optimization policies
« Block-level : outermost synchronization-free parallelism

 Thread-level : parallelism with good coalescing + inter-thread synchronizations

« Superposition to integrate block-level and thread-level schedules

DL memory cost model to maximize coalesced memory access for threads

Background

* Qverview of polyhedral model

» Polyhedral transtormations and parallelization
Optimization framework

* QOverview of optimization flow
o Superposition for GPU two-level parallelizations

« GPU memory cost model for thread-level transformations

Experimental results

Conclusions

* Polyhedral model

» Algebraic framework for affine program representations & transformations
* Unified view that captures arbitrary loop structures

 (Generalize loop transformations as form of affine transform

* Polyhedral representations (SCoP format)

« Domain D°' : set of statement instances for statement Si

« Access A° : mapping an instance to array element(s) to be accessed

« Schedule ®° : mapping an instance to lexicographical time stamp

for (i = 0; 1 < M; i++)
for (j = 0; Jj < N; j++)
Sl: C[i][]J] = 0.0;
for (i = 0; 1 < M; it++)
for (3 = 0; jJ < N; jJ++)
for (k = 0; k < K; k++)
S2: C[i][J] = C[1][J] + A[1][k] * B[k]I[J];

« Domain D°' : set of statement instances for statement Si

< M; 1++)
;) < N; J++)
S1: C[i][]J] = 0.0;
' <
J

M; i++)
] < N; J++)
: ; kK < K; k++)
S2: C[11[J]1 = C[1][J] + A[i]1[k] * B[k][J1;

©5'(i,j) = (0,1,])
©°4(i, j, k) = (1,1, , k)

. Schedule ®°(i): mapping statement instance ito time stamp vector
« To capture the sequential execution order of a program

e Statement instances are executed in lexicographical order of schedules

10

foz . f 8;0% f T;N%+Ti+ for (i = 0; 1 < M; 1i++) {
or (J = 0; 3 Po3tt) for (3 = 0; J < N; j++) {
S1: C[i][J] = 0.0; S1: C[i][j] = 0.0;
for (1 = 0; 1 < M; 1++) . for (k = 0: K < K k++)
fozoil(; 270? ; E7K?+;i+) S2: C[il1[3] = C[i][3]
(k= 0; S N + A[i][k] * B[k]1[]];
S2: Cl[1][3] = C[1][]] 1)
+ A[i][k] * B[k]1[]J]1; f
codegen
05,)) = (0,1,]) i 0%(i.) = (0.1}, 0

O>2(i, j, k) = (1,1,], k) 0>2(i, j, k) = (0,1,], 1, k)

transformation

. Schedule ®°(i): mapping statement instance ito time stamp vector
e To capture the sequential execution order of a program
e Statement instances are executed in lexicographical order of schedules

o Transformation = find a new schedule under dependence constraints

11

// high-level forall // CUDA threads

forall (i = 0; 1 < M; 1i++) 1 = threadIdx.y;
forall (j = 0; jJ < N; J++) j = threadIdx.x;
S1: C[ij[j] = 0.0; Sl: C[i][j] = 0.0;

0°'(i,J) = (iy, x)

. Space-mapping ®°(i): mapping instance ito (logical) processor id
 Represent parallelism

* No sequential order among instances
e Annotated with subscripts x, y, and z to represent GPU thread/block dimensions

12

e Scattering function

* |n a multidimensional scattering function, some dimensions represent
schedule (time-mapping) while others are space-mapping

* Capture both sequential loop transformations and parallelization

// Jacobi-2d kernel (high-level forall) // Jacobi-2d kernel (CUDA threads)
for (t = 0; t < T; t++) { for (t = 0; t < T; t++) {
forall (1 = ..; 1 < ..; i++) i = threadIdx.y + ..;
forall (j = ...; j < ..; j++) j = threadIdx.x + ..;
S1: B[i][3]1 = (A[Li1[J] + A[i][3F-1] sl: B[i][3J] = (A[i]1[3] + A[i][3-1]
+ A[i][]J+1]) / 3.0; + A[i][3j+1]) / 3.0;
barrier; __syncthreads();
forall (i = ...; 1 < ..; 1i++4) i = threadIdx.y + ..;
forall (j = ..; J < ..; j++) j = threadIdx.x + ..;
S2: A[i][J] = B[1]1[3J]1: S2: A[i][J] = B[1]1[J]:
barrier; __syncthreads();
} }

®S1 — (t’ O’ iV! lx)
Q%2 = (1, 1,y Jx)

* Space-mapping dimension is annotated with subscripts
13

e Optimization framework

* QOverview of optimization flow
o Superposition for GPU two-level parallelizations

« GPU memory cost model for thread-level transformations

* Experimental results

e Conclusions

14

thread & blpck shareq memory Optimized
transformations & register opt SCoP

* Transformations and parallelization

e Thread-level transtormations
 Extended memory cost model (DL model) to GPU memory warps

* Detect loop parallelism with good coalesced memory access:;
map to the innermost thread dimension

* Block-level transformations (independent of thread-level transformations)
* Detect & map sync-free parallelism to block dimensions

e Superposed into final scattering function
* Shared memory and register optimizations
1. Individual tiles are identified after superposition
2. Array elements to be used/modified within each tile are computed
3. Insert data transfers to/from shared memory or registers

e [wo scattering functions per statement

» Block-level scattering function, @sout(j)
* Many-to-one function to assign multiple instances i to same value
o Must be fully permutable

 Thread-level scattering function, 3(i)
* One-to-one function to assign each instance ito a unique value
o Superposition as loop tiling
* Block-level: specity inter-tile schedule (individual tiles)

* Thread-level: specity intra-tile schedule (iterations within a tile)

16

// Input (variant of Jacobi-24)

for

(t = 0; t < T; t++) {

for (i = 1; i < N-1; i++)

Sl: B[1][J] = (A[L1][J] + A[1][]J-1]
+ A[i][j+1]) / 3.0;
for (1 = 1; i < N-1; i++)
for (j = 1; j < N-1; j++)
S2 A[i][J] = B[1]1[J]:
}

for (j = 1; j < N-1; j++)

Schedule for original code:

051 = (1,0,1,))
02 = (i, 1,1,])

Block scattering function:
@Stout — (ix)

@S2out — (ix)

Thread scattering function:

0" = (t, 0, iy, jx)
05 = (t, 1,1y, jx)

superposition

// Superposed (final code)
cl = blockIdx.x;

for (¢5 = 0; ¢c5 <= T-1; c5++) {

c3 = 32 * ¢l + threadIdx.y;
if (c3 >= 1 && c3 <= N-2) {

for (¢7 = 0; c7 <= ..; c7++) {
c9 = 32 * ¢7 + threadldx.x;
if (c9 >= 1 && c9 <= N-2)

Sl: B[c3][c9] = ..
}}
__syncthreads();
c3 = 32 * ¢l + threadlIdx.y;
if (¢3 >= 1 && ¢c3 <= N-2) {

for (¢7 = 0; c7 <= ..; c7++) {
c9 = 32 * ¢7 + threadIdx.x;
if (c9 >= 1 && c9 <= 1998)

S2: A[c3][c9] = B[c3][c9];
+}

__syncthreads();

}}1}

o

//
//
//

//
//

//
//

i-tile (blk-x)

t

i (thrd-y)
j-tile

J (thrd-x)
i (thrd-y)
j-tile

J (thrd-x)

f codegen

Superposed scattering function:
(")81 = (Lix/32J : t, O, iy,]x)

052 = (1ix/32],1, 1,1y, jx)

* Tile size 32 is used

DL model for CPU memory cost analysis
e Originally proposed for cache (and TLB)
« Assumption: loop tiling is applied
e All data per tile fits within target cache
DL = estimation of # distinct cache lines per tile
 Function of tile sizes, T4, Ty, ..., T4

e DL(Tq, T, ..., Tq) < total cache miss count per tile
* Extensions to GPU memory warp

e Additional assumption: shared memory transfer
e per-tile data is optimally prefetched & kept on shared/cache memory
e Extended DL = estimation of # memory transactions per tile

« DL(Tq, To, ..., Tq) < total memory transaction count per tile

18

// Mapped to CUDA N
int ti = blockIdx.y * T1;
int tj = blockIdx.x * T2;
for tk = 0, K-1, T3 T1< 'T3<
.. // prefetch A/B to shared mem — _—
int i = ti + threadlIdx.z; T2 T1
int j = tj + threadIdx.y;
int k = tk, threadIdx.x;
s_A[1][]J] += s_B[k][1];

> - > 1

A[T1][T2] y B[T3][T1]

DL(T1, T2, T3) = DLA(T1, T2, T3) + DL (T1, T2, T3) = Teix [T2/L| + Tax [T1/L]

CosSttrans DL(T1, T2, “eey Td)
T1xTox ... %X T4

mem_cost(T1, Tz, ..., Td) =

L : warp size (e.g., 32 for NVIDIA GPUs), Costirans : cost of single memory transaction

 Extended DL = estimation of # optimal memory transactions per-tile
* Per-tile data is optimally prefetched & kept on shared/cache memory

« Memory cost = total memory transaction count (normalized as per-iteration)

e Loop with best memory coalescing

e Partial derivative of memory cost w.r.t. T« :
dmem_cost(T1, T2, ..., Ta)

0T«
 Reduction rate of memory cost when increasing Tk

* Parallel loop with most negative value
— most profitable loop for memory cost minimization

— mapped to iInnermost thread dimension

 Profitability of loop fusion

* Comparing mem_cost(T1, T2, ..., Tq) before and after fusion
« Memory cost decreased — fusion is profitable

* Other criteria, e.qg., loss of parallelism, are also considered

20

* Platforms
« Intel Xeon X5660 + NVIDIA Tesla M2050 GPU (Fermi)
* 13SM x 32-core, total 448 CUDA Cores
 |IBM POWERS8 + NVIDIA Tesla K80 GPU (Kepler)
* 14SMX x 192-core, total 2496 CUDA Cores
* Benchmarks
* PolyBench-C 3.2
« SPEC Accel : 314.omrig and 357.sp (two kernels from x_solve)
* Experimental variants

 Sequential : gcc -O3 on CPU
« PPCG : Polyhedral Parallel Code Generator from INRIA
 PolyAST+GPU : Two-level parallelization for GPUs (proposed)

21

Speedup vs. gcec -03 sequential (log scale)

B PPCG (state-of-the-art) M PolyAST+GPU (this paper)

1000 75755 78%84.6

100 _ : 85.9

10

0.6

2mm 3mm atax bicg covariance doitgen gemm gemver gesummv jacobi-2d jacobi-2d-alt mvt symm syr2k omriq sp-xsolve-1 sp-xsolve-§ GEOMEAN

block-level : PolyAST+GPU has same schedule as PPCG

thread-level : different schedules due to superposition and coalescing policy

PPCG has more efficient code generation method (e.g., # threads can be < block size)
Geometric mean speedup : 44.8x by PPCG and 85.9x by PolyAST+GPU

* Relative improvement of our work over PPCG ~ 1.8x 20

Speedup vs. gcc -03 sequential (log scale)

B PPCG (state-of-the-art) M PolyAST+GPU (this paper)

1993.1

1411.2

1000 837 91332.7

257206.4

100

10
5.8

1.8 2.0.2.1

0.3 0.5

2mm 3mm atax bicg covariance doitgen gemm gemver gesummv jacobi-2d jacobi-2d-alt

mvt symm syr2k

block-level : PolyAST+GPU has same schedule as PPCG

thread-level : different schedules due to superposition and coalescing policy

PPCG has more efficient code generation method (e.g., # threads can be < block size)
Geometric mean speedup : 45.6x by PPCG and 95.5x by PolyAST+GPU

* Relative improvement of our work over PPCG ~ 2.1x

omriq sp-xsolve-1 sp-xsolve-§ GEOMEAN

95.5

23

* Graphics Processing Units (GPUSs)
* Massively parallel architecture consisting of thousands of cores
e [arge burdens upon programmers, comparing with SMP programming

e Automatic C-to-CUDA transformations for productive GPU computing
« EXisting polyhedral approaches to GPUs

e Focus on sync-free parallelism; less attention to generating threads with barriers

 Use same schedule for both blocks and threads

* Two-level parallelizations for GPUs

» Allows block-level and thread-level schedules with different optimization policies
» Superposition to integrate block-level and thread-level schedules
* An analytical memory cost model for GPU memory warp analysis

e 1.8x and 2.1x geometric mean improvements on NVIDIA Fermi and Kepler over PPCG

24

