Optimized Two-Level Parallelization for GPU
Accelerators using the Polyhedral Model

Jun Shirako

Rice University, USA
shirako@rice.edu

Abstract

While GPUs play an increasingly important role in today’s high-
performance computers, optimizing GPU performance continues to
impose large burdens upon programmers. A major challenge in op-
timizing codes for GPUs stems from the two levels of hardware par-
allelism, blocks and threads; each of these levels has significantly
different characteristics, requiring different optimization strategies.

In this paper, we propose a novel compiler optimization algo-
rithm for GPU parallelism. Our approach is based on the polyhedral
model, which has enabled significant advances in program analy-
sis and transformation compared to traditional AST-based frame-
works. We extend polyhedral schedules to enable two-level paral-
lelization through the idea of superposition, which integrates sep-
arate schedules for block-level and thread-level parallelism. Our
experimental results demonstrate that our proposed compiler op-
timization framework can deliver 1.8x and 2.1x geometric mean
improvements on NVIDIA Tesla M2050 and K80 GPUs, compared
to a state-of-the-art polyhedral parallel code generator (PPCG) for
GPGPUs.

Categories and Subject Descriptors
guages]: Processors—Compilers

D.3.4 [Programming Lan-

Keywords Program transformations, parallelization, data local-
ity optimizations, polyhedral model, GPUs, memory coalescing,
CUDA code generation

1. Introduction

Graphics processing units (GPUs) are increasingly popular for
high-performance computing because they can enable signifi-
cant performance and energy efficiency improvements for certain
classes of applications. However, current GPU programming mod-
els such as CUDA [33] and OpenCL [23] are too complex for
non-expert programmers to exploit the full capability of GPUs
since they require orchestrating low-level operations such as mem-
ory allocations/optimizations on GPUs and data transfers between
CPUs and GPUs. Even expert programmers find optimizing pro-
grams for GPUs in general to be a time-consuming, non-trivial
affair. Additionally, performance tuning with such low-level pro-
gramming models is often device-specific, thereby reducing perfor-
mance portability. When considering software productivity, a more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

CC’17, February 5-6, 2017, Austin, TX, USA

(© 2017 ACM. 978-1-4503-5233-8/17/02...$15.00
http://dx.doi.org/10.1145/3033019.3033022

Akihiro Hayashi

Rice University, USA
ahayashi@rice.edu

22

Vivek Sarkar

Rice University, USA
vsarkar@rice.edu

attractive approach would allow users to express parallelism and
locality as simply as possible in a platform-independent manner,
and to rely on tools such as optimizing compilers to optimize/cus-
tomize their code for specific target systems.

A breakthrough in the last decade, the polyhedral compilation
model has provided significant advancements in the unifications/-
generalizations of affine loop transformations and powerful code
generations for the practical class of programs [, [7, [15} 23] 42].
The benefit of this unified formulation can be seen (for example)
in the Pluto algorithm [7], which has been successfully extended
and specialized to integrate SIMD constraints [26]. In contrast with
pure polyhedral approaches, the PolyAST [42] framework, a hybrid
approach of polyhedral and AST-based transformations, supports a
cache-aware affine transformation algorithm that is guided by AST-
based cost models.

With respect to polyhedral compilations for GPU architectures,
we briefly summarize a few frameworks that have been devel-
oped recently. C-to-CUDA [3] is an end-to-end polyhedral frame-
work targetting GPUs that extends the Pluto algorithm with addi-
tional scheduling constraints for memory coalescing and manag-
ing the data transfer between global and shared memories. The
R-Stream compiler [29| 47] employs the Pluto scheduling algo-
rithm with several extensions for GPUs, including balance of fu-
sion, parallelism and SIMD efficiency. Although R-Stream sup-
ports several GPU-specific optimizations, most of them are ex-
plained as individual AST-based transformations and it is not clear
how such optimizations are integrated in their polyhedral frame-
work. PPCG [49]], which is widely-recognized as a state-of-the-art
polyhedral compiler for GPUs, uses a modified version of Pluto
algorithm implemented in the ISL library [48]]. PPCG generates
highly optimized GPU codes with strong shared/private memory
optimizations. However, despite those extensions to GPUs, the
affine scheduling algorithms used in such frameworks are funda-
mentally equivalent to those proposed for CPUs and/or general
computing systems. In particular, there has not been much attention
paid in polyhedral scheduling algorithms to modeling the two dis-
tinct levels of parallelism in GPU devices in a manner that closely
resembles the GPU’s architectural characteristics.

In this paper, we introduce a new polyhedral scheduling algo-
rithm specialized for GPU parallelism. A major challenge in op-
timizing codes for GPUs stems from their two levels of hardware
parallelism: blocks and threads, containing significantly different
characteristics and therefore requiring different optimization strate-
gies. Due to the lack of support for inter-block synchronization,
synchronization-free parallelism is mandatory at the outer block
level, while maximization of coalesced memory accesses is cru-
cial for efficient thread-level parallelism at the inner level, even at
the cost of inter-thread synchronizations within a block. To coordi-
nate different optimization strategies in a unified manner, we extend
polyhedral schedules to enable two-level parallelization through

the idea of superposition, which constructs separate schedules in-
dependently for block-level and thread-level parallelism; and inte-
grates into a final schedule. As a model to capture GPU’s architec-
tural characteristics, we employ an analytical memory cost model
named Distinct Line (DL) model, which was originally proposed
for cache/TLB analysis. We extend the DL model to GPU memory
warps and coalesced accesses analysis. Our thread-level schedul-
ing strategy assigns the highest priority to maximizing coalesced
memory accesses via the extended DL model, while the block-level
strategy aims at coarser-grained synchronization-free parallelism.
To summarize, this paper makes the following contributions:

¢ Proposal of superposition to enable two-level parallelization for
GPUs, seamlessly integrating separate schedules for block-level
and thread-level hardware parallelism.

e A cost-based scheduling algorithm to maximize coalesced
memory accesses for GPU thread-level parallelism, via exten-
sions of an analytical memory cost model for CPU cache/TLB.

¢ Detailed performance evaluations of the proposed optimizer us-
ing PolyBench 3.2 and SPEC ACCEL, showing 1.8 geometric
mean improvement over PPCG on NVIDIA Tesla M2050 with
448 CUDA cores and 2.1 geometric mean improvement over
PPCG on NVIDIA Tesla K80 with 2496 CUDA cores.

The paper is organized as follows. Section [2] contains back-
ground information on GPUs and CUDA, and motivates the prob-
lem. Section 3] provides an overview of our framework. Section [4]
introduces our extensions to enable two-level parallelization in the
polyhedral model, and Section [3] discusses the algorithms to find
the best composition of transformations and parallelizations based
on these extensions. Section[f]presents experimental results to eval-
uate our approach using PolyBench 3.2 on the two GPU systems.
Sections [7]and [§] summarize related work and our conclusions.

2. Background and Motivation
2.1 GPUs and CUDA Programming Model

NVIDIA GPU architecture consists of global memory and an array
of streaming multiprocessors (SMXs). Each SMX comprises many
single- and double- precision cores, special function units, and
load/store units to execute hundreds of threads concurrently. L1
cache, read-only cache, and shared memory are shared among these
cores/units to improve data locality within a single SMX. Also,
global memory data requested from each SMX are cached by L2.

CUDA [33] is a standard parallel programming model for
NVIDIA GPUs. In CUDA, kernels are C functions that will be
executed on GPUs. A block is a group of threads executed on the
same SMX and is organized in a collection of blocks called a grid
that corresponds to a single kernel invocation. All blocks within
a grid are indexed either 1- or 2-D array. Similarly, all threads
within each block are indexed 1-, 2-, or 3-D array. While barrier
synchronizations among threads in the same block are allowed,
no support exists for inter-block (global) barrier synchronizations.
Hence, programmers need to prepare kernels separately for global
barriers. For memory optimizations, the programmer and compiler
must utilize registers and shared memory for improving data lo-
cality. Also, it is worth mentioning that global memory accesses
for adjacent memory locations are coalesced into a single memory
transaction if consecutive global memory locations are accessed by
an amount of consecutive threads (normally 32 threads) and the
starting address is aligned. This is called memory access coalesc-
ing and can be performed by programmers and compilers.

2.2 Motivating Example

We used two benchmarks from the PolyBench suite, jacobi-2d-alt
and doitgen, to motivate our approach. The input sequential C code

23

fragments are shown in Figures [T] and [4] respectively. We applied
a state-of-the-art polyhedral compiler, PPCG [49]], which enables
maximal data locality, tilability, and GPU parallelization. The re-
sulting codes parallelized via CUDA code generatior| |are shown in
Figures 2]and [5] while the output CUDA kernels generated by our
proposed framework are shown in Figures[3|and [6] For readability,
we omitted data transfers among global and shared memories and
register optimizations in Figures[2] 3] [5] and|[6]

2-D Jacobi variant: As shown in Figure [T} jacobi-2d-alt is a
variant of jacobi-2d in which the i-dimension of the 2-D space has
no dependences. This variant has two levels of loop parallelism:
i-loops with synchronization-free forall and j-loops with fine-
grained forall requiring synchronizations. The scheduling phase in
PPCG is based on the Pluto algorithm, and uses the same sched-
ule for blocks and threads. PPCG maps the outermost band (a set
of consecutive parallel loops in the schedule) onto both block-
level and thread-level GPU parallelism [49]. Figure |2 shows the
outermost parallel i-loop is tiled into chunks with 32 iterations,
which are mapped to blocks while iterations per chunk are mapped
to threads. On the other hand, the inner fine-grained parallelism
of j-loops is ignored and executed sequentially within a thread.
Although the generated code enables coarse-grained paralleliza-
tion without synchronization, it misses the opportunity for coa-
lesced memory accesses on both arrays 2 and B because contiguous
threads access the arrays with a non-unit stride of 2000.

In contrast, our framework can select different levels of paral-
lelism individually for block-level and thread-level schedules via
superposition. In Figure 3] the synchronization-free parallelism of
the i-loops is mapped to a 1-D block space while both i-loops
and j-loops are mapped to a 2-D thread space, enabling coalescing
memory accesses on A and B at the cost of inter-thread synchroniza-
tions. Table [I] shows the kernel execution time for PPCG and our
flow on NVIDIA Tesla M2050 (labeled as Fermi) and Tesla K80
(labeled as Kepler). The results show that the code generated by
our approach is faster than that of PPCG by factors of 2.5 on Fermi
and 3.3 on Kepler. Note that shared memory and register optimiza-
tions, omitted in the figures, were enabled for both PPCG and our
framework when evaluating the codes. This result is due to the fact
that inter-thread synchronizations are relatively lightweight while
memory coalescing has a large impact on GPU performance.

jacobi-2d-alt doitgen gemver
Systems Fermi Kepler Fermi Kepler Fermi Kepler
PPCG 2222x 1.77x 0.60x 0.29x 7326x 147.34x
our flow | 55.02x 5.77x | 124.12x 76.08x | 103.79x 177.08x

Table 1: Performance comparison (speedup vs. GCC)

Doitgen: The second motivating example is doitgen whose orig-
inal code is shown in Figures[d As with jacobi-2d-alt, PPCG com-
putes the schedule of given kernel and maps the outermost band
to blocks and threads. All statements S, T and U are fully fused
and synchronization-free foralls, r-loop and g-loop, are tiled and
mapped to the 2-D block/thread spaces (lines 2-5 in Figure [3).
These scheduling and mapping are optimal for block-level, but not
for thread-level due to non-coalesced memory accesses.

In our approach (Figure [f), the same parallelism as that of
PPCQG is selected for block-level, while selecting different thread-
level schedule such that statement U is distributed from S and T
to keep p-loops parallel. Note that our extended DL model con-
sidered p-loop as the most profitable loop for memory coalescing
and guided thread-level scheduling that way. As a consequence,
r,q,p-loops are mapped to the 3-D thread space and enable good
coalesced accesses while keeping synchronization-free foralls for
block-level, resulted in large performance gains shown in Table[I]

I'PPCG can output C, CUDA, and OpenCL code.

__global__ void kernelO(...) {
int cl, c3, ¢5, c7, c9;
cl = blockIdx.x; // i-tile (blk-x)
__global__ void kernel0(...) { 32 * cl + threadIdx.y; /i (thrd-y)
for (t = 0; t < T; t+4) | int b0 = blockIdx.x; // i-tile (blk-x) if (c3 >= 1 && ¢3 <= N-2) {
(1= 1; 1 <N-1; i++) int t0 = threadldx.x; // i (thrd-x) for (c5 = 0; c5 <= T-1; c5++) { /7t
3 i) < N-Lp gt for (int c0 = 32 * b0; c0 < N-1; c0+=1048576) // blk-x for (c7 = 0; c7 <= (N-2)/32; c7++) { // j-tile
S:] = fact * (A[i][]] for (inmt cl = 0; cl < T; cl+=32) c9 = 32 * ¢7 + threadldx.x; /73 (thrd-x)
[3-11 + A[i][3+1]); for (imt c2 = 2 * cl; c2 <= ...; c2+=32) { if (c9 >= 1 && c9 <= N-2)
1 < N-1; it+4) if (N >= t0 + c0 + 2 && t0 + c0 >= 1) S: B[c3*20004c9] = fact * (A[c3*2000+c9] +
i3 < N-L1p gt for (int cd = ...; cd <= ...; cd+=1) + A[c3%2000+c9-1] + A[c3*%2000+1+c9]);
T A[i1[3] = BLil[31; for (int c5 = ...; c5 <= . cs+=1) { }
} i (N + 2 % cl + 2 % cd >=c2 + c5 + 2) __syncthreads ();
S: B[(t0+c0)*2000+ (-2%cl+c2-2%cd+c5)] = ... for (c7 = 0; c7 <= (N-2)/32; cT++) { // j-tile
if (€2 + c5 >= 2 % cl + 2 * cd +2) €9 = 32 * c7 + threadIdx.x; i (thrd-x)
T: A[(t0+c0)*2000+ (-2*cl+c2-2%c4+c5-1)] = ... if (c9 >= 1 && c9 <= 1998)
. . ; f T: Alc3*2 = Blc3*2 ;
Figure 1: Input jacobi-2d-alt i i i | Rledraooorest - Blesrzonored)
code (variant where i-loop is __syncthreads ();
synchronization-free forall) . L . . w
Figure 2: jacobi-2d-alt using PPCG
Figure 3: jacobi-2d-alt using our flow
global__ void kernel0(...) { R .
int b0 = blockldx.y; // r-tile (blk-y) -—giibfi--cgc’l‘:[kef;‘elg;"é)ll(13, el
int bl = blockIdx.x; // g-tile (blk-x) i roeIe Ehe B roERTe EY
cl = blockIdx.y; // r-tile (blk-y)
int t0 = threadIdx.y; // r (thrd-y) ckIdx.x // tile (blk-x)
int t1 = threadldx.x; // q (thrd-x) ! -
: cl * 4 + threadIdx.z; // T (thrd-z)
for (imt c0 = 32 * b0; c0 < NR; c0+=8192) // blk-y N
for (r _ R ¢T = c3 * 4 + threadIdx.y; //a (thrd-y)
for (int cl = 32 * bl; cl < NQ; cl+=8192) { // blk-x o .
for _ oo oroee for (c9 = 0; c9 <= (NP-1)/32; c9++) { // p-tile
for (int c2 = 0; c2 < NP; c2+=32) (N
for N s cll = c9 * 32 + threadIdx.x; //p (thrd-x)
for (int c3 = c2; c3 <= ...; c3+=32) .
s 1€ (NR >= £0 + o0 + 1) S: sum[c5*65536+cT*256+cll] = 0;
for (int o5 = t1; c5 <= . ¢5+216) | // thrd- for (cl3 = 0; cl3 <= (NP-1)/32; cl3++) // s-tile
T ° S0 e i el T for (cl5 = cl3%32; cl5 <= cl3*32+431; cl5++) // s
if (c2 >= 32) { ... } else - 5
. R R T: sum([c5*65536+cT*2564c1l] +=
) for (int c7 = 0; ¢7 <= ...; c7t=1) { A[c5%65536+cT#256+c15] * C4[cl5%256+cll];
for (p = 0; p < NR; p+h) s: sum [((t0+c0) *256+(cl+c5))*256+(c3+cT)] = 0; N - U - : !
i i X ; €256+ (cl+c5)) %25 4=
U: Alr][qllp] = sum(r]lqllpl; T }sLm[utwca» 256+ (cl+c5)) *256+0] __syncthreads ();

) cl * 4 + threadIdx.z; // (thrd-z)
. = 3 * 4 + threadIdx.y; //a (thrd-y)
if (c2 + 31 >=NP) for (c9 = 0; c9 <= (NR-1)/32; c9++) { // p-tile
for (ink c7 = ...; cl <= ...; c7+=1) €1l = c9 * 32 + threadIdx.x; // (thrd-x)

U: A[((t0+c0)*256+ (cl+c5))*256+ (-NP+c3+cT)] = ... U I wg:%sm ‘*256+‘rll] ;Jrln[c5*65536+c€*2“6+cll]
. . : c5%65536+c7 S - 5% 6 27%25 ;
Figure 4: Input doitgen code v

Figure 5: doitgen using PPCG

gemver: Finally, our framework supports (intra-block) thread-
level reductions, which is implemented via a template of the par-
allel tree-based reduction on shared memory [31]. Table |I| shows
this reduction support delivers additional performance improve-
ment relative to the PPCG versions.

To summarize, our polyhedral scheduling algorithm enables
two-level parallelism for GPUs via superposition, which allows
block-level and thread-level schedules to be computed individually
with different optimization strategies: maximizing synchronization-
free parallelism for blocks and coalesced memory accesses for
threads. Furthermore, our framework supports thread-level reduc-
tion parallelism to increase the amount of available parallelism and
opportunities for coalesced memory accesses. These extensions
deliver considerable performance improvements over a state-of-
the-art polyhedral compiler for GPU accelerators.

3. Overview
3.1 Polyhedral Compilation Framework

The polyhedral model is a flexible representation for collections
of (imperfectly) nested loops. Loop nests amenable to this alge-
braic representation are called Static Control Parts (SCoPs) and
represented in the SCoP format [36], where each statement consists
of three elements: iteration domain, access relation, and scattering
function. SCoPs require their loop bounds, branch conditions, and
array subscripts to be affine functions of iterators and global pa-
rameters.

Iteration domain, D°: The iteration domain of a statement S
enclosed by m loops is represented by an m-dimensional polytope.
Each element / € D° represents a unique dynamic instance of

24

Figure 6: doitgen using our flow

statement S. As an example, the iteration domain of statement S
in FigureT]is:
DS ={(t,i,j)€Z® | 0<t<T—1A1<i,j<N=2}.

Access relation, 45 (7): Each array reference in a statement is
abstracted as an access relation, which maps a statement instance
7 to one or more array elements to be read/wrltte [52]. This
mapping is typically expressed as a set of affine expressions of loop
iterators and global parameters (access functions). In Figure m the
write access relation for statement S is: 45(7) = (B, 1, j).

Scattering function, ®S(7'): In general, any composition of
iteration- and statement- reordering sequential loop transforma-
tions (e.g., permutation, skewing, distribution, fusion) as well as
parallelizing transformations can be specified by a scattering func-
tion. As described below, the scattering function can include two
components, a schedule which orders statement instances in time,
and a space-mapping which distributes statement instances across
processors [6].

¢ Schedule: The sequential execution order of a program is cap-
tured by the schedule, which maps each statement instance to
a logical time-stamp vector, expressed as a multidimensional
affine function of 7. Statement instances are executed accord-
ing to the increasing lexicographic order of their time-stamps,
while statement instances with the same time-stamp can be ex-
ecuted in parallel.
The schedules that represent the sequential execution order of
statements S and T in Figureare: ®%(7) = (0,£,0,i, j,0) and
7 (i) = (0,,1,i, ,0). The first two dimensions (0,7) of ®5(7)

2 A scalar variable is considered as a degenerate case of an array.

and of @7 () indicate that is the outermost loop. The 0 or 1
value in the next dimension indicates that, for the same itera-
tion of the 7-loop, all instances of S are executed before any
instance of T. The next i, j values indicate that each of S and T
is enclosed in an i-j loop nest. The first and last O values in the
time-stamps are effectively no-ops, and would only come into
play if there were more statements in this example.

Space-mapping: In the case of space-mapping, the number re-
turned by the scattering function for a given statement instance
is the identifier of the logical processor that executes the in-
stance. As with schedules, the space-mapping can be a multidi-
mensional vector (Section[4.1).

As shown in above examples, any dimension of a scattering func-
tion may contain loop iterators. A dimension is called a loop di-
mension if it contains one or more iterators; otherwise it is called
scalar dimension.

Dependence Polyhedra, D5~7: The dependences between
pairs of statements S and 7' are captured by dependence polyhe-
dra — the subset of pairs (7,?) € D5 x DT that participate in a
dependence [7]. Given two statement instances fof Sandi of T, i
is said to depend on Tif: 1) they access the same array location, i.e.,
45(i) = A7 (7); 2) at least one of them is write access; and 3) 7 has
a lexicographically smaller schedule than 7, i.e., ®5 (i) < 7 (7).

3.2 Overview of Framework (PolyAST+GPU)

Algorithm 1: End-to-end optimization flow

Input : Source program
Py := (Scop, Dependence Polyhedra)

1 begin

2 P, :=threads and blocks transformation(P;);

3 Pz :=single thread transformation(P,);

4 Py := shared memory and register optimization(P3);

Output: Parallelized and optimized program Py

Algorithm Elﬂ shows the overview of our end-to-end optimiza-
tion framework called PolyAST+GPU, developed as an extension
to the PolyAST hybrid compilation framework for combining poly-
hedral and AST-based transformations [42]. The input to our frame-
work is the polyhedral representations of a source program and de-
pendence information. While this paper focuses on sequential input
programs with standard polyhedral dependence analyzers (8| 23}
48|, supporting parallel input programs in our framework should
be a straightforward extension by leveraging recent work on poly-
hedral dependence analysis for parallel programs [3}19].

After dependence analysis, PolyAST+GPU selects legal com-
positions of sequential and parallelizing loop transformations as
schedules that are computed at both the block-level and thread-level
for GPU execution. The two schedules are then superposed into the
final schedule, which can be given to a standard polyhedral code
generator such as CLooG [6]. In this paper, we target CUDA as
our output code and the code generation phase of PolyAST+GPU
internally uses CLooG. The current implementation (not algorith-
mic) limitation is that tile sizes and GPU thread sizes must be the
same to simplify code generation.

After block-level and thread-level transformations, our frame-
work performs additional transformations for sequential code re-
gions by a single thread, including loop tiling to enhance data lo-
cality. The single thread transformations are encoded in the thread-

3 Step 1 (threads & blocks transformation) is a novel contribution of this pa-
per, while steps 2 and 3 reuse past work from PolyAST [42] and PPCG [49].

25

level schedules. We use the PolyAST transformation algorithm for
this step. As the final step in the optimization flow, shared memory
and register optimizations are performed. We employ a memory
optimization approach similar to PPCG [49] and C-to-CUDA [3]
for this step: 1) individual tiles are identified after superposition; 2)
array elements to be used/modified within each tile are computed;
and 3) such elements with temporal reuse and/or non-coalesced ac-
cesses are transferred to/from shared memory or registers based on
reuse patterns, i.e., inter-thread or intra-thread reuse.

We present details for the superposition of schedules (i.e., scat-
tering functions) in Section[4] and the scheduling algorithm via su-
perposition in Section 5}

4. Superposition for GPU 2-level Parallelism

In this section we first introduce the composition of schedule and
space-mapping, which respectively represent transformations and
parallelism, in a single scattering function. To handle different op-
timization strategies for blocks and threads, we compute two scat-
tering functions per statement: one at the block-level and the other
at the thread-level. We use the idea of superposition to seamlessly
integrate the two levels of optimizations. To the best of our knowl-
edge, PolyAST+GPU is the first polyhedral-based compilation sys-
tem to support different transformations at the GPU block and
thread levels in a unified code generation framework.

4.1 Composition of Schedule and Space-mapping

In the polyhedral model, the selection of transformations and par-
allelization is encoded via scattering functions. To capture both in
a single form, we employ the composition of schedule dimensions
and space-mapping dimensions in a scattering function, analogous
to the time/space-partition in affine partitioning [30]. In this work
specific to GPUs, we annotate space-mapping dimensions with
subscripts x, y, and z, which represent dimensions in thread/block
space, to differentiate these dimensions from schedule dimensions.

Let us look at the thread-level parallelization in Figure[3] which
can be represented by the following pseudo code.

Pt < T ot+) |

GoLo< Lol i4t)

=11 + A[L1[3+11);

Note that pfor_x/pfor_y is a two-dimensional parallel loop whose
iterations are mapped to the x/y-dimension of the thread space,
and the barrier is an inter-thread synchronization. The scattering
functions for statements S and 7 are:

®S(;> = (0717071.))7].)(70)7 ®T(;> = (07tvl7iy7j)€70)

The first three dimensions (0,7,0) of ®%(i) and (0,z,1) of O (i)
are schedule dimensions that capture the sequential execution or-
der specified by the 7-loop and the two barriers, while the space-
mapping dimensions (iy, jx) capture the thread-level parallelism of
the pfor_y/pfor_x loops.

4.2 Superposition of Scattering Functions

This section presents superposition, which enables different trans-
formations to be performed at the block and thread level, and
also allows inter-thread synchronization (barriers) to be expressed
within a block. We use two kinds of scattering functions for super-
position:

e Outer scattering function, ® ({) is a many-to-one function
that can assign multiple statement instances i of S to the same

©Su=|j/32]
OS=j

Lir32]=3

Lir32)=2

Lir32]=1

Lir32]=0

08 =]

Figure 7: Relation of @%u (i) = (|i/32]) to ®5(i) =

(i)

value (e.g., to identify the thread block in which the instances
will be executed).

* Regular scattering function, ©° (7) is a one-to-one function
that assigns each instance i of S a unique value (e.g., to denote
the schedule and space-mapping within a block).

These two scattering functions are inclusive — i.e., loop iterators in
the outer scattering function may also appear in the regular scatter-
ing function — and defined independently. They are superposed into
a single function in the manner of loop tiling: @S« (f) to specify
individual tiles and ©° (i) to specify iterations per tile. Let ©%u (7)
denote the outer scattering function with specific tile sizes: TLy,
TLy, ---. The k-th dimension of @%u (7) is defined a

S it out
o) = |05 (/L]

o () = 03 ()
For statements S and T in Figure[3] the regular scattering functions
for the thread-level are those shown in Section and the outer
scattering functions, which are used at the block-level, are shown
below. The corresponding 2-D space is shown in Figure[7] We used
32 as the tile size here.

@Tout (;} —

OS5 (i) = (0,iy), (0,y)

©% (i) = (0, [i/32],), © (i) =(0,1i/32],)

The outer and regular scattering functions may have different
affine combinations of loop iterators (e.g., different loop permuta-
tion orders and fusion/distribution structures) and different paral-
lelism choices (e.g., a loop may be parallel at the outer-level, and
serial at the regular-level) so long as Lemma [T] below is satisfied.
Finally, the superposition of outer and regular scattering functions
is defined by concatenation as follows:

©" (i) = (&% (i), @%(D))
In our running example, the superposed scattering functions are:

®S*(7) = (07 Li/32Jx705t707iy7jX50)7

®T*(f) = (07 U/32J)r7ovta lviy7jX7O)

The space-mapping dimension |i/32 |, indicates that each group of
32 iterations is mapped as a chunk to the x-dimension of the block
space. The individual blocks contain the thread-level parallelism,
(ly, jx) described in Sectlonn Flgurelshows the generated code
from @5 (i) and OT" (7).

We now state an important lemma that establishes a sufficient
condition for the legality of superposition.

(if k is a loop dimension)

(otherwise scalar dimension)

“In codegen, @k"“/ (i) is replaced by a new iterator (e.g., ii = [i/32]) and
expressed as inequality constraints (e.g., 32 x ii <i <32 x ii+31).

26

LEMMA 1 (Legality constraints of superposition).

Superposition is legal (i.e., satisfies all dependences) if all outer
scattering functions are fully permutable and regular scattering
functions satisfy all dependences.

Proof. For any dependence of interest, D577, the precondition of
Lemma [Tl ensures:

Yk - @Tour() @Sma H) >0, l l/) c @S*?T

') -0%[) -0, I.7)eDT (2
We prove that the superposed scattering functions also satisfy all
dependences: 7" (i) — @ (i) = 0, (i,i') € D5~ In this proof,
we consider classical 2d+1 encoding’|for outer scattering functions
with specific tile sizes:

©% (i) = (&7 (i), (03 ()/TLz), O3 (1),)

Given a dependence (i,7) € D57,

v T:':;u‘ ? nur out 7 Smn‘ s
¥j Oy (i) — @5 | (i) = O | () — O3 (i) > 0

(1)

expression (1) ensures:

W) @5 (i) — @3 (i) = | @5 (7)/TLyj | — | @37 (i) /TLaj
> @3 (i) /TLy;]
These expressions are summarized as:

Vk: @ (i) —@% (i) >0, (i,i)e DT (3)
Finally, ®" (i) = (@%u (i), ©5(i)), expressions (2) and (3) ensure:

" (i) -0 () -0, (ii)e D57

~ 183 ()/T1aj) =0

O

4.3 GPU-specific Aspects of Superposition

We assume the target GPUs have no support for inter-block syn-
chronizations while inter-thread synchronization is available in the
form of barriers within a thread block. Under these assumptions,
the scattering functions for GPU kernels take the following form in
our approach.

Outer scattering function (block-level): consists of a scalar
schedule dimension to specify the sequential execution order of
the invoked GPU kernel, followed by space-mapping dimensions
to specify block indexes (y,x):

OS5 (i) = (kernel _id, blocky, block,)

Statements with the same schedule dimension (kernel_id) are en-
closed in the same GPU kernel. Different GPU kernel calls are se-
quentially invoked in the increasing order of the schedule dimen-
sions{ﬂ Since all loop dimensions are space-mapping, i.e., parallel
loops with no dependence, the permutability constraint in LemmalT]
is guaranteed to hold.

Regular scattering function (thread-level): consists of sched-
ule dimensions to specify the sequential execution order of the
thread block, followed by space-mapping dimensions to specify
thread indexes (z,y,x), and inner schedule dimensions to specify
single thread execution order:

05 (i) = (sche_dim, ...,

The schedule dimensions outside the space-mapping indicate the
inter-thread synchronization points (barriers) at which to invoke

thready, thready, thready, sche_dim, ...)

5In 2d+1 encoding, scalar and loop dimensions are interleaved: odd and
even dimensions respectively corresponds to scalar and loop dimensions.

6 Inter-kernel parallelism is a subject for future work.

__syncthreads. The inner schedule dimensions encode per-thread
loop transformations, including additional loop tiling for improved
intra-thread locality.

5. Parallelization Algorithm for GPUs

This section discusses the optimization algorithms used to find
the block-level and thread-level scattering functions for a given
GPU device. The block-level optimization policy aims to find
the coarsest-grained synchronization-free parallelism, while the
thread-level optimization policy aims to maximize coalesced mem-
ory accesses with guidance from the DL memory cost model ex-
tended to GPUs.

5.1 Target Affine Form of Scattering Function

The primary contribution of PolyAST, the underlying framework
of PolyAST+GPU, was to restrict affine forms such that the pro-
gram transformations can focus on implementing good data local-
ity while preserving SIMD parallelism [42]. As with SIMD execu-
tion, efficient GPU thread-level parallelization requires good spa-
tial data locality to expose coalesced memory accesses. Thus, we
employ the same affine form in our target scattering functions for
both vector and GPU thread parallelism, which looks as follows:

0 0 0 Bi i
o1 o2 (M) C1 i
M I f
“en Bd! id
Oy 1 Oy’ 2 (Xdlvd cyt 1
0 0 0 Bar i1

where Vk € {1..d'}, Y, |ay ;| = 1. This encoding is reminiscent of
classical 2d+1 encoding [26} 138]): odd rows are scalar dimensions to
model multidimensional statement interleaving (i.e., multidimen-
sional fusion/distribution/code motion), while even rows are loop
dimensions to model loop permutation, reversal, and multidimen-
sional retiming (i.e., index set shifting) by factor of ¢;. Note that
loop skewing, which affects array subscript expressions and possi-
bly degrades spatial data locality, is avoided in this affine form due
the constraint, Zf:l |ow.i| = 1.

Although the above form can be directly used for thread-level
scattering functions, some modifications are needed at the block
level. As described in Section 4] a block-level scattering function
is partial and not a one-to-one mapping; the number of rows can
be fewer than 2d + 1. Further, to implement better locality and
coarser granularity for stencil algorithms, several novel loop tiling
approaches have been proposed [4} [16} 17, 21]. We conjecture
that many such tiling approaches can be encoded in our block-
level scattering functions; however, validating this conjecture is a
subject for future work. For simplicity, we restrict our attention to
rectangular tiling in this paper.

5.2 Extending DL Model to Coalesced Memory Access

The Distinct Lines (DL) model was designed to estimate the num-
ber of distinct cache lines, accessed in a sequential loop nest [12|
40]. In the PolyAST framework, the DL model was used for loop
permutation order analysis and loop fusion profitability analysis,
so that the best loop orders and fusion decisions are respectively
found by minimizing the cache-based CPU memory access cost
for the given loop nests [42]. The fundamental idea behind the DL
model is to estimate the total number of distinct cache lines ac-
cessed within a given loop nest as a function of loop lengths or tile
sizes, and to convert that cost to a normalized per-iteration value.
Assuming that each distinct line is kept in cache until the last use,
the DL value can be used as the per-iteration cache miss count, i.e.,

27

memory access cost. In this paper, we extend the DL model to esti-
mate the total number of memory transactions within a given paral-
lel loop nest designed for GPU execution, by assuming: 1) accesses
to continuous data elements per segment are coalesced into a sin-
gle memory transaction; and 2) such elements are kept and reused
on shared memory through explicit data transfers and/or implicit
cache operations. Figure[§]shows a simple case with two array ref-
erences enclosed in a triply nested tiled loops, where the DL value
is expressed as a function of tile sizes, DL(t1,1,13).

for ii = 0, N-1, tl
for jj = 0, M-1, t2

(]

for kk = 0, K-1, t3 e
for i = ii, ii+tl-1 t2 t3 <|:|
for j = jj, jj+t2-1 —

for k = kk, kk+t3-1 H
A[i][]] += B[k][i]; Alllil BIK]Ii]

DL(t1, t2,t3) = DLa+DLg = ty x Tt/ LT+ 1tz x 'ty /L]
L : warp size (e.g., 32 for NVIDIA GPUs)

Figure 8: Example of DL for tiled loop nest

For arrays A and B, #] X 1 and 73 X t] elements are respectively ac-
cessed in a tile, and the shared memory optimization phase is as-
sumed to insert data transfers such that the array elements accessed
in the tile are prefetched from global memory as fully coalesced
transactions. The per-iteration memory access cost of a given loop
is defined as:

- Costyrans XDL(t17l27' o Jd)
1 X)X+ Xy

mem_cost(t1,ty,- - ,1q)

Costyrans represents the cost of a single memory transaction. Under
the assumption that the shared/cache memory keeps any data until
the last use, Cost;rqns X DL represents the total memory transaction
cost. Note that the DL. model supposes proper applications of loop
tiling in the latter phase. Although the applicability of tiling de-
pends on loop dependences and other transformations, optimistic
assumptions are generally acceptable in profitability analyses.

In our optimization algorithms, we employ the DL model with
these extensions to GPU memory transactions. Our permutation or-
der analysis first computes the partial derivative of the per-iteration
memory cost with respect to tile size f;, i.e., omem_cost /dt;, which
represents the variation rate of memory cost when increasing ;.
omem_cost /dt; < 0 indicates that increasing #; causes a decrease in
memory cost, and the loop with the most negative dmem_cost /t;
is considered to be the most profitable loop in terms of mem-
ory cost minimization. We refer a parallel loop with the mini-
mum dmem-_cost /dt; to coalescing parallelism. In our approach,
Oomem _cost /dt; is used as the priority for permutation among par-
allel loops - i.e., the ascending order of dmem_cost /0t; is the most
profitable loop permutation order (from inner to outer). Therefore,
coalescing parallelism is naturally mapped to the innermost space-
mapping dimension, i.e., thread,.

5.3 Detection of Loop Parallelism

Our framework detects loop parallelism in the following manner.
Given a set of statements StmtSet which are enclosed by a loop at
level-k, we compute dependence distance A for each dependence
polyhedra D57 among StmtSer:
a=0f (@) -0}, (.i)e DT

Let ActSet denote the set of active — i.e., unsatisfied by the outer
dimensions — dependence distances and RedSet denote the set of
distances whose dependence polyhedra are covered by reduction

Algorithm 2: Thread-level transformation

Algorithm 3: Block-level transformation

Input : StmtSet : set of statements S, T, - -,
PoDG : polyhedral dependence graph

1 begin

2 SccSet := compute SCCs of PoDG;

3 SccSetcogiesce = 0;

4 for each Scc € SccSet do

5 repeat

6 combo := iterator ids that is untested and
prioritized by DL model (Section[5.2);

7 for each S € Scc do

8 j = combo®; // an iterator id for §

9 ®f(?) ==0-ij+c; // aloop dimension

10 if detected loop kind for G) (D, S € Sccis
forall/reduction (Section | then

11 L keep G)i (f) as a parallel loop on Scc;

12 else if detected loop kind is sequential A

13 no sequential loop is detected on Scc then

14 L keep G)f (7) as a sequential loop on Scc;

15 until all combinations for combo are tested;

16 if coalesced parallelism exists in parallel loops on

Scc (Section then

17 par_loops := all parallel loops that are
directly/indirectly enclosing Scc;

18 sort par_loops based on DL model and prune
extra loops; keep par_loops on Scc.

19 L Sccsetcoalesce = {Sccsetcoalesce? SCC};

20 else

21 L apply AlgorithScc, PoDG); // recursive

22 | apply thread_level fusion(SccSet pgiesce» PODG);

Output: Thread-level schedules

computations based on commutativity and associativity [42]. As
with the classical dependence vector analysis, the loop enclosing
StmtSet is classified as follow.

o if VA€ ActSet : A=0 = forall
o clse if VA € ActSet : A=0V A € RedSet = reduction
o clseif VA€ ActSet : A>0 = sequential

e else = dependence violation due to illegal schedules

5.4 Transformation Algorithms

‘We describe our thread and block level transformations in the com-
bined form of SCC tree structure and loop dimensions, analogous
to the schedule tree [S0]. Such forms can be formally converted
into the 2d+1 schedule by extracting scalar dimensions from the
SCC tree structure [[1850].

Thread-level transformation Algorithm[2]describes the thread-
level scheduling algorithm, with the primary goal of mapping the
parallel loop dimension with the best coalesced accesses (coalesc-
ing parallelism) to the innermost thread dimension (thread,) for
each statement. In this regard, fusing multiple loops should be
avoided if doing so introduces loop dependences that interfere
with exposing coalesced parallelism. Algorithm [2] is applied re-
cursively to the input statements from outside to in. At each level,
it distributes the statements into individual Strongly Connected
Components (SCCs) [24], and then identifies parallel loops that di-
rectly enclose each SCC. Algorithm[2]traverses the SCCs in depth-

28

Input : StmzSet : set of statements S, T, - - -,
PoDG : polyhedral dependence graph

1 begin

2 SccSet := compute SCCs of PoDG;

3 SceSetyyrer = 0;

4 for each Scc € SccSet do

5 compute parallel loops on Scc as with thread-level

transformation (lines 5-15 in Algorithm@;

6 if forall parallel loops on Scc exist then

7 remove reduction and extra foralls from Scc;

8 L SccSetoyer = {SccSetouter, Sccl;

9 else

10 L apply AlgorithScc, PoDG); // recursive

1 | apply block_level fusion(SccSetouser, PODG);
Output: Block-level schedules

first order to identify the SCCs with coalescing parallelism. Let
SCCroatesce denote such a SCC. If SCC,pujesce 1S nested in outer
SCCs, the parallel loops enclosing the outer SCCs are pushed
down to SCCppgiesce level, analogous to the parallel loop chunk-
ing transformations [32, 41]]. Based on the extended DL model
in Section @ the loops to be mapped to thready, thready, and
thread, dimensions are selected per SCC,gjesce- Finally, loop fu-
sion is performed among the set of SCC,u/esceS USIng a greedy
algorithm such that a pair of SCCs is fused only if doing so 1) im-
proves data locality and computation granularity; and 2) does not
destroy any coalescing parallelism.

Figure[9]shows the output for jacobi-2d-alt in Figure[T} Although
the iy loop dimension was originally found on Sccy, it is pushed
down to the inner SCCs with j, loop dimension, i.e., coalescing
parallelism. In this example, loop fusion is not applied between
inner Sccog and Sccg; because the fusion would destroy the coa-
lescing parallelism.

0507 = (i, o)

es(i) = (1 O5o4() = (i)

oT(i) = (t): @ OTou(j) = (iy)
0T = (i) "

Figure 9: Thread-level output Figure 10: Block-level output

Block-level transformation In contrast to the thread-level
transformations that aim to maximize coalescing parallelism, the
block-level transformations aim to maximize coarse-grained paral-
lelism. The details of the block-level algorithm, which has a similar
structure (but different optimization goal) to the thread-level algo-
rithm, is shown in Algorithm 3] The block-level algorithm traverses
the SCCs in depth-first order so as to identify SCCs with the out-
ermost forall parallelism, which is mapped to block dimensions
block, and blocky. The block-level loop fusion is applied to such
SCCs if fusion does not destroy any outermost forall parallelism.

Figure[I0|shows the output of the block-level transformation for
jacobi-2d-alt, where the i, loop dimension is kept at the outermost
level and mapped to blocky.

Benchmark Suites Description Parallelism Data Size Hand CUDA? | Seq. GFLOP/s
2mm 2 Matrix Multiplications (D=A.B; E=C.D) Forall 2,048x2,048 v [2] 0.34 0.48
3mm 3 Matrix Multiplications (E=A.B; F=C.D; G=E.F) Forall 2,048x2,048 v 2] 0.27 0.37
atax Matrix Transpose and Vector Multiplication Forall+Reduction 8,192x8,192 v 2] 2.66 1.89
bicg BiCG Sub Kernel of BiCGStab Linear Solver Forall+Reduction 8,192x8,192 v [2] 2.14 2.18

covariance Covariance Computation Forall 2,000x2,000 v 2] 1.35 1.71

doitgen PolyBench [37 Multiresolution Analysis Kernel (MADNESS) Forall 256x256%x256 none 1.04 4.29
gemm Y Matrix-multiply C=alpha.A.B+beta.C Forall 2,048x2,048 V2] 0.41 0.61
gemver Vector Multiplication and Matrix Addition Forall+Reduction 8,192 none 0.61 0.57
gesummy Scalar, Vector and Matrix Multiplication Forall+Reduction 8,192x8,192 v [2] 2.59 2.19
jacobi-2d 5-Point 2-D Jacobi Stencil Computation Forall 2,000%2000, T = 1,000 none 1.99 5.21
Jjacobi-2d-alt 3-Point 2-D Jacobi Stencil Computation Forall 2,000x2000, T =200 none 0.85 | 18.14
mvt Matrix Vector Product and Transpose Forall+Reduction 8,192%8,192 v 2] 0.25 0.23
symm Symmetric matrix-multiply Forall 2,048 x2,048 none 0.23 0.12
syr2k Symmetric rank-2k operations Forall 2,048x2,048 v 2] 2.67 1.66
omriq 3-D MRI reconstruction (computeQ kernel) Forall 32,768 v 44711451 n/a n/a
sp-xsolve-1 | SPEC ACCEL™ [43] Scalar Penta-diagonal Solver Kernel 1 Forall 5 x 255 x 256 x 256 none n/a n/a
sp-xsolve-3 Scalar Penta-diagonal Solver Kernel 3 Forall 5 x 255 x 256 x 256 none n/a n/a

Table 2: Evaluated benchmarks in PolyBench (data type is float) and SPEC ACCEL; Seq. GFLOP/s on Xeon & POWERS

6. Experimental Results

This section presents the results of an experimental evaluation
of our compiler on two single-node platforms with GPUs. For
both platforms, the GPU’s error-correcting code (ECC) feature was
turned on in our experiments.

6.1 Experimental Protocol

Machines: The first platform consists of a multicore Intel Xeon
CPU connected to two NVIDIA Tesla M2050 (Fermi) devices
via PCI-Express. We only used one of the two devices in our
experiments. The platform has a 12-core Intel Xeon X5660 running
at 2.82GHz with a total main memory size of 48GB. Each NVIDIA
Tesla M2050 has 14 SMs, each with 32 CUDA cores, running at
1.15GHz with approximately 2.5GB of global memory. The second
platform consists of a multicore IBM POWERS CPU (S822L)
and an NVIDIA Tesla K80. The platform has two 12-core IBM
POWERS CPUs (3.02GHz with a total 256GB of main memory).
Each core is capable of running eight SMT threads, resulting in
192 CPU threads per platform. The NVIDIA K80 GPU has 13
SMXs, each with 192 CUDA cores, operating at up to 875MHz
with 12GB of global memory, and is connected to the POWERS
via PCI-Express.

Benchmarks: Table [2]lists the 14 benchmarks from PolyBench/C
3.2 [37] and 3 benchmarks from SPEC ACCEL™ [43] that were
used in the experiments. For “Data Size”, Table |2 only shows
the largest array size evaluated. “Hand CUDA?” indicates whether
reference CUDA implementations from the PolyBench/GPU and
Parboil suite [2| [14} 45] exists. Finally, “Seq. GFLOP/s” shows
performance for sequential CPU executions on Intel Xeon (left) and
IBM POWERS (right).

Experimental variants: Each benchmark was evaluated by com-
paring the following versions relative to a sequential CPU execu-
tion of the original C version. We ran each variant three times and
reported the fastest run. Thanks to the exclusive use of machines,
the performance numbers are quite stable with small variations.

¢ PolyAST: Optimized OpenMP C code generated using the
PolyAST [42], from which our framework is derived.

¢ CUDA reference: Reference CUDA implementations from the
PolyBench/GPU and Parboil suite [2} 45] if available.

e PPCG: Optimized CUDA code obtained using PPCG, a state-
of-the-art C-to-CUDA optimizer and code generator. (version:
0.05).

¢ PolyAST+GPU: Optimized CUDA code generated using the
optimization framework described in this paper. Currently, our

29

framework generates kernel CUDA code using PolyAST+GPU,
and generates host code using PPCG.

For the Intel Xeon and NVIDIA Tesla M2050 machine, we
used the GNU Compiler Collection (gcc) 4.4.7 with the -03 option
for a sequential and parallel C versions, and the NVIDIA CUDA
Compiler (nvce) 7.0.27 with the -03 -arch sm_20 options for all
CUDA variants. For the IBM POWERS and NVIDIA Tesla K80
machine, we used gcc 4.8.4 with the -03 option, and nvcc 7.5.17
with the -03 -arch sm_35 options.

Performance was measured in terms of elapsed microseconds
from the start of the first kernel to the completion of the last ker-
nel. We used the C library call gettimeofday for CPU, and CUDA
Driver API cudaEventElapsedTime for GPU experiments. Since
our primary focus is on kernel optimization, our measurements
only include kernel execution time on the CPU (for the sequen-
tial and parallel versions) or on the GPU including kernel invo-
cation overhead (for all CUDA variants

Optimized selection of tile sizes (i.e., grid/block sizes) can be
an important optimization for GPUs. However, neither PPCG nor
PolyAST+GPU support auto-tuning capability for such sizes; they
are specified by users as compile-time tuning parameters. In the
experiments below, We experimented with a range of square tile
sizesﬂ (e.g., 8x8, 16x16, 32x32) for each benchmark, and re-
ported PPCG results using the best tile size for PPCG and our re-
sults using the best tile size for our optimizer. We also collected the
performance numbers using the default tile size of PPCG, 32x32,
which gave the geometric mean speedup factors of: 35.2 for PPCG
and 76.2 for PolyAST+GPU on Xeon + Tesla M2050; and 30.8 for
PPCG and 78.8 for PolyAST+GPU on POWERS + Tesla K80. As
shown in Figures[TT]and [T2] the tile size tuning generated 1.1x to
1.5x performance improvements in geometric mean.

6.2 Overall Performance Improvements

Figures[TT]and[I2]show speedup values relative to the sequential C
version on a log scale, respectively for the Intel Xeon CPUs with
NVIDIA Tesla M2050 GPU and the IBM POWERS CPUs with
NVIDIA Tesla K80 GPU.

For most benchmarks, PolyAST+GPU selected the same block-
level schedules as PPCG, but different thread-level schedules, i.e.,
different parallelism and transformations, to achieve better mem-

7 Overheads from CUDA Driver API, such as GPU memory allocation
and data transfer between the host and the GPU are negligible for these
benchmarks, relative to the kernel execution time, though they can be
significant in other examples.

8 PPCG supports option ——tile-size=<int> to specify square tile size.

(@]
C

Higher is7l%¢7etéer B PolyAST (192 threads on POWERS)

_.
No
(3]
©,

DA Reference (if available)

BPPCG (state-of-the-art) @ PoI%?§T+GPU (this paper)

789.
1024 3:

o
w

542.35

3mm atax bicg covariance doitgen gemm gemver

= _684.6 [5558 7
g 512 N7 7 325077
S 2561 SZ %Z 103.. 1011 ga‘] / 85.9
g e 3? %2] 55.2 S ? 511 i
3 SZ §Z 15.2 %4 22.2 ? 7 20, 30.
. NA e 12 . \/ 141 16.5 9.7 VA
8 16 NA-+——o. 1 N7 V) | :
8 % B 8. W 76 8.48.1 7| 6.2 .
. 8 N/ N/ 7 -
8 7 24 N 3.1 | 3.
L N7 N7 7z
% Vi ViV z
3 N 7 VA
Y% N/ %

gesummv jacobi-2d jacobi-2d-alt

mvt symm syr2k omriq sp-xsolve-1 sp-xsolve-3 GEOMEAN

Figure 11: Performance improvements (log scale) over sequential C on the Intel Xeon + NVIDIA Tesla M2050 platform.

Higher is better B PolyAST (192 threads on POWER8) B CUDA Reference (if available) ®PPCG (state-of-the-art) zg’onAST+GPU (this paper)
967.6 953.9 932.7 1993.1 12408 ~ -~

3mm

atax bicg covariance doitgen gemm gemver

o T 837.5 | 8 15.3 1327.277 4353 1411.2
1o V4077V 257.0 7 Z 1909 | |4
25018 % 24de. N7 N 1837 | W 95.5
128 §¢ §4 S7. % \/ 45.6
P N, 291 252 6| N/ 4 7 W
Q3 N7 24.2 20.9 \4 7 §/
? e SZ [5 \Sf 6.5 58 2 X %Z 8.7 9.8
g % Y &N & \/ : / \7
o W W 7z N7 20 2.
¢ Y N/ 18 7 Vi .
1 §¢ N/ 4 NA E
N7 N7 7 W
05 | NA N V1 NZELE
oz 1] ¥ W M W

gesummv jacobi-2d jacobi-2d-alt

mvt symm syr2k omrig sp-xsolve-1 sp-xsolve-3 GEOMEAN

Figure 12: Performance improvements (log scale) over sequential C on the IBM POWERS + NVIDIA Tesla K80 platform.

ory coalescing and/or reduction parallelism. For doitgen, jacobi-2d-
alt, symm, sp-xsolve-1 and sp-xsolve-3, the thread-level schedules
selected by PolyAST+GPU achieved better coalesced memory ac-
cesses than those by PPCG, at the cost of additional inter-thread
(intra-block) synchronizations. For atax, bicg, gemver, gesummv
and mvt, PolyAST+GPU benefits from thread-level reduction to in-
crease amount of parallelism and coalesced memory accesses, in
addition to the differences in thread-level schedules. As a conse-
quence, PolyAST+GPU delivered 1.8 x and 2.1 x geometric mean
improvements over PPCG, on Tesla M2050 and Tesla K80 GPUs
respectively. These performance improvements mainly stem from:
superposition of schedules that allows different optimizations to be
performed at the block-level and thread-level; and the use of dif-
ferent cost models to guide the block/thread-specific transforma-
tions and parallelization (i.e., schedules). In contrast, PPCG and
PolyAST+GPU selected the same block and thread schedules for
2mm, 3mm, covariance, gemm, jacobi-2d, and syr2k, where PPCG
generated similar or better performance relative to PolyAST+GPU.
An important difference exists in the code generation capabilities
of the two frameworks: PPCG’s code generation can select block
and thread counts independently from tile sizes, and thereby im-
prove global memory bandwidth. We plan to incorporate this code
generation extension in future work.

Comparing with CUDA reference versions (PolyBench/GPU
and Parboil benchmarks), PolyAST+GPU delivered better per-
formance for all benchmarks on both systems. Note that Poly-
Bench/GPU employs straightforward GPU parallelization strate-
gies without complicated shared memory management, while
PPCG and PolyAST+GPU automatically generate optimized code
that exploits shared memory transfer code from the source code.
On the other hand, Parboil mrig has highly tuned implementa-
tions including loop tiling, register and constant memory optimiza-
tions, which dramatically reduce the required bandwidth to off-chip
memory [44]]. Interestingly, PolyAST+GPU applied similar opti-
mizations, e.g., loop tiling, register and shared memory enhance-
ments, and achieved almost the same performance on Tesla M2050
and even better performance than Parboil mriq on Tesla K80. A key

30

difference between the variants is that the Parboil version divided
the main computation (computeQ) into a sequence of GPU kernel
invocations due to the constant memory optimization, while the
shared memory optimization in PolyAST+GPU enclosed the main
computation in a single kernel invocation, thereby reducing the ker-
nel invocation overhead. While PPCG and PolyAST+GPU selected
the same transformation (schedule), PolyAST+GPU shows better
performance on the both platform because PPCG did not utilize
shared memory for this benchmark.

The selection of preferred computing resource between CPUs
and GPUs is an interesting question on accelerator-equipped many-
core systems [20]. Although the experiments using PolyAST+GPU
and PolyAST in this paper did not show interesting trade-off, au-
tomatic selection of the best resource in addition to individual per-
formance optimizations is an important future challenge for perfor-
mance portability.

6.3 Performance Breakdown using CUDA Profiler

As discussed earlier in this paper, memory access coalescing and
parallel reduction are the keys to improving GPU performance. We
executed two of the benchmarks, doitgen to show the efficiency
of memory coalescing and gemver to show the impact of parallel
reduction, on both the Tesla M2050 and K80 with the CUDA pro-
filer [34] enabled. Space limitations prevent us from including sim-
ilar results for other benchmarks, but we conclude that a large part
of performance improvement for PolyAST+GPU can be attributed
to memory coalescing and/or parallel reduction.

6.3.1 Impact of Memory Coalescing

We focused on collecting measurements for gld_transactions_per_
request and gst_transactions_per_request. For the doitgen bench-
mark, our measurements show that PolyAST+GPU achieved an av-
erage number of memory transactions per request of 1.0 for both
loads and stores on the both platforms, which is ideal indicating
that almost all memory accesses were coalesced. However, PPCG
achieved an average transaction count of 31.4 on M2050 and 31.9

on K80 for loads and 31.5 on M2050 and 32.0 on K80 for stores,
which is much worse (32 is the largest possible value).

6.3.2 Impact of Parallel Reduction

For the third kernel of gemver benchmark, achieved_occupancy and
stall_exec_dependency are collected to show the impact of parallel
reduction. Because a reduction loop needs to be executed sequen-
tially by each thread in a block with PPCG, this can 1) increase
memory and/or arithmetic latency due to a sequence of dependent
instructions and also 2) make the GPU less busy. PolyAST+GPU
achieved an average achieved occupancy of 65.3% on M2050 and
96.4% on K80, whereas PPCG achieved an average occupancy of
14.3% on M2050 and 20.0% on K80, which means PolyAST+GPU
keeps the GPU busier than PPCG. Additionally, our measurements
show that PPCG achieved an average percentage of stalls occurring
due to dependent instructions of 63.2% on M2050 and 20.6% on
K80 due to sequential reduction.

6.4 Additional Experience with Hand-tuned Code

Proc | Variants | Intel/Fermi | IBM/Kepler
CPU | Sequential 62951.4 ms | 42495.8 ms
CPU | PolyAST (parallel) 2296.1 ms 1435.7 ms
GPU | PPCG 84.4 ms 46.4 ms
GPU | PolyAST+GPU 99.6 ms 45.5 ms
GPU | CUDA hand-tuned 100.1 ms 48.1 ms

Table 3: Absolute Performance comparison (sgemm)

Our primary focus is on performance portability, i.e., users can
develop simple/high-level code and compilers can optimize/cus-
tomize it for complex target systems such as GPUs. However, per-
formance evaluations against hand-optimized GPU code is also
important to understand how close to such well-tuned imple-
mentations the compiler-driven approach can deliver. Therefore,
in addition to the case of Parboil mrig in Section [6.2] this sec-
tion discusses the performance differences among 1) PolyAST,
2) PPCG, 3) PolyAST+GPU, and 4) hand-optimized CUDA pro-
grams. For hand-optimized CUDA versions, we evaluated a hand-
tuned 2048 %2048 matrix multiply CUDA code available from the
CUDA SDK [5 lﬂ. Table [3| shows absolute performance numbers
for these variants on the Intel Xeon with Tesla M2050 and IBM
POWERS with Tesla K80.

Based on results shown in Table [3] PolyAST+GPU the perfor-
mance is comparable to the hand-tuned matrix multiply CUDA
code and much faster than PolyAST. It is worth mentioning that
optimizations performed by PolyAST+GPU is very similar to the
hand-tuned variant (e.g. loop tiling, register and shared memory en-
hancements). While PPCG and PolyAST+GPU selected the same
transformation (schedule), PPCG shows better performance on
Tesla M2050 due to the difference in code generations (details
shown in Section[6.2).

7. Related Work

There is an extensive body of literature on the polyhedral com-
pilation framework for GPUs [5| 29} 47| [49] as we discussed in
Section[T] Beside end-to-end transformation frameworks, Fauzia et
al. [11] proposed an approach to analyze non-coalesced accesses
via dynamic trace and remap thread block geometry for better ac-
cesses. Braak et al. [46]] also proposed a static optimization tool for
the thread block geometry, as a part of the NVCC compiler. These
approaches focus on GPU parallelism mapping while our frame-
work additionally supports general loop transformations. Pradelle

9 The code is slightly modified for sgemm.

31

et al. [39]] introduced two new operators for polyhedral compilers:
focalisation and defocalisation, which largely reduce the complex-
ity of multi-level loop tiling targetting deep hardware hierarchy,
e.g., multi-level cache.

Many previous studies aim to facilitate GPU programming
by providing high-level abstractions of GPU programming. They
often introduce directives and/or language constructs express-
ing parallelism for semi-/fully- automated code generations and
optimizations for GPUs. OpenACC [335] is a widely-recognized
directive-based programming model for heterogeneous systems.
OpenMPCJ27] transforms extended OpenMP programs into CUDA
applications. For JVM-based languages, many approaches [10l
191 22} 28] provide high-level abstractions of GPU programming.
Velociraptor [13] compiles MATLAB and Python to GPUs. A
GPGPU compiler [53] optimizes CUDA programs by performing
several optimization techniques including memory access vector-
ization and coalescing. Many of them rely on AST-based optimiza-
tions. In contrast, our approach takes a sequential C program with
SCoP directives and performs fully automatic loop transformation
and codegen using the polyhedral model. However, it is worth
mentioning that these AST-based optimizations can also be applied
afterwards to attain further performance improvements.

8. Conclusions and Future Work

In this paper, we proposed a new polyhedral compilation frame-
work for optimizing GPU kernels. To enable efficient exploita-
tion of two levels of hardware parallelism in the GPU, blocks
and threads, we introduced the concept of superposition of poly-
hedral schedules so that different loop transformations and par-
allelization can be performed for GPU blocks and threads. This
approach supports a larger optimization space than existing ap-
proaches such as PPCG, which currently uses the same schedule
for blocks and threads. Our approach uses different optimization
strategies, i.e., different cost models, at the thread and block levels
to guide the selection of transformations/parallelization (schedules)
at those levels. Our experimental results demonstrate the effective-
ness of our approach relative to a state-of-the-art polyhedral opti-
mizer for GPUs, PPCG. The primary focus of this paper is on per-
formance portability, so that users can develop simple/high-level
code and compilers can optimize/customize it for complex target
systems such as GPUs. We believe that compilers can help non-
expert users achieve better productivity with respect to performance
portability. For future work, we plan to extend PolyAST+GPU with
support for special loop tilings [4}[16L[17,[21] for stencil algorithms,
inter-kernel parallelization, and custom code generation for host
code. We also plan to extend our infrastructure by migrating from
the CLooG code generator to ISL.

Acknowledgments

This work is partially supported by the Intel Corporation with
matching funds from the NSF under the Innovation Transition
(InTrans) Program (CCF-1436827). We are also grateful to IBM
Canada Lab for a CAS Fellowship award that partially supported
this work. Finally, we would like to thank all members of the Ha-
banero Extreme Scale Software research group at Rice University
for their ongoing feedback on this research.

References

[1] The Polyhedral Compiler Collection.
~pouchet/software/pocc/\

[2] PolyBench/GPU Implementation of PolyBench codes for GPU
processing. http://web.cse.ohio-state.edu/~pouchet/
software/polybench/GPU/|

http://www.cs.ucla.edu/

http://www.cs.ucla.edu/~pouchet/software/pocc/
http://www.cs.ucla.edu/~pouchet/software/pocc/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/GPU/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/GPU/

[3]

[4]

[5]

[6

=

[7

—

[8

=

[9]

[10]

[11]

[12]

[13

[t

[14]

[15]

R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy,
S. Verdoolaege, A. Betts, A. F. Donaldson, J. Ketema, J. Absar,
S. v. Haastregt, A. Kravets, A. Lokhmotov, R. David, and E. Ha-
jiyev. Pencil: A platform-neutral compute intermediate language for
accelerator programming. In 2015 International Conference on Paral-
lel Architecture and Compilation (PACT), pages 138-149, Oct 2015.
doi: 10.1109/PACT.2015.17. URL http://ieeexplore.ieee.org/
document/7429301/}

V. Bandishti, I. Pananilath, and U. Bondhugula. Tiling stencil compu-
tations to maximize parallelism. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, SC 12, pages 40:1-40:11, Los Alamitos, CA, USA,
2012. IEEE Computer Society Press. ISBN 978-1-4673-0804-5. URL
http://dl.acm.org/citation.cfm?1d=2388996.2389051,

M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-
CUDA code generation for affine programs. In Proceedings of the 19th
Joint European Conference on Theory and Practice of Software, In-
ternational Conference on Compiler Construction, CC’10/ETAPS’10,
pages 244-263, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-
642-11969-7, 978-3-642-11969-9. doi: 10.1007/978-3-642-11970-5_
14. URL http://dx.doi.org/10.1007/978-3-642-11970-5_14.

C. Bastoul. Code generation in the polyhedral model is easier than
you think. In Proceedings of the 13th International Conference on
Farallel Architectures and Compilation Techniques, PACT 04, pages
7-16, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2229-7. doi: 10.1109/PACT.2004.11. URL http://dx.doi.
org/10.1109/PACT.2004.11}

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
In Proc. of PLDI "08, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-860-2. doi: 10.1145/1375581.1375595. URL http:
//doi.acm.org/10.1145/1375581.1375595,

CANDL. CANDL: Data dependence analysis tool in the polyhedral
model. http://icps.u-strasbg.fr/~bastoul/development/
candll

P. Chatarasi, J. Shirako, and V. Sarkar. Polyhedral optimizations of
explicitly parallel programs. In 2015 International Conference on
Farallel Architecture and Compilation (PACT), pages 213-226, 2015.
URL http://ieeexplore.ieee.orqg/document/7429307/.

C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink. Com-
piling a high-level language for GPUs: (via language support for ar-
chitectures and compilers). In Proceedings of the 33rd ACM SIG-
PLAN conference on Programming Language Design and Implemen-
tation, PLDI 12, pages 1-12, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1205-9. doi: 10.1145/2254064.2254066. URL
http://doi.acm.org/10.1145/2254064.2254066,

N. Fauzia, L.-N. Pouchet, and P. Sadayappan. Characterizing and
enhancing global memory data coalescing on GPUs. In Proceedings
of the 13th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 15, pages 12-22, Washington,
DC, USA, 2015. IEEE Computer Society. ISBN 978-1-4799-8161-8.
URLhttp://dl.acm.org/citation.cfm?1d=2738600.2738603,

J. Ferrante, V. Sarkar, and W. Thrash. On Estimating and Enhancing
Cache Effectiveness. Proc. LCPC 91, 589:328-343, 1991.

R. Garg and L. Hendren. Velociraptor: An embedded compiler toolkit
for numerical programs targeting cpus and gpus. In Proceedings
of the 23rd International Conference on Parallel Architectures and
Compilation, PACT 14, pages 317-330, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2809-8. doi: 10.1145/2628071.2628097.
URL http://doi.acm.org/10.1145/2628071.2628097.

S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, , and J. Cava-
zos. Auto-tuning a High-Level Language Targeted to GPU Codes. In
Proceedings of Innovative Parallel Computing (InPar ’12), 2012.

T. Grosser, A. GroBlinger, and C. Lengauer. Polly - Performing
Polyhedral Optimizations on a Low-Level Intermediate Representa-
tion. Parallel Processing Letters, 22(4), 2012. URL http://dblp.
uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12.

32

(16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

T. Grosser, A. Cohen, P. H. J. Kelly, J. Ramanujam, P. Sadayappan, and
S. Verdoolaege. Split tiling for GPUs: Automatic parallelization using
trapezoidal tiles. In Proceedings of the 6th Workshop on General Pur-
pose Processor Using Graphics Processing Units, GPGPU-6, pages
24-31, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2017-
7. doi: 10.1145/2458523.2458526. URL http://doi.acm.orqg/10.
1145/2458523.2458526,

T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, and S. Ver-
doolaege. Hybrid hexagonal/classical tiling for GPUs. In Proceed-
ings of Annual IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO ’ 14, pages 66:66—66:75, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2670-4. doi: 10.1145/2544137.
2544160. URL http://doi.acm.orq/10.1145/2544137.2544160.

T. Grosser, S. Verdoolaege, and A. Cohen. Polyhedral ast generation is
more than scanning polyhedra. ACM Trans. Program. Lang. Syst., 37
(4):12:1-12:50, July 2015. ISSN 0164-0925. doi: 10.1145/2743016.
URL http://doi.acm.org/10.1145/2743016}

A. Hayashi, M. Grossman, J. Zhao, J. Shirako, and V. Sarkar. Acceler-
ating Habanero-Java Programs with OpenCL Generation. In Proceed-
ings of the 2013 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages,
and Tools, PPP] *13, pages 124-134, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2111-2. doi: 10.1145/2500828.2500840.
URL http://doi.acm.org/10.1145/2500828.2500840.

A. Hayashi, K. Ishizaki, G. Koblents, and V. Sarkar. Machine-
Learning-based Performance Heuristics for Runtime CPU/GPU Se-
lection. In Proceedings of the Principles and Practices of Program-
ming on The Java Platform, PPPJ ’15, pages 27-36, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3712-0. doi: 10.1145/2807426.
2807429. URL http://doi.acm.org/10.1145/2807426.2807429.

J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance
code generation for stencil computations on gpu architectures. In Pro-
ceedings of the 26th ACM International Conference on Supercom-
puting, ICS *12, pages 311-320, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-1316-2. doi: 10.1145/2304576.2304619. URL
http://doi.acm.orqg/10.1145/2304576.2304619,

K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar. Compiling and
optimizing java 8 programs for gpu execution. In 2015 International
Conference on Parallel Architecture and Compilation (PACT), pages
419-431, 2015. URL http://ieeexplore.ieee.org/document/
7429325/,

ISL. Integer set library. http://isl.gforge.inria.fr,

K. Kennedy and J. R. Allen. Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2002. ISBN 1-55860-286-0.

KHRONOS GROUP. OpenCL 2.1 Provisional API Specification,
Version 2.1, 2013. https://www.khronos.org/registry/cl/,

M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sa-
dayappan. When Polyhedral Transformations Meet SIMD Code Gen-
eration. volume 48, pages 127-138, New York, NY, USA, June 2013.
ACM. doi: 10.1145/2499370.2462187. URL http://doi.acm.org/
10.1145/2499370.2462187.

S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP Program-
ming and Tuning for GPUs. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 10, pages 1-11, Washington, DC,
USA, 2010. IEEE Computer Society. ISBN 978-1-4244-7559-9.
doi: 10.1109/SC.2010.36. URL http://dx.doi.orqg/10.1109/SC.
2010.36.

A. Leung, O. Lhotdk, and G. Lashari. Automatic parallelization for
graphics processing units. In Proceedings of the 7th International
Conference on Principles and Practice of Programming in Java, PPPJ
’09, pages 91-100, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-598-7. doi: 10.1145/1596655.1596670. URL http://doi.
acm.org/10.1145/1596655.1596670.

A. Leung, N. Vasilache, B. Meister, M. Baskaran, D. Wohlford,
C. Bastoul, and R. Lethin. A mapping path for multi-GPGPU ac-
celerated computers from a portable high level programming ab-

http://ieeexplore.ieee.org/document/7429301/
http://ieeexplore.ieee.org/document/7429301/
http://dl.acm.org/citation.cfm?id=2388996.2389051
http://dx.doi.org/10.1007/978-3-642-11970-5_14
http://dx.doi.org/10.1109/PACT.2004.11
http://dx.doi.org/10.1109/PACT.2004.11
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
http://icps.u-strasbg.fr/~bastoul/development/candl
http://icps.u-strasbg.fr/~bastoul/development/candl
http://ieeexplore.ieee.org/document/7429307/
http://doi.acm.org/10.1145/2254064.2254066
http://dl.acm.org/citation.cfm?id=2738600.2738603
http://doi.acm.org/10.1145/2628071.2628097
http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12
http://dblp.uni-trier.de/db/journals/ppl/ppl22.html#GrosserGL12
http://doi.acm.org/10.1145/2458523.2458526
http://doi.acm.org/10.1145/2458523.2458526
http://doi.acm.org/10.1145/2544137.2544160
http://doi.acm.org/10.1145/2743016
http://doi.acm.org/10.1145/2500828.2500840
http://doi.acm.org/10.1145/2807426.2807429
http://doi.acm.org/10.1145/2304576.2304619
http://ieeexplore.ieee.org/document/7429325/
http://ieeexplore.ieee.org/document/7429325/
http://isl.gforge.inria.fr
https://www.khronos.org/registry/cl/
http://doi.acm.org/10.1145/2499370.2462187
http://doi.acm.org/10.1145/2499370.2462187
http://dx.doi.org/10.1109/SC.2010.36
http://dx.doi.org/10.1109/SC.2010.36
http://doi.acm.org/10.1145/1596655.1596670
http://doi.acm.org/10.1145/1596655.1596670

straction. In Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, GPGPU-3, pages 51-61,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-935-0. doi:
10.1145/1735688.1735698. URL http://doi.acm.orqg/10.1145/
1735688.1735698.

A. W. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning
algorithm to maximize parallelism and minimize communication. In
Proceedings of the 13th International Conference on Supercomputing,
ICS °99, pages 228-237, New York, NY, USA, 1999. ACM. ISBN I-
58113-164-X. doi: 10.1145/305138.305197. URL http://doi.acm.
org/10.1145/305138.305197,

Mark Harris. Optimizing parallel reduction in CUDA, 2007. http:
//developer.download.nvidia.com/compute/cuda/l.1-Beta/
x86_website/projects/reduction/doc/reduction.pdf.

V. K. Nandivada, J. Shirako, J. Zhao, and V. Sarkar. A Transformation
Framework for Optimizing Task-Parallel Programs. ACM Trans. Pro-
gram. Lang. Syst., 35(1):3:1-3:48, Apr. 2013. ISSN 0164-0925. doi:
10.1145/2450136.2450138. URL jhttp://doi.acm.orqg/10.1145/
2450136.2450138.

NVIDIA Corporation. CUDA C PROGRAMMING GUIDE
7.0, 2014. http://docs.nvidia.com/cuda/pdf/CUDA_C_|
Programming_Guide.pdf.

[34] NVIDIA Corporation. ~PROFILER USER’S GUIDE 7.5, 2015.
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_
Guide.pdf}

[30]

[31]

[32]

[33]

[35] OpenACC forum. The OpenACC Application Programming Interface,
Version 2.0, 2013. http://www.openacc.org/sites/default/
files/OpenACC.2.0a_1.pdfl

[36] OpenScop. Openscop specification and library.
strasbg.fr/ bastoul/development/openscop/.

[37] PolyBench. The polyhedral benchmark suite. http://www.cse.
ohio-state.edu/~pouchet/software/polybench/,

[38] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
and P. Sadayappan. Combined iterative and model-driven optimiza-
tion in an automatic parallelization framework. In Proceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC *10, pages 1-11,
Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-1-
4244-7559-9. doi: 10.1109/SC.2010.14. URL http://dx.doi.org/
10.1109/5C.2010.14}

B. Pradelle, B. Meister, and M. Baskaran. Scalable hierarchi-
cal polyhedral compilation. In The 45th International Confer-
ence on Parallel Processing, Paris, France, August 2016. URL
https://www.researchgate.net/publication/230759922_
Joint_Scheduling_and_Layout_Optimization_to_Enable_
Multi-Level _Vectorization?ev=prf_pub.

http://icps.u-

[39]

[40] V. Sarkar. Automatic Selection of High Order Transformations in the

IBM XL Fortran Compilers. IBM J. Res. & Dev., 41(3), May 1997.

J. Shirako, J. M. Zhao, V. K. Nandivada, and V. N. Sarkar. Chunking
parallel loops in the presence of synchronization. In Proceedings of
the 23rd International Conference on Supercomputing, ICS *09, pages
181-192, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-498-
0. doi: 10.1145/1542275.1542304. URL http://doi.acm.org/10.
1145/1542275.1542304.

[41]

33

[42] J. Shirako, L.-N. Pouchet, and V. Sarkar. Oil and water can mix:
An integration of polyhedral and ast-based transformations. In Pro-
ceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC 14, pages 287-298,
Piscataway, NJ, USA, 2014. IEEE Press. ISBN 978-1-4799-5500-8.
doi: 10.1109/SC.2014.29. URL http://dx.doi.org/10.1109/SC.
2014.29.

[43]
[44]

SPEC. Spec accel benchmark. https://www.spec.org/accel/.

S. S. Stone, J. P. Haldar, S. C. Tsao, W. m. W. Hwu, B. P. Sutton, and
Z. P. Liang. Accelerating advanced mri reconstructions on gpus. J.
Parallel Distrib. Comput., 68(10):1307-1318, Oct. 2008. ISSN 0743-
7315. doi: 10.1016/.jpdc.2008.05.013. URL http://dx.doi.org/
10.1016/7.9pdc.2008.05.013

J. A. Stratton, C. Rodrigrues, L.-J. Sung, N. Obeid, L. Chang, G. Liu,
and W.-M. W. Hwu. Parboil: A revised benchmark suite for scientific
and commercial throughput computing. Technical Report IMPACT-
12-01, University of Illinois at Urbana-Champaign, Urbana, Mar.
2012.

G. J. van den Braak, B. Mesman, and H. Corporaal. Compile-time
GPU memory access optimizations. In International Conference on
Embedded Computer Systems, 2010.

N. Vasilache, B. Meister, M. Baskaran, and R. Lethin. Joint schedul-
ing and layout optimization to enable multi- level vectorization. In
IMPACT-2: 2nd International Workshop on Polyhedral Compilation
Techniques, Paris, France, January, Paris, France, Jan 2012. URL
https://www.researchgate.net/publication/230759922_
Joint_Scheduling_and_Layout_Optimization_to_Enable_
Multi-Level _Vectorization?ev=prf_pub,

S. Verdoolaege. isl: An Integer Set Library for the Polyhedral Model.
In K. Fukuda, J. Hoeven, M. Joswig, and N. Takayama, editors,
Mathematical Software ICMS 2010, volume 6327 of Lecture Notes
in Computer Science, pages 299-302. Springer Berlin Heidelberg,
2010. ISBN 978-3-642-15581-9. doi: 10.1007/978-3-642-15582-6_
49. URL http://dx.doi.org/10.1007/978-3-642-15582-6_49.

S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gémez, C. Ten-
llado, and F. Catthoor. Polyhedral parallel code generation for CUDA.
ACM Trans. Archit. Code Optim., 9(4):54:1-54:23, Jan. 2013. ISSN
1544-3566. doi: 10.1145/2400682.2400713. URL http://doi.acm.
org/10.1145/2400682.2400713}

S. Verdoolaege, S. Guelton, T. Grosser, and A. Cohen. Schedule Trees.
In IMPACT - 4th Workshop on Polyhedral Compilation Techniques,
associated with HiPEAC, Vienna, Austria, Jan. 2014. ACM. URL
https://hal.inria.fr/hal-00911894,

V. Volkov and J. W. Demmel. Benchmarking gpus to tune dense
linear algebra. In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, SC °08, pages 31:1-31:11, Piscataway, NJ, USA,
2008. IEEE Press. ISBN 978-1-4244-2835-9. URL http://dl.acm.
org/citation.cfm?id=1413370.1413402,

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52] D. G. Wonnacott. Constraint-based Array Dependence Analysis. PhD

thesis, College Park, MD, USA, 1995. UMI Order No. GAX96-22167.

[53] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU compiler for
memory optimization and parallelism management. SIGPLAN Not.,
45(6):86-97, June 2010. ISSN 0362-1340. doi: 10.1145/1809028.
1806606. URL http://doi.acm.orq/10.1145/1809028.1806606.

http://doi.acm.org/10.1145/1735688.1735698
http://doi.acm.org/10.1145/1735688.1735698
http://doi.acm.org/10.1145/305138.305197
http://doi.acm.org/10.1145/305138.305197
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://doi.acm.org/10.1145/2450136.2450138
http://doi.acm.org/10.1145/2450136.2450138
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://dx.doi.org/10.1109/SC.2010.14
http://dx.doi.org/10.1109/SC.2010.14
https://www.researchgate.net/publication/230759922_Joint_Scheduling_and_Layout_Optimization_to_Enable_Multi-Level_Vectorization?ev=prf_pub
https://www.researchgate.net/publication/230759922_Joint_Scheduling_and_Layout_Optimization_to_Enable_Multi-Level_Vectorization?ev=prf_pub
https://www.researchgate.net/publication/230759922_Joint_Scheduling_and_Layout_Optimization_to_Enable_Multi-Level_Vectorization?ev=prf_pub
http://doi.acm.org/10.1145/1542275.1542304
http://doi.acm.org/10.1145/1542275.1542304
http://dx.doi.org/10.1109/SC.2014.29
http://dx.doi.org/10.1109/SC.2014.29
https://www.spec.org/accel/
http://dx.doi.org/10.1016/j.jpdc.2008.05.013
http://dx.doi.org/10.1016/j.jpdc.2008.05.013
https://www.researchgate.net/publication/230759922_Joint_Scheduling_and_Layout_Optimization_to_Enable_Multi-Level_Vectorization?ev=prf_pub
https://www.researchgate.net/publication/230759922_Joint_Scheduling_and_Layout_Optimization_to_Enable_Multi-Level_Vectorization?ev=prf_pub
https://www.researchgate.net/publication/230759922_Joint_Scheduling_and_Layout_Optimization_to_Enable_Multi-Level_Vectorization?ev=prf_pub
http://dx.doi.org/10.1007/978-3-642-15582-6_49
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
https://hal.inria.fr/hal-00911894
http://dl.acm.org/citation.cfm?id=1413370.1413402
http://dl.acm.org/citation.cfm?id=1413370.1413402
http://doi.acm.org/10.1145/1809028.1806606

	Introduction
	Background and Motivation
	GPUs and CUDA Programming Model
	Motivating Example

	Overview
	Polyhedral Compilation Framework
	Overview of Framework (PolyAST+GPU)

	Superposition for GPU 2-level Parallelism
	Composition of Schedule and Space-mapping
	Superposition of Scattering Functions
	GPU-specific Aspects of Superposition

	Parallelization Algorithm for GPUs
	Target Affine Form of Scattering Function
	Extending DL Model to Coalesced Memory Access
	Detection of Loop Parallelism
	Transformation Algorithms

	Experimental Results
	Experimental Protocol
	Overall Performance Improvements
	Performance Breakdown using CUDA Profiler
	Impact of Memory Coalescing
	Impact of Parallel Reduction

	Additional Experience with Hand-tuned Code

	Related Work
	Conclusions and Future Work

