
Efficient Checkpointing of Multi-Threaded Applications as a Tool for Debugging,
Performance Tuning, and Resiliency

Max Grossman
Department of Computer Science

Rice University
Houston, USA

max.grossman@rice.edu

Vivek Sarkar
Department of Computer Science

Rice University
Houston, USA

vsarkar@rice.edu

Abstract—Past work on application checkpointing systems
has either focused on enabling application resiliency or as a
tool for debugging (as in record-replay literature). Each of
these use cases for checkpoints places different constraints on
the constructed checkpointing system. When used for resiliency,
checkpointing systems must minimize their interference with
the running application. When used for record-replay and
numerical debugging, checkpointing systems instead must focus
on correlating the contents of a checkpoint to user-visible data
structures in order to aid in the debugging process.

Past literature has ignored the use of checkpoints in applica-
tion performance tuning. While existing performance profiling
tools enable the identification of hotspots in an application,
creating full application checkpoints immediately prior to a
hotspot enables rapid iteration on the performance of that
hotspot.

In this paper, we present a checkpointing system for all
three of these use cases: resiliency, application debugging, and
application performance tuning. We present a novel check-
pointing framework that creates efficient checkpoints of multi-
threaded C programs using a hybrid compile-time and runtime
approach. This approach reduces the framework’s dependency
on platform-specific features and improves its efficiency using
insights from static and dynamic application analysis. Across a
wide range of benchmarks we demonstrate that our framework
incurs low overheads: ∼5% on average and in many cases less
than 1%.

Keywords-checkpointing; resiliency; debuggers; performance
tuning; record-replay;

I. MOTIVATION

Application checkpointing is a well-studied problem with
a variety of use cases. An application checkpoint is a snap-
shot of program state that includes sufficient information to
resume execution of an instance of that application from
an intermediate point in time. Application checkpointing
is most applicable to the following use cases in scientific
computing:

1) Resiliency against software or hardware errors.
2) Debugging of application failures or numerical errors.
3) Performance profiling and tuning of application

hotspots.
Resiliency is the classic motivating example for check-

pointing. Creating periodic checkpoints allows a crashed

process to be immediately resumed from its most recent
checkpoint.

Checkpointing also enables debugging and performance
tuning. Creating periodic checkpoints simplifies the process
of reproducing a program error or analyzing a perfor-
mance hotspot by allowing programmers to resume from
a checkpoint immediately prior to the relevant code region.
For long-running scientific applications, this can save days
or weeks of time and enable more rapid iteration on an
application. Checkpoints can be integrated into automated
testing environments to protect against future regressions, or
used as representative application inputs for a performance
auto-tuning framework.

Modern debugging and performance profiling tools gen-
erally induce a significant amount of overhead. This can
make program behaviors difficult to reproduce. Checkpoint-
ing techniques are uniquely suited to resolve these issues
by allowing the application developer to compile and run
their application with the highest optimization settings by
default, but re-compile with different compiler flags or added
instrumentation before resuming from a checkpoint. To make
it feasible to run with checkpointing permanently enabled,
checkpointing frameworks must keep overheads low and
retain original application behavior.

The existing research in application checkpointing has
primarily focused on resiliency, with some attention given
to debugging using record-replay techniques. In this work,
we support all three use cases using a compiler- and library-
based approach to checkpointing. This type of approach has
a number of merits relative to more low-level techniques pro-
posed in past work including fewer platform dependencies,
reduced overhead, and a more user-tunable checkpointing
process.

For the remainder of this paper, we refer to this work as
CHIMES (CHeckpointing of In-MEmory State). The main
contributions of CHIMES include:

1) Automated checkpointing of stack, heap, and other
user-level objects through source code inspection and
transformation.

2) An efficient, overhead-aware runtime for multi-

threaded programs that handles program state tracking
and checkpoint creation.

3) Support for user specification of checkpoints.
4) Support for pluggable user functionality in the creation

and restoration of checkpoints.
5) A combined compiler and library approach to check-

pointing which uses insights gained from the source
code to enhance efficiency.

This paper is organized as follows. Section II will sum-
marize related work in the area of application checkpointing.
Section III will then describe our approach to checkpoint-
ing. Section IV experimentally evaluates the techniques de-
scribed. Section V concludes by discussing the contributions
of this paper and future directions for this work.

II. RELATED WORK

Arguably the most well-known tool for checkpointing is
Berkeley Lab’s Linux Checkpoint/Restart tool (BLCR) [1].
In [1], the authors of BLCR present three design choices
for every checkpointing system: user-level vs. kernel-level,
the amount of user- and kernel-level state that can be
checkpointed, and the level of integration with other com-
ponents in the platform (e.g. MPI). BLCR uses kernel-
level checkpointing to support pausing and resuming of MPI
applications. BLCR is implemented as a Linux kernel mod-
ule and supports checkpointing a wide range of user-level
and kernel application state. BLCR uses custom callbacks
to enable integration with other tools or libraries. BLCR
takes a stop-the-world approach to checkpointing, pausing
all threads until a checkpoint is fully persisted to disk.

DMTCP[2] takes a similarly low-level approach to check-
pointing. Instead of adding a kernel module, DMTCP uses
the fork and abort system calls to create a core dump
of application state that can be restored from. To support
checkpointing of additional program state not captured in
this core dump (e.g. file descriptors), DMTCP wraps system
calls as well and tracks their usage. Like BLCR, DMTCP
dumps all application state with each checkpoint, leading to
multi-second checkpoint times for applications with working
sets in the megabytes[2].

IGOR[3] uses dirty page tracking to reduce the size of
checkpoints by only checkpointing heap regions that have
been modified. An application image is constructed from the
pages written to disk to enable resume of the application.
On resume, the user can select a point to resume from and
IGOR will restore from the preceding checkpoint before
using interpreted execution to move program state to the
desired point in the program.

The work presented in [4] and [5] is the most similar
to our work. The authors use a combined compile- and
run-time approach to checkpoint OpenMP applications. At
compile-time, the application code is analyzed to determine
which arrays have been “dirtied” since the last checkpoint
and need to be checkpointed. This information is propagated

inter-procedurally at compile time. This analysis allows
checkpointing of arrays to be started early, immediately after
the last write to an array prior to a checkpoint being taken.

Power-Check [6] focuses on limiting the impact of check-
pointing on power consumption. Assuming a checkpoint
model that requires global synchronization and quiescing of
application threads, they note that checkpointing periods are
I/O intensive but not compute-intensive, offering the chance
for power throttling techniques to be effective. They design
an energy-aware I/O subsystem that can either sit under other
checkpointing libraries (e.g. BLCR, DMTCP, CHIMES) or
be used directly for application-specific checkpointing. In
our work, we do not consider the opportunities for energy
saving during checkpointing as our CHIMES system tries to
overlap I/O intensive checkpointing with compute-intensive
application execution, limiting the opportunities to throttle
power without significantly degrading application perfor-
mance.

Each of these checkpointing implementations has con-
tributed to the state-of-the-art. However, each is limited in
how it satisfies the motivation in Section I. All five previous
works lack in transparency: checkpoints are mostly opaque
containers whose contents are not easily mapped back to
developer-visible constructs such as variables or functions.

BLCR, DMTCP, IGOR, and Power-Check pause all run-
ning threads in an application when creating a checkpoint
and do not continue until the full checkpoint is flushed to
disk, increasing overheads. The lack of source code analysis
in these approaches exacerbates the efficiency problem even
further. From BLCR [1], “large user applications often
already do their own checkpointing for fault tolerance, and
can often do it much more efficiently than an automated
checkpoint system can, since they know exactly which parts
of their application need to be saved and which can be
discarded or regenerated”. Only by analyzing application
source code can we gain the insights necessary for efficient
checkpointing.

The work in BLCR, DMTCP, IGOR, and Power-Check
are also similar in that each is closely tied to the underlying
platform. For example, BLCR is built as a Linux kernel
module. While a kernel-level approach allows a checkpoint-
ing framework to manage state that user-level approaches
do not have access to, this limits flexibility for future
platforms and restricts the environments it can be deployed
to. The compiler-based approach taken in [4] and in our
work is more flexible and platform agnostic, tied only to
the semantics of the programming model.

The work in [4] is also limited in several ways:
1) It cannot support multiple compilation units: the full

call graph must be available at compile time.
2) It does not support resuming from the checkpoints it

creates.
3) The target language is FORTRAN, which simplifies

the problem of checkpointing by not considering

pointer aliasing.

In Section III we describe the techniques used in the
design and implementation of our CHIMES checkpointing
framework. We focus on how our work adds to the state-
of-the-art and satisfies the requirements of the debugging,
performing tuning, and resiliency use cases.

III. METHODS

This section describes the main contributions of this work:
a compiler- and library-based approach to checkpointing
single-threaded and OpenMP programs. We start with an
overview of what a CHIMES checkpoint contains and then
cover step-by-step how the compile-time and run-time work-
flows 1) create a single checkpoint, and 2) resume from it.

A. Anatomy of a CHIMES Checkpoint

A CHIMES checkpoint includes the following application
state:

1) Per-thread stack contents, including variable names,
sizes, types, and values.

2) Global state, including variable names, sizes, types,
and values.

3) Constant state, including variable names, sizes, types,
and values.

4) Function addresses and function names.
5) Thread hierarchy information indicating which

OpenMP threads spawned other OpenMP threads.
6) Heap state changed since the last checkpoint.
7) Metadata on aliased pointers in the host application.
8) Metadata on the pointer hierarchy in the host applica-

tion (i.e. pointers that point to other pointers).
9) User-provided checkpoint data.

We assume that the heap of the host application accounts
for the majority of its in-memory state. Checkpoints are
stored on disk as binary files and all checkpoints are incre-
mental in their storage of heap contents. To restore the full
contents of an application’s heap from a checkpoint, it may
be necessary to also traverse backwards through a chain of
predecessor checkpoints to find the current state of all bytes
in the heap.

Checkpoints are created by programmer-inserted calls
to checkpoint(), giving the programmer the ability to
place checkpoints prior to important, buggy, or long-running
code regions.

Note that the current checkpoint format does not include
metadata on open files, signal handlers, or other system-
managed state. Handling these types of system-specific state
leads to less platform flexibility and higher overheads as
more system interaction must be instrumented. These types
of objects can be restored by custom user callbacks during
checkpoint creation and resume.

Figure 1. The CHIMES compilation workflow.

B. Compile-Time Analysis and Transformations

Figure 1 shows the high-level workflow of the CHIMES
compilation pass. CHIMES processes one .c file at a time.
The input file first goes through a preprocessing pass that
performs some lightweight transformations to simplify the
main transformation pass later, including hoisting expres-
sions with side effects out of return statements or function
call parameters.

1) Analysis Pass: Following the preprocessing pass,
LLVM bitcode is generated from the preprocessed file and
passed through an LLVM analysis pass. The analysis pass’s
primary purpose is to produce information on 1) intra-
procedural pointer aliasing, and 2) the memory locations
modified within each procedure.

During intra-procedural alias analysis, pointer variables
within a function that may alias are marked as part of a
single alias group. A globally unique alias group ID is
generated for each alias group in each function. The analysis
pass also tracks which alias groups are pointed to by other
alias groups.

The analysis pass identifies alias group change locations,
i.e., source code locations where a STORE to a member of
an alias group occurs. This information is used at runtime
to calculate heap state that may have changed since the last
checkpoint was taken.

Alias groups that may be modified between two check-
points are collected by propagating alias group change
information from the original change location down control
flow paths until it encounters 1) a checkpoint call, or 2)
a redirection of control flow that may lead to a checkpoint
being created. This generally leads to the aggregation of
alias group change locations at checkpoint calls, at function
calls, at conditional branches, and at return statements. These
aggregate alias group change locations record all of the alias
group IDs that may have been modified by STORE opera-
tions since the last aggregate alias group change location.

In addition to storing alias groups that have definitely
changed, it is necessary to store alias groups that may
be changed by a call to an externally defined function or
function pointer. Any arguments passed by reference and
all global values are conservatively marked as “possibly
changed” and added to the next alias group change location
as such. If at runtime CHIMES finds that the external call
was instrumented by CHIMES, these “possibly changed”
alias groups are removed from the change location. Oth-

erwise, these alias groups and any alias groups indirectly
reachable from them are conservatively added to the change
location as definitely changed. This ensures that if an ex-
ternal library modifies any state tracked by CHIMES, the
changes are included in the next checkpoint.

The analysis pass also generates metadata on:
1) Global, constant, and stack variables
2) Alias groups passed as parameters to function calls or

returned by functions
3) Heap management locations, such as calls to malloc,

calloc, realloc, and free
4) The call tree for this compilation unit, including any

externally defined functions that are called but are
currently unresolvable.

5) The OpenMP pragmas and clauses in the source code.
2) Transformation Pass: Once the analysis pass com-

pletes, the metadata generated by it is passed to the trans-
formation pass, which is implemented as a standalone clang
tool using LibTooling [7]. The CHIMES transformation pass
performs a source-to-source transformation of the prepro-
cessed source code. This transformation primarily inserts
calls to CHIMES library functions that track application
state identified by the analysis pass (e.g. stack variables,
globals, function addresses).

Every compilation unit (i.e. input file) has a static, one-
time module initialization function inserted which passes
module information to the CHIMES runtime prior to en-
tering the application’s main:

s t a t i c i n t m o d u l e i n i t () {
l i b c h i m e s i n i t m o d u l e (. . .) ;
re turn 0 ;

}
s t a t i c c o n s t i n t l i b c h i m e s m o d u l e i n i t =

m o d u l e i n i t () ;

The transformation pass also instruments each function
with a variety of CHIMES runtime callbacks that are
used for tracking stack variables, heap allocations, inter-
procedural alias creation, alias group change locations, en-
trance or exit from OpenMP parallel regions, or changes to
the call stack.

As part of the transformation pass, jumps and labels
must be inserted in any functions that may be on the stack
when a checkpoint is created. The labels allow a resume
of a checkpoint to skip to the original checkpoint location
while reproducing the original call stack using only jump
operations and function calls. A label is added to every
callsite that may directly or transitively create a checkpoint,
to each CHIMES callback that registers stack variables,
and before each OpenMP parallel region that may have a
checkpoint created inside.

By inserting jumps between these labels, we build a
control flow tree within each function that allows the
transformed application to jump from the entry point of a
function, through stack variable registrations, and into any

parallel regions or function calls necessary to reproduce the
stack and thread state of the application when checkpointed.
The root of the tree is the entrypoint of the function. The
children at each layer of the tree are any parallel regions
spawned from the current node of the tree or checkpoint-
causing function calls made. This model supports resume
from arbitrary call stacks and nested parallel regions, includ-
ing recursive ones. The use of this control flow tree will be
illustrated further in Section III-D1.

C. CHIMES Checkpointing Runtime

The transformations described in Section III-B2 add in-
strumentation to the host application. This instrumentation
registers all checkpointable state with the CHIMES runtime.
This section expands on the state stored by the CHIMES
runtime and how that state is used to create checkpoints.

At a glance, the CHIMES runtime stores the following:
1) A mapping from the address of a heap allocation to

its metadata.
2) A list of global and constant variables, along with

associated metadata.
3) A mapping from function names to their addresses in

the running application.
4) A mapping from each alias group to all other alias

groups that have become aliased with it at runtime.
5) Points-to information for each alias group.
6) Per-thread stack trace information, stored as a stack of

integer IDs.
7) A full call tree for the program, dynamically con-

structed from the per-compilation unit call tree in-
formation passed to libchimes_init_module as
described in Section III-B2.

Precise and correct alias analysis is vital for CHIMES
checkpointing: the mapping from aliases to heap allocations
is used to determine what heap regions may have changed
since the last checkpoint and need to be included in the next
checkpoint. We perform inter-procedural alias analysis at
runtime by passing the alias group information for function
parameters and return values to CHIMES callbacks at the
entry of each function, exit of each function, and before
each callsite. For example, the alias groups of a formal
parameter and an actual parameter will be merged following
a function call. This analysis works across functions in
different compilation units and through function pointer calls
as long as both the source and target are transformed by
CHIMES.

To illustrate the CHIMES runtime, we consider a sim-
ple example function in Listing 1 that creates a check-
point. Pseudocode of the transformed code generated by
the CHIMES transform pass for this function is shown in
Listing 2.

Listing 1. A simple code example calling checkpoint.
i n t ∗ s u m a l l o c (i n t ∗a , i n t b) {

i n t sum = ∗a + b ;
∗a = sum + b ;
i n t ∗ a l l o c = (i n t ∗) m a l l oc (sum ∗

s i z e o f (i n t)) ;
c h e c k p o i n t () ;
re turn a l l o c ;

}

Listing 2. An example of the transformed code generated from Listing 1.
i n t ∗ s u m a l l o c (i n t ∗a , i n t b) {

l i b c h i m e s e n t e r f u n c (” s u m a l l o c ” , sum al loc ,
. . .) ;

i f (l i b c h i m e s r e s u m i n g) goto l b l 0 ;

l b l 0 : i n t sum ;
l i b c h i m e s r e g i s t e r s t a c k v a r (&sum , . . .) ;
i f (l i b c h i m e s r e s u m i n g) goto l b l 1 ;
sum = ∗a + b ;
∗a = sum + b ;

i n t ∗ a l l o c ;
l b l 1 : l i b c h i m e s r e g i s t e r s t a c k v a r (

&a l l o c , . . .) ;
i f (l i b c h i m e s r e s u m i n g) {

sw i t ch (l i b c h i m e s n e x t c a l l ()) {
case (0) : goto l b l 2 ;
d e f a u l t : a b o r t () ;

}
}
a l l o c = (i n t ∗) m a l l oc (sum ∗ s i z e o f (i n t)) ;
l i b c h i m e s r e g i s t e r h e a p (a l l o c , . . .) ;

l i b c h i m e s a l i a s g r o u p s c h a n g e d (. . .) ;
l b l 2 : c h e c k p o i n t () ;

l i b c h i m e s l e a v i n g f u n c (. . .) ;
re turn a l l o c ;

}

Upon entering sum_alloc, the CHIMES runtime is
notified that a new entry should be pushed on the current
thread’s stack by the libchimes_enter_func callback.
The information passed to libchimes_enter_func
also assists with inter-procedural alias analysis for the pa-
rameters of sum_alloc.

Then, the transformed code checks to see if the cur-
rent program execution is a resume from a check-
point using ____libchimes_resuming. We assume
it is not for this example, Section III-D will provide
more detail on how a checkpoint is resumed. Next,
the sum and alloc stack variables are registered us-
ing libchimes_register_stack_var, and the heap
memory allocated in alloc is registered with the runtime
using libchimes_register_heap.

Immediately before creating a checkpoint,
libchimes_alias_groups_changed is called
to inform the runtime of which alias groups have been
modified since the last checkpoint. This call would inform
the CHIMES runtime that sum and alloc have both had
their values set.

The checkpoint function has three main steps. First,
it serializes all program state outside the heap into byte
buffers, including stack variables, per-thread stack traces,
global variables, and constants.

Second, the checkpoint function determines what parts of
the heap need to be checkpointed based on 1) alias group
change tracking, and 2) hashing of heap contents. The first
stage is straightforward: CHIMES has been collecting a set
of modified alias groups since the last checkpoint. Combined
with a mapping from alias groups to heap allocations,
CHIMES can construct a set of user heap allocations that
may have changed since the last checkpoint.

In the second stage, CHIMES subdivides heap allocations
into evenly sized chunks and computes a hash for the
contents of each chunk. The chunk size is configurable,
but defaults to 4MB. Hashing is done using the xxHash
library [8]. Hashes are stored between checkpoints and only
chunks whose hashes have changed since the last checkpoint
are added to this checkpoint. Once checkpoint has
determined exactly which regions of the heap need to be
checkpointed, in-memory copies of each region are made.

Finally, the serialized byte buffers from the first step
of checkpoint and the heap contents from the second
step are passed to a dedicated checkpointing thread which
writes them out to disk. The checkpointing thread uses
asynchronous writes to keep the checkpointing thread off-
core. If an out-of-memory error occurs while preparing
data for checkpointing, the checkpoint function becomes
blocking and writes heap state directly from the application
buffers.

After the call to checkpoint returns in Listing 2
we call libchimes_leaving_func and return from
sum_alloc. libchimes_leaving_func aids with
inter-procedural alias analysis for return values and pops
from the stack trace for this thread.

D. Resuming From a Checkpoint

The previous section covered checkpoint creation. In this
section, we look at how a checkpoint can be used to
resume program execution from the point-in-time that the
checkpoint was created.

1) Restoring Program State: During initialization,
the CHIMES runtime will detect check for a
CHIMES_CHECKPOINT_FILE environment variable
and, if found, load the serialized program state from it.
Restoring program state from the serialized state is a three
step process.

First, during runtime initialization at the start of program
execution CHIMES reads the contents of the checkpoint
file and stores the deserialized data. CHIMES uses the
deserialized heap, constant, and globals data to construct a
mapping from the addresses of objects in the address space
of the original execution to their addresses in the current
execution. This information is used to update pointers stored

in the stack, heap, and globals. The pointer translation pro-
cess uses a self-balancing binary tree to store the mapping
from addresses in the checkpointed address space to their
addresses in the current address space. Each node in this
tree is an address in the checkpointed address space and the
number of allocated bytes that follow it. A binary tree is
used to keep lookups efficient.

The second step of the restore process is to restore the
thread and stack state of the program using the labels
and jumps discussed in Section III-B2. Listing 2 shows an
example of the code generated to support this step. Upon
entering a function with ____libchimes_resuming
set to true, control flow will jump to each stack variable
registration, passing updated addresses for each of these
variables to the CHIMES runtime. Once all stack variables
have been traversed, libchimes_next_call is used to
pop the next entry from the checkpointed stack for the
current thread. The value popped determines which label
to jump to next. This jump may target a function call or
a nested parallel region. At the completion of this step, all
threads will be inside a call to checkpoint with the same
stack trace that the original program followed to create the
checkpoint being restored, but with stale stack state. Note
that this approach does not support restoring checkpoints
taken from beneath function pointer calls, as there are no
guarantees that the function pointer’s value will be correct
on resume. Future work could remove this restriction by
special-casing the restore of function pointers.

This label-jump approach is the main reason for the
CHIMES preprocessing stage. During the CHIMES pre-
processing stage one of the transformations performed is
to hoist any expressions with side effects out of function
argument lists. If this step were not taken, jumping to a
function call would cause its arguments to be evaluated with
only partial program state restored.

The third step of the restore process happens from inside
the final checkpoint call. First, the values of all stack
variables are restored using the values deserialized from the
checkpoint file. Then, all pointers in the stack, heap, and
global variables are translated from the old address space
to the new address space using the address information
collected from the previous two steps. This step also finds
all variables whose type is either a pointer-to-pointers or
a pointer-to-structs and recursively performs the translation
for all pointers reachable from each variable.

This pointer translation step is complicated by the flex-
ibility of the C programming language. void* pointers
may point to data structures that contain pointers which
need to be translated. If these “hidden” data structures
are unreachable from anywhere else, the obfuscation of a
void* type prevents CHIMES from identifying all pointers
in the program. We have implemented a feature (disabled by
default) that brute force searches any heap allocations behind
void* pointers for pointers that can be updated. While this

feature has not caused unexpected behavior when enabled,
it is possible it could mutate data which appears to be a
pointer from the old address space but which is not.

After the address translation completes each thread returns
from the checkpoint call and execution continues as
usual with a fully restored program.

E. Pluggability

In CHIMES, we include a number of hooks to allow users
to add custom checkpoint and restore functionality to their
applications as needed.

Users can insert custom data in CHIMES checkpoints
using register_checkpoint_handler:

void r e g i s t e r c h e c k p o i n t h a n d l e r (
void (∗ h a n d l e r) (void ∗ , void ∗∗ ,

s i z e t ∗) ,
void (∗ r e s t o r e) (void ∗ , h e a p t r e e ∗ ,

c h i m e s s t a c k ∗) ,
void ∗ d a t a) ;

During checkpoint creation, handler is called and
passed the pointer data as its first argument. If handler
wishes to add state to the checkpoint, it must set its second
argument to be a valid buffer on the heap and set the third
argument to be the length of this buffer.

On resume, restore is called and passed the address of
the restored buffer, a data structure that can translate pointers
in the old address space to the new address space, and a data
structure that can look up stack variables by name and scope.

Users can also register custom handlers for restoring
objects of a certain type:

void r e g i s t e r c u s t o m i n i t h a n d l e r (
c o n s t char ∗ type name ,
void (∗ h a n d l e r) (void ∗)) ;

If CHIMES finds an object whose type matches
type_name, it will pass the address of this object to
register_custom_init_handler. This is useful for
restoring objects specific to third-party libraries (e.g. CUDA,
pthreads).

F. Optimizations

Section I pointed out that for a checkpointing system to
be feasible it must be efficient, adding little overhead. A
naive implementation of the techniques described in this
section would lead to significant overheads for many appli-
cations: taking the address of stack variables and functions
impedes compiler optimization, excessive function calls and
runtime logic adds overhead, and frequent checkpointing
would considerably add to execution time. In this section
we describe techniques used to limit the overhead incurred
by the CHIMES runtime, and evaluate their effectiveness in
Section IV.

One of the most effective optimizations implemented is
the CHIMES ShortCut Mode (SCM). For SCM, a dupli-
cate version of each function is emitted with most of the

CHIMES instrumentation removed. The only instrumenta-
tion kept is heap registration callbacks, which are necessary
to associate each allocated buffer with an alias group.

Calling the SCM version of a function reduces overhead,
but has some constraints. The called function and all of
its callees must be known functions which definitely will
not checkpoint. This can be determined using the global
call tree constructed at runtime. If the SCM version of a
function is called then all changes to and aliasing of alias
groups must be evaluated ahead-of-time based on statically
known information. This can reduce the accuracy of this
information, but not the correctness.

The CHIMES runtime is also aware of the overhead it
adds to the host application and limits checkpoint creation
to keep overhead below a certain threshold, when possible.
Expensive CHIMES runtime callbacks are instrumented to
measure the time spent inside. The total time in the CHIMES
runtime is tracked and compared to the overall wallclock
time of the application. If this ratio exceeds a threshold,
checkpoints are not created. This threshold was set to 5% in
our experiments. This system includes a maximum allowable
period between checkpoints and forces checkpoint creation
if that period is exceeded, even if the estimated overhead is
greater than the allowable threshold. In our experiments, we
set this period to be 60 seconds.

During experimentation, we also found that taking the
address of functions and stack variables can significantly
degrade the ability of the compiler to optimize application
code. We addressed this problem by using POSIX dlsym
to fetch function addresses, and used liveness analysis to
reduce the set of stack variables that had to be registered.

IV. EXPERIMENTAL EVALUATION

We evaluate CHIMES performance based on three met-
rics: overhead added, checkpoint size relative to the size
of the application in memory, and number of checkpoints
created. We use benchmarks from the Rodinia benchmark
suite [9], benchmarks from the SPEC benchmark suite [10],
the Lulesh [11] application, the CoMD [12] application, the
UTS [13] application, and a custom 3D stencil benchmark
called Iso3D that is representative of wavefront propagation
simulations from the energy industry.

All benchmarks and metrics are evaluated on two hard-
ware platforms. Platform A contains a 12-core 2.80GHz Intel
X5660 CPU, 48GB of system RAM, and is connected to
a GPFS storage system by QDR Infiniband. Platform B is
an IBM Power 755 node containing 4 eight-core 3.86GHz
POWER7 CPUs with 4-way simultaneous multithreading
(128 hardware threads in total), 256GB of system RAM,
and is also connected to a GPFS storage system through
QDR Infiniband. The GNU C Compiler was used on both
platforms, v4.8.5 on Platform A and v4.4.7 on Platform B.

We compare performance of both single-threaded and
OpenMP multi-threaded programs. Single-threaded tests are

Benchmark CPP OMP
Time Space Time Space

Iso3D 147.86s 3.21GB 36.38s 3.22GB
Lulesh 32.63s 2.76MB 167.60s 80.32MB
CoMD 101.23s 308.32MB 101.63 314.66MB
UTS 64.07s 15.26MB 5.84s 183.11MB
RodBackprop 103.00s 19.97GB 44.35s 19.97GB
RodBfs 124.11s 2.50GB 121.71s 2.50GB
RodB+tree 10.96s 73.97MB 2.00s 73.97MB
RodHeartwall 112.24s 28.73MB 11.70s 28.73MB
RodHotspot 54.52s 384.00MB 18.65s 384.00MB
RodKmeans 101.46s 132.11MB 16.92s 132.11MB
RodLavamd 122.70s 20.56MB 11.68s 20.56MB
RodLud 8030.28s 16.00MB 8207.23s 16.00MB
RodMyocyte 227.46s 286.91MB 18.81s 286.91MB
RodNn 184.50s 15.32MB 29.06s 15.32MB
RodNw 49.62s 19.20GB 27.99s 19.20GB
RodParticlefilter 9.62s 200.33MB 9.29s 3.07GB
RodSrad 91.47s 85.14MB 12.25s 85.14MB
SPECBotsAlgn 761.60s 1.35MB 63.82s 1.35MB
SPECBotsSpar 791.65s 757.83MB 737.69s 72.31MB
SPECSmithwa 97.51s 0.27MB 0.38s 11.33MB
SPECKDTree 0.22s 40.06MB 40.10s 6.96MB

Table I
MEDIAN EXECUTION TIME AND PEAK MEMORY CONSUMPTION FOR
THE BASELINE VERSION OF EACH APPLICATION ON PLATFORM A.

denoted with the label “CPP”. Multi-threaded tests are
denoted with the label “OMP”.

All tests are repeated 10 times and the median result is
used to build the graphs below. Table I lists the execution
time and memory consumed for each application running on
Platform A without CHIMES.

A. Overheads

To evaluate the overhead of CHIMES, we start by running
a transformed version of the application linked with an
empty runtime library (referred to as Empty tests). This
evaluates the overhead added by only the inserted function
calls and other source code instrumentation. Then, we use
a CHIMES library that implements all of the functionality
from Section III-C but does not actually create checkpoints
(referred to as No-Checkpoint tests). This measures the
overhead added by tracking the state of the application.
Finally, we test with the full CHIMES runtime library
and measure any increase in overhead caused by creating
checkpoints on disk (referred to as Checkpoint tests). All
overheads are measured relative to the original application,
compiled with gcc -O3.

Note that in some cases the Empty tests may demonstrate
higher overhead than the others because No-Checkpoint and
Checkpoint tests are often able to enter SCM mode in cases
where Empty tests do not.

Figures 2 and 3 show the results of running the single-
threaded tests on both hardware platforms. In general, we
see an expected trend of increasing overhead from the Empty
tests to the No-Checkpoint tests to the full Checkpoint tests.
The median overhead for the Checkpoint tests across all

Figure 2. Overheads on Platform A during single-threaded tests.

applications on Platform A is 4.3%, and on Platform B is
4.1%.

Figure 2 shows a significant slowdown for RodiniaBack-
prop caused by the CHIMES code transformations interfer-
ing with compiler optimizations when stack variable and
function addresses are taken, as discussed in Section III-F.

In Figure 2, the RodiniaNw results show significant
overhead with checkpointing enabled, and in both Figures 2
and 3 we see similar behavior for SPECKDTree. We find
that the added execution time comes from a wait at execution
termination for the last and only checkpoint to complete be-
ing written to disk. These benchmarks are not characteristic
of the long-running iterative scientific applications targeted
by this and other checkpointing work. They are short-lived
applications for which checkpointing offers little value.

In Figure 3, the RodiniaB+tree results show negative
overheads when running the No-Checkpoint test. This result
is caused by cache behavior. RodiniaB+tree performs many
small heap allocations. In CHIMES, a small header (8 bytes)
is added to each of these allocations, improving the cache
characteristics of RodiniaB+tree by pushing more allocations
onto separate cache lines. If these allocation headers are
removed, No-Checkpoint overhead becomes 1.5%. Note that
Platform A and B both have the same L1 cache line size
(64 bytes), but that Platform B has a longer L2 cache line
(128 bytes vs. 64 bytes for Platform A). This explains
why Platform A does not demonstrate this behavior for
RodiniaB+tree: its smaller L2 cache lines cause similar
caching behavior with and without the added header.

In the OpenMP results, most of the outliers mimic the
results from the single-threaded programs. The main differ-
ence is the CoMD Empty test on Platform B, where ∼50%
overhead is recorded. This is caused by the lack of SCM
mode in the Empty tests. Without SCM mode, some tight
parallel loops are run with instrumentation enabled, which

Figure 3. Overheads on Platform B during single-threaded tests.

Figure 4. Overheads on Platform A during multi-threaded OpenMP tests.

includes one inserted synchronization point. This synchro-
nization adds significant overhead on Platform B because it
is more parallelism than Platform A (128 hardware threads
on Platform B vs. 12 on Platform A).

Otherwise, the OpenMP tests perform similarly to the
single-threaded tests, with an average overhead of 6.1% on
Platform A and 5.3% on Platform B.

1) Number of Checkpoints: When evaluating the over-
head of CHIMES, it is important to also consider how many
checkpoints are being created. Figure 6 shows the number
of checkpoints created by each application on Platforms A
and B.

Some benchmarks execute for an insufficient amount of
time to create more than one checkpoint, though many
produce on the order of tens or hundreds of benchmarks.
Note that OpenMP applications tend to produce fewer check-
points than single-threaded applications as instrumentation

Figure 5. Overheads on Platform B during multi-threaded OpenMP tests.

Figure 6. Median number of checkpoints created on Platforms A and B
for each benchmark.

is added to track thread state, thereby increasing overheads
and leading to more checkpoint throttling.

B. Checkpoint Efficiency

Checkpoint efficiency is a measure of the size of the
checkpoints created for an application, relative to its total
size in memory. Figure 7 shows the checkpoint effiencies
for all benchmarks on Platforms A and B. 100% efficiency
indicates that the size of the application’s in-memory state
and the size of the checkpoints are the same. For some
applications, we see that the change set tracking and hashing
described in Sections III-B1 and III-C successfully reduced
the amount of application state that had to be checkpointed.
However, it is quite common for applications to regularly
touch all application state (e.g. on every time step), so
in many cases a checkpoint is a full copy of the running
application. In some cases where the application work-

Figure 7. Median checkpoint efficiency on Platforms A and B across all
checkpoints created by test runs of all applications.

ing set is small, the checkpoint is appreciably larger due
to CHIMES-specific objects added to the checkpoint. For
instance, CHIMES includes alias set information in the
checkpoint, which is not considered a part of the running
application’s working set.

C. Comparison to Related Work

Section IV-A showed that the CHIMES framework adds
on average ∼5% of overhead to our benchmarks. In this
section, we compare this level of overhead to the most
related frameworks from Section II: BLCR, DMTCP, and the
incremental checkpointing system described in [4] and [5].

It is difficult to find published performance numbers for
BLCR. [1] reports multi-second pause times for applications
with working sets as small as 50 MB, while for CHIMES we
generally see application pause times on the order of milli-
seconds thanks to the offload of checkpoints to a dedicated
thread.

DMTCP [2] does not report the overheads introduced by
their system, but do report an example checkpoint time of
25.2 seconds for an application with a 680 MB working set,
indicating a checkpointing rate of 26.98 MB/s. Considering
our similarly sized SPECBotsSpar benchmark, we observed
a worst case overhead on Platform A of 8.05% to produce
an average of 11.5 checkpoint files for a 791.65 second
execution when the working set size was 757.83 MB. This
translates to a checkpointing rate of 136.75 MB/s, more than
five times that of DMTCP.

In [4] the authors observe that the checkpointing run-
time itself adds little overhead, even with a dedicated
checkpointing thread. This agrees with our results for the
No-Checkpoint tests in Section IV-A. In [5], the authors
demonstrate similar checkpointing overheads to this work,
on the order of 5-10%. This is to be expected due to the
similarity in approaches.

V. CONCLUSIONS

There are many tradeoffs in the design of a checkpointing
framework: how comprehensive the checkpointable state is,
how much attention is given to efficiency, how much control
the user is given over checkpoint creation, the layer in the
software stack to implement the framework, etc. In this work
we present a novel checkpointing framework that has the
following characteristics:

1) Automated checkpointing of stack, heap, and other
user-level objects through source code inspection and
transformation.

2) A highly efficient, overhead-aware runtime for multi-
threaded programs that handles program state tracking
and checkpoint creation.

3) Support for user specification of checkpoints.
4) Support for pluggable user functionality in the creation

and restoration of checkpoints.
5) A combined compiler and library approach to check-

pointing which uses insights gained from the source
code to enhance efficiency.

There are many possible future directions for this work.
Integration with OpenMPI’s custom checkpointer frame-
work [14] or beneath multi-level checkpointing libraries,
such as SCR [15], would enable support for distributed
checkpointing. Preliminary investigations show that the tech-
niques presented in this paper also work well for heteroge-
nous systems that include GPU or MIC accelerators.

While this work focuses on checkpointing efficiency,
future work should also focus on the efficiency of resuming.
Preliminary investigation shows that the main bottleneck in
resuming CHIMES is the number of incremental checkpoints
that must be traversed. This suggests an interesting runtime
tradeoff between creating incremental checkpoints to reduce
checkpointing overheads, versus full checkpoints to reduce
resume latency.

The evaluation in Section IV shows that this framework
is not only flexible enough to handle checkpointing of real-
world scientific applications, but that it does so efficiently
and transparently to the user. CHIMES supports real-world,
long-running, scientific applications that have large memory
footprints, use function pointers, use complex types, and use
complex build systems. Not only does CHIMES support
them, but CHIMES makes it easier to build and improve
them by easing debugging, performance hotspot analysis,
and resilient application development.

ACKNOWLEDGMENT

This work was supported in part by the Data Analysis
and Visualization Cyberinfrastructure funded by NSF under
grant OCI-0959097 and Rice University. This work was also
supported in part by NIH award NCRR S10RR02950, an
IBM Shared University Research (SUR) Award in partner-
ship with CISCO, Qlogic and Adaptive Computing, and Rice
University.

REFERENCES

[1] J. Duell, “The design and implementation of berkeley lab’s
linux checkpoint/restart,” Lawrence Berkeley National Labo-
ratory, 2005.

[2] J. Ansel, K. Aryay, and G. Coopermany, “Dmtcp: Transparent
checkpointing for cluster computations and the desktop,” in
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on. IEEE, 2009, pp. 1–12.

[3] S. I. Feldman and C. B. Brown, “Igor: A system for pro-
gram debugging via reversible execution,” in ACM SIGPLAN
Notices, vol. 24, no. 1. ACM, 1988, pp. 112–123.

[4] G. Bronevetsky, D. Marques, K. Pingali, S. McKee, and
R. Rugina, “Compiler-enhanced incremental checkpointing
for openmp applications,” in Parallel & Distributed Process-
ing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 1–12.

[5] G. Bronevetsky, K. Pingali, and P. Stodghill, “Experimental
evaluation of application-level checkpointing for openmp
programs,” in Proceedings of the 20th annual international
conference on Supercomputing. ACM, 2006, pp. 2–13.

[6] R. R. Chandrasekar, A. Venkatesh, K. Hamidouche, and
D. K. Panda, “Power-check: An energy-efficient checkpoint-
ing framework for hpc clusters,” in Cluster, Cloud and Grid
Computing (CCGrid), 2015 15th IEEE/ACM International
Symposium on. IEEE, 2015, pp. 261–270.

[7] “Clang libtooling,” http://clang.llvm.org/docs/LibTooling.html.

[8] “xxhash,” https://github.com/Cyan4973/xxHash.

[9] S. C. et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in Workload Characterization, 2009. IISWC
2009. IEEE International Symposium on. IEEE, 2009, pp.
44–54.

[10] K. M. Dixit, “The spec benchmarks,” Parallel computing,
vol. 17, no. 10, pp. 1195–1209, 1991.

[11] I. K. et al., “Lulesh programming model and performance
ports overview,” Lawrence Livermore National Laboratory,
Tech. Rep. LLNL-TR-608824, December 2012.

[12] “Comd,” http://www.exmatex.org/comd.html.

[13] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan,
and C.-W. Tseng, “Uts: An unbalanced tree search bench-
mark,” in Languages and Compilers for Parallel Computing.
Springer, 2007, pp. 235–250.

[14] “Openmpi self-checkpointer,”
http://www.crest.iu.edu/research/ft/ompi-cr/.

[15] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supin-
ski, “Design, modeling, and evaluation of a scalable multi-
level checkpointing system,” in High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2010 Interna-
tional Conference for. IEEE, 2010, pp. 1–11.

