Cooperative Scheduling of
Parallel Tasks with General
Synchronization Patterns

ECOOP 2014
August 1, 2014

Shams Imam, Vivek Sarkar
Rice University

e Worker Threads

* Typically one per core

source: http://www.deviantart.com/art/Randomness-20-178737664

 Tasks, Work Queues, and Worker Threads

 Runtime manages load balancing and synchronization

source: http://www.deviantart.com/art/Randomness-20-178737664

)

Synchronization Constraints °

Mow playing: Smooth Jazz

| need to wait until my wife
gets here to checkout.

Uh, yes you do, sir.

. %

J]

| hope he realizes
he is holding up a lot
of people in the queue,

)

C o

Meedle scratches, music stops]

 Dependences between tasks

Honey, | got the
remaining items.

v 55 P

* Prevent an executing task from making further progress

* Needs to synchronize with other executing task(s)

source: http://viper-x27.deviantart.com/art/Checkout-Lane-Guest-Comic-161795346

ix Common synchronization constructs ®

* Join operations

* Futures

e Barriers / Clocks / Phasers
* Atomic Blocks

e More in the future?

‘ Common Solution to Synchronization:
Block Worker Threads

o V.
When is this line going to
move?!

@ — Excuse me sonny...

Are you going to open

Suuuure...
Just give asecondso |
can duplicate myselfl

Each thread needs its own system resources
Can lead to exhaustion of memory or other system resources

Thread blocking approaches do not scale!

source: http://www.deviantart.com/art/Randomness-5-90424754

a): Common Solution to Synchronization: %'RICE
Block Worker Threads

* Creating additional threads is contradictory to goal of TPM

1100 ns per thread context switch (without cache effects)

e |n contrast

* Object allocation takes around 30 ns
* Method call takes around 5 ns

e Setting fields takes around 1 ns

* Key assumption of this work
* Creating threads and context switching is expensive

* Task creation and synchronization constructs are cheaper

‘ Proposed Solution

* A Cooperative Approach is more efficient

Sir, in case you haven't noticed, we have
a full house today and waiting on you now
would inconvenience everyone else here.

- ’ »
- - |
v
- 5 | 1
- P - . ‘. -
2 - - \# : ;! . "
A
- i TN -
S il o

source: http://www.deviantart.com/art/3-000-Views-120361172

‘ Cooperative Scheduling

* Task decides to actively suspend itself and yield control back
to the runtime

e Task is added back into the ready queue when the task can
make progress

Ready

[]
Queue -
[1

Suspended
Queue

___pa
-

Cooperative Scheduling: http://en.wikipedia.org/wiki/Computer_multitasking#Cooperative_multitasking

time (increases downwards)

Cooperative Scheduling (contd)

Task-1 Task-1 / U

)

seful wor
by some
other task on
same worker
thread

blqck suspend Taﬂ(‘%—/
unblock l

resume

suspend/complete

block
suspend

10

Figure represents work by a single worker thread

Technical Detalls

e Delimited Continuations

e Event-Driven Controls

11

! . : . WVRICE
a’One-shot Delimited Continuations

Rest of the computation from a well-defined outer boundary

* i.e.represents a sub-computation

Suspend the state of a computation at any point
» captures everything in the (Java) stack
* current instruction pointer
* return addresses

* local variables
* Resume the computation, later, from that point

* One-shot: resumed at most once

12

Defined in “Continuations in the Java Virtual Machine”, lulian Dragos et al.

is Event-Driven Control (EDC)

* Binds a value and a list of runnable blocks

e Runnable blocks are code that form the continuation

* Dynamic single-assignment of value (event)

<empty>

The EDC is initially empty

13

is Event-Driven Control (EDC)

* Binds a value and a list of runnable blocks

* Dynamic single-assignment of value (event)

Continuations attach to the EDC and
are not triggered until value is available
(i.e. until event is satisfied)

14

ﬁs Event-Driven Control (EDC) * St

* Binds a value and a list of runnable blocks

* Dynamic single-assignment of value (event)

Eventually, a value becomes available in the EDC
(follows from deadlock freedom property of finish,
futures, clocks, atomic)

15

ﬁs Event-Driven Control (EDC) °

* Binds a value and a list of runnable blocks

* Dynamic single-assignment of value (event)

VALUE

This enables execution of continuations attached to

the EDC

Y RICE

16

i)" Event-Driven Control (EDC)

* Binds a value and a list of runnable blocks

* Dynamic single-assignment of value (event)

VALUE

Subsequent continuation attachment requests...

17

a):

Event-Driven Control (EDC) *

* Binds a value and a list of runnable blocks

* Dynamic single-assignment of value (event)

VALUE

Synchronously execute the continuation
(e.g. schedule a task into the work queue)

Y RICE

18

N RICE

Event-Driven Control API

currentTaskId():
* returns a unique id of the currently executing task
newEDC():
* factory method to create EDC instance
suspend(anEdc).
* the current task is suspended if the EDC has not been resolved
* Implementation attaches runnable block to resume task
anEdc.getValue()
* retrieves the value associated with the EDC
» safe to call this method if execution proceeds past a call to suspend()
anEdc.setValue(aValue)
* resolves the EDC
* triggers the execution of any EBs

19

. . Y RICE
Cooperative Runtime "

* We expose EDCs as an APl in our runtime.
* Read/ Write / Query on value

e Suspend till value becomes available

* Continuations not exposed to developer

* Notorious for being hard to use and to understand

* Developers write thread-based code

 Compiler handles CPS code transformations

* One-shot delimited continuations implemented more efficiently than general
continuations

20

35‘ Implementation: Compiler Infrastructure

_hjfile(s) >

* New Habanero-Java runtime |

* Frontend, Backend-1, and Frontend: Parsing, Syntactic
Backend-3 reused from and Semantic Analysis
thread-blocking runtime v _
compiler Backend-1.: II.QAr.1aIyS|s and

Optimizations

 Backend-2 tags methods as v

‘suspendable’ Backend-2: Pausable method
translations and tagging

e Supports polymorphism

 Backend-4 CPS transforms Backend-3: Javac compilation
code to support continuations

Backend-4: Kilim weaving

Y
QytecodD 21

Cooperative Runtime

Suspended Tasks

Ready/Resumed Task Queues

reqistered with EDCs

task [{ task }}
task | *** |ltask [{ task }}
task task 1 [{ task }}
2.
S S 0 EDC EDC EDC
SS S
Worker Threads Synchronization objects

that use EDCs

22

ﬁ Cooperative Runtime — Call Stack

__—-—-_//A
° A i Other runtime calls that manages the
HEIp first pOIICV worker and the task queue
* Task has a stack of its own)

* Task can be executed by any of the ,
worker.executeTask(): on returning

worker threads from resume() needs to perform book-
. keeping if task was suspended
* Task wrapped to form a Delimited ’ l
Continuation

task.resume(): the regular call to
resume the continuation

v

 Worker thread manages when

tasks get
task.run(): forms the delimited
* added to suspended queue continuation boundary
* removed from ready queues for v

execution by worker threads Body of the task that may call into the

runtime and suspend this task

e e ——
23

is Benefits of Cooperative Runtim e

e Bound the number of worker threads

e Threads never block
 Additional threads do not need to be created

e (Tasks may suspend)

e Do not need more than one worker thread
* Computations can be made serializable

* Can help in reproducibility and debugging

24

_ . N RICE
Synchronization Constructs *

 Keyideais to:

* Translate the coordination constraints into producer-consumer
constraints on EDCs

e Use Delimited Continuations to suspend consumers when waiting on
item(s) from producer(s)
* Any task-parallel Synchronization Constraint can be
supported.
* Both deterministic and non-deterministic constructs

* Including atomic/isolated and actors

25

: . . VoV RICE
i) Implementation Recipe

* Async-Finish (Join operations)
* Counters to track in-flight spawned and completed tasks
* Single EDC resolved when count reaches zero
* Any async task maintains a Stack of nested finish scopes

* Tasks suspends on EDC at the end-of-finish

Habanero-Java: The New Adventures of Old X10. V Cavé, J. Zhao, J. Shirako, V. Sarkar. PPPJ'11. 26

Implementation Recipe

//,7 SO;

~

finish {

S1;

async {
S2;

¥

async {
S3;

Iy

}
S4;

\ 55;

NV RICE

27

Implementation Recipe

//,7 S0;

~

finish {

S1;
async {
S2;

¥

async {
S3;

¥

}
S4;

\ 55;

active
finish
scope

spawn: 0
done: O

EDC:

28

Implementation Recipe

//,7 SO;

finish {

~

S1;

async {
S2;

Iy

async {
S3;

Iy

}
S4;

\ 55;

active
finish
scope

spawn: 0
done: O

EDC:

29

Implementation Recipe

//,7 SO;

finish {
S1;

~

async {

S2;

Iy

async {
S3;

Iy

}
S4;

\ 55;

active
finish
scope

spawn: 1
done: O

EDC:

30

Implementation Recipe

SO;
finish {
S1;
async { .. }

async {

S3;
¥
¥
S4;
S5;

~

-

SZ;

~

active
finish
scope

spawn: 2
done: O

EDC:

31

Implementation Recipe

//7 SO;

fi

nish {
S1;
async { .

async { _I}

\\‘ SS

~

/

4)
S2;

. v

4)
S3;

. .

active
finish
scope

spawn: 2
done: O

EDC:

32

Implementation Recipe

-

o

SO;
finish {
S1;
async { .. }
async { .. }
¥
54
S5;

~

/

4)
S2;

. v

4)
S3;

. .

active
finish
scope

spawn: 2
done: O

EDC:

33

Implementation Recipe

-

SO;
finish {
S1;
async { .. }
async { .. }
¥

L

~

/

4)
S2;

. v

4)
S3;

. .

active
finish
scope

spawn: 2
done: O

34

Implementation Recipe

4 N\ (k
S0; { .
finish { s2; active # spawn: 2
S1; . T finish # done: 1
async { .. } < scope EDC:
async { .. } (" ;) —
} 53; l
T
_ 2N y (K A
S4;
S5;
ks
_ J

35

Implementation Recipe

-

SO;
finish {
S1;
async { .. }
async { .. }
¥

L

~

/

4)
S2;

. v

4)
S3;

. .

active
finish
scope

spawn: 2
done: 2

EDC: 1

\ 4

T 1
S4;
S5;

N

36

Implementation Recipe

-

SO;
finish {
S1;
async { .. }
async { .. }
¥

L

~

/

4)
S2;

. v

4)
S3;

. .

active
finish
scope

spawn: 2
done: 2

EDC: 1

\ 4

M1

S4;
S5;

37

. . Y RICE
Implementation Recipe

* Atomic/lIsolated blocks
* Linked-list of EDCs to grant tasks permission to execute
* First EDCin linked-list is resolved by default
* ‘lock’ request causes task to suspend on next available EDC in the list

* During ‘unlock’ resolve the value of the next EDC in the list

active EDC

EDC: 1 —p>

38

Implementation Recipe

/,async {

Sla;

isolated {
S2a;

¥

S3a;

¥

.

~

active EDC

EDC: 1

/,async { A‘\
Slb;
isolated {
S2b;
}
S3b;
}
\ %

/,async { A‘\
Sic;
isolated {
S2c¢;
¥
S3c¢;
¥
\ /

39

Implementation Recipe

/,async {

Sla;

isolated {

S2a;
¥
S3a;

¥

.

~

active EDC

EDC: 1

/,async { A‘\
Slb;
isolated {
S2b;
}
S3b;
}
\ /

/,async { A‘\
Sic;
isolated {
S2c¢;
}
S3c¢;
}
\ /

40

active EDC

EDC: 1

!

/I

isolated {

S2a;
ks
S3a;
} // end async

» EDC:

Implementation Recipe

1

(A)

isolated {
S2b;

ks

S3b;

\} // end async /

» EDC:

1

(A)

isolated {
S2c¢;

ks

S3c;

\} // end async /

41

Implementation Recipe

active EDC
EDC: 1 » EDC:
({) (A)
isolated { isolated {
S2a; S2b;
ks ks
S3a; S3b;

} // end async

\} // end async /

» EDC:

1

(A)

isolated {
S2c¢;

ks

S3c;

\} // end async /

42

EDC: 1

!

active EDC

/1

isolated {
S2a;

¥

S3a;
} // end async

~

Implementation Recipe

» EDC: 1

I

A)

isolated {
S2b;

ks

S3b;

\} // end async /

» EDC:

1

(A)

isolated {
S2c¢;

ks

S3c;

\} // end async /

43

EDC: 1

active EDC

/1

isolated {
S2a;
ks

S3a;

} // end async

~

Implementation Recipe

» EDC: 1

I

(1)

isolated {
S2b;

ks

S3b;

\} // end async /

» EDC:

1

(A)

isolated {
S2c¢;

ks

S3c;

\} // end async /

44

. . Y RICE
Implementation Recipe

* Futures
* Single EDC to store future value
e EDC resolved when future task is executed

* Consumers suspend until EDC is resolved

{ | task }}

[{ task }} - EDC: consumers

producer { | task }}

45

‘ Implementation Recipe

* Clocks / Phasers
* One EDC per phase
* Tasks can leave and enter phases
* Track number of registered and arrived tasks for each phase

* Resolve EDC when counts become equal

[
il
i

L

active EDC

Phasers: a Unified Deadlock- Free Construct for Collective and Point-to-Point Synchronization. J. Shirako, D.M. Peixotto, V. Sarkar, W.N. Scherer. ICS’08. 46

: . . VoV RICE
i) Implementation Recipe

e EventCount

 Counts number of events that have occurred so far

* One EDC per countin a list
* Resolve EDC when counts reaches particular value

* Tasks await on specific element of list

EDC:1 (—p| EDC:1 —9| EDC:_ +—P| EDC:_

t 1

[{ task }1 [{ task }1

Synchronization with Eventcounts and Sequencers. David P. Reed and Rajendra K. Kanodia. Communications of the ACM, Volume 22, Number 2. 47

Experimental Setup

Four 8-core 3.8 GHz IBM POWER7
256 GB of RAM
32 KB L1 Cache
e Threads bound to cores (using taskset command)

IBM Java SDK Version 7 Release 1

* Classes from java.util.concurrent package
Habanero-Java language v1.3.1

* Default scheduler = work-sharing

* Cooperative scheduler enabled via option
Benchmarks run with single place

* 32 worker threads per place

* 64 GB memory allocated to JVM

 Mean of best 30 out of 100 execution times reported

N RICE

48

Async-Finish Benchmarks

0
N
4 o
10 =
VS Ll
% —
3 %
-
=
' 00
; S 3 2
) ~
E | 5 3 2 - 8
O = > 00 N :“
] Vo) % o ™ @ [\'\?(C\].
- < ¥ . 0 0 5
= g 2 N 3 o %0
O < MmN . - <
.- -~ ~ N <t <
E i s .
W - 57
> % o
€3 © /
o) = B <
V) ~ 1 0
S 7 © b 8 %
(5]
z / Eﬁi \ . 7
< 7. Y

FJ NBody LuDec MST BFS-BF DR
1 Cooperative Blocking =] Java-ForkJoinPool

Fig. 11: Results for async-finish benchmarks. JGF Fork Join (FJ) with 4 million tasks. NBody with
300K steps. LU-Decomposition (LuDec) with an array size of 2K and block size of 128. MST, BFS-

BF and DR with an input graph of size 512 nodes and artificial load values of 500K, 20M, and 8M 49
respectively.

Future Benchmarks

Average Execution Time (in millisecs)

i
A
I~
7 Y-
S
R
/ g ga
IS
7 N
o =
% 3 5
© 23 o
] . £ g
— o -
7 g g 7
4 / Y
\
Sm-Wat Bin-Tree CD25 CD100

1 Cooperative Blocking] Java-ForkJoinPool

Fig.12: Smith Waterman on strings of length 960 and 928. Binary Tree operating on a tree with
depth of 14. Cholesky Decomposition on an input matrix of size 2000x 2000 with tile sizes of 25 and

Phaser Benchmarks

: | 7 f
2 |5 2 3 %
E | g g = /
b~ ~ ©
= i > o ?
g % % % Z
2| 7 ?
= 7
S <
R = ? S
O 0 3 . i ZE: 3 é-
2 2 % S a 723 N7 =
< P U 7 77 I /) %
BARA0 RED40 LUF40 MOLA40 SOR500 VC512

3 Cooperative Blocking =1 Java-ForkJoinPool

Fig.13: Phaser benchmark results. BAR, RED, LUF, and MOL with 40 tasks registered on the
phaser. SOR benchmark with an input array size of 500. VC coloring with an input graph of 512

nodes and artificial load of 10M.

51

‘” Future work

e Cooperative scheduling for
library implementation of
Habanero-Java (HJlib)

* Pre-emptive Scheduling

\\

* Suspend long running tasks for
fairness

* Support priorities

€GE000Sq Al Yyoieas /iy |eulbuQ @
Wo2 }901SuUo0ouED) WoJ) 3jgeeay siybiy

* Eureka Computations

* Support for Cilk-like abort T
statement with sound semantics = ¢ : - Err=t

* E.g. branch-and-bound
computations

52

source: http://www.cartoonstock.com/cartoonview.asp?catref=bso0035

2 RICE

is Related work

e Tasks / Kilim
* Write event-driven programs in thread-based style
* Compiler does CPS transforms of code

* Nothing to do with task parallelism

e (Qthreads

e Continuations with lightweight call stack stitching
e Stack size limited to 4kB

53

a):

Related work

* Glasgow Haskell Compiler

Provides continuation support directly

Uses polling to resume continuations

e C++ implementation of X10

Work-first policy
Dedicated implementation for each construct
Supports async-finish and futures

Implementation did not support clocks (phasers)

2 RICE

o4

N RICE
Summary

Cooperative runtime for scheduling tasks
Using
* One-shot Delimited Continuations

* Event-Driven Controls
Can support any task-parallel synchronization

Performs better than runtimes that use blocking

95

_ b\ RICE
Questions '

1mport ecoop.audience.Questions;

56

