
Oil and Water can mix! Experiences with integrating
Polyhedral and AST-based Transformations

Jun Shirako and Vivek Sarkar
Department of Computer Science, Rice University

Email: {shirako,vsarkar}@rice.edu

Abstract—The polyhedral model is an algebraic framework
for affine program representations and transformations for
enhancing locality and parallelism. Compared with traditional
AST-based transformation frameworks, the polyhedral model
can easily handle imperfectly nested loops and complex data
dependences within and across loop nests in a unified framework.
On the other hand, AST-based transformation frameworks for
locality and parallelism have a long history that dates back
to early vectorizing and parallelizing compilers. They can be
used to efficiently perform a wide range of transformations
including hierarchical parametric tiling, parallel reduction, scalar
replacement and unroll-and-jam, and the implemented loop
transformations are more compact (with smaller code size) than
polyhedral frameworks. While many members of the polyhedral
and AST-based transformation camps see the two frameworks
as a mutually exclusive either-or choice, our experience has been
that both frameworks can be integrated in a synergistic manner.
In this paper, we present our early experiences with integrating
polyhedral and AST-based transformations. Our preliminary
experiments demonstrate the benefits of the proposed combined
approach relative to Pluto, a pure polyhedral framework for
locality and parallelism optimizations.

I. INTRODUCTION

The polyhedral model [11] is an algebraic framework
for affine program representations and transformations for
enhancing locality and parallelism. Compared with traditional
AST-based transformation frameworks [15], the polyhedral
model can easily handle imperfectly nested loops and complex
data dependences within and across loop nests in a unified
framework. On the other hand, AST-based transformation
frameworks for locality and parallelism have a long history
that dates back to early vectorizing and parallelizing compilers.
Compared with the polyhedral model, AST-based frameworks
can easily provide cost models corresponding to the syntactic
properties of the intermediate program representations. Though
they lack the unified view of transformations present in poly-
hedral frameworks, AST-based frameworks efficiently support
a wide range of transformations with proper cost models,
including hierarchical parametric tiling, scalar replacement,
unrolling, unroll-and-jam and vectorization. Another benefit
of AST-based frameworks is that loop transformations can be
implemented more compactly (with smaller code size) than
polyhedral frameworks.

While many members of the polyhedral and AST-based
transformation camps see the two frameworks as a mutually
exclusive either-or choice, our experience has been that both
frameworks can be integrated in a synergistic manner. In this
paper, we present our early experiences at Rice University
with integrating polyhedral and AST-based transformations

in extensions to the ROSE compiler system [18]. These ex-
periences build on our past work on analytical bounds for
optimal tile size selection [20], [9], There are two goals
derived from these experiences: one to bring the advantages
of the polyhedral model - i.e., unified view of program
representations/transformations - to the world of AST-based
transformations, and another to enable cost models to be freely
used in polyhedral frameworks. As an initial demonstration of
integrating polyhedral and AST-based frameworks, we focus
on a cost-based approach to locality optimization that identifies
the best loop order for each statement, and also determines
when loop fusion is profitable. Specially, our approach in this
paper consists of the following three proposals.

1) Proposing a practical two-phase approach to integrate
polyhedral and AST-based frameworks: former phase
for locality optimization and latter phase for remained
transformations.

2) Extending the polyhedral framework with a cost-
based approach to locality optimization.

3) Providing a simple approach to extract data depen-
dence information from polyhedral dependences as
the form of dependence vectors (latter phase).

To be more specific, in this paper we first apply the polyhedral
transformations with cost-based extensions so that loops with
data locality can be legally interchanged and fused. This
phase also includes index set shifting and loop reversal. In
the latter phase, the fused loop nests are individually enabled
for AST-based loop transformations with proper cost models,
including skewing, hierarchical tiling, unrolling, unroll-and-
jam, parallelization (doall, reduction and doacross), and vec-
torization. The dependence information from the polyhedral
framework enhances the legality analysis for AST-based loop
transformations, whereas these transformations can be per-
formed more compactly and efficiently using an AST-based
framework rather than the polyhedral framework. Our prelim-
inary experiments demonstrate the benefits of the proposed
combined approach relative to Pluto [8], a pure polyhedral
framework for locality and parallelism optimizations.

The rest of the paper is organized as follows. Section II
provides background on the polyhedral model and AST-based
transformations. Section III introduces the cost-based analyses
for best loop permutation order and loop fusion profitability.
Section IV describes the overview of the proposed approach to
integrate polyhedral and AST-based transformations, and Sec-
tion V shows the details. Section VI presents the experimental
results for the proposed integrating approach. Related work is
discussed in Section VII, and we conclude in Section VIII.

II. BACKGROUND

A. Polyhedral Model

The polyhedral model [11] is an algebraic framework for
affine program representations and transformations. The major
strengths of polyhedral models over AST-based approaches
include: 1) unified representation of perfectly and imperfectly
nested loops and a large set of transformations that can be
performed on them, and 2) mathematical approaches to express
data dependences and to verify legality of transformations.
These features provide a high degree of flexibility in specifying
loop transformations in a unified framework. Benabderrah-
mane et al. summarized the advantages of the polyhedral
model as follows [6]. “To fight a common misunderstanding,
the power of the polyhedral model is not to achieve exact
data dependence analysis, but to implement compositions
of complex transformations as a single algebraic operation,
and to model these transformations in a convex optimization
space”.

On the other hand, not all loop transformations are
straightforward to implement in the polyhedral framework.
For instance, unrolling and unroll-and-jam have to alter the
input polyhedral representation by adding new statements;
loop strip-mining and loop tiling have to modify the iteration
domains [14]. Furthermore, transformations such as software
pipelining and statement-level doacross parallelization are hard
to express in the polyhedral model. Another aspect of difficulty
in the polyhedral model is due to the fact that the code genera-
tion phase is separated from the optimization (transformation)
phase and is essentially a black box for the rest of the compiler.
Therefore, syntactic properties of the generated code, e.g.,
which loop index has stride-1 array references, are complex
to model in the optimization phase although such properties
are important for cost analysis for loop transformations, e.g.,
vectorization [16].

We now briefly summarize some of the key aspects of
the polyhedral model. Since our polyhedral transformation
is influenced by the Pluto framework [8], we use the same
terms/expressions as those used in Pluto. First, an integer
polyhedron in n-dimensional space is defined as follows.

Definition 1 (Polyhedron): The set of all integer vectors
~x ∈ Zn such that A~x + ~b ≥ ~0, where matrix A ∈ Zm×n
and vector ~b ∈ Zm, defines a (convex) integer polyhedron. A
polytope is a bounded polyhedron with finite size.

Polyhedral representation of programs: Based on Defini-
tion 1, a program is expressed as a collection of polyhedra,
which correspond to the statement set S in the program; each
statement Si ∈ S is enclosed in one or more loop(s). Given a
program, each dynamic instance1 of a statement Si is defined
by an n-dimensional iteration vector ~i which contains values
for the indices of the loops surrounding Si, from outermost to
innermost. Whenever the loop bounds are linear combinations
of outer loop indices and program parameters represented by
a vector ~p (typically, symbolic constants representing problem

1As in past work on polyhedral frameworks including Pluto, we will restrict
our attention to dynamic instances of statements within a single instance of
a procedure invocation. Formalizing dynamic instances of statements across
both loop iterations and procedure invocations is beyond the scope of this
paper.

sizes), the set of dynamic iteration vectors corresponding to a
statement define a polytope, DSi , which is called domain of
statement Si.

Polyhedral Dependences: The dependence between state-
ments is also represented by a polyhedron. The Polyhedral De-
pendence Graph (PDG) is a directed multi-graph G = (V,E),
where each vertex represents a statement, i.e., V = S, and each
edge eSi→Sj ∈ E represents a dependence between dynamic
instances of Si and Sj

2. For a dependence edge eSi→Sj , let
the source iteration of Si be ~s ∈ D~s and target iteration
of Sj be ~t ∈ D~t, then these two instances access the same
memory location and ~s is the last access before ~t. This relation
is expressed as a set of equations, i.e., ~s = he(~t), which
is also known as the h-transformation [12]. The dependence
information corresponding to edge e is characterized by a
polyhedron, Pe, which is called the dependence polyhedron.
The rank of the dependence polyhedron includes the sum
of the dimensionalities of the source and target statements’
polyhedra D~s and D~t with dimensions for program parameters
as well. For e ∈ E, dependence polyhedra P is summarized as
follows (for the case when no additional program parameters
are included):

〈~s,~t〉 ∈ PeSi→Sj ⇐⇒ ~t ∈ D~t depends on ~s ∈ D~s via e
Si→Sj

Affine transformations: Finally, a d-dimensional affine trans-
formation TSi for a statement Si is expressed as follow. Let
MSi

∈ Zd×n, ~i ∈ Zn and ~tSi
∈ Zd.

TSi
(~i) = MSi

~i+ ~tSi

A legal affine transform must be a one-to-one mapping from
the original domain DSi

to transformed domain T (DSi
), for

all Si ∈ S. Furthermore, all dependences must be satisfied, i.e.,
∀eSi→Sj ∈ E : TSj (~t) − TSi(~s) � ~0, 〈~s,~t〉 ∈ PeSi→Sj . Note
that ~x � ~0 means ~x is lexicographically positive and the above
relation is equivalent to the traditional dependence condition:
the dependence target must come after the dependence source3.

B. AST-based Loop Transformations

The AST-based transformations can be considered as a
sequence of these individual loop transformations applied to
the Abstract Syntax Tree (AST) of the program region of
interest. Several common loop transformations introduced by
past work [15], [23] are summarized below and shown in
Figure 6. Note that we assume parallelization and vectorization
to be applied after locality optimizations.

1) Loop Fusion merges two or more loops into a
single loop. This transformation can help improve
data locality and coarse-grained parallelism.

2) Loop Distribution is the inverse of loop distribution.
It divides the body of a loop into several loops for
different parts of the loop body. This transformation
can reduce the impact on cache and prefetch streams

2To be more specific, an edge e corresponds to a pair of particular references
to read/write a memory location, e.g., array element, in Si and Sj .

3T contains scalar dimensions to handle loop-independent dependences [8]

by decreasing loop body size. Also, some cases allow
to cut loop-carried dependences, thereby exposing
more doall parallelism.

3) Loop Permutation (Interchange) takes a multi-level
perfectly nested loops and permutates the loop order.
It can be used to improve data locality, coarse-grained
parallelism, and vectorization opportunities.

4) Loop Skewing also takes a perfect loop nest and rear-
ranges the loop iteration space and array subscripts,
thereby changing loop dependences. It can be used
to convert doacross parallelism into wavefront doall
parallelism and increase permutability, i.e., help loop
permutation, tiling and unroll-and-jam.

5) Index Set Shifting shifts the iteration space and array
subscripts. This transformation is mainly used to align
inter-loop dependences and increase the opportunities
of loop fusion.

6) Loop Reversal inverts the direction of loop iteration.
This transformation can also help other transforma-
tions such as fusion.

7) Loop Peeling separates the first/last iterations from
the remained iterations and creates multiple loops,
the prologue/epilogue loop and kernel loop. This
transformation can simplify the loop body when it
has different computations depending on the iteration,
e.g., if (i == 0) foo(); else bar();.

8) Loop Strip-Mining is a loop transformation that
replaces a single loop with two nested loops with
smaller segments. This restructuring is an important
preliminary step for transformations to improve lo-
cality and parallelism, such as tiling, unrolling, and
unroll-and-jam.

9) Loop Tiling is the multi-nest version of loop strip-
mining, which can be seen as the combination of
multiple applications of strip mining and loop permu-
tation. Especially, parametric loop tiling is an impor-
tant technique because it can change the computation
granularity of tiles at runtime so as to fit the data per
tile within cache/TLB and control the computation/-
communication trade-off when parallelized.

10) Loop Unrolling is to convert the innermost loop after
strip mining into the equivalent sequence of the loop
bodies. This transformation can enhance vectorization
and reduce the overhead to iterate loop. Note that loop
peeling to handle the last iteration is required when
the original loop iteration count is not the multiple
number of unrolling factor.

11) Unroll-and-Jam is the combination of loop strip-
mining, permutation, and unrolling so as to enhance
data reuse along with the unrolled loop. This trans-
formation may also require loop peeling for the last
iteration.

Although the phase-ordering problem among individual loop
transformations is not trivial, each transformation can be
applied to the intermediate AST with proper cost models that
correspond to the syntactic property at each point.

There are AST-based frameworks that apply a sequence
of transformations to a single loop nest [19], [3], [19],
[4], [21] including loop permutation, skewing, strip-mining,
tiling, unrolling, unroll-and-jam vectorization, and doacross-
parallelization. However, a big challenge for AST-based frame-

works is optimizations for complex loop structures including
imperfectly nested loops, e.g., inter-loop data localization, in
a unified manner as with the polyhedral framework.

III. COST-BASED ANALYSIS VIA DL MODEL

As an initial demonstration of integrating polyhedral and
AST-based frameworks, we focus on a cost-based approach
to locality optimization that identifies the best loop order
for each statement, and also determines when loop fusion
is profitable. This section introduces a cost-based analysis
for loop permutation order and loop fusion using the DL
model [19], [20], which gives the number of distinct cache
lines accessed in a loop nest.

A. DL Model

The DL (Distinct Lines) model, which forms the basis
for our cost-based approaches, was designed to estimate the
number of distinct cache lines accessed in a loop-nest [13],
[19]. Consider a reference to a contiguously allocated m-
dimensional array, A, enclosed in n perfectly nested loops,
with index variables i1, · · · , in:

A (f1(i1, · · · , in), · · · , fm(i1, · · · , in)) (Fortran)

A[fm(i1, · · · , in)] · · · [f1(i1, · · · , in)] (C),
where fj(i1, · · · , in) is an affine function. An exact analysis to
compute DL is only performed for array references in which
all coefficients are compile-time constants (i.e., for affine
references). An upper bound for the number of distinct lines
accessed by a single array reference [13] with one-dimensional
subscript expression f(i1, · · · , in) is

DL(f) ≤ min
(

(fhi−f lo)
g + 1,

⌈
(fhi−f lo)

L

⌉
+ 1
)
,

where g is the greatest common divisor of the coefficients of
the enclosing loop indices in f , and L is the cache line size
in units of array element size; fhi and f lo are the maximum
and minimum values of the subscript expression f across the
entire loop nest. In practice, the relative error of this estimation
is small when, as is usually the case, the range (fhi − f lo) is
much larger than the values of the individual coefficients of
f . For a multidimensional array reference A (f1, · · · , fm), the
upper bound estimate [13] is as follows4.

DL(f1, · · · , fm) = DL(f1)×
m∏
j=2

(
(fhij − f loj)

gj
+ 1

)

Extensions of this model to account for multiple accesses to
the same array in a loop nest have also been developed [13],
[19]. These DL definitions for a loop nest are also applicable
to a loop nest after loop tiling is performed. Given a tiled
loop nest whose loop boundaries are expressed using tile sizes,
t1, t2, · · · , tn, the DL definition is a symbolic function of tile
sizes denoted by DL(t1, t2, · · · , tn) [19].

In the following discussion, we use the DL expression of
each individual statement so as to enable DL-based analyses

4This is based on a heuristic assumption that the first dimension of the
array has at least L elements. The more general case without this assumption
is also discussed in [19].

for ti = 0, N-1, Ti
 for tj = 0, M-1, Tj
 for tk = 0, K-1, Tk
 for i = ti, ti+Ti-1
 for j = tj, tj+Tj-1
 for k = tk, tk+Tk-1
 A[i][j] += B[k][i];

A[i][j] B[k][i]

Tj

Ti

Tk

Ti

DL = DLA + DLB

 = Ti *⎡Tj / L⎤+ Tk *⎡Ti / L⎤
mem_cost = Cline * DL / (Ti * Tj * Tk)
 = Cline * (⎡Tj / L⎤/ (Ti * Tk) +⎡Ti / L⎤/ (Ti * Tj))

• Selects Ti, Tj, and Tk such that all data of a tile fits within a specific cache
• L : cache line size (# array elements per line)
• Cline : memory cost per cache line

Fig. 1: Example for DL and memory cost

in the polyhedral model. This is a natural extension of our
previous work [19]. Note that the definition of DL and memory
cost can also be applied to any level of cache or TLB by
selecting its cache line size or page size as L.

B. Memory Cost

First, we assume loop tiling so as to enhance data reuse by
fitting all the data per tile within a particular cache/TLB and
hence the DL expression is a function of tile sizes t1, t2, · · · , tn
as described in Section III-A. However, all the analyses in this
section are not specific to loops that need tiling since non-tiled
loop can simply be modeled as “tile size = loop iteration size”.
Based on this DL expression, a per-iteration memory cost of
a statement is defined as follow.

mem cost(t1, t2, · · · , tn) =
Cline ×DL(t1, · · · , tn)

t1 × t2 × · · · × tn

This assumes that the all distinct lines of a tile are kept on a
specific cache, and Cline represents the memory cost (cache
miss penalty) per cache line. Therefore, Cline×DL gives the
total cost to bring all the data within a tile to the particular
cache memory (Figure 1). Our analyses for loop permutation
order and fusion profitability is based on this mem cost
as shown below. Therefore, the results can be affected by
architectural parameters. In the experimental results, we simply
use the DL expression based on the level-1 cache of the target
platform.

C. Best Permutation Order Analysis

The partial derivative of mem cost with respect to tile
size ti - i.e., δmem cost/δti - represents the variation rate
of memory cost when tile size ti is increased. For instance,
δmem cost/δti < 0 indicates that increasing ti causes a
decrease in memory cost. We use δmem cost/δti as the
priority for loop permutation order because placing the loop
with the most negative value at the innermost position could
yield the largest benefit on data locality. As a heuristic ap-
proach [19], we compute δmem cost/δti at a default point,
e.g., (t1 = 1, t2 = 1, · · · , tn = 1), for all loops of 1 ≤ i ≤ n
and the decreasing order is used as the most profitable loop
order.

D. Loop Fusion Profitability Analysis

A straightforward approach to determine whether loop
fusion is profitable is to compare the DL memory costs before
and after loop fusion. For instance, given two loop nests
that share arrays with same access patterns (Figure 2a), the
memory cost of fused loop nest should be smaller than the
total memory cost of two individual loop nests because the
shared array, e.g., A[i][j] of S2, should already be in
the cache/TLB at the second access and hence the cost for
the second array reference can be ignored. In general cases,
however, comparing the memory costs before/after fusion is
not as simple as the analysis for loop permutation order
because memory cost mem cost is a function of tile sizes
and it has to find the tile size that minimizes mem cost under
the constraint that the all data of a tile of the fused loop fits
within a specific cache/TLB [13], [19], [20]. Note that the
above boundary constraint generally becomes stricter after loop
fusion while larger tile size gives smaller memory cost when
the loop nest has data locality [13], [19], [20]. This boundary
constraint on tile sizes is analytically defined based on the
DL expression and architectural parameters [20]. Therefore,
it is possible to define the functions for mem cost and tile
size boundaries before and after loop fusion and compare the
minimum memory costs although the results could be affected
by various platform parameters [20].

Alternatively, we can estimate the fusion profitability sim-
ply based on the array access patterns of shared arrays. To
be more specific, we will judge the fusion of two loops at the
same nest-level is profitable if there is at least one array which
the two loops access with the same pattern. This approach
also has a strength that it can make the decision of loop
fusion for each nest-level in a stepwise manner. According
to the definitions in the DL model, an m-dimensional array
reference A[fm][fm−1] · · · [f1] contains array subscripts of
affine functions.

 f1
f2
· · ·
fm

 =

 c11 c12 · · · c1n
c21 c22 · · · c2n

· · ·
cm1 cm2 · · · cmn


 i1

i2
· · ·
in

+

 c10
c20
· · ·
cm0


Note that permutation of loop-ij and loop-ik is equivalent
to exchanging indices ij and ik in the index vector ~i and
corresponding columns c∗j and c∗k in the coefficient matrix
C.

Loop fusion policy: Let us consider two n-th nested perfect
loop nests, which respectively have statements S1 and S2 as
their loop body, each of which contains an access to an m-
dimensional array A. The coefficient matrices for the two
references to array A are represented as CS1m,n and CS2m,n.
When these loop nests are partially fused until the (k − 1)-
th nest-level, our heuristic decides to fuse the loops at the
k-th nest level if the columns cS1∗l and cS2∗l are identical for
1 ≤ l ≤ k. Figure 2b shows an example that has two matrix-
multiplications after loop permutation with the best order. Our
approach fuses only the outermost i-loops because columns
cS1∗1 and cS2∗1 are identical but others are not.

The profitability of loop fusion will be affected by various
aspects such as number of registers and prefetch streams. The

 for i = 0, N-1
 for j = 0, N-1
S1: A[i][j] = foo(i,j);

 for i = 0, N-1
 for j = 0, N-1
S2: sum += A[i][j];

 // After loop fusion
 for i = 0, N-1
 for j = 0, N-1
S1: A[i][j] = foo(i,j);
S2: sum += A[i][j];

(a) Summation

 for i = 0, N-1
 for k = 0, N-1
 for j = 0, N-1
S1: A[i][j] += B[i][k]
 * C[k][j];

fA1

fA2

0 0 1
1 0 0

0
0= +

i
k
j

 for i = 0, N-1
 for k = 0, N-1
 for j = 0, N-1
S2: D[i][j] += A[i][k]
 * E[k][j];

fA1

fA2

0 1 0
1 0 0

0
0= +

i
k
j

(b) 2 matrix-multiplications with loop interchange

Fig. 2: Example for loop fusion

extension of the fusion profitability analysis to support/inte-
grate other analytical models is an important future work.

IV. TWO-PHASE APPROACH TO INTEGRATION OF
POLYHEDRAL AND AST-BASED TRANSFORMATIONS

As described in Section II-A, the major strength of the
polyhedral model over AST-based approaches is the ability
to handle complex transformations on any loop structure for
perfectly and imperfectly nested loops. On the other hand,
Section II-B shows that the AST-based transformations can
easily analyze and transform intermediate state of program
structures at the AST level, which are not easily available in the
polyhedral optimizations. The proposed integration approach
is based on two goals: one to bring the advantages of the
polyhedral model to the world of AST-based transformations,
and another to enable cost models to be used in polyhedral
frameworks. This section is an introduction to the proposed
two-phase approach to integrate polyhedral and AST-based
transformations. We start with the overview of the two-phase
approach in Section IV-A and Section IV-B discusses the
design decision.

A. Overview

As discussed in Section II-B, a big challenge for AST-based
frameworks is to handle the inter-loop data locality among
different loop nests though several frameworks have been
proposed to optimize a single loop nest, i.e., perfectly nested
loops. This challenge could be addressed by building a loop
fusion framework that also supports other loop transformations
related to fusion and merges different loop nests with data
locality into a single loop nest. Such a framework should be
implemented with the polyhedral model because of its ability
to model transformations of multiple loop nests in a unified
manner.

A natural question that arises is how to decide which
loops to fuse. As discussed in Section III, DL-based fusion
profitability analysis can be used to answer that question.
Further, the possible combination of loop fusion is directly
affected by loop permutation order, while the loop order also
has significant impact on various aspects of performance such
as data locality, vectorization efficiency, and parallelism. The
partial derivative analysis of the DL memory cost is one of the
metrics that characterize these aspects and estimate the most

profitable permutation order. In this paper, the former phase of
the proposed two-phase integration approach is the polyhedral
transformation extended with the DL-based analyses for loop
fusion and permutations. Section V-A describes how the DL-
based analyses utilized in the polyhedral model.

The output of the former phase - i.e., the input to the latter
phase - is a set of fused loop nests; another sequence of AST
loop transformations can be individually applied to each fused
loop nest. In this paper, we focus on the AST-based approach
to implement the latter phase because of its flexibility to apply
the sequence of individual transformations to a single loop
nest with proper syntactic properties, and compact and efficient
code generation. Section V-B addresses the latter phase by the
AST-based transformations.

B. Design Decision for Two-phase Integration Approach

In this section, we discuss which individual loop transfor-
mations should be supported in the polyhedral phase, phase-1,
and which to be in the AST phase, phase-2. As discussed
in Section IV-A, loop fusion and permutation must be handled
close together and hence they should be in phase-1. In addition
to these transformations, index set shifting and loop reversal
also increase the opportunities of loop fusion as briefly in-
troduced in Section II-B. Further, loop skewing changes the
loop dependence so as to increase the permutability - i.e.,
applicability of loop permutation. However, we do not include
skewing in phase-1 because it has adverse effects for loop
fusion in many cases that arise in practice. First, let us review
the effect of loop skewing. When we consider the iteration
space of a perfect loop nest, loop skewing can be viewed as
an affine map of the iteration space; the transformed loop nest
has different loop boundaries, array reference patterns, and
loop dependences from the original loop nest. The by-product
of changing the iteration space and array reference patterns
could affect on the inter-loop data locality, thereby reducing
the benefit of loop fusion in practical cases.

Figure 3a is a typical example where loop skewing is
necessary before loop permutation and fusion. Both loop nests
access to array B with the reference pattern of [i][j];
applying loop permutation to either nest and then fusion
should improve the inter-loop data locality. However, both
nests contain the dependence distance vector (1,−1) and
permutation is impossible because it results in an illegal

 for i = 1, N-2
 for j = 1, N-2
S1: A[i][j] = A[i][j-1] + A[i-1][j+1]
 + B[i][j];
 for j = 1, N-2
 for i = 1, N-2
S2: C[i][j] = C[i-1][j] + C[i+1][j-1]
 + B[i][j];

(0,1)

(1,-1)

(0,1)

(1,-1)

i

j i

j

1st 2nd

(a) Input code

 for i = 1, N-2
 for j = 1, N-2
S1: A[i][j] = A[i][j-1] + A[i-1][j+1]
 + B[i][j];
 for j = 1, N-2
 for i2 = j+1, j+N-2
S2: C[i2-j][j] = C[i2-j-1][j]
 + C[i2-j+1][j-1] + B[i2-j][j];

(0,1)

(1,-1)

(0,1)
(1,0)

i

j

i2

j

1st

2nd

(b) After skewing (2nd nest with factor i2 = i + j)

 for i = 1, N-2
 for j = 1, N-2
S1: A[i][j] = A[i][j-1] + A[i-1][j+1]
 + B[i][j];
 for i2 = 2, 2*N-4
 for j = max(1,i2-N+2), min(N-2,i2-1)
S2: C[i2-j][j] = C[i2-j-1][j]
 + C[i2-j+1][j-1] + B[i2-j][j];

(0,1)

(1,-1)

i

j j

i2

(0,1)
(1,0)

1st 2nd

(c) After permutation (2nd nest)

Fig. 3: Affect of loop skewing on inter-loop data locality

dependence, (−1, 1). In Figure 3b, loop skewing is applied
to the first loop nest and the dependence vector (1,−1) is
converted into (1, 0), which allows legal loop permutation,
and Figure 3c shows the code and iteration spaces after the
permutation of the second loop nest. Here, we can see the
skewed loop index i2 is nothing like the original index i
because of the converted iteration space and array reference,
[i2-j][j]. Loop fusion is now possible, but the array
references to B[i][j] and B[i2-j][j] no longer access
the same/neighboring elements of array B. Further, the fused
loop nest has to manage the complicated loop boundaries and
statements within the loop body. Finally, the information for
profitable loop permutation order no longer makes sense after
loop skewing, because it is for the original loop index i, not
for the new index i2.

Based on the above observation, we define phase-1 to
be a polyhedral framework and supporting transformations of
permutation, index set shifting and reversal. Loop skewing
is included in phase-2 so as to increase permutability and
help related transformations e.g., tiling and unroll-and-jam. In
this paper, phase-2 is defined as the AST-based framework to
handle any loop transformation that can be applied to a single
loop nest, including loop skewing, tiling, unrolling, unroll-
and-jam, parallelization (doall, reduction and doacross), and
vectorization.

V. DETAILS OF TWO-PHASE INTEGRATION APPROACH

This section describes the details of the proposed two-phase
approach. Due to the page size limit, we focus on the detailed
algorithms of phase-1 in Section V-A while Section V-B shows
the key ideas of phase-2.

A. Phase-1: Polyhedral Transformations with DL Analysis

T (~i) =



υ1(~i)

φ1(~i)

υ2(~i)

φ2(~i)
· · ·
υn(~i)

φn(~i)

υn+1(~i)


=



0
sign1 iπ(1)

0
sign2 iπ(2)
· · ·
0

signn iπ(n)
0


+



b1
c1
b2
c2
· · ·
bn
cn
bn+1



Given a statement enclosed in n nested loops with index
variables i1, · · · , in, the general expression of statement-wise
affine transform T for the proposed approach is shown above.
Note that we explicitly show the scalar dimensions of T with
the symbol of υ, while φ is used for regular loop dimen-
sions [8]. The value of signk is either 1 for positive sign or −1
for negative sign; π is the permutation of n elements such that

π(k) represents the element after permutation5. We can see the
following relations between the above affine expression and the
loop restructurings supported in the phase-1 transformation.

• Loop fusion ↔ bk: If two statements Si and Sj are
fused until k-th nest-level, then bSi

l = b
Sj

l for (1 ≤
l ≤ k).

• Loop permutation ↔ π(k): The permutation π di-
rectly represents the loop permutation order - i.e., the
k-th loop index after permutation is iπ(k).

• Index set shifting ↔ ck: Index set shifting factor is
equivalent to ck.

• Loop reversal ↔ signk: The application of loop
reversal is represented as a negative sign of signk.

The details of the proposed polyhedral loop fusion that
determines suitable values of bk, π(k), ck and signk are
shown in Algorithms 1, 2 and 3. Algorithm 1, which is
the entry point to the overall transformations, starts from
the top level k = 1 with all statements within the pro-
gram region of interest and corresponding dependence poly-
hedra. As described in Section III-C, the partial derivative
of memory cost gives the most profitable permutation order
of each statement Si and the order is stored into BestSi .
Also, when the loop orders of two statements Si and Sj are
fixed until k-th nest-level as {πSi(1), πSi(2), . . . , πSi(k)} and
{πSj (1), πSj (2), . . . , πSj (k)} respectively and they are fused
until nest-level k-1, the profitability of loop fusion at nest-level
k is analyzable based on the coefficients of array references
in Si and Sj as discussed in Section III-D.

Algorithm 1 first computes Strongly Connected Com-
ponents (SCC) of statement set S at nest-level k based on
dependence edges in E (line 3). Note that the statements in
a SCC, which is denoted by Scca in the algorithms, must
be fused at level k to satisfy the dependences within Scca.
Algorithm 2 is applied to each Scca so as to determine π(k),
the loop permutation at level k (line 7). If Scca contains
only a statement Si which is not enclosed in a loop at
level k, i.e., the dimensionality of Si is k − 1, the affine
transform φSi

k is undefined and no permutation nor index set
shifting at level k is required. Such statements are stored
into SnglStmSet (line 10) and split from the set of regular
SCCs, SccSet (line 11). Based on the loop permutation order
until level k, Algorithm 3 determines which SCCs should
be fused at level k (line 13). Further, the position of each
statement of SnglStmSet at level k is determined to satisfy
its dependences (line 15). These decisions for lines 13 and
15 are equivalent to the selection of bk. Above Algorithms 2
and 3 also provide legality constraints on signk and ck, which
represent the application of loop reversal and selection of index
set shifting factor. The current version of algorithms simply
selects signk as 1 when it does not violate dependences, and
ck as some value that is legal and to minimize dependence
distance (line 16). Note that the selected index set shifting
factor ck in the phase-1 transformation is a tentative value
because index set shifting affects on loop skewing and should
be also applied in the phase-2 transformation. A dependence

5If {1, 2, 3} is permutated as {2, 3, 1}, then π(1) = 2, π(2) = 3, and
π(3) = 1.

Algorithm 1: Affine transformation for phase-1
Input : k : current nest-level (top level is 1),

S : set of statements Si fused until level k-1,
BestSi , Si ∈ S : best permutation order for Si,
E : set of dependence edges eSi→Sj ,
Pe, e ∈ E : dependence polyhedron for e

Output: Affine transforms υl(~i) = bl and
φl(~i) = signl iπ(l) + cl for k ≤ l ≤ n

begin1
SnglStmSet := ∅2
SccSet := computes SCCs of S at level k via E3

// Intra-SCC transformation to determine π(k)4
for each Scca ∈ SccSet do5

if nScca ≥ k then6
Applies Algorithm 2 to Scca7

else8
// Scca contains only a non-loop statement9
SnglStmSet := SnglStmSet ∪ Scca10
Remove Scca from SccSet11

// Inter-SCC transformation to determine bk12
Applies Algorithm 3 to SccSet13

for each Si ∈ SnglStmSet do14

Determines bSi

k to satisfy dependences for Si15

Determines signk and ck to satisfy all constraints16
from Algorithms 2 and 3
Removes dependence e from E if e is guaranteed17
by the above solutions

// GroupSet is defined by Algorithm 318
for each Groupx ∈ GroupSet do19

// Statements in Groupx were fused at level k20
Applies Algorithm 1 to Groupx for k′ := k + 121

end22

edge e is removed from E if the above solutions for υk and φk
guarantee the legality constraint for e - i.e., υk(~t)−υk(~s) > 0
or υk(~t)−υk(~s) = 0∧φk(~t)−φk(~s) > 0, 〈~s,~t〉 ∈ Pe (line17).
Finally, Algorithm 1 is recursively applied to the statements
in Groupx, which are fused into a loop at level k (line 21).

Algorithm 2 shows the details to determine the loop
permutation at level-k, π(k), for the statements in a given SCC,
Scca. Based on the most permutable loop order BestSi and
loop fusion profitability analysis described in Section III-D,
v-th combination of loops that can be located at level k
is selected (line 7). Note that a combination with smaller
v contains more profitable loops according to BestSi . As
described in Section II-A, a legal affine transform must not
violate any dependence at level k and the legality constraint
for dependence polyhedron 〈~s,~t〉 ∈ PeSi→Sj , e ∈ E is:

φ
Sj

k (~t)− φSi

k (~s) =

sign
Sj

k tπSj (k) − sign
Si

k sπSi (k) + c
Sj

k − c
Si

k ≥ 0

The inner loop from line 8 to line 11 collects the above legality
constraints for all dependences, and the outer loop from line
3 to line 12 repeats this process until it founds the legal

Algorithm 2: Loop permutation and fusion within a SCC
Input : k : current nest-level,

Scca : set of statements Si in a SCC,
BestSi , Si ∈ S : best permutation order for Si,
E : set of dependence edges eSi→Sj ,
Pe, e ∈ E : dependence polyhedron for e

Output: Part of affine transforms υk(~i) = bk and
φk(~i) = signk iπ(k) + ck

begin1
v := 0 // version for combination of loops at level k2
repeat3

C := ∅4
v := v + 15
// Scca(i) is the i-th statement in Scca6

{πScca(1)(k), πScca(2)(k), . . .} := gets v-th7

combination of loops at level k via BestSi

for each eSi→Sj ∈ EScca do8

// Legality Constraint for 〈~s,~t〉 ∈ PeSi→Sj9

Cl := ′′φSj

k (~t)− φSi

k (~s) ≥ 0′′10
C := C ∪ Cl11

until solutions of signk and ck for C exist ;12

for each Si ∈ Scca do13
// All statements in Scca are fused14

Replaces bSi

k by bScca(1)k in υSi

k15

Removes πSi(k) from BestSi16

end17

loop combination of π(k) whose legality constraints C have
solutions of signk and ck for all statements in Scca. Finally,
bk for all statements in Scca are forced to be identical because
of loop fusion (line 15) and the selected loop π(k) is removed
from the set of best permutation order to avoid locating a loop
at different nest-levels multiple times (line 16).

Algorithm 3 shows the details to determine the loop fusion
among SCCs at level k. Based on the loop permutation orders
selected by Algorithm 2, the information regarding which
loops are profitable to be fused are summarized and stored in
a 2-D array, profitSi,Sj (line 3). We employed the following
heuristic loop fusion algorithm that corresponds to the loop
from line 6 to line 26. First, it picks up the first node, Scca,
from the SccSet and stores into Groupx, which is to contain
all SCCs to be fused with each other (lines 7–8). The loop
from line 9 to line 22 iterates over SccSet multiple times
so as to find all Sccb ∈ SccSet for legal and profitable
loop fusion, where the criterion of profitability is profitSi,Sj

(line 12) and legality criteria consist of the following two
check points. First, the loop fusion is only applicable to Sccb
that is direct predecessor/successor or has no dependence for
the SCCs in Groupx (line 11). Second, the same legality
constraints for affine transforms as described in Algorithm 2
must be satisfied (lines 13–18). Sccb that satisfies the above
criteria is moved from SccSet to Groupx (line 19 and 20)
and the corresponding legality constraints on signk and ck are
collected (line 21). Finally, bk for all statements in Groupx are
forced to be identical (line 24). The above process is repeated
until SccSet becomes empty (line 26), and all Groupx is
collected in GroupSet (line 25).

Algorithm 3: Loop fusion among SCCs
Input : k : current nest-level,

S : set of statements Si,
SccSet : set of SCCs,
E : set of dependence edges e,
Pe, e ∈ E : dependence polyhedron for e

Output: Part of affine transforms υk(~i) = bk and
φk(~i) = signk iπ(k) + ck

begin1
for each {Si, Sj} ∈ S × S do2

profitSi,Sj := fusion profitability for Si with3

πSi and Sj with πSj

C := ∅4
GroupSet := ∅5
repeat6

Scca := pop the first SCC in SccSet7
Groupx := { Scca } // Set of SCCs to be fused8
repeat9

for each Sccb ∈ SccSet do10
if Sccb is not indirect11
predecessor/successor of Groupx ∧
∃{Si, Sj} ∈ Groupx×Sccb : profitSi,Sj12
then

C2 := ∅13

for each eSi→Sj ∈ EGroupx↔Sccb14
do

// Constraint for 〈~s,~t〉 ∈ PeSi→Sj15

Cl := ′′φSj

k (~t)− φSi

k (~s) ≥ 0′′16
C2 := C2 ∪ Cl17

if solutions for C2 exist then18
Removes Sccb from SccSet19
Groupx := Groupx ∪ {Sccb}20
C := C ∪ C221

until Groupx is unchanged during the iteration ;22
for each Si ∈ Groupx do23

Replaces bSi

k by bScca(1)k in υSi

k24

GroupSet := GroupSet ∪ {Groupx}25
until SccSet = ∅ ;26

end27

B. Phase-2: AST-based Transformations with Polyhedral-
derived Dependence

Theoretically, any AST-based transformation framework
that is applicable to a single loop nest could work as the
phase-2 of the proposed two-phase approach. In this section,
we do not discuss the detailed algorithms for such frame-
works. Instead, we focus on an approach that extracts data
dependence information from polyhedral dependences as the
form of dependence vectors, thereby enhancing AST-based
loop transformations based on dependence vectors.

Extracting dependence vectors from polyhedral depen-
dences: Given two statements Si and Sj fused until nest-level
n - i.e., υSi

k = υ
Sj

k , 1 ≤ k ≤ n, the dependence distance
vector for eSi→Sj ∈ E is represented using the notion of
δe = φ(~t)− φ(~s) as follow [8].

for i = 0, N-1
 for j = 0, N-1
 for k = 0, N-1
 A[i][j] += B[i][k] * C[k][j];

for l = 0, N-1
 for m = 0, N-1
 for n = 0, N-1
 D[l][m] += E[l][n] * A[n][m];

(a) 2mm type-1: Input

for i = 0, N-1
 for j = 0, N-1
 for k = 0, N-1
 A[i][j] += B[i][k] * C[k][j];

for l = 0, N-1
 for m = 0, N-1
 for n = 0, N-1
 D[l][m] += A[l][n] * E[n][m];

(b) 2mm type-2: Input

for i1 = 0, N-1
 for i2 = 0, N-1 {
 for i3 = 0, N-1
 A[i1][i2] += B[i1][i3] * C[i3][i2];

 for i3 = 0, N-1
 D[i3][i2] += E[i3][i1] * A[i1][i2];
 }

(c) 2mm type-1: Pluto

for i1 = 0, N-1
 for i2 = 0, N-1
 for i3 = 0, N-1
 A[i1][i3] += B[i1][i2] * C[i2][i3];

for i1 = 0, N-1
 for i2 = 0, N-1
 for i3 = 0, N-1
 D[i1][i3] += E[i1][i2] * A[i2][i3];

(d) 2mm type-1: Phase-1

for i1 = 0, N-1
 for i2 = 0, N-1 {
 for i3 = 0, N-1
 A[i1][i2] += B[i1][i3] * C[i3][i2];

 for i3 = 0, N-1
 D[i1][i3] += A[i1][i2] * E[i2][i3];
 }

(e) 2mm type-2: Pluto

for i1 = 0, N-1 {
 for i2 = 0, N-1
 for i3 = 0, N-1
 A[i1][i3] += B[i1][i2] * C[i2][i3];

 for i2 = 0, N-1
 for i3 = 0, N-1
 D[i1][i3] += A[i1][i2] * E[i2][i3];
 }

(f) 2mm type-2: Phase-1

Fig. 4: Input and transformed codes for 2mm

∆e =

 δe1
δe2
· · ·
δen

 =


φ
Sj

1 (~t)− φSi
1 (~s)

φ
Sj

2 (~t)− φSi
2 (~s)

· · ·
φ
Sj
n (~t)− φSi

n (~s)

 , 〈~s,~t〉 ∈ PeSi→Sj

As shown in Section II-A, ~s is the last access before ~t accessing
the same memory location and the relation between ~s and ~t
is expressed by the h-transformation, ~s = he(~t). Based on
our loop fusion policy in Section III-D, the fused statements
most likely have similar access patterns to the arrays with
data dependences. Therefore, the result of φSj

i (~t)− φSi
i (~s) =

φ
Sj

i (~t)−φSi
i (he(~t)) tends to be a constant value. When all the

dimensions are constant, ∆e is directly used as the constant
dependence distance vector for such e ∈ E.

We will address the cases where ∆e contains some ele-
ments of ~t - i.e., loop indices - in our future work. We are
thinking our past work on analytical tile size bounds based on
reuse distance analysis could be one of key ideas to handle this
issue. Although this approach would not cover the polyhedral
dependence completely, we believe many practical cases could
be addressed via that approach.

VI. EXPERIMENTAL RESULTS

This section shows our preliminary experiments to demon-
strate the proposed two-phase approach to integrate polyhedral
and AST-based transformations. We use two benchmarks from
PolyBench [1], 2mm and 2d-jacobi. 2mm contains two matrix
multiplication kernels, where the first kernel defines one array
that is used in the second kernel. For the experiments, we
provided two versions, 2mm type-1 and 2mm type-2, where
type-1 is equivalent to the original in PolyBench while type-
2 has different array access patterns in the second kernel
(Figures 4a and 4b). 2d-jacobi is a 5-point 2-dimensional
stencil computation kernel. For these three benchmarks, we
compare the proposed two-phase approach with Pluto [8],
a pure polyhedral framework for locality and parallelism
optimizations. The performance numbers are corrected on Intel
Xeon E7330 2.4GHz quad core processor.

A. 2mm: Two Matrix Multiplication kernels

Figure 4 shows the input and output codes via Pluto and the
two-phase approach for 2mm type-1 and type-2. To increase
the readability, figures for the Pluto transformation show the
codes before applying loop tiling, and figures for the two-phase
approach show the codes after the phase-1 transformation
(before applying phase-2). As shown in Figures 4a and 4b,
the first and second loop nests share array A in both versions.
The cost function to be minimized in the Pluto framework is
based on dependence distances [8] and generally loops tend to

for t = 0, N-1 {
 for i = 1, M-1
 for j = 1, M-1
 B[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i][j+1] + A[i+1][j] + A[i-1][j]);

 for i = 1, M-1
 for j = 1, M-1
 A[i][j] = B[i][j];
}

(a) 2d-jacobi: Input

for i1 = 0, N-1
 for i2 = 2*i1 + 1, 2*i1 + M
 for i3 = 2*i1 + 1, 2*i1 + M {
 i = i2 - 2*i1;
 j = i3 - 2*i1;
 if (i >= 2 && j >= 2)
 A[i-1][j-1] = B[i-1][j-1];
 if (i <= M-1 && j <= M-1)
 B[i][j] = 0.2 * (A[i][j] + A[i][j-1]
 + A[i][j+1] + A[i+1][j] + A[i-1][j]);
 }

(b) 2d-jacobi: Pluto

for i1 = 0, N-1
 for i2 = 1, M
 for i3 = 1, M {
 i = i2;
 j = i3;
 if (i >= 2 && j >=2)
 A[i-1][j-1] = B[i-1][j-1];
 if (i <= M-1 && j <= M-1)
 B[i][j] = 0.2 * (A[i][j] + A[i][j-1]
 + A[i][j+1] + A[i+1][j] + A[i-1][j]);
 }

(c) 2d-jacobi: Phase-1

Fig. 5: Input and transformed codes for 2d-jacobi

be fused as long as it is legal to do so. As a consequence, the
outermost and middle loops are fused by Pluto in both versions
as shown in Figure 4c and 4e. On the other hand, the two-
phase approach gives higher priority to the profitability of loop
permutation orders than minimizing dependence distances;
loop fusion is applied to the interchanged loops with most
profitable and legal permutation orders. For the case of 2mm
type-1, the two-phase approach does not fuse any level of
the two loop nests because of the conflict of the permutation
order (Figure 4d). For 2mm type-2, the outermost loops after
permutation have the same array reference pattern to the shared
array A and are fused (Figure 4f).

2mm type-1 2mm type-2
Pluto 95.39[sec] 41.50[sec]
Two-phase 31.33[sec] 34.13[sec]

TABLE I: Sequential execution time after loop tiling on Intel
Xeon

Table I shows the sequential execution time on Xeon for
type-1 and type-2 via Pluto and the two-phase approach. The
Pluto version automatically applied parametric loop tiling [2]
and we manually searched the best tile size. For the two-phase
approach, parametric tiling as a part of the phase-2 transfor-
mation and the best tile search were manually processed. For
both of 2mm-type1 and 2mm-type2, the proposed two-phase
approach shows smaller execution time than Pluto because of
the benefit to keep the most profitable loop order. In the future
work, we will evaluate other benchmarks including parallel
versions and platforms.

B. 2d-jacobi: 2-dimensional Stencil Computation Kernel

Figure 5 shows the input and transformed codes for 2d-
jacobi. Figure 5b shows a pseudo code for Pluto, where loop

peeling and tiling transformations are omitted so as to increase
readability. Figure 5c shows the code after the phase-1 trans-
formation and index set shifting to help loop skewing in the
phase-2 transformation. Note that the above index set shifting
can be included in the phase-1 algorithms in Section V-A. The
difference between Figure 5b and Figure 5c is the application
of loop skewing. Most of AST-based skewing algorithms rely
on loop dependence vectors to select legal and profitable skew-
ing factors. In the case of 2d-jacobi, if a skewing algorithm is
given the dependence vectors (0, 1, 1), (1,−1,−1), (0, 1, 0),
(1,−1, 0), (0, 1, 2), (1,−1,−2), (0, 2, 1), (1,−2,−1), (0, 0, 1)
and (1, 0,−1), it can obtain the skewing factors i1 = t, i2
= 2*t + i and i3 = 2*t + j, which are equivalent to
the Pluto transformation.

VII. RELATED WORK

There is an extensive body of literature on the polyhedral
model and AST-based transformations. In this section, we
focus on past contributions that are most closely related to
this paper.

Pluto [8] is a polyhedral framework for locality and par-
allelism optimizations, which handles the whole loop trans-
formations by solving ILP formulation based on dependence
distances. As combination with Pluto, an empirical search is
employed in order to find better fusion/code motion trans-
formations [17]. There is also an iterative search approach
based on a cost model for vectorizations; it tests all legal
transformations of loop permutation [22]. In the field of
High Level Synthesis for FPGA implementation, there is an
approach that identifies a shape of the preferred access function
in the generated code and iteratively tests various transfor-
mations [24]. Several approaches also extend the polyhedral
model to cost models, e.g., a cost model for loop fusion based
on the prefetch streams (especially IBM Power chips) [7], and
an estimator of the traffic between cache and main memory to
drive better transformations [5].

AST-based transformation frameworks have a long his-
tory [15], [23]. There are a lot of pioneering works for
parallelizing and locality optimizing compilers in both research
and industry [10], [3], [19], [4], [21].

VIII. CONCLUSIONS

In this paper, we presented our early experiences with
integrating polyhedral and AST-based transformations. As
an initial demonstration of the benefit of the integration,
we introduced a practical two-phase approach. For phase-
1, we extended the polyhedral framework with a cost-based
approach for locality optimizations. This framework focuses
on loop fusion and permutation for inter-loop and intra-loop
data locality optimizations, respectively. As the result of the
phase-1 transformation, loops with data locality are legally
fused/interchanged, and each fused loop nest is enabled for
phase-2 that can support any AST-based transformation on a
single loop nest. Our preliminary experiments showed how
the proposed two-phase approach is applied to the benchmark
programs, and demonstrated the benefits of the integrating
approach relative to Pluto polyhedral framework for locality
and parallelism optimizations.

For future work, we extend the fusion profitability analysis
to support/integrate other analytical models than the DL cost
model, and also to enhance the dependence vector analysis
derived from the polyhedral dependence. The current imple-
mentation is a preliminary version; the full implementations
of the whole transformation framework are also addressed in
future work.

Acknowledgments

We are grateful to Louis-Noël Pouchet at University of
California, Los Angeles for his feedback on this work and
contributions to the underlying compiler framework used in
this paper. We would like to thank P. Sadayappan at The
Ohio State University and J. Ramanujam at Louisiana State
University for early discussions on the polyhedral model and
reuse distance analysis.

This work is an outgrowth of the PACE project supported
in part by the Defense Advanced Research Projects Agency
through AFRL Contract FA8650-09-C-7915. We are especially
grateful to the PACE team members at Ohio State University
and Rice University who contributed to the implementation
of the PACE compiler, since that implementation provided a
starting point for this work.

REFERENCES

[1] Polybench/c 3.2. http://sourceforge.net/projects/polybench/.
[2] Polyopt/c. http://www.cs.ucla.edu/ pouchet/software/polyopt/poly-

opt.html.
[3] The rice scalar compiler group. http://www.cs.rice.edu/ keith/MSCP/.
[4] Sun studio c/c++/fortran compiler.

http://developers.sun.com/prodtech/cc/
compilers index.html.

[5] C. Bastoul and P. Feautrier. More legal transformations for locality. In
In Euro-Par10, number 3149 in LNCS, pages 272–283. Springer Verlag,
2004.

[6] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul. The
polyhedral model is more widely applicable than you think. In ETAPS
International Conference on Compiler Construction (CC’2010), pages
283–303, Paphos, Cyprus, Mar. 2010. Springer Verlag.

[7] U. Bondhugula, O. Gunluk, S. Dash, and L. Renganarayanan. A model
for fusion and code motion in an automatic parallelizing compiler. In
Proceedings of the 19th international conference on Parallel architec-
tures and compilation techniques, PACT ’10, pages 343–352, New York,
NY, USA, 2010. ACM.

[8] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. Pluto:
A practical and fully automatic polyhedral program optimization sys-
tem. In Proc. ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation (PLDI 08), 2008.

[9] T. P. compiler project. http://pace.rice.edu.
[10] R. Eigenmann, J. Hoeflinger, and D. Padua. On the automatic par-

allelization of the perfect benchmarks. IEEE Trans. on parallel and
distributed systems, 9(1), Jan. 1998.

[11] P. Feautrier. Dataflow analysis of scalar and array references. Interna-
tional Journal of Parallel Programming, 20:23–53, 1991.

[12] P. Feautrier. Some efficient solutions to the affine scheduling problem.
part II. multidimensional time. IJPP, 21(6):389–420, 1992.

[13] J. Ferrante, V. Sarkar, and W. Thrash. On Estimating and Enhancing
Cache Effectiveness. Proc. LCPC 91, 589:328–343, 1991.

[14] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies. IJPP, 34(3):261–317,
June 2006.

[15] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. 2001.

[16] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sa-
dayappan. When polyhedral transformations meet simd code generation.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI13), Seattle, WA, June 2013. ACM Press.

[17] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
and P. Sadayappan. Combined iterative and model-driven optimization
in an automatic parallelization framework. In Conference on Supercom-
puting (SC’10), New Orleans, LA, Nov. 2010. IEEE Computer Society
Press.

[18] ROSE compiler infrastructure. http://rosecompiler.org.
[19] V. Sarkar. Automatic Selection of High Order Transformations in the

IBM XL Fortran Compilers. IBM J. Res. & Dev., 41(3), May 1997.
[20] J. Shirako, K. Sharma, N. Fauzia, L. Pouchet, J. Ramanujam, P. Sa-

dayappan, and V. Sarkar. Analytical bounds for optimal tile size
selection. In Proceedings of the 2012 International Conference on
Compiler Construction (CC 2012), 2012.

[21] X. Tian et al. Intel OpenMP c++/fortran compiler for hyper-threading
technology. Intel Technology Journal, 6, 2002.

[22] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen.
Polyhedral-model guided loop-nest auto-vectorization. In in PACT 09:
Proceedings of the 2009 18th International Conference on Parallel
Architectures and Compilation Techniques, pages 327–337.

[23] M. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

[24] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong. Improving
high level synthesis optimization opportunity through polyhedral trans-
formations. In Proceedings of the ACM/SIGDA international symposium
on Field programmable gate arrays, FPGA ’13, pages 9–18, New York,
NY, USA, 2013. ACM.

1. Loop Fusion:
for i = lw1, up1
S1;

for i = lw2, up2
S2;

=⇒

 for i = min(lw1,lw2), max(up1,up2)
if (lw1 <= i && i <= up1) S1;
if (lw2 <= i && i <= up2) S2;

2. Loop Distribution:

for i = lw, up
S1;
S2;

=⇒


for i = lw, up
S1;

for i = lw, up
S2;

3. Loop Permutation/Interchange:
for i = lwi, upi
for j = lwj, upj
S;

=⇒

 for j = lwj, upj
for i = lwi, upi
S;

4. Loop Skewing (with skewing factor i2 = i & j2 = i+j):

for i = lwi, upi
for j = lwj, upj
S;

=⇒


for i2 = lwi, upi
for j2 = i2+lwj, i2+upj
i = i2;
j = j2 - i;
S;

5. Index Set Shifting:

for i = lw, up
S;

=⇒

 for i2 = lw+c, up+c
i = i2 - c;
S;

6. Loop Reversal:
for i = lw, up
S;

=⇒
{

for i = up, lw, -1
S;

7. Loop Peeling (handling first iteration as prologue loop):

for i = lw, up
if (i == lw) S1;
else S2;

=⇒


for i = lw, lw
S1;

for i = lw+1, up
S2;

8. Loop Strip Mining:

for i = lw, up
S;

=⇒

 for is = lw, up, sz
for i = is, min(is+sz-1,up)
S;

9. Loop Tiling:

for i = lwi, upi
for j = lwj, upj
S;

=⇒


for it = lwi, upi, Ti
for jt = lwj, upj, Tj
for i = it, min(it+Ti-1,upi)
for j = jt, min(jt+Tj-1,upj)
S;

10. Loop Unrolling (assuming up-lw+1 is evenly divided by sz):

for i = lw, up
S;

=⇒



for iu = lw, up, sz
i = iu + 0;
S;
...
i = iu + sz - 1;
S;

11. Unroll-and-Jam (same assumption as unrolling):

for i = lwi, upi
for j = lwj, upj
S;

=⇒



for iu = lwi, upi, sz
for j = lwj, upj
i = iu + 0;
S;
...
i = iu + sz - 1;
S;

Fig. 6: Individual loop transformations

