
Elastic Tasks: Unifying Task Parallelism and
SPMD Parallelism with an Adaptive Runtime

Alina Sb̂ırlea1 and Kunal Agrawal2 and Vivek Sarkar1

1 Rice University, USA
2 Washington University in St Louis, USA

Abstract. In this paper, we introduce elastic tasks, a new high-level
parallel programming primitive that can be used to unify task parallelism
and SPMD parallelism in a common adaptive scheduling framework.
Elastic tasks are internally parallel tasks and can run on a single worker
or expand to take over multiple workers. An elastic task can be an ordinary
task or an SPMD region that must be executed by one or more workers
simultaneously, in a tightly coupled manner.
This paper demonstrates the following benefits of elastic tasks: (1) they
offer theoretical guarantees: in a work-stealing environment computations
complete in expected time O(W/P + S + E lgP ), where E=# of elastic
tasks, W=work, S=span, P=# cores. (2) they offer performance benefits
in practice by co-scheduling tightly coupled parallel/SPMD subcomputa-
tions within a single elastic task, and (3) they can adapt at runtime to
the state of the application and work-load of the machine.
We also introduce ElastiJ — a runtime system that includes work-sharing
and work-stealing scheduling algorithms to support computations with
regular and elastic tasks. This scheduler dynamically decides the allocation
for each elastic task in a non-centralized manner, and provides close to
asymptotically optimal running times for computations with elastic tasks.

1 Introduction

As multicore machines become ubiquitous, task parallelism has emerged as a
dominant paradigm for parallel programming. Many programming languages
and libraries such as Cilk [10], Cilk Plus [1], Intel TBB [21], .Net Task Parallel
Library [17], and Habanero-Java [5] support this paradigm, in which the pro-
grammer expresses the logical parallelism by specifying sequential tasks and their
dependences, and a runtime scheduler maps the tasks on available processors.

SPMD parallelism [8] is an alternate paradigm for exploiting multicore paral-
lelism, in which a fixed number of worker threads execute a single SPMD region.
There is general agreement that SPMD parallelism can outperform task paral-
lelism in certain cases, but task parallelism is more general than SPMD parallelism.
There has even been work on compiler optimizations to automatically transform
fork-join regions of code to SPMD regions for improved performance [7,18]. How-
ever, to the best of our knowledge, there has been no prior work that combines
task parallelism and SPMD parallelism in a single adaptive runtime framework.

In this paper, we propose elastic tasks, a new primitive that helps bridge
the gap between task parallelism and SPMD parallelism. An elastic task u is



defined by: (1) w(u) — the execution requirement (work) of u; and (2) c(u) —
the maximum number of workers (capacity) that task u can use. Elastic tasks
are assumed to have linear scaling with c(u) and to exhibit locality benefits from
co-scheduling their internal parallelism, but they need not be data parallel. The
user need only provide two additional parameters for u, both being an estimation
rather than exact values: (1) the approximate length of the task on one worker
as w(u); and (2) the average parallelism of the task as c(u). When an elastic task
starts, it is assigned a(u) ≤ c(u) dedicated worker threads, which work on only
this task until the task completes. An elastic task with c(u) = 1 is just like an
ordinary task. An elastic task with c(u) > 1 is like an SPMD region which must
be executed by one or more workers simultaneously in a tightly coupled manner.

We extend the work-sharing and work-stealing strategies [4] to handle compu-
tations with elastic tasks. We prove that the work-sharing scheduler completes a
computation with work W and span S in O(W/P + S +E) time, where E is the
total number of elastic tasks. Similarly, the work-stealing scheduler completes
the computation in O(W/P + S + E lgP ) expected time.

Previous work, notably Wimmer and Träff [26] have considered a construct
for mixed-mode parallelism, but, in their work, the number of workers assigned to
a task is fixed, and user specified. In our scheduling strategy, if most workers are
busy, then the elastic task is assigned fewer workers, since there is already ample
parallelism in the rest of the program. If most workers are idle (or stealing), then
it indicates a lack of parallelism and more workers are assigned to an elastic task.
Finally, we are not aware of prior work that provides theoretical guarantees on
the completion time for this form of combination of sequential and elastic tasks.

We have implemented a runtime system which implements elastic tasks, and
include experimental results obtained from the work-stealing implementation.

In summary, the contributions of this paper are:
– the elastic task primitive, its definition, properties and requirements,
– theoretical proofs for the work-sharing and work-stealing runtimes,
– the ElastiJ runtime which executes computations with both sequential and

elastic tasks and automatically decides the number of workers assigned to an
elastic task,

– experimental results which indicate they provide locality benefits for certain
computations and provide runtime adaptability.

The rest of the paper is organized as follows: Section 2 discusses the motivation
for elastic tasks, Section 3 gives the theoretical proofs, Section 4 describes the
implementation details of ElastiJ, Section 5 presents the experimental results,
Section 6 discusses related work and finally Section 7 concludes.

2 Motivation for Elastic Tasks

2.1 Benefits of Elasticity

Given a computation expressible as an elastic task, we have a few other alternatives.
First, we could create a sequential task. However, this can increase the critical
path length (span) of the computation, thereby decreasing its parallelism.



Second, we could create an inelastic task where the programmer specifies the
number of workers (say m(u)) which must execute node u (as in [26]). In this case,
if the programmer accurately specifies m(u) to be large, then the scheduler must
find all these workers. If most workers are busy, the scheduler must either wait for
a potentially long time (idle workers for long periods) or it must interrupt workers
in the middle of their execution leading to large overheads. If the programmer
artificially specifies m(u) to be small to avoid this, then we are potentially wasting
the internal parallelism of task u and decreasing the scalability of the overall
computation, as with sequential tasks. Also, it is difficult to guarantee good
performance theoretically for inelastic tasks.

Third, we could convert the task to a task parallel computation by dividing up
the computation into independent tasks that need not be co-scheduled. This may
be cumbersome if the different tasks need to communicate, since we must add a
control synchronization point for every communication link. This also increases
overheads; barriers within independently-scheduled tasks can be very inefficient.
In addition, as discussed next, this transformation means that different iterations
may be executed at very different times, leading to loss in locality.

2.2 Benefits of Co-Scheduling

Compared to sequential and inelastic tasks, with elastic tasks the programmer is
only responsible for providing the capacity, not the precise number of workers. The
runtime then adjusts the number of workers allocated to the task based on runtime
conditions. Further we compare elastic tasks to task parallel computations.

Cache Locality on Multicores: Consider a loop in which all iterations
access the same data. Using an elastic task forces all the iterations to be scheduled
at the same time, so the shared data will be brought into the shared cache. Instead,
had we converted this loop into a task parallel program, all the iterations would
have been their own task, possibly scheduled at different times. Since other tasks
that access other data may execute between different iterations of the loop, the
shared data may have to be brought in multiple times leading to poor cache
locality. We will show experimental results that validate this intuition in Section 5.

Locality on Future Architectures: While in this paper we show the
importance of elastic tasks on multicores, we expect elastic tasks to become
even more valuable for future extreme scale systems where collocation based
on data sharing will be critical for performance. Additionally, an elastic task
with data-parallel computations can also be automatically transformed into a
GPU kernel using existing tools [16,3,9]. The adaptability of elastic tasks to task
granularity also implies that applications can adjust to existing and future GPUs.

3 Theoretical Guarantees

We briefly state the theoretical guarantees proven in our technical report [22].

3.1 Model of Computation

Elastic tasks and normal sequential tasks are processor oblivious computations
— the programmer expresses the logical parallelism and the runtime scheduler
dynamically schedules and executes the computation on P worker threads.



The computation can be abstractly expressed as a computation DAG G;
nodes are computation kernels and edges are dependences between nodes. A node
is ready to execute when all its predecessors have been executed. Without loss of
generality, we assume the maximum out-degree of any node ≤ 2. There are two
types of nodes: strands — sequential chains of instructions and elastic nodes.

An elastic node u has the following properties: (1) Work w(u) is its execution
time on one worker. (2) Capacity c(u) is its maximum internal parallelism. (3)
Before an elastic node u can execute, the runtime scheduler must allocate it
1 ≤ a(u) dedicated worker threads. Once u starts executing, these a(u) workers
can not work on anything else until u completes, and no other workers can work
on u’s work. (4) We assume that each elastic node provides linear speedup up to
c(u) workers and no speedup thereafter. When it is allocated c(u) workers, we
say that the node is saturated ; otherwise we say that it is unsaturated.

As with traditional task parallel processor oblivious computations, we define
two parameters for G. Work W is the sum of the computational requirements of
all nodes or the execution time on one processor. Span is the weighted length of
the longest path in the DAG where each node’s weight is equal to its span. Span
can also be seen as the execution time of the computation on an infinite number
of processors. The parallelism of the program is defined as W/S and describes
the maximum number of workers the computation can use effectively. Note that
the execution time of the computation on P workers is at least max{W/P, S}.

3.2 Theoretical Guarantees in a Work-Sharing Runtime

Theorem 1. Given a computation graph with work W , span S, and E elastic
nodes, the execution time of this computation on P workers using the work-sharing
scheduler is O(W/P + S + E).

The above theorem states that the work-sharing scheduler provides linear
speedup, and we prove this in the extended version of the paper [22].

3.3 Theoretical Guarantees in a Work-Stealing Runtime

Extending the Work-Stealing Scheduler with Elastic Nodes In a regular
work-stealing scheduler, a program is executed by P workers each having its
own private deque of ready nodes. At any time, a worker p may have a node u
assigned to it. When a worker finishes u, if p’s deque is empty, then p becomes
a thief, selects another worker p1 as a victim at random and tries to steal from
the top of p1’s deque. If p1’s deque is not empty and p gets a node, then the steal
attempt is successful, otherwise p tries to steal again. Blumofe and Leiserson [4]
prove that this randomized work-stealing scheduler finishes a computation with
work W and span S in expected time O(W/P + S) time on P worker threads.

For work-stealing schedulers with elastic nodes, a worker’s assigned node may
be a strand or an elastic node. The changes due to the elastic nodes affect what
happens on steals and when a worker is assigned an elastic node:

1. If p picks up an elastic node u, p starts waiting on u, instead of starting
execution.



2. When p is a thief, it randomly chooses a victim q. If q is waiting on an elastic
node u, then u is also assigned to p and p also starts waiting on it. At this
time a(u) is incremented by 1. Otherwise, p steals the node at the top of q’s
deque; if the deque is empty then p tries again.

3. While u is waiting, its total waiting time wait(u) is incremented by a(u) in
every time step.

4. An elastic node starts executing when either a(u) = c(u) — the node is
saturated; or its total wait time wait(u) ≥ w(u).

5. When an elastic node finishes executing, the worker that first enabled the
elastic node enables its children. All other workers assigned to the elastic
node start work stealing, as all their deques are empty at this time.

Analysis of Work-Stealing Scheduler

Theorem 2. Given a computation graph with E elastic nodes, work W and
span S, the expected execution time of this computation on P workers using the
work-stealing scheduler is O(W/P + S + E lgP ).

If we compare this result to the result for computations without elastic nodes,
we notice that the additional term is only E lgP . This term is negligible for any
computation where the number of elastic nodes is O(T1/P lgP ) — which implies
that most elastic nodes have parallelism Ω(P ) and at most 1/ lgP fraction of
the work of the computation is contained in elastic nodes.

We mention that the constant factors hidden within the asymptotic bounds
are not much larger than those hidden within the standard work-stealing bounds.
An additional terms similar to O(E lgP ) also appears in standard work-stealing
if we consider the contention on the child counter (generally ignored).

In this section, without loss of generality, we assume that each strand is a
unit time computation. A longer strand is simply expressed as a chain of unit
time strands. We separately bound the types of steps that a worker can take at
any time step. A worker could be working, waiting on an elastic node or stealing.
The total number of work-steps is at most W ; and the total number of waiting
steps is at most W + PE. Therefore, we need only bound the steal steps.

We classify steal attempts in three categories: (1) regular steal attempts occur
when no elastic node is waiting and no unsaturated elastic node is executing. (2)
waiting steal attempts are those that occur when some elastic node is waiting. (3)
irregular steal attempts occur when some unsaturated elastic node is executing
and no elastic node is waiting. We will bound the number of steal attempts in
these three categories separately.

Intuition for the Analysis We adopt a potential function argument similar
to Arora et al.’s work-stealing analysis [2], henceforth referred to as ABP. In the
ABP analysis, each ready node is assigned a potential that decreases geometrically
with its distance from the start of the dag. For traditional work stealing, one can
prove that most of the potential is in the ready nodes at the top of the deques.
Therefore, Θ(P ) random steal attempts suffice to process all the nodes on top of
the deques. Therefore, one can prove that O(PS) steal attempts are sufficient



to reduce the potential to 0 in expectation. The ABP analysis does not directly
apply to bounding the number of steal attempts for computations with elastic
nodes because a steal may turn into a wait if the victim p has an assigned node
u. Since u may contain most of the potential (particularly if p’s deque is empty),
and u cannot be stolen, steals are not longer effective in reducing the potential
until u completes. Therefore, we must use a different argument to bound the
steal attempts that occur while u is assigned to p.

Regular Steal Attempts: These occur when either a worker is assigned an
elastic node (the normal ABP argument applies) or any elastic node that is
assigned is saturated and is executing. We use a potential function argument very
similar to the ABP argument, but on an augmented DAG in order to account for
steal attempts that occur while a saturated elastic node is executing.

Waiting Steal Attempts: These occur when some elastic node (say u) is waiting
— at this time, u is assigned to some worker(s), say p and p′. If any worker q tries
to steal from p or p′ during this time, then q also starts waiting on u and a(u)
increases by 1. Therefore, only a small number of steal attempts (in expectation)
can occur before a(u) = c(u) and u becomes saturated and stops waiting. We
use this fact to bound the number of waiting steal attempts.

Irregular Steal Attempts: These occur when no elastic node is waiting and
some unsaturated elastic node is executing. The analysis here is similar to the one
we used to account for idle steps in the work-sharing scheduler (see [22]). Since
this elastic node started executing without being saturated, it must have waited
for at least w(u) time — and during this time, all the workers not assigned to this
elastic node were busy doing either work or waiting steal attempts. Therefore,
any steal attempts by these workers can be amortized against these other steps.

The formal analysis can be found in the full technical report [22]. Below we
provide the essential components that lead to the work-stealing bound.
Lemma 1. Total number of regular steal attempts is O(PS + P lg(1/ε)) in ex-
pectation.

Lemma 2. There are O(P min{lg c(u), lgP}) steal attempts in expectation while
a particular elastic node u is waiting. Therefore, the expected number of waiting
steal attempts over the entire computation is O(PE lgP ).

Lemma 3. The total number of irregular steal attempts is at most O(W +
PE lgP ).

Proof of Theorem 2: Combining Lemmas 1, 2 and 3 tells us that the total
number of steal attempts over the entire computation is O(W + PS + PE lgP ).
In addition, we know that the total number of work steps and waiting steps is at
most O(W + PE). Therefore, if we add all types of steps and divide by P (since
we have P worker threads and each take 1 step per unit time), we get the overall
expected running time of O(W/P + S + E lgP ). ut

4 Implementation details

We created ElastiJ, a system that supports the creation and execution of elastic
tasks. ElastiJ is build on top of the Habanero-Java library (HJlib) [14].



Elastic tasks are created using asyncElastic, a regular spawn call (async in
HJlib) with two additional parameters: work - w(u) and capacity - c(u). The
capacity of a task is the approximation of its average parallelism — for any task
we can simply assume that it is the task‘s work (w(u)) divided by its critical
path length (or span). The work w(u) is the total running time of the task on 1
processor. Many tools exist to measure parallelism; e.g., for CilkPlus programs,
Cilkview can be used to get c(u). Two additional optional parameters: (b(u),
e(u)) can be used to describe the computation much like describing the iteration
space for a loop. The runtime divides this range and assigns non-overlapping
ranges to the workers executing the elastic node, similar to OpenMP’s loop static
scheduling [19], except that the number of workers is dynamic. For non-data-
parallel computations these values can have a different meaning or simply not
be used; e.g., in Section 5.2 we use Quicksort, where the partition phase - a
computation that is not data parallel - is implemented as an elastic task.

ElastiJ uses a from-scratch work-sharing or work-stealing runtime implemented
in Java. We use the work-stealing runtime in our results due to its better
performance as shown in [10,12]. The runtime executes as described in Section 3.3,
but the mechanism threads join an elastic task differs. The simplest approach is
as follows: the first thread starts to wait w(u), the second thread wakes up the
first and both of them continue to wait for half of the remaining time, and so on.
This approach causes a lot of overhead due to the several sleep and notify calls, in
particular when many threads want to join at once. A better approach is for the
first thread to wait w(u) and store his wait start time. The second thread uses this
wait time to compute how much the first thread already waited, and waits half of
the remaining time, also storing the time he starts the wait. The process goes on
until the last thread either saturates the task or has waited the remaining fraction
of time and it wakes up all threads. This second approach has the advantage
that each thread only goes to sleep once and is woken up once when it can start
the work. However it also experiences a lot of overhead due to context-switching
when the method wait is called. Since the waiting threads do not perform any
work, a more efficient approach observed in practice is a bounded busy-wait
approach. This third approach is the one we used in our experiments. In addition,
the runtime uses as the total wait time a fraction of the full estimated work given
to the task, in order to account for the constant factor in the theoretical proof,
and thus offer competitive performance. The asyncElastic construct we propose
also includes an implicit phaser [23] for all workers that join the task. The use of
phasers instead of barriers can provide additional performance benefits [18].

5 Experimental results

In this section, we use a series of benchmarks to demonstrate how elastic tasks
perform in different scenarios. We first assess if elastic tasks have the potential to
provide better locality using a synthetic micro-benchmark. Next, we use Quicksort
and FFT algorithms to demonstrate that elastic tasks are easily integrated into
task-parallel recursive programs and provide easy adaptability to task granularity.
Finally, we evaluate the performance of ElastiJ using a set of single-level fork-join
benchmarks from the IMSuite [13] set; we show little or no overhead from using



elastic tasks and analyze their sensitivity to applications and parameters. The
performance results were obtained on two platforms: (1) IBM POWER7: node
with four eight-core POWER7 chips running at 3.86GHz, with 4 MB L3 cache
per chip, and (2) Intel Westmere: node with 12 processor cores per node Intel
Xeon X5660 running at 2.83 GHz.

5.1 Benefit from locality

In Section 2, we described scenarios when elastic tasks give locality benefits.
In this section, we evaluate this hypothesis by creating the following synthetic
fork-join style application: the benchmark spawns n tasks of type ua in a single
finish scope, where n is a multiple of the number of cores P . Each ua task accesses
the same M elements of a vector A. Each ua task spawn P ub tasks, and each ub
task accesses the same M elements of a different vector B. The capacity c(u) of
each elastic task is P , the maximum number of machine cores. All experiments
in this section were obtained on the POWER7 (P=32). The program accepts a
parameter to set the fraction α of ua tasks that are elastic tasks, and creates
n×α elastic tasks and (1−α)×n regular tasks (strands). The program spawns α
elastic tasks using asyncElastic, and (1−α) simulated elastic tasks using async.
This simulation essentially means creating P regular tasks for each elastic task.

We expect a locality benefit due to the co-scheduling of the elastic tasks since
all the workers executing the elastic task access the same array A. Therefore,
it is likely that A will remain in the shared cache while this elastic task is
executing. On the other hand, when we convert this elastic task into a normal
task-parallel for-loop with P strands, these P strands may execute far apart in
time — therefore, some of the ub tasks may pollute the cache in the meantime.
The results below show this makes a difference when M is large enough to cause
the ub tasks to evict part of the A data from L3 cache.

We run experiments by varying the fraction of elastic tasks: 0% ≤ α ≤ 100%
(0% means all tasks are regular tasks, while 100% means all tasks are elastic). All
experiments report the average of the 20 best iterations over 3 runs, each with
30 iterations, to remove the JVM warm-up and variability between runs [11].

We set the size of the arrays to M = 1, 000, 000; with A being an array of
integers this adds to 4MB of data. Note that we ignore the L1 and L2 caches,
under the claim that the size chosen is large enough to ensure at least some
evictions from L3 cache. The results of the experiments are shown in Figure 1a.
We notice that for elastic tasks the execution time remains essentially constant,
while for regular tasks the performance is degrading as we increase their number.
We ran an experiment with identical task size but with M = 64.000, and noticed
constant performance when varying from 0-100% so the action of splitting the
task cannot be the cause. We therefore go back to what we inferred and assume
the data accessed by tasks ua is being invalidated by tasks ub. We use the perf
tool on the POWER7 to confirm this. Figure 1b plots the cache misses obtained
by the perf tool. We see that the number of cache misses increases up to 1.7×
when using regular tasks as opposed to elastic tasks.

We conclude that the use of elastic tasks should be used in a setting where
their granularity amortizes the overhead of setting them up and that they can
offer performance benefits due to improved locality.



(a) Y-axis: time normalized
w.r.t. 0%.

(b) Y-axis: cache misses normal-
ized w.r.t. 0%.

Fig. 1. Microbenchmark comparing Elastic vs. Async task scheduling. X axis:% of
elastic tasks.

5.2 Adaptability
We argue that elastic tasks provide the benefit that they integrate seamlessly with
normal task parallelism which is suited to recursive algorithms. The quicksort
algorithm is a recursive divide-and-conquer algorithm and can be easily expressed
as a task-parallel program using async-finish or spawn-sync constructs. However,
the divide step consists of a partition step. While partition can be expressed as a
divide-and-conquer algorithm, that is a cumbersome implementation and many
parallel implementations of quicksort simply use a sequential partition algorithm.

In this section, we evaluate the benefit of implementing the partition algorithm
as an elastic task [25]. Note that the partition step is called at every level of
recursion. The advantage of using elastic tasks for expressing it is that the
number of workers assigned to this partition step is decided at runtime. At the
shallow levels of the recursion tree where there is not much other work being
done, the partition step will be automatically assigned more workers. At deeper
levels of the tree, when there is already enough other parallel work available,
the partition will execute mostly sequentially. Therefore, elastic tasks provide
automatic adaptability without any intervention needed by the programmer.

In Figure 2a, we compare elastic and async parallel implementations for
quicksort with a parallel partition phase implemented with N asyncs, with N=#
of machine cores, or as an elastic task. We present the results normalized w.r.t.
the aync runs. In Figure 2b, we compare two implementations of FFT, where the
recombine phase is implemented either as a binary tree spawn using asyncs or as
an elastic task. The data sets we use are 107 and 108 for quicksort, and 222 and
223 for FFT. For both quicksort and FFT we used a rough estimate for the work
based on the array length; additional opportunities exist for auto-tuning the work
based on the input, recursion depth, etc. We present results for both benchmarks
on the POWER7 and the Westmere, by using the reporting the average of the
best iterations out of 90 iterations, using 3 JVM invocations [11]. We get up to
70% gain for quicksort and up to 16% gain for FFT from using elastic tasks. We
also note that the gains are larger when the datasizes increase a trend that we
believe will lead to increased benefits in larger scale applications.

5.3 Sensitivity Analysis

We use 8 benchmarks from the IMSuite Benchmark Suite [13] to compare regular
task spawning with the creation of elastic tasks. These benchmarks have a single-



(a) Quicksort (b) FFT

Fig. 2. Elastic task runs normalized over Async runs. > 1 means elastic runs are better.

level fork-join structure, i.e., there is at most a single forAll loop active at a time,
which means they do not offer any opportunity for benefits from elasticity. Our
goal is to demonstrate on-par performance with regular work stealing (Async
Finish primitives). We discover that elastic tasks can offer benefits even in this
scenario due to their resilience to the theoretical assumptions and to the elastic
task parameters. The benchmarks are: Bellman Ford, Byzantine Agreement,
Dijkstra, General Leader Election, Maximum Independent Set, Vertex Coloring,
k-Committee and Minimum Spanning Tree [13].

Figures 3 gives the results on the Westmere platforms (see the technical report
[22] for full experimental analysis). Figure 3a shows better performance using

(a) Y axis: Speedup. Geomean=1.160. (b) X axis: Time normalized on the run
using W.

Fig. 3. IMSuite results on Westmere. (a) The geomean is for elastic times normalized
over Async runs (>1 if elastic runs are better).

elastic tasks for most benchmarks. The reason is that these benchmarks fail to
scale linearly past 8 cores and our work estimation offers better performance by
selecting fewer cores than the maximum. This means that elastic tasks can be
used to tune applications even when the theoretical guarantee of linear scaling
does not hold. So we looked into how sensitive the applications are to the API
parameters, in particular the estimated work (restricting the capacity only limits
parallelism so it makes no sense to restrict it). Figure 3b shows that the times are
large for the W/10 case, which is expected, since a small estimation means not
enough wait time for threads to join the task, thus wasting parallelism. Conversely,
with W large we delay the computation, which leads to two combined causes



for performance degradation: a longer wait time and a larger running time on
12 cores. Overall, the running time variation when W is varied is small and
in many cases the added overhead is at most 10%. In the few cases where the
percentage-wise variation is larger, the absolute time is very small([22]).

We conclude our overall results with the following observations: (a) elastic
tasks provide a common API for expressing task and SPMD parallelism and are
straightforward and easy to use; (b) they can benefit from locality due to their
coscheduling property; (c) they can be used to adapt the degree of parallelism
for recursive benchmarks; (d) they can offer comparable performance with forall
constructs, and are fairly resilient to the theoretical assumptions of elastic tasks
and to the user-provided parameters.

6 Related work
The closest related work is described as team-building [26] where programmers
express inelastic tasks and the runtime allocates all workers. As mentioned in
Section 1, our approach is quite distinct and we give theoretical proofs that our
enhanced scheduler gives the same asymptotic bounds as regular work-stealing.

The problem of thread scheduling for locality improvements has been investi-
gated in depth for work-stealing schedulers [12,20,6], both shared memory [12]
and distributed [20,6]. ADAPT [15] proposes a framework implemented at OS
level, which adapts the number of threads in a program, on machines where
multiple programs concurrently. These works are orthogonal to elastic tasks.

A previous study [24] looked at a series of works which attempt to do coschedul-
ing of tasks in general; this requires a coordinated effort which adds a lot of
overhead in the absence of additional information. The authors formulate a
mathematical model to analyze current approaches. Our work eases the challenge
of coscheduling of tasks, when computations are expressible as an elastic task,
and it can also be coupled with existing strategies. A more restrictive form of
co-scheduling is gang scheduling, generally used for inelastic tasks.

7 Conclusions

In this paper we introduced the concept of elastic tasks, a construct that enables
programmers to express adaptive parallel computations and rely on an elastic
runtime to offer good performance from locality and load balancing. We proved
that the work-stealing scheduler completes the computation in O(W/P + S +
E lgP ) expected time, where E is the total number of elastic tasks. We also
showed practical results, that elastic tasks have the potential of improving the
locality of computations, can yield comparable performance with regular tasks
and that they are able to adapt at runtime, based on the load of the application.

We are interested in extending our approach to take more of the machine
topology into account: the locality benefits of elastic tasks should be more
pronounced when workers assigned to an elastic task share a certain level of
proximity. As discussed in Section 2, elastic tasks are potentially useful for writing
portable applications for heterogeneous machines that contain CPUs and GPUs
and on distributed systems. Finally, elastic tasks have a potential to be useful
for multiprogramming environments.



References

1. Agrawal, K., et al.: Executing task graphs using work-stealing. In: IPDPS (’10)
2. Arora, N.S., et al.: Thread scheduling for multiprogrammed multiprocessors. In:

SPAA (’98)
3. Auerbach, J.S., Bacon, D.F., Cheng, P., Rabbah, R.M.: Lime: a java-compatible

and synthesizable language for heterogeneous architectures. In: OOPSLA (’10)
4. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work

stealing. J. ACM 1999 (1999)
5. Cavé, V., et al.: Habanero-Java: the New Adventures of Old X10. In: PPPJ’11 (’11)
6. Chen, Q., Guo, M., Guan, H.: Laws: Locality-aware work-stealing for multi-socket

multi-core architectures. In: ICS (’14)
7. Cytron, R., et al.: A Compiler-Assisted Approach to SPMD Execution. SC (’90)
8. Darema, F., George, D., Norton, V., Pfister, G.: A Single-Program-Multiple-Data

Computational model for EPEX/FORTRAN. Parallel Computing 7(1), 11–24 (1988)
9. ExascaleHabanero: Habanero C, https://wiki.rice.edu/confluence/display/

HABANERO/Habanero-C

10. Frigo, M., et al.: The implem. of the Cilk-5 multithreaded lang. In: PLDI (’98)
11. Georges, A., et al.: Statistically Rigorous Java Perf. Evaluation. In: OOPSLA (’07)
12. Guo, Y., et al.: SLAW:Scalable Locality-aware Adaptive Work-stealing Scheduler.

In: IPDPS (’10)
13. Gupta, S., Nandivada, V.K.: IMSuite: A Benchmark Suite for Simulating Distributed

Algorithms. ArXiv e-prints (Oct 2013)
14. Imam, S., Sarkar, V.: Habanero-Java Library: a Java 8 Framework for Multicore

Programming. In: PPPJ (’14)
15. Kumar Pusukuri, K., et al.: Adapt: A framework for coscheduling multithreaded

programs. ACM Trans. Archit. Code Optim. (Jan 2013)
16. Luk, C.K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous multi-

processors with adaptive mapping. In: MICRO (’09)
17. Microsoft: ”MSDN Magazine: Task Parallel Library”, Retrieved 2014-09-11, http:

//msdn.microsoft.com/en-us/magazine/cc163340.aspx

18. Nandivada, V.K., et al.: A transformation framework for optimizing task-parallel
programs. ACM Trans. Program. Lang. Syst. 2013 (2013)

19. OpenMP Architecture Review Board: The OpenMP API specification for parallel
programming, version 4.0 (July 2013)

20. Paudel, J., Tardieu, O., Amaral, J.N.: On the merits of distributed work-stealing
on selective locality-aware tasks. In: ICPP (’13)

21. Reinders, J.: Intel threading building blocks. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, first edn. (2007)

22. Sbirlea, A., et al.: Elastic Tasks: Unifying Task Parallelism and SPMD Parallelism
with an Adaptive Runtime. Research Report TR15-02, Rice University (2015), http:
//engr.rice.edu/uploadedFiles/Tech_Reports/TR15-02_Elastic_Tasks.pdf

23. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phasers: a unified deadlock-
free construct for collective and point-to-point synchronization. In: ICS (’08)

24. Squillante, M.S., et al.: Modeling and analysis of dynamic coscheduling in parallel
and distributed environments. In: SIGMETRICS (’02)

25. Tsigas, P., Zhang, Y.: A simple, fast parallel implementation of quicksort and its
performance evaluation on sun enterprise 10000. In: PDP (’03)

26. Wimmer, M., Träff, J.L.: Work-stealing for mixed-mode parallelism by deterministic
team-building. In: SPAA (’11)

https://wiki.rice.edu/confluence/display/HABANERO/Habanero-C
https://wiki.rice.edu/confluence/display/HABANERO/Habanero-C
http://msdn.microsoft.com/en-us/magazine/cc163340.aspx
http://msdn.microsoft.com/en-us/magazine/cc163340.aspx
http://engr.rice.edu/uploadedFiles/Tech_Reports/TR15-02_Elastic_Tasks.pdf
http://engr.rice.edu/uploadedFiles/Tech_Reports/TR15-02_Elastic_Tasks.pdf

	Elastic Tasks: Unifying Task Parallelism and SPMD Parallelism with an Adaptive Runtime

