A Practical Approach to DOACROSS Parallelization

Priya Unnikrishnah, Jun Shirak®, Kit Barton', Sanjay Chatterjée Raul Silvera, and
Vivek Sarkaf

1 |BM Toronto Laboratory{pri yau, kbarton, raul s}@a. i bm com
2 Department of Computer Science, Rice Universfjys20, ¢s20, vs3}@i ce. edu

Abstract. Loops with cross-iteration dependence®ACR0OSSloops) often con-
tain significant amounts of parallelism that can potentially be exploited onmode
manycore processors. However, most production-strength caspdeus their
automatic parallelization efforts amoALL loops, and considepOACROSSpar-
allelism to be impractical due to the space inefficiencies and the synchtioniza
overheads of past approaches. This paper presents a noy@laatidal approach

to automatically parallelizingoAcRossloops for execution on manycore-SMP
systems. We introduce a compiler-and-runtime optimization calkpgndence
folding that bounds the number of synchronization variables allocated peework
thread (processor core) to be at most the maximum depth of a loofheiest
considered for automatic parallelization. Our approach has been impiedia

a development version of the IBM XL Fortran V13.1 commercial paliailey
compiler and runtime system. For four benchmarks where automaticL par-
allelization was largely ineffective (speedups of under), our implementation
delivered speedups of 65 9.0x, 17.3x, and 17.5% on a 32-core IBM Power7
SMP system, thereby showing thabAacrRossparallelization can be a valuable
technique to complementoALL parallelization.

1 Introduction

As hardware processors move from multicore to manycoregdssihe challenge of
enabling software to exploit parallelism is gaining a héggied urgency. While a num-
ber of programming models have been proposed for explicdligdism, manual par-
allelization still requires a high degree of parallel pimgming expertise, and is often
time-consuming and error-prone. It is widely believed thabmatic parallelization can
play an important role in improving the programmability chnycore-SMP systems [4]
because it requires minimal or no effort by users. Furtheemechniques for automatic
parallelization can also be used in programming tools thesisain manual paralleliza-
tion.

Most compilers focus on loops with no cross-iteration dejeeices in which all iter-
ations can be executed completely in parallel with eachrptiueh loops are referred to
asDOALL loops. Loops with cross-iteration dependences are reféorasDOACROSS
loops, and are usually serialized or, in some cases, tnanstbinto skewedOALL
loops when practical to do so. However, Amdahl’s Law dictatet it will be increas-
ingly important to pay attention to the sequential fractibthe program, including non-
parallelizedboAcRrROSSsloops, as we move to manycore processors. Unfortunatedy, pa
approaches tooAcCROSSparallelization are impractical for use in productioresigth

compilers due to unrealistic assumptions atspate (e.g., allocating one synchroniza-
tion variable per dynamic iteration instance)goanularity (e.g., performing synchro-

nization operations even when their overhead exceeds dwitan time of a loop iter-

ation).

This paper presents a novel apdhctical approach to automatically parallelizing
DOACROSSIloops for execution on manycore-SMP systems. We introdumengpiler-
and-runtime optimization calledependence folding that bounds the number of synchro-
nization variables per worker thread (processor core) tatlmost the maximum depth
of aloop nest being considered for automatic paralletizatiVe also present an effective
cost analysis to determine the profitability mbAcrossparallelization, and practical
techniques to increase the granularity of computation eetwsuccessive synchroniza-
tion operations. Our approach has been implemented in dogewment version of the
IBM XL Fortran V13.1 commercial parallelizing compiler anghtime system. For four
benchmarks where automatoALL parallelization was largely ineffective (speedups
of under2x), our implementation delivered speedups of6f6r LU, 9.0x for Poisson,
17.3x for SOR, and 17.5 for Jacobi on a 32-core IBM Power7 SMP system. Thus,
DOACROSSparallelization can be a valuable technique to compleroentLL paral-
lelism in cases whereoALL parallelization results in limited benefits [13].

The rest of the paper is organized as follows. Section 2 suimezrasome of the
previous work in this area. Section 3 describes our apprtmploAcCROSsSsparalleliza-
tion, with details on dependence folding and runtime athams. Section 4 describes
our methods for cost analysis and optimal grain size selectection 5 presents ex-
perimental results to evaluate the effectiveness of ourcgmh. Section 6 contains our
conclusions, along with suggestions for future work.

2 Previous Work

Early work onbDoAcRossparallelization concentrated primarily on the synchraniz
tion mechanisms used. Cytron [2] showed how to determinescrossschedule to
enforce a given set of dependences, based on the delays titrdduiced for different
iterations of the loop in processors that execute synchuslgoPadua and Midkiff [7]
focused on synchronization techniques to enforce loopethdependences in singly-
nestedbOACROSSloops. They use one synchronization variable per datardkgee
in the loop, and do not consider multi-dimensional loops.Ifé/fil2] looked at four
different synchronization mechanisms such as synchmugiai every data-dependence
relationship in the loop, dividing the loop into segmentstatements and pipelining the
execution of the segments, inserting barriers at variougpm the loop, using ordered
critical sections etc. Again, only singly-nested loopseveonsidered.

Su and Yew [10] proposed several interesting data synchaiion schemes. The
data-oriented scheme uses a dedicated synchronizatiabbhegfior each datum involved
in a dependence relationship in the loop, while the statéimeented and process-
oriented schemes have one per statement and iteratiorectasby. They considered
multi-dimensional loops with both a single level of parkdlen and nested parallelism,
but did not include any experimental results. Li [5] presadgorithms to generate syn-
chronization code based directly on array subscripts aod lmunds using an array
of event variables. This technique does not require cohstaa dependence distances

and can target arbitrarily nested loops. Chen et al [3] psedaan algorithm for run-
time parallelization oboAcROSSloops when data dependences cannot be determined
at compile-time. Tang et al [8], presented synchronizasiciremes that can parallelize
general nested loop structures with complicated crosatite data dependences.

Our experience in the area of automatic parallelizationiédsis to believe strongly
that the choice of synchronization mechanism, its impletatén and its tuning all have
a major impact on the (im)practicality of a given approachdacrossparallelization.
All of the above papers [2, 3,10, 5, 7, 8, 12] propose intarggechniques for synchro-
nization, but lack quantitative measurements on the padorce gains achieved, and the
synchronization costs and memory requirements of thedstatthods. Our synchro-
nization mechanism uses a simple and intuitive “iteratiector” based scheme that can
be easily applied to multi-dimensional loop nests. Our expental results show that a
single level of parallelism is sufficient in most cases toleitphe available resources.

There has also been some notable past work on optimizindieymization opera-
tions. Krothapalli [11] targeted redundant synchron@attlimination by removing re-
dundant dependences in simple loops with constant depeesiéRajamony and Cox [9]
used integer programming to determine the optimal solttianinimize the amount of
synchronization imOACROSSIoops while retaining the parallelism that can be extracted
from the loop. Chen [1] focused on increasing parallelististatement reordering and
reducing communication overhead by eliminating redungginthronizations.

An optimal granularity of computation is required to offtfe¢ overhead of synchro-
nization. Pan et al [14] used tiling to increase the paiabgion granularity and propose
a formulation for the optimal tile size. They conclude thatis scheduling significantly
outperforms dynamic self-scheduling by enhancing iritellgcality. Lowenthal [6] pre-
sented a flexible runtime approach to determine the gratwtar pipelined paralleliza-
tion. Our work instead uses a cost-based combination of deftime and runtime anal-
yses to determine the granularity of work. Our results shiwat the accuracy of cost
analysis can have a significant impact on parallel perfooaamd scalability.

3 Dpoacross Parallelization Algorithm

Our approach to automatimoAcRoSsparallelization is based on the assumption that
there is one (logical) synchronization variable allocaped dynamic loop iteration.
Thus, the sources and targets of inter-iteration synchation operations can be de-
noted asteration vectors. (Recall that iteration vectoﬁ> = (I, I, I3, ...I,,) represents
a unique point in am-dimensional iteration space.) The core idea is that a dipgn
iteration can examine the status of the synchronizatiorabkes of the iterations that
it is waiting on to determine when it can start execution.ndsihe iteration vector as
the synchronization variable interface has several adgast It is very efficient to im-
plement in terms of the memory required (as we will see belsimple to understand
and implement, easily extensible to multidimensional Ba@md does not constrain the
inherent parallelism in the loop nest.

In our approach, synchronization is performed at the statemevel of a given pro-
gram representation. We assume that stand@sITWAIT operations can be performed
on the iteration vector synchronization variables to etgdahe data dependence rela-

tionships in the loop. A°OSTis inserted after the source statement of the dependence
and thewAIT statement is inserted before the sink statement of the depee:

1. WAIT(w_I_;f): Causes execution to wait until tﬁc}a iteration specified byitiration
vectorwl, is completed. The iteration vectarl,, of WAIT is computed using the
current iteration vector and the dependence distance Nébte (d1,da,ds, ...dy,)
of the data dependenceeTv> = (I, — ﬁ) = (I, —dy, Iy — dy, ...I,, — d,,)

2. POST(pTJ): Indicates the com}pletion of the iteration specified by theaition vec-
torpl, . The iteration vectopl, of POSTis the current iteration being executed.

= '
va = Iv - (117]2; In)

3.1 Dependence Folding

With the aim of reducing synchronization overheads so asakemOACROSSparal-
lelization practical, our implementation folds all the poarried dependences in the
loop into a single, conservative dependence. This leadsetinsertion of at most one
pair of synchronization primitives per iteration. In oupexience with current hardware,
the lower synchronization cost resulting from at most onechyonization per iteration
far outweighs the potential loss in parallelism due to coretére approximation.

Definition 1. Aloop-carried data dependenceis composed of the source statement, sink
statement and the dependence distance A = {Ss,c0*Ssink, l_)>}.

Consider a perfect loop nestwith n dimensions andn statementgS;..S,,} andk
data dependences’ = {Sxd*Sy,B%},i € {l.k},z € {1..m} andy € {1..m}. Each
dependence vectaR? has the formD? = (d:, d3, ..., d’,). The single conservative de-
pendence is computed by considering all the data depensigricé in loop nestL. The
source of the conservative dependence is computed astioally Latest Source (LLS)
statement across all the data dependences in the loopmeshttol flow terms, the LLS
statement can be computed as follows. First compute thedeasnon ancestor, LCA,
of all source statements in thgwstdominator tree for the loop; then, find the closest
ancestor of LCA in the postdominator tree that is uncondélty executed in the loop
body. This statement is the LLS. Likewise, the sink of thessgwative dependence is
computed as theexically Earliest Snk (LES) statement across all the data dependences
in the loop nest (by using the dominator tree instead of thetdqmminator tree). After
the source and sink statements have been identified for tieeoative dependence, the
next step is to identify the conservative dependence distanctorC’. As our mech-
anism applies only to a single level of parallelism in theppi is possible to use a
trivial formulation for the conservative dependence diseashown below. Assuming
'ﬂe outermost dimension is parallelized without loop chngkthe first dimension of
D! denotes the stride (i.e. dependence distance) along vetimtér-thread loop depen-
dence. Therefore, the first dimension@fshould correspond to the maximum value of
common strides in that dimension, which is the GCD value. fEmeaining dimensions
can be conservatively computed by usimn,vect(V{, 72, ..,ﬁ), which determines
the lexicographically smallest vectori?f, 72 X7k>

ol < C1]) _ < ged(dt, s, ...dY))
“\C[2.n])~ \minwect(D'[2..n],...D*[2..n])

DO K=2,N3-1
DO J=2,N2-1
DO I=2,N1-1
WAIT (K-1,J+1,I) Use{A} Def{A}
Z=B(1)*(A(+1,J K)+A(-1,J K) s1()| c=(1,-1,0)
+A(l J+1,K)+A(L J-1K) s
+A(J L K+1)HA(L I K-1) : 513, 2, 2)
+ B(2)*(A(I+1,J+1,K)+A(I-1,J+1,K) : s2(3, 2, 2)
+A(I+1,d K+1)+A(I-1,J K+1) :
+A(I+1,d-1,K)+A(I-1,0-1,K) ——513.3.2)
+A(I+1,d K-1)+A(-1,d K-1) <2(3. 3. 2)

LASI

1]
yp...
N N
—

+A(l ,J+1,K+1)+A(l J-1,K+1)

N o 0o 0o go go o go o %

I
+A(J+1,K-1)+A(l J-1,K-1))
A(l,J,K) = (A(1,J,K) + 2)*0.5D0
POST (K, J, I) Use{A} Def{A} —
END DO
END DO
END DO

(%))

(a) Kernel with POST/WAIT (b) Conservative dependence

Fig. 1: Pipelining POISSON

After insertion of POSTWAIT operations, the compiler will look for code motion
opportunities to move theOST operations as early as possible in the loop, and the
WAIT operations as late as possible in the loop. To ensure thhattgutsformations do
not violate any data dependences,RIESTWAIT operations are augmented with pseudo
USE andDEF sets as follows:

1. Flow dependencg’): A flow dependence is fromdef of the variable to itsise.
The WAIT is inserted before these and thePOSTis inserted after thdef. In order
to prevent theuse of the dependence variable from moving up pastwiéT call,
the variable is inserted in a pseudar set for thewAlIT call. Similarly, in order to
prevent thalef of the dependence variable from moving down belowRbsTcall,
the variable is inserted in a pseud8E set for thePOSTcall.

2. Anti dependencéi®): An anti dependence is fromwse of the variable to itslef.
The WAIT is inserted before thdef and thePOSTIs inserted after theise. The
dependence variable is marked assain the WAIT call to ensure that th&/AIT is
completed before thdef, and as alef in the POSTcall to ensure that theOSTis
performed after these of the variable.

3. Output dependend@®): An output dependence is between tde’s of the same
variable. The dependence variable is markedsasn both thewAIT andPOSTcall
to ensure that th&/AIT is done before all thdefsandPOSTis done after all thelefs
of that variable.

Figure la shows the POISSON computational kernel, which 3sdamensional
(400x400x400) boACROSSloop nest with theeOSTWAIT synchronization primitives
inserted after conservative dependence computationidicdlse, there are multiple flow
dependences from s2 to sl for array A with the following deleeice distances:

D' = (1,0,0), D = (1,0,—1), D’ = (1,0,1), D = (1,-1,0), D* = (1,1,0)

and multiple anti dependences framto s2 for array A with the following dependence
distances:
D® = (1,0,0), DT = (1,0,1), D = (1,0, 1), D° = (1,1,0), D' = (1, ~1,0).
The conservative dependence are computed as follow:
= (ged(1,1,1,1,1,1,1,1,1,1),
min_vect((0,0), (0, —1), (0,1), (—1,0), (1,0), (0,0), (0,1), (0, —1), (1,0), (—1,0)))
=(1,-1,0)

Based on the conservative depende®eST(K, J,) is inserted after lexically last
sources2 andWAI T(K- 1, J+1, 1) isinserted before lexically earliest sink.

3.2 Runtime Implementation

The compiler outlines and parameterizestleacROSsloops after th&OSTWAIT syn-
chronization calls to the runtime are inserted. The pdmall@ime system is responsible
for initializing data structures and scheduling theAcrRossloops. The current imple-
mentation employs a static cyclic scheduling policy withhaurtk size of one, where
iterations are assigned to processors in a round-robindiasiihe static cyclic policy
inherently brings good load balance and data locality iritamdto low overhead due to
static iteration mapping.

Runtime Data Structure: Letm denote the number of threads amdienote the di-
mension of theboACROSSIoop nest. The runtime allocates a 2-dimensional array,
syncwec[l : m][1 : n], which is a set ofn x n synchronization variables to man-
age thePOSTWAIT synchronization on theoAcRrRossloop. Given a thread with id =
thrd_id, the 1-dimensional sub-arraync_vec[thrd_id][1 : n] represents the last itera-
tion instance whose completion is ensured byRBSToperation. Note that the iteration
space is hormalized and it is guaranteed that an |terat51ann@1 passed to 0ST
operation monotonically increases for each threadvAdT operation is blocked until
when sync_vec[thrd_id] is lexicographically larger or equal to the iteration imsta
wI_U> passed to th&vAIT.

Algorithm 1: POSTalgorithm

Input : The iteration vector of the current iteratiph, = (I1, I2, ..., In), n = dimension
of loop, m = number of threads

begin
/I Check for boundary conditions
/I The loops are all lower bound and bump normalized
if within_boundary(pl,[1...n]) then
thrd_id = mythread()

/I Update the synchronization variable of the current thread
syncvec[thrd_id][1..n] = pI,[1..n|

end

Algorithm 2: WAIT algorithm
Input : The iteration vector of the dependence source
wl, = (I1 — d1, Is — da, ..., I, — dy), n = dimension of loopn = number of
threadsp = (d1,d2..dy,) is the dependence distance

begin

if within_boundary(wl,[1...n]) then
/I Determine the thread executing the source iteration specified/by
/I Schedule is static with chunksize=1.
thrd-id = wil,[1]%m

/1 Block until sync_vec[thrd_id] is lexicographically larger or equal tol,,[1..n]

while vector_compare(sync_vec[thrd_id][1..n],wl,[1..n]) < 0 do
L wait

end

POST/WAIT Algorithm: Algorithms 1 and 2 show thEOST(pﬁ) andWAIT(wI_J)
algorithms, respectively. The boundary check for the fienainstancep I, /w1, is per-
fo_r}med_)at the beginning of theOSTWAIT algorithm. Note that all valid elements of
pl,lwl, are non-negative because of the loop normalization. AT algorithm as-
signspl, to sync_vec[thrd_id] for the current thread. In the implementation, this as-
signment is done in reverse order, i.e., starting with timeimost dimension and going
outer along with appropriate memory barriers. This ensilvasthe intermediate state of
sync_vec[thrd_id] is always smaller thapl_v). TheWAIT algorithm computes the target
(source) thread based on the first dimensiowﬁ, and waits untilsync_vec[thrd_id]
becomes lexicographically larger or equamﬁg. This vector comparison is done start-
ing with the outermost dimension and going inner. The orderpalating and reading
of the synchronization vector by ttOSTandWAIT calls respectively ensures that a
WAIT operation will never be unblocked prematurely due to agédléntermediate state
of sync_vec[thrd_id]. TheWAIT operation is relatively cheap because it only performs
a read of the synchronization variable of another threa@. PMST operation is very
expensive because it performs a write of the synchronizatiwiable. Because the syn-
chronization variable in our method is an iteration vedioe, number of writes is equal
to the number of dimensions of the doacross loop.

4 Profitability Analysis and Grain Size Selection

Profitability and cost analysis play a major role in automatirallelization. Excessive
synchronization or insufficient granularity of computatsofor parallelism can result
in significant performance degradation. These considerathiave been studied in past
work on parallelization oboALL loops [13], and need to be extended for parallelization
of DOACRoOSsloops. In this section, we introduce a profitability anady determine
when it is worthwhile to parallelize BoACROSSloop.

First, we perform a special-case check for a one-dimenkioop nest. If thePOST
WAIT calls encompass the entire loop body and the conservatpendence distance
equals 1, themoAcRrossparallelization cannot be profitable since @STWAIT calls

effectively serialize the entire loop. This check does mpglaif the loop nest contains
n > 1 loops, since there may still be useful parallelism with assouative dependence
distance of 1 at the outermost level (enabled by fine-grasyadhronization calls in the
inner loops).

Second, we perform loop unrolling to reduce the amortizesttozad of synchroniza-
tion operations by increasing the granularity of compotathetweerPOSTand WAIT
operations. After unrolling, the lexically laBOSTand earlieSWAIT operations are re-
tained, and all the intervening callsROSTWAIT are removed so as to reduce the overall
synchronization overhead. Also, the iteration instamauf—g> of the lexically earliesWAIT
is adjusted to match the lexically l&®DSTaccording to the unrolling factor.

We assume the availability of two parametéisnGrainS ze andMaxLoopBodyS ze,
to guide our transformations for grain size selectibinGrainSze imposes a lower
bound on the granularity of computation to be performed betw?OSTandWAIT oper-
ations. To compute the heuristics for the grain-dii@GrainSze for DOACROSS par-
allelization, we start by looking at the heuristics fmpALL parallelization [13]. These
values were then adjusted to take into account the comntionicaverhead. Subse-
quently, experimental runs were performed to further fimetthe heuristics. Similarly
to determine the code-siadaxLoopBodySze for DOACROSS parallelization, we rely
on previously calculated heuristics for the unrolling sEommation. These heuristics are
adjusted to prevent excessive code growth during unrolkiog the platform studied in
this paper (Power7 with an XLC runtime system), it was debeech that 20,000 cycles
and 320 cycles are reasonable valueNtHnGrainSze and MaxLoopBodyS ze respec-
tively. However, our approach is applicable to any otheugalthat may be specified for
these parameters.

To select the unroll factotJF, for the innermost loop, we first estimate the cost of
a single iteration of the loog,oopBodyCost. Then, the unroll factor selected by our ap-
proach can be specified B = min(32, [MaxLoopBodySze/LoopBodyCost]|), where
32 is an upper bound that is imposedwir for practical reasons. H = 1, an extra con-
straint is imposed to ensure tHdF is less than the conservative dependence distance
for thepoAcRoOSsSloop.

Finally, we perform a special form ahunking of the inner loops in @OACROSS
loop nest, by estimating a chunk size that we refer to Rardime Granularity Factor,
RGF. RGF specifies the number of iterations of the inner loops thatishibe executed
sequentially. This is achieved by skippiRGF—1 POSToperations in the inner loops, so
that onePOSToperation is performed for eveBGF POST. As described in Section 3.2,
the POS‘I(pTJ) operation ensures that &lIAIT operations whose iteration instam:e?y>
is lexicographically smaller or equal 1mTv> can be unblocked. Therefore, it is safe to
perform only the lasPOSToperation afteRGF—1 POSTs. To avoid a potential dead-
lock when the number of iterations is not an exact multipl®6F, an additionaPOST
operation is inserted at the end of each iteration of thermgstbOACROSSloop to sig-
nal that all iteration instances included in that iteratimve been completed. Note that
WAIT operations, which have much smaller synchronization ¢@stROSToperations,
are always performed.

The initial value ofRGF is selected at compile-time by using the formuR&gF =
MinGrainSze/(UF x LoopBodyCost), This value is further adjusted at runtime based
on the number of threads executing theAcrossloop. If there are more threads, a

Loop carried
dependence?

Serial loop Yes (DOACROSS)
No(DOALL)
Uniform dependences
Identify reductions

Scalar privatization No Yes
Array privatization

Dependence analysis

Fig. 2: Context for automatiooAcrossparallelization in the XL Fortran and C/C++
compilers

Outlining

Parallel loop
(DOALL/
DOACROSS)

1
- Parallel Runtime
: Library

Profitable?

Yes

larger value oRGF may reduce the amount of parallelism that can be exploitedsT
we adjust theRGF value selected at compile-time to a runtime valR@F’, as follows:
RGF' = 2 x RGF/NumThreads. Note thatRGF’" = RGF when NumThreads = 2,
and becomes proportionately smallerNignThreads increases, thereby balancing the
trade-off between overhead and parallelism.

5 Experimental Results

This section presents results from the experiments coaduotevaluate our implemen-
tation. The experiments were performed on a Power7 systdm 3#-core 3.55GHz
processors running Red Hat Enterprise Linux release 5@ nfdasurements were done
using a development version of the XL Fortran 13.1 for Linsed Figure 2). We used 4
benchmark programs for our evaluation: Poisson, 2-dinoeasiLU from the NAS Par-
allel Benchmarks Suite (Version 3.2), SOR algorithm andr2eshsional Jacobi com-
putation. We manually applied array privatization for solmeps in blts and buts, for
which the compiler failed to automatically privatize theags. All these benchmarks
are excellent candidates fooAcRoOssparallelization. All benchmarks were compiled
with option “-O5” for the sequential baseline, and “-O5 -g8rfor the automatic paral-
lelization enablingpoACROSsparallelization. We evaluated four experimental variants
a) only doall represents the speedup where the autonmatisCcROSSparallelization is
turned off and uses onlyoALL parallelism (far left), bdoall w/ manual skewrepre-
sents the speedup withoALL loops includingpoAcrRossloops which were converted
to DOALL loops after manual loop skewing (second left)dogall + doacross (w/o cost-
analysis)is the speedup where bottoALL andDOACROSSparallelization are enabled,
but with the cost analysis and granularity control turnddsgcond right), and djoall

+ doacrossis the speedup where botitoALL andDOACROSSparallelization with cost
analysis and granularity control are enabled (far right).

-
>

10

8 42 8
- p— 8
3 10)
g s g 6
Qg Q
=] S 4
o o
O 4 @
O @ 2
Q 2 o
n n
0 0
1 2 4 8 16 32 1 2 4 8 16 32
threads # threads
(a) Poisson (b) LU
20 20
8 8
@ @
» 15 @ 15
¢ g
a 10 o 10
=} =]
e} S
§ 5 I I § 5 I
@ 0 Bwen mll l II I -I | | -I @ 0 Nl HEN . -l I -I -I -l
1 2 4 8 16 32 1 2 4 8 16 32
threads # threads
(c) SOR (d) Jacobi
H only doall M doall w/ manual skew doall + doacross (w/o cost) M doall + doacross
Fig. 3: Speedup related to sequential run on Power7
5.1 POISSON

We use the POISSON kernel discussed in Section 3.100#cRrR0OSSloop is invoked
20 times in this experiment. Figure 3a shows the speedupedf thariants listed above
when compared to the sequential execution.

Theonly doall case results in no speedgmall + doacross (w/o cost-analysigan
results in worse performance than sequential executioausecof the large synchro-
nization overheaddoall + doacrossdelivers a speedup of up to %0Note thatdoall
w/ manual skewshows better performance thdoall + doacross This is because the
POISSON kernel is a triply nestesbAcCROSssloop. We manually selected the outermost
and middle-nested loops for the target of loop skewing aisddoice turns out to have
a better granularity. On the other hand, the amt@crossversion inserte@OSTWAIT
in the innermost loop body and hence the total synchrowizaiverhead became larger
despite the granularity control. (In the future, optimg@icompilers could reduce this
gap by further adjusting the granularity fooAcCRossparallelization.) However, the
automaticdoall + doacrossversion outperforms thdoall w/ manual skewversion in
the other three benchmarks whose kernel loops are doublgchaad both the manual
and automatic versions use the same granularity.

52 LU

LU has 2D0OACROSSloops in subroutinedlts and buts. Together they account for
about 40% of the sequential execution time of LU. They arén2edsional (166:160)

DOACROSSloops that are invoked 40160 times. The conservative degperedvector
is (1,0) for bothblts andbuts, and the correspondinggAIT/POSTsynchronizations are
inserted. Although LU contains mamoALL loops, the best speedup wWittDACROSS
parallelism disabled is 21 using 8 cores. On the other hand, @wACROSSparal-
lelization brings more scalable performance, up toGspeedup with 32 cores as shown
in Figure 3b. The figure also shows the significant impact efdbst analysis and gran-
ularity control on performance. Furthermore, theACROSSversion show even better
scalability than the manuaoALL version that converted theOACROSSloops inblts
andbuts into DOALL loops. It is well known thaboACcROSSparallelization has better
data locality and lower synchronization overhead thaaLL with loop skewing, even
when they use same granularity for wavefront parallelism.

5.3 SOR and Jacobi

The kernel loop nest of SOR is a 2-dimensional 20000000 loop which is invoked
50 times. Note that the kernel loop of Jacobi has very simsifarcture as SOR, and the
conservative dependence vector for both SOR and Jacohkeélkem(1,0). Our frame-
work extractedboAcrossparallelism for both cases, and achieves up to 27add
17.5x speedup for SOR and Jacobi, respectively as shown in Figoesd 3d. On
the other hand, the best speedups when manually convertr@ROSSinto DOALL

by loop skewing are 64 for SOR and 3.5 for Jacobi. The figures also show that the
granularity control is essential to obtain scalable sppedingboAcCROSSparallelism.

6 Conclusions and Future Work

We presented a novel and practical approach to automatigathllelizingDOACROSS
loops for execution on manycore-SMP systems, based on ailesrapd-runtime op-
timization calleddependence folding. The proposed framework uses a conservative de-
pendence vector analysis to identify suitable programtpeimerePOSTWAIT synchro-
nization operations can be inserted. A profitability anialys used to guide unrolling
and chunking transformations to select an optimized geaitylof computation for
DOACROSsparallelization. Further, our runtime framework includeBghtweight and
space-efficient implementation of point-to-point synctization forbOACROSSloops.

The proposed framework has been implemented in a develdpveesion of the
IBM XL Fortran V13.1 commercial parallelizing compiler anghtime system. For four
benchmarks where automatioALL parallelization was largely ineffective (speedups
of under2x), our implementation delivered speedups 0f6.9.0x, 17.3x, and 17.5
on a 32-core IBM Power7 SMP system, thereby showingleetcRossparallelization
can be a valuable technique to complensoLL parallelization.

During the course of our work in enablirgoAcRoOSS parallelization in the XL
compilers, we encountered multiple opportunities for fatwork related to interactions
betweenboAcrossparallelization and lower-level compiler optimizatioWse found
cases where theoAcRosSstransformation inhibitedoftware pipelining (a technique
for scheduling instructions to exploit instruction levakrallelism in inner loops by over-
lapping loop iterations). In such cases, it would be degréd extend the profitability
analysis to take the impact on software pipelining into actoAs another example,

predictive commoning (an optimization to reuse computations across loop itnatby
detecting indexing sequences and unrolling to avoid registpies), if performed ear-
lier, can inhibit the detection afoOACROSSloops. A detailed study of these interactions
is part of our planned future work. Other opportunities fatufe work include deeper
analyses for synchronization overhead and parallel effigiso as to improve accuracy
of profitability analysis, and performance comparison agfadother existing work. As
shown in the paper, POST/WAIT operations are well-suitedifer annotations and the
technique of dependence folding can also be adapted foxthieie parallelization us-
ing such annotations. Extensions of the proposed frametwoekplicit parallelization

is another important direction of future work.

Acknowledgements

The authors would like to thank Osamu Gohda from IBM Japarthfethand-pipelined
POISSON and LU codes. This work was supported in part by an B% Fellowship
in 2011 and 2012.

References

1. Chen, D.K.: Compiler optimizations for parallel loops with fine-graisgachronization. PhD
Thesis (1994)
2. Cytron, R.: Doacross: Beyond vectorization for multiprocesg@rsceedings of the 1986
International Conference for Parallel Processing pp. 836—844y#t1986)
3. Ding-Kai Chen, Josep Torrellas, P.C.Y.: An efficient algorithmtti@ run-time parallelization
of doacross loops. Proc. Supercomputing 1994 pp. 518-527 (8&4) 1
4. Gupta, R., Pande, S., Psarris, K., Sarkar, V.: Compilation teahsifpr parallel systems.
Parallel Computing 25(13-14), 1741-1783 (1999)
5. Li, Z.: Compiler algorithms for event variable synchronization. Beatings of the 5th inter-
national conference on Supercomputing, Cologne, West Germappp5 (June 1991)
6. Lowenthal, D.K.: Accurately selecting block size at run time in pipelin@aitel programs.
International Journal of Parallel Programming 28(3), 245-274¢2000)
7. Midkiff, S.P., Padua, D.A.: Compiler algorithms for synchronizatiteEE Transactions on
computers C-36, 1485-1495 (December 1987)
8. P. Tang, P. Yew, C.Z.: Compiler techniques for data synchronizatioested parallel loop.
Proc. of 1990 ACM Intl. Conf. on Supercomputing, Amsterdam pp-186 (June 1990)
9. R. Rajamony, A.L.C.: Optimally synchronizing doacross loops @meshmemory multipro-
cessors. Proc. of Intl. Conf. on Parallel Architectures and Compil@&chniques (Nov 1997)
10. Su, H.M., Yew, P.C.: On data synchronization for multiprocesg$tnoc. of the 16th annual in-
ternational symposium on Computer architecture, Jerusalem, Igra®&l 423 (April 1989)
11. V.P. Krothapalli, P.S.: Removal of redundant dependencesanrdss loops with constant
dependences. IEEE Transactions on Parallel and Distributed Syspe2815-289 (Jul 1991)
12. Wolfe, M.: Multiprocessor synchronization for concurrent lodg&E Software v.5 n.1, 34—
42 (January 1988)
13. Zhang, G., Unnikrishnan, P., Ren, J.: Experiments with autalipizing SPEC2000FP
benchmarks. 17th Intl Workshop on Languages and Compilers fal®aComputing (2004)
14. Zhelong Pan, Brian Armstrong, H.B., Eigenmann, R.: On the idtieraof tiling and auto-
matic parallelization. First International Workshop on OpenMP (Wompat)d 2005)

