
A Practical Approach to DOACROSS Parallelization

Priya Unnikrishnan1, Jun Shirako2, Kit Barton1, Sanjay Chatterjee2, Raul Silvera1, and
Vivek Sarkar2

1 IBM Toronto Laboratory,{priyau,kbarton,rauls}@ca.ibm.com
2 Department of Computer Science, Rice University,{js20,cs20,vs3}@rice.edu

Abstract. Loops with cross-iteration dependences (DOACROSSloops) often con-
tain significant amounts of parallelism that can potentially be exploited on modern
manycore processors. However, most production-strength compilers focus their
automatic parallelization efforts onDOALL loops, and considerDOACROSSpar-
allelism to be impractical due to the space inefficiencies and the synchronization
overheads of past approaches. This paper presents a novel andpractical approach
to automatically parallelizingDOACROSSloops for execution on manycore-SMP
systems. We introduce a compiler-and-runtime optimization calleddependence
folding that bounds the number of synchronization variables allocated per worker
thread (processor core) to be at most the maximum depth of a loop nestbeing
considered for automatic parallelization. Our approach has been implemented in
a development version of the IBM XL Fortran V13.1 commercial parallelizing
compiler and runtime system. For four benchmarks where automaticDOALL par-
allelization was largely ineffective (speedups of under2×), our implementation
delivered speedups of 6.5×, 9.0×, 17.3×, and 17.5× on a 32-core IBM Power7
SMP system, thereby showing thatDOACROSSparallelization can be a valuable
technique to complementDOALL parallelization.

1 Introduction

As hardware processors move from multicore to manycore designs, the challenge of
enabling software to exploit parallelism is gaining a heightened urgency. While a num-
ber of programming models have been proposed for explicit parallelism, manual par-
allelization still requires a high degree of parallel programming expertise, and is often
time-consuming and error-prone. It is widely believed thatautomatic parallelization can
play an important role in improving the programmability of manycore-SMP systems [4]
because it requires minimal or no effort by users. Furthermore, techniques for automatic
parallelization can also be used in programming tools that assist in manual paralleliza-
tion.

Most compilers focus on loops with no cross-iteration dependences in which all iter-
ations can be executed completely in parallel with each other; such loops are referred to
asDOALL loops. Loops with cross-iteration dependences are referred to asDOACROSS

loops, and are usually serialized or, in some cases, transformed into skewedDOALL

loops when practical to do so. However, Amdahl’s Law dictates that it will be increas-
ingly important to pay attention to the sequential fractionof the program, including non-
parallelizedDOACROSSloops, as we move to manycore processors. Unfortunately, past
approaches toDOACROSSparallelization are impractical for use in production-strength

compilers due to unrealistic assumptions aboutspace (e.g., allocating one synchroniza-
tion variable per dynamic iteration instance) orgranularity (e.g., performing synchro-
nization operations even when their overhead exceeds the execution time of a loop iter-
ation).

This paper presents a novel andpractical approach to automatically parallelizing
DOACROSSloops for execution on manycore-SMP systems. We introduce acompiler-
and-runtime optimization calleddependence folding that bounds the number of synchro-
nization variables per worker thread (processor core) to beat most the maximum depth
of a loop nest being considered for automatic parallelization. We also present an effective
cost analysis to determine the profitability ofDOACROSSparallelization, and practical
techniques to increase the granularity of computation between successive synchroniza-
tion operations. Our approach has been implemented in a development version of the
IBM XL Fortran V13.1 commercial parallelizing compiler andruntime system. For four
benchmarks where automaticDOALL parallelization was largely ineffective (speedups
of under2×), our implementation delivered speedups of 6.5× for LU, 9.0× for Poisson,
17.3× for SOR, and 17.5× for Jacobi on a 32-core IBM Power7 SMP system. Thus,
DOACROSSparallelization can be a valuable technique to complementDOALL paral-
lelism in cases whereDOALL parallelization results in limited benefits [13].

The rest of the paper is organized as follows. Section 2 summarizes some of the
previous work in this area. Section 3 describes our approachto DOACROSSparalleliza-
tion, with details on dependence folding and runtime algorithms. Section 4 describes
our methods for cost analysis and optimal grain size selection. Section 5 presents ex-
perimental results to evaluate the effectiveness of our approach. Section 6 contains our
conclusions, along with suggestions for future work.

2 Previous Work

Early work onDOACROSSparallelization concentrated primarily on the synchroniza-
tion mechanisms used. Cytron [2] showed how to determine aDOACROSSschedule to
enforce a given set of dependences, based on the delays to be introduced for different
iterations of the loop in processors that execute synchronously. Padua and Midkiff [7]
focused on synchronization techniques to enforce loop carried dependences in singly-
nestedDOACROSSloops. They use one synchronization variable per data-dependence
in the loop, and do not consider multi-dimensional loops. Wolfe [12] looked at four
different synchronization mechanisms such as synchronizing at every data-dependence
relationship in the loop, dividing the loop into segments ofstatements and pipelining the
execution of the segments, inserting barriers at various points in the loop, using ordered
critical sections etc. Again, only singly-nested loops were considered.

Su and Yew [10] proposed several interesting data synchronization schemes. The
data-oriented scheme uses a dedicated synchronization variable for each datum involved
in a dependence relationship in the loop, while the statement-oriented and process-
oriented schemes have one per statement and iteration, respectively. They considered
multi-dimensional loops with both a single level of parallelism and nested parallelism,
but did not include any experimental results. Li [5] presents algorithms to generate syn-
chronization code based directly on array subscripts and loop bounds using an array
of event variables. This technique does not require constant data dependence distances

and can target arbitrarily nested loops. Chen et al [3] proposed an algorithm for run-
time parallelization ofDOACROSSloops when data dependences cannot be determined
at compile-time. Tang et al [8], presented synchronizationschemes that can parallelize
general nested loop structures with complicated cross-iteration data dependences.

Our experience in the area of automatic parallelization hasled us to believe strongly
that the choice of synchronization mechanism, its implementation and its tuning all have
a major impact on the (im)practicality of a given approach toDOACROSSparallelization.
All of the above papers [2, 3, 10, 5, 7, 8, 12] propose interesting techniques for synchro-
nization, but lack quantitative measurements on the performance gains achieved, and the
synchronization costs and memory requirements of the stated methods. Our synchro-
nization mechanism uses a simple and intuitive “iteration vector” based scheme that can
be easily applied to multi-dimensional loop nests. Our experimental results show that a
single level of parallelism is sufficient in most cases to exploit the available resources.

There has also been some notable past work on optimizing synchronization opera-
tions. Krothapalli [11] targeted redundant synchronization elimination by removing re-
dundant dependences in simple loops with constant dependences. Rajamony and Cox [9]
used integer programming to determine the optimal solutionto minimize the amount of
synchronization inDOACROSSloops while retaining the parallelism that can be extracted
from the loop. Chen [1] focused on increasing parallelism with statement reordering and
reducing communication overhead by eliminating redundantsynchronizations.

An optimal granularity of computation is required to offsetthe overhead of synchro-
nization. Pan et al [14] used tiling to increase the parallelization granularity and propose
a formulation for the optimal tile size. They conclude that static scheduling significantly
outperforms dynamic self-scheduling by enhancing inter-tile locality. Lowenthal [6] pre-
sented a flexible runtime approach to determine the granularity for pipelined paralleliza-
tion. Our work instead uses a cost-based combination of compile-time and runtime anal-
yses to determine the granularity of work. Our results show that the accuracy of cost
analysis can have a significant impact on parallel performance and scalability.

3 DOACROSS Parallelization Algorithm

Our approach to automaticDOACROSSparallelization is based on the assumption that
there is one (logical) synchronization variable allocatedper dynamic loop iteration.
Thus, the sources and targets of inter-iteration synchronization operations can be de-
noted asiteration vectors. (Recall that iteration vector

−→
Iv = (I1, I2, I3, ...In) represents

a unique point in ann-dimensional iteration space.) The core idea is that a dependent
iteration can examine the status of the synchronization variables of the iterations that
it is waiting on to determine when it can start execution. Using the iteration vector as
the synchronization variable interface has several advantages. It is very efficient to im-
plement in terms of the memory required (as we will see below), simple to understand
and implement, easily extensible to multidimensional loops, and does not constrain the
inherent parallelism in the loop nest.

In our approach, synchronization is performed at the statement level of a given pro-
gram representation. We assume that standardPOST/WAIT operations can be performed
on the iteration vector synchronization variables to enforce the data dependence rela-

tionships in the loop. APOSTis inserted after the source statement of the dependence
and theWAIT statement is inserted before the sink statement of the dependence:

1. WAIT (w
−→
Iv): Causes execution to wait until the iteration specified by theiteration

vectorw
−→
Iv is completed. The iteration vectorw

−→
Iv of WAIT is computed using the

current iteration vector and the dependence distance vector
−→
D = (d1, d2, d3, ...dn)

of the data dependencew
−→
Iv = (Iv −

−→
D) = (I1 − d1, I2 − d2, ...In − dn)

2. POST (p
−→
Iv): Indicates the completion of the iteration specified by the iteration vec-

tor p
−→
Iv . The iteration vectorp

−→
Iv of POSTis the current iteration being executed.

p
−→
Iv =

−→
Iv = (I1, I2, ...In)

3.1 Dependence Folding

With the aim of reducing synchronization overheads so as to make DOACROSSparal-
lelization practical, our implementation folds all the loop-carried dependences in the
loop into a single, conservative dependence. This leads to the insertion of at most one
pair of synchronization primitives per iteration. In our experience with current hardware,
the lower synchronization cost resulting from at most one synchronization per iteration
far outweighs the potential loss in parallelism due to conservative approximation.

Definition 1. A loop-carried data dependence is composed of the source statement, sink
statement and the dependence distance ∆ = {Ssrcδ

∗Ssink,
−→
D}.

Consider a perfect loop nestL with n dimensions andm statements{S1..Sm} andk

data dependences∆i = {Sxδ
∗Sy,

−→
Di}, i ∈ {1..k}, x ∈ {1..m} andy ∈ {1..m}. Each

dependence vector,Di has the formDi = (di
1
, di

2
, ..., din). The single conservative de-

pendence is computed by considering all the data dependences∆1..k in loop nestL. The
source of the conservative dependence is computed as theLexically Latest Source (LLS)
statement across all the data dependences in the loop nest. In control flow terms, the LLS
statement can be computed as follows. First compute the least common ancestor, LCA,
of all source statements in thepostdominator tree for the loop; then, find the closest
ancestor of LCA in the postdominator tree that is unconditionally executed in the loop
body. This statement is the LLS. Likewise, the sink of the conservative dependence is
computed as theLexically Earliest Sink (LES) statement across all the data dependences
in the loop nest (by using the dominator tree instead of the postdominator tree). After
the source and sink statements have been identified for the conservative dependence, the
next step is to identify the conservative dependence distance vector

−→
C . As our mech-

anism applies only to a single level of parallelism in the loop, it is possible to use a
trivial formulation for the conservative dependence distance shown below. Assuming
the outermost dimension is parallelized without loop chunking, the first dimension of
−→
Di denotes the stride (i.e. dependence distance) along with the inter-thread loop depen-
dence. Therefore, the first dimension of

−→
C should correspond to the maximum value of

common strides in that dimension, which is the GCD value. Theremaining dimensions
can be conservatively computed by usingmin vect(

−→
V1,

−→
V2, ..,

−→
Vk), which determines

the lexicographically smallest vector of
−→
V1,

−→
V2, ..

−→
Vk.

−→
C =

(

C[1]
C[2..n]

)

=

(

gcd(d11, d
2

1, ...d
k

1)

min vect(D1[2..n], ...Dk[2..n])

)

 DO K=2,N3-1
 DO J=2,N2-1
 DO I=2,N1-1
 WAIT (K-1,J+1,I) Use{A} Def{A}

 s1 : Z = B(1)*(A(I+1,J ,K)+A(I-1,J ,K)

 & +A(I ,J+1,K)+A(I ,J-1,K)
 & +A(I ,J ,K+1)+A(I ,J ,K-1))
 & + B(2)*(A(I+1,J+1,K)+A(I-1,J+1,K)
 & +A(I+1,J ,K+1)+A(I-1,J ,K+1)
 & +A(I+1,J-1,K)+A(I-1,J-1,K)
 & +A(I+1,J ,K-1)+A(I-1,J ,K-1)
 & +A(I ,J+1,K+1)+A(I ,J-1,K+1)
 & +A(I ,J+1,K-1)+A(I ,J-1,K-1))
 s2 : A(I,J,K) = (A(I,J,K) + Z)*0.5D0
 POST (K, J, I) Use{A} Def{A}

 END DO
 END DO
 END DO

(a) Kernel with POST/WAIT

s1(3, 2, 2)

s2(3, 2, 2)

. . .

s1(3, 3, 2)

s2(3, 3, 2)

. . .

s1(2, 2, 2)

s2(2, 2, 2)

. . .

s1(2, 3, 2)

s2(2, 3, 2)

. . .

s1(4, 2, 2)

s2(4, 2, 2)

. . .

s1(4, 3, 2)

s2(4, 3, 2)

. . .

C = (1, -1, 0)

K = 2 K = 3 K = 4

(b) Conservative dependence

Fig. 1: Pipelining POISSON

After insertion ofPOST/WAIT operations, the compiler will look for code motion
opportunities to move thePOST operations as early as possible in the loop, and the
WAIT operations as late as possible in the loop. To ensure that such transformations do
not violate any data dependences, thePOST/WAIT operations are augmented with pseudo
USEandDEF sets as follows:

1. Flow dependence(δf): A flow dependence is from adef of the variable to itsuse.
TheWAIT is inserted before theuse and thePOSTis inserted after thedef. In order
to prevent theuse of the dependence variable from moving up past theWAIT call,
the variable is inserted in a pseudoDEF set for theWAIT call. Similarly, in order to
prevent thedef of the dependence variable from moving down below thePOSTcall,
the variable is inserted in a pseudoUSEset for thePOSTcall.

2. Anti dependence(δa): An anti dependence is from ause of the variable to itsdef.
The WAIT is inserted before thedef and thePOST is inserted after theuse. The
dependence variable is marked as ause in theWAIT call to ensure that theWAIT is
completed before thedef, and as adef in the POSTcall to ensure that thePOSTis
performed after theuse of the variable.

3. Output dependence(δo): An output dependence is between twodef ’s of the same
variable. The dependence variable is marked asuse in both theWAIT andPOSTcall
to ensure that theWAIT is done before all thedefs andPOSTis done after all thedefs
of that variable.

Figure 1a shows the POISSON computational kernel, which is a3-dimensional
(400×400×400) DOACROSSloop nest with thePOST/WAIT synchronization primitives
inserted after conservative dependence computation. In this case, there are multiple flow
dependences from s2 to s1 for array A with the following dependence distances:
−→
D

1 = (1, 0, 0),
−→
D

2 = (1, 0,−1),
−→
D

3 = (1, 0, 1),
−→
D

4 = (1,−1, 0),
−→
D

5 = (1, 1, 0)

and multiple anti dependences froms1 to s2 for array A with the following dependence
distances:
−→
D

6 = (1, 0, 0),
−→
D

7 = (1, 0, 1),
−→
D

8 = (1, 0,−1),
−→
D

9 = (1, 1, 0),
−−→
D

10 = (1,−1, 0).
The conservative dependence are computed as follow:
−→
C = (gcd(1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

min vect((0, 0), (0,−1), (0, 1), (−1, 0), (1, 0), (0, 0), (0, 1), (0,−1), (1, 0), (−1, 0)))

= (1,−1, 0)

Based on the conservative dependence,POST(K,J,I) is inserted after lexically last
sources2 andWAIT(K-1,J+1,I) is inserted before lexically earliest sinks1.

3.2 Runtime Implementation

The compiler outlines and parameterizes theDOACROSSloops after thePOST/WAIT syn-
chronization calls to the runtime are inserted. The parallel runtime system is responsible
for initializing data structures and scheduling theDOACROSSloops. The current imple-
mentation employs a static cyclic scheduling policy with a chunk size of one, where
iterations are assigned to processors in a round-robin fashion. The static cyclic policy
inherently brings good load balance and data locality in addition to low overhead due to
static iteration mapping.

Runtime Data Structure: Let m denote the number of threads andn denote the di-
mension of theDOACROSS loop nest. The runtime allocates a 2-dimensional array,
sync vec[1 : m][1 : n], which is a set ofm × n synchronization variables to man-
age thePOST/WAIT synchronization on theDOACROSSloop. Given a thread with id =
thrd id, the 1-dimensional sub-arraysync vec[thrd id][1 : n] represents the last itera-
tion instance whose completion is ensured by thePOSToperation. Note that the iteration
space is normalized and it is guaranteed that an iteration instancep

−→
Iv passed to aPOST

operation monotonically increases for each thread. AWAIT operation is blocked until
when sync vec[thrd id] is lexicographically larger or equal to the iteration instance
w
−→
Iv passed to theWAIT .

Algorithm 1 : POSTalgorithm
Input : The iteration vector of the current iterationpIv = (I1, I2, ..., In), n = dimension

of loop,m = number of threads

begin
// Check for boundary conditions
// The loops are all lower bound and bump normalized
if within boundary(pIv[1...n]) then

thrd id = mythread()

// Update the synchronization variable of the current thread
sync vec[thrd id][1..n] = pIv[1..n]

end

Algorithm 2 : WAIT algorithm
Input : The iteration vector of the dependence source

wIv = (I1 − d1, I2 − d2, ..., In − dn), n = dimension of loop,m = number of
threads,

−→
D = (d1, d2..dn) is the dependence distance

begin
if within boundary(wIv[1...n]) then

// Determine the thread executing the source iteration specified bywIv
// Schedule is static with chunksize=1.
thrd id = wIv[1]%m

// Block until sync vec[thrd id] is lexicographically larger or equal towIv[1..n]
while vector compare(sync vec[thrd id][1..n], wIv[1..n]) < 0 do

wait

end

POST/WAIT Algorithm: Algorithms 1 and 2 show thePOST (p
−→
Iv) andWAIT (w

−→
Iv)

algorithms, respectively. The boundary check for the iteration instancep
−→
Iv /w

−→
Iv is per-

formed at the beginning of thePOST/WAIT algorithm. Note that all valid elements of
p
−→
Iv /w

−→
Iv are non-negative because of the loop normalization. ThePOSTalgorithm as-

signsp
−→
Iv to sync vec[thrd id] for the current thread. In the implementation, this as-

signment is done in reverse order, i.e., starting with the innermost dimension and going
outer along with appropriate memory barriers. This ensuresthat the intermediate state of
sync vec[thrd id] is always smaller thanp

−→
Iv . TheWAIT algorithm computes the target

(source) thread based on the first dimension ofw
−→
Iv , and waits untilsync vec[thrd id]

becomes lexicographically larger or equal tow
−→
Iv . This vector comparison is done start-

ing with the outermost dimension and going inner. The order of updating and reading
of the synchronization vector by thePOSTandWAIT calls respectively ensures that a
WAIT operation will never be unblocked prematurely due to an illegal intermediate state
of sync vec[thrd id]. TheWAIT operation is relatively cheap because it only performs
a read of the synchronization variable of another thread. The POSToperation is very
expensive because it performs a write of the synchronization variable. Because the syn-
chronization variable in our method is an iteration vector,the number of writes is equal
to the number of dimensions of the doacross loop.

4 Profitability Analysis and Grain Size Selection

Profitability and cost analysis play a major role in automatic parallelization. Excessive
synchronization or insufficient granularity of computations for parallelism can result
in significant performance degradation. These considerations have been studied in past
work on parallelization ofDOALL loops [13], and need to be extended for parallelization
of DOACROSSloops. In this section, we introduce a profitability analysis to determine
when it is worthwhile to parallelize aDOACROSSloop.

First, we perform a special-case check for a one-dimensional loop nest. If thePOST/
WAIT calls encompass the entire loop body and the conservative dependence distance
equals 1, thenDOACROSSparallelization cannot be profitable since thePOST/WAIT calls

effectively serialize the entire loop. This check does not apply if the loop nest contains
n > 1 loops, since there may still be useful parallelism with a conservative dependence
distance of 1 at the outermost level (enabled by fine-grainedsynchronization calls in the
inner loops).

Second, we perform loop unrolling to reduce the amortized overhead of synchroniza-
tion operations by increasing the granularity of computation betweenPOSTandWAIT
operations. After unrolling, the lexically lastPOSTand earliestWAIT operations are re-
tained, and all the intervening calls toPOST/WAIT are removed so as to reduce the overall
synchronization overhead. Also, the iteration instancew

−→
Iv of the lexically earliestWAIT

is adjusted to match the lexically lastPOSTaccording to the unrolling factor.
We assume the availability of two parameters,MinGrainSize andMaxLoopBodySize,

to guide our transformations for grain size selection.MinGrainSize imposes a lower
bound on the granularity of computation to be performed betweenPOSTandWAIT oper-
ations. To compute the heuristics for the grain-sizeMinGrainSize for DOACROSS par-
allelization, we start by looking at the heuristics forDOALL parallelization [13]. These
values were then adjusted to take into account the communication overhead. Subse-
quently, experimental runs were performed to further fine tune the heuristics. Similarly
to determine the code-sizeMaxLoopBodySize for DOACROSS parallelization, we rely
on previously calculated heuristics for the unrolling transformation. These heuristics are
adjusted to prevent excessive code growth during unrolling. For the platform studied in
this paper (Power7 with an XLC runtime system), it was determined that 20,000 cycles
and 320 cycles are reasonable value forMinGrainSize andMaxLoopBodySize respec-
tively. However, our approach is applicable to any other values that may be specified for
these parameters.

To select the unroll factor,UF, for the innermost loop, we first estimate the cost of
a single iteration of the loop,LoopBodyCost. Then, the unroll factor selected by our ap-
proach can be specified asUF = min(32, ⌈MaxLoopBodySize/LoopBodyCost⌉), where
32 is an upper bound that is imposed onUF for practical reasons. Ifn = 1, an extra con-
straint is imposed to ensure thatUF is less than the conservative dependence distance
for theDOACROSSloop.

Finally, we perform a special form ofchunking of the inner loops in aDOACROSS

loop nest, by estimating a chunk size that we refer to as aRuntime Granularity Factor,
RGF. RGF specifies the number of iterations of the inner loops that should be executed
sequentially. This is achieved by skippingRGF−1 POSToperations in the inner loops, so
that onePOSToperation is performed for everyRGF POSTs. As described in Section 3.2,
thePOST(p

−→
Iv) operation ensures that allWAIT operations whose iteration instancew

−→
Iv

is lexicographically smaller or equal top
−→
Iv can be unblocked. Therefore, it is safe to

perform only the lastPOSToperation afterRGF−1 POSTs. To avoid a potential dead-
lock when the number of iterations is not an exact multiple ofRGF, an additionalPOST
operation is inserted at the end of each iteration of the outermostDOACROSSloop to sig-
nal that all iteration instances included in that iterationhave been completed. Note that
WAIT operations, which have much smaller synchronization cost thanPOSToperations,
are always performed.

The initial value ofRGF is selected at compile-time by using the formula,RGF =
MinGrainSize/(UF ∗ LoopBodyCost), This value is further adjusted at runtime based
on the number of threads executing theDOACROSSloop. If there are more threads, a

Uniform dependences

Insert synchronization

Profitable?

No (DOALL)

Yes

Yes

No

Serial loop

Identify reductions

Scalar privatization

Array privatization

Dependence analysis

Loop carried

dependence?

Outlining

Parallel loop

(DOALL/

DOACROSS)
Parallel Runtime

Library

Yes (DOACROSS)

Fig. 2: Context for automaticDOACROSSparallelization in the XL Fortran and C/C++
compilers

larger value ofRGF may reduce the amount of parallelism that can be exploited. Thus
we adjust theRGF value selected at compile-time to a runtime value,RGF′, as follows:
RGF′ = 2 × RGF/NumThreads. Note thatRGF′ = RGF when NumThreads = 2,
and becomes proportionately smaller asNumThreads increases, thereby balancing the
trade-off between overhead and parallelism.

5 Experimental Results

This section presents results from the experiments conducted to evaluate our implemen-
tation. The experiments were performed on a Power7 system with 32-core 3.55GHz
processors running Red Hat Enterprise Linux release 5.4. The measurements were done
using a development version of the XL Fortran 13.1 for Linux (see Figure 2). We used 4
benchmark programs for our evaluation: Poisson, 2-dimensional LU from the NAS Par-
allel Benchmarks Suite (Version 3.2), SOR algorithm and 2-dimensional Jacobi com-
putation. We manually applied array privatization for someloops in blts and buts, for
which the compiler failed to automatically privatize the arrays. All these benchmarks
are excellent candidates forDOACROSSparallelization. All benchmarks were compiled
with option “-O5” for the sequential baseline, and “-O5 -qsmp” for the automatic paral-
lelization enablingDOACROSSparallelization. We evaluated four experimental variants:
a) only doall represents the speedup where the automaticDOACROSSparallelization is
turned off and uses onlyDOALL parallelism (far left), b)doall w/ manual skewrepre-
sents the speedup withDOALL loops includingDOACROSSloops which were converted
to DOALL loops after manual loop skewing (second left), c)doall + doacross (w/o cost-
analysis)is the speedup where bothDOALL andDOACROSSparallelization are enabled,
but with the cost analysis and granularity control turned off (second right), and d)doall
+ doacrossis the speedup where bothDOALL andDOACROSSparallelization with cost
analysis and granularity control are enabled (far right).

0

2

4

6

8

10

12

14

1 2 4 8 16 32

S
p

e
e
d

u
p

 v
s
.
s
e
ri
a
l

threads

0

2

4

6

8

10

1 2 4 8 16 32

S
p

e
e
d

u
p

 v
s
.
s
e
ri
a
l

threads

0

5

10

15

20

1 2 4 8 16 32

S
p

e
e
d

u
p

 v
s
.
s
e
ri
a
l

threads

only doall doall w/ manual skew

(a) Poisson

0

5

10

15

20

1 2 4 8 16 32

S
p

e
e
d

u
p

 v
s
.
s
e
ri
a
l

threads

doall + doacross (w/o cost) doall + doacross

(c) SOR

(b) LU

(d) Jacobi

Fig. 3: Speedup related to sequential run on Power7

5.1 POISSON

We use the POISSON kernel discussed in Section 3.1. TheDOACROSSloop is invoked
20 times in this experiment. Figure 3a shows the speedup of the 4 variants listed above
when compared to the sequential execution.

Theonly doall case results in no speedup;doall + doacross (w/o cost-analysis)can
results in worse performance than sequential execution because of the large synchro-
nization overhead.doall + doacrossdelivers a speedup of up to 9.0×. Note thatdoall
w/ manual skewshows better performance thandoall + doacross. This is because the
POISSON kernel is a triply nestedDOACROSSloop. We manually selected the outermost
and middle-nested loops for the target of loop skewing and this choice turns out to have
a better granularity. On the other hand, the autoDOACROSSversion insertedPOST/WAIT
in the innermost loop body and hence the total synchronization overhead became larger
despite the granularity control. (In the future, optimizing compilers could reduce this
gap by further adjusting the granularity forDOACROSSparallelization.) However, the
automaticdoall + doacrossversion outperforms thedoall w/ manual skewversion in
the other three benchmarks whose kernel loops are doubly nested and both the manual
and automatic versions use the same granularity.

5.2 LU

LU has 2 DOACROSS loops in subroutinesblts and buts. Together they account for
about 40% of the sequential execution time of LU. They are 2-dimensional (160×160)

DOACROSS loops that are invoked 40160 times. The conservative dependence vector
is (1,0) for bothblts andbuts, and the correspondingWAIT /POSTsynchronizations are
inserted. Although LU contains manyDOALL loops, the best speedup withDOACROSS

parallelism disabled is 2.1× using 8 cores. On the other hand, ourDOACROSSparal-
lelization brings more scalable performance, up to 6.5× speedup with 32 cores as shown
in Figure 3b. The figure also shows the significant impact of the cost analysis and gran-
ularity control on performance. Furthermore, theDOACROSSversion show even better
scalability than the manualDOALL version that converted theDOACROSSloops inblts
andbuts into DOALL loops. It is well known thatDOACROSSparallelization has better
data locality and lower synchronization overhead thanDOALL with loop skewing, even
when they use same granularity for wavefront parallelism.

5.3 SOR and Jacobi

The kernel loop nest of SOR is a 2-dimensional 20000×10000 loop which is invoked
50 times. Note that the kernel loop of Jacobi has very similarstructure as SOR, and the
conservative dependence vector for both SOR and Jacobi kernels is (1,0). Our frame-
work extractedDOACROSSparallelism for both cases, and achieves up to 17.3× and
17.5× speedup for SOR and Jacobi, respectively as shown in Figures3c and 3d. On
the other hand, the best speedups when manually convertingDOACROSSinto DOALL

by loop skewing are 6.4× for SOR and 3.5× for Jacobi. The figures also show that the
granularity control is essential to obtain scalable speedup usingDOACROSSparallelism.

6 Conclusions and Future Work

We presented a novel and practical approach to automatically parallelizingDOACROSS

loops for execution on manycore-SMP systems, based on a compiler-and-runtime op-
timization calleddependence folding. The proposed framework uses a conservative de-
pendence vector analysis to identify suitable program points wherePOST/WAIT synchro-
nization operations can be inserted. A profitability analysis is used to guide unrolling
and chunking transformations to select an optimized granularity of computation for
DOACROSSparallelization. Further, our runtime framework includesa lightweight and
space-efficient implementation of point-to-point synchronization forDOACROSSloops.

The proposed framework has been implemented in a development version of the
IBM XL Fortran V13.1 commercial parallelizing compiler andruntime system. For four
benchmarks where automaticDOALL parallelization was largely ineffective (speedups
of under2×), our implementation delivered speedups of 6.5×, 9.0×, 17.3×, and 17.5×
on a 32-core IBM Power7 SMP system, thereby showing thatDOACROSSparallelization
can be a valuable technique to complementDOALL parallelization.

During the course of our work in enablingDOACROSSparallelization in the XL
compilers, we encountered multiple opportunities for future work related to interactions
betweenDOACROSSparallelization and lower-level compiler optimizations.We found
cases where theDOACROSStransformation inhibitedsoftware pipelining (a technique
for scheduling instructions to exploit instruction level parallelism in inner loops by over-
lapping loop iterations). In such cases, it would be desirable to extend the profitability
analysis to take the impact on software pipelining into account. As another example,

predictive commoning (an optimization to reuse computations across loop iterations by
detecting indexing sequences and unrolling to avoid register copies), if performed ear-
lier, can inhibit the detection ofDOACROSSloops. A detailed study of these interactions
is part of our planned future work. Other opportunities for future work include deeper
analyses for synchronization overhead and parallel efficiency so as to improve accuracy
of profitability analysis, and performance comparison against other existing work. As
shown in the paper, POST/WAIT operations are well-suited for user annotations and the
technique of dependence folding can also be adapted for the explicit parallelization us-
ing such annotations. Extensions of the proposed frameworkto explicit parallelization
is another important direction of future work.

Acknowledgements

The authors would like to thank Osamu Gohda from IBM Japan forthe hand-pipelined
POISSON and LU codes. This work was supported in part by an IBMCAS Fellowship
in 2011 and 2012.

References

1. Chen, D.K.: Compiler optimizations for parallel loops with fine-grainedsynchronization. PhD
Thesis (1994)

2. Cytron, R.: Doacross: Beyond vectorization for multiprocessors.Proceedings of the 1986
International Conference for Parallel Processing pp. 836–844 (August 1986)

3. Ding-Kai Chen, Josep Torrellas, P.C.Y.: An efficient algorithm for the run-time parallelization
of doacross loops. Proc. Supercomputing 1994 pp. 518–527 (Nov 1994)

4. Gupta, R., Pande, S., Psarris, K., Sarkar, V.: Compilation techniques for parallel systems.
Parallel Computing 25(13-14), 1741–1783 (1999)

5. Li, Z.: Compiler algorithms for event variable synchronization. Proceedings of the 5th inter-
national conference on Supercomputing, Cologne, West Germany pp. 85–95 (June 1991)

6. Lowenthal, D.K.: Accurately selecting block size at run time in pipelined parallel programs.
International Journal of Parallel Programming 28(3), 245–274 (June 2000)

7. Midkiff, S.P., Padua, D.A.: Compiler algorithms for synchronization. IEEE Transactions on
computers C-36, 1485–1495 (December 1987)

8. P. Tang, P. Yew, C.Z.: Compiler techniques for data synchronization in nested parallel loop.
Proc. of 1990 ACM Intl. Conf. on Supercomputing, Amsterdam pp. 177–186 (June 1990)

9. R. Rajamony, A.L.C.: Optimally synchronizing doacross loops on shared memory multipro-
cessors. Proc. of Intl. Conf. on Parallel Architectures and CompilationTechniques (Nov 1997)

10. Su, H.M., Yew, P.C.: On data synchronization for multiprocessors. Proc. of the 16th annual in-
ternational symposium on Computer architecture, Jerusalem, Israel pp. 416–423 (April 1989)

11. V.P. Krothapalli, P.S.: Removal of redundant dependences in doacross loops with constant
dependences. IEEE Transactions on Parallel and Distributed Systems pp. 281–289 (Jul 1991)

12. Wolfe, M.: Multiprocessor synchronization for concurrent loops. IEEE Software v.5 n.1, 34–
42 (January 1988)

13. Zhang, G., Unnikrishnan, P., Ren, J.: Experiments with auto-parallelizing SPEC2000FP
benchmarks. 17th Intl Workshop on Languages and Compilers for Parallel Computing (2004)

14. Zhelong Pan, Brian Armstrong, H.B., Eigenmann, R.: On the interaction of tiling and auto-
matic parallelization. First International Workshop on OpenMP (Wompat) (June 2005)

