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Abstract A major productivity hurdle for parallel programming is thepresence ofdata
races. Data races can lead to all kinds of harmful program behaviors, including determinism
violations and corrupted memory. However, runtime overheads of current dynamic data race
detectors are still prohibitively large (often incurring slowdowns of 10× or more) for use in
mainstream software development.

In this paper, we present an efficient dynamic race detectionalgorithm that handles
both the async-finish task-parallel programming model usedin languages such as X10 and
Habanero Java (HJ) and the spawn-sync constructs used in Cilk.

We have implemented our algorithm in a tool calledTASKCHECKER and evaluated it on a
suite of12 benchmarks. To reduce overhead of the dynamic analysis, we have also imple-
mented various static optimizations in the tool. Our experimental results indicate that our
approach performs well in practice, incurring an average slowdown of3.05× compared to a
serial execution in the optimized case.
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1 Introduction

Designing and implementing correct and efficient parallel programs is a notoriously difficult
task, yet, with the proliferation of multi-core processors, parallel programming will play a
central role in mainstream software development. One of themain difficulties in parallel pro-
gramming is that programmers are often required to reason explicitly about the interleavings
of operations in their programs. The vast number of interleavings makes this task difficult
even for small programs and intractable for sizable applications. Unstructured and low-level
frameworks such as Java threads allow the programmer to express rich and complicated
patterns of parallelism but also to make mistakes.

Structured Parallelism Structured parallelism makes it easier to determine the context in
which an operation is executed and to identify other operations that can execute in parallel
with it. This simplifies manual and automatic reasoning about the program, enabling the
programmer to produce a program that is more robust and oftenmore efficient.

Realizing these benefits, significant efforts have been madetoward structuring parallel
computations, starting with constructs such ascobegin-coend[11] andmonitors. Recently,
additional support for fork-join task parallelism has beenadded in the form of libraries [17,
20] to existing programming environments and languages such as Java and .NET.

Parallel languages such as Cilk [5], X10 [9], and Habanero Java (HJ) [4] provide simple,
yet powerful, high-level concurrency constructs that restrict traditional fork-join parallelism
yet are sufficiently expressive for a wide range of problems.The key restriction in these
languages is in the flexibility of choosing which tasks a given task can join. The async-finish
computations that we consider are desirable because the computation graphs generated in
the language are deadlock-free [19] (unlike unrestricted fork-join computations).

Data Race and Determinism Detection We present an efficient dynamic analysis algorithm,
ESP-bags, that checks for the presence of data races (and proves data race freedom) in async-
finish style parallel computations. In this work, we focus onthe constructsasync, finish, and
isolated. Theasyncconstruct is used to create a new task that can execute in parallel, the
finishconstruct is used to specify a join point for a group of tasks,and theisolatedconstruct
is used for mutual exclusion. These constructs form the coreof the larger X10 and HJ1

parallel languages. Usingasync, finish, andisolated, one can express a wide range of useful
and interesting parallel computations (both regular and irregular) such as factorizations and
graph computations.

Our analysis is a generalization of Feng and Leiserson’s SP-bags algorithm [12], which
was designed for checking determinism of spawn-sync Cilk programs. The original algo-
rithm cannot be applied directly to the async-finish style ofprogramming because this model
allows for a superset of the executions allowed by the traditional spawn-sync Cilk programs.
Both the SP-bags algorithm and our extension to it are precise and sound for a given input2:
if a violation is reported, then the race really exists (i.e., there are no false positives). Con-
versely, if a data race exists for that input, a violation will be reported (i.e., there are no false
negatives).

1 The construct for mutual exclusion is calledatomicin X10 andisolatedin HJ.
2 The ESP-bags algorithm is precise and sound when the programcontainsasyncandfinish constructs

only. When the program containsisolatedconstructs, it is precise but not sound (i.e., there may be false
negatives).
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Program P ::= main{ finish { es} }
Extended Statement es ::= finish { es} | async{ es} | isolated{ s}

if (b) eselsees | es;es | while (b) es | · · ·

Fig. 1 The syntax of AFIPL.

Data race freedom affects the correctness of parallel algorithms and in some cases, it can
imply determinism [7,18]. For instance, in the absence of data races, all parallel programs
with asyncandfinish, but without isolatedconstructs, are guaranteed to bedeterministic.
Therefore, if we can prove data-race freedom of programs that do not containisolatedcon-
structs, then we can conclude that the program is deterministic.

Main Contributions To the best of our knowledge, this is the first detailed study of the
problem of data race detection for async-finish task-parallel programs as embodied in the
X10 and HJ languages. The main contributions of this paper are

– A dynamic analysis algorithm for efficient data race detection of structured async-finish
parallel programs. Our algorithm generalizes the classic SP-bags algorithm designed for
the spawn-sync Cilk model (we also show how any spawn-sync program can be checked
with our algorithm).

– An implementation of our dynamic analysis in a tool namedTASKCHECKER.
– Compiler optimizations to reduce the overhead incurred by the dynamic analysis al-

gorithm. These optimizations reduce the average overhead by 37% with respect to the
unoptimized version for the benchmarks used in our evaluation.

– An evaluation ofTASKCHECKER on a suite of12 benchmarks. We show that for these
benchmarks,TASKCHECKER is able to perform data race detection with an average (geo-
metric mean) slowdown of4.86× in the absence of compiler optimizations, and3.05×
with compiler optimizations, compared to a sequential execution.
The rest of the paper is organized as follows. Section 2 introduces the structured parallel

setting that our algorithm targets. Section 3 describes theESP-bags algorithm for detecting
data races in async-finish parallel programs. Section 4 proves the correctness of the ESP-
bags algorithm. Section 5 describes the extensions needed in the ESP-bags algorithm to
support isolated constructs. Section 6 outlines the compiler optimizations that are performed
to reduce the overhead incurred by our algorithm. Section 7 describes the evaluation of our
algorithm on a suite of12 benchmarks. Section 8 discusses related work, and Section 9
concludes the paper.

2 Background

We present our approach to data-race detection using an abstract language AFIPL,Async
Finish Isolated Parallel Language. We first present our language AFIPL and informally
describe its semantics. To motivate the generalization of the traditional SP-bags algorithm,
we give an example where our language allows for broader setsof behaviors than those
expressible with the spawn-sync constructs in the Cilk programming language.

2.1 Syntax

Fig. 1 shows the relevant statements of our language. The language extends any imperative
sequential language with three statements:async, finish andisolated. The language allows
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1 f i n a l i n t [ ] A, B ;
2 . . . . . .
3 A[ 0 ] = 10 ;
4 f i n i s h {
5 f o r ( i n t i =0; i<s i z e ; i ++ ) {
6 f i n a l i n t i nd = i ;
7 async {
8 B[ ind ] += ind ;
9 Foo q = new Foo ( ) ;

10 f o r ( i n t j =0; j<i nd ; j ++) {
11 q . x += 1 ;
12 B[ ind ] = A[ j ] + ind ;
13 } / / f o r
14 } / / async
15 f i n i s h {
16 async {
17 async {
18 B[ ind ] = A[ ind ] ;
19 } / / async
20 B[ ind +1] = A[ ind +1] + 5 ;
21 } / / async
22 } / / f i n i s h
23 } / / f o r
24 } / / f i n i s h

!"

#$"

#%"

&#"

#'"

()*+*,-"-./-"

012*("-./-"

3)4*"-./-"'"

5"

&&"

6"

&'"

#5"

#7"

8#"9":04*"

86"

8'"

8&"%"

#!"

&;"

7"

#;"

##"

#&"

#6"

&6"

#"

Fig. 2 An example AFIPL program and its computation graph. This code is the body of the main method in
the program.

for nesting offinish andasyncstatements, but does not allow any of the new statements to
appear insideisolatedstatements: async and finish statements cannot appear inside isolated
sections. However, isolated statements may contain any of the traditional statements: loops,
conditionals, and so on. To reflect that, we use the namees to denote an extended statement
and s to denote a traditional statement (· · · above is used to denote the remaining basic
statements such as primitive assignments, heap assignments, etc). We refer to the subset of
AFIPL without isolated sections as AFPL, theAsync Finish Parallel Language. Our data
race detection algorithm is largely independent of the sequential constructs in the language.
For example, the sequential portion of the language can be based on the sequential portions
of C, C++, Fortran, or Java.

2.2 Informal Language Semantics

Next, we briefly discuss the relevant semantics of the concurrency constructs. For a formal
semantics of the async and finish constructs, see FX10 [19]. Initially, the program begins
execution with the main task. When anasync{ s } statement is executed by task A, a new
child task, B, is created. The new task B can now proceed with executing statements in
parallel with its parent task A. For example, consider the AFIPL code of Fig. 2. The main
task starts executing this code. Theasyncstatement in line 7 creates a new child task, which
will now execute the block of code in lines 7-14 in parallel with the main task. When a
finish { s } statement is executed by task A, it means that task A must block and wait at the
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end of this statement until all descendant tasks created by Ain s (including their recursively
created children tasks), have terminated. That is,finish can be used to create a join point
for all descendant tasks dynamically created inside its scope. In the example in Fig. 2, the
finish in line 15 would wait for the tasks created byasyncs in lines 16 and 17 to complete.
The statementisolated{ s } means that the statements is executed atomically with respect
to other isolated statements.3 Note that in AFIPL, there is an implicitfinish surrounding
the body of the main method, which ensures that the program does not complete before all
spawned tasks complete.

2.3 Cilk vs. AFIPL

Our data race detection algorithm, ESP-bags, presented in later sections, is an adaptation of
the SP-bags algorithm [12] developed for the Cilk programming language. Unfortunately,
the SP-bags algorithm cannot be applied directly to our language and needs to be extended
because the async-finish constructs of AFIPL language supports a more relaxed concurrency
model than the spawn-sync Cilk computations [14]. The static lexical scope of async-finish
subsumes all of spawn-sync excludingconditional syncs.4 On the other hand, the dynamic
computation graph of async-finish subsumes all of spawn-sync includingconditional syncs.

The key semantic relaxation lies in the way a task is allowed to join with other tasks.
In Cilk, at any given (join) point of the task execution, the task should join withall of its
descendant tasks (including all recursive descendant tasks) created in between the start of
the task and the join point. The join is accomplished by executing the statementsync. The
semantics of spawn construct is exactly the same as the asyncconstruct.

The spawn-sync constructs can be translated to async-finishconstructs as follows: each
spawn construct can be directly replaced by an async construct. A Cilk function with uncon-
ditional sync statements can be directly translated to a sequence of finish blocks, where the
start of the finish block is the start of the function or the previous sync, and the end of the
finish block is the label of the sync statement. For instance,we can translate the following
Cilk program,

spawnf1(); sync; spawnf2(); sync; s1;

into the following AFIPL program:

finish { asyncf1(); }; finish { asyncf2(); }; s1;

However, it is not possible to directly translate theconditional syncto a finish because of
the syntactic structure of finish. To handle all programs that can be written with spawn and
sync, we extend the AFIPL language with two keywords (or library calls),beginFinishand
endFinish. The semantics ofbeginFinishis that it begins a finish block and the semantics
of endFinishis that it completes a finish block. These dynamicbeginFinishandendFinish
scopes can be nested arbitrarily unlike the lexical finish construct. These constructs allow
us to define the scope of the finish blockdynamically. Note that while the programmer may
usebeginFinishandendFinishin an arbitrary order, the runtime system checks that they are
properly nested: anybeginFinisheventually completes with a matchingendFinish(in the
same task), and noendFinishis issued without a correspondingbeginFinishalready having
started (in the same task). As a high-level analogy, the relationship betweenbeginFinish/

3 As advocated in [16], we use theisolatedkeyword instead ofatomic to make explicit the fact that the
construct supports weak isolation rather than strong atomicity.

4 We refer to a sync that is executed under some condition in a function body as aconditional sync.
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1 f o r ( i n t i =0 ; i<s i z e ; i ++ ) {
2 spawn f ( ) ;
3 i f ( i == 3) {
4 sync ;
5 }
6 } / / f o r
7 sync ;

1 b e g i n F i n i s h ( ) ;
2 f o r ( i n t i =0 ; i<s i z e ; i ++ ) {
3 async f ( ) ;
4 i f ( i == 3) {
5 e n d F i n i s h ( ) ;
6 b e g i n F i n i s h ( ) ;
7 }
8 } / / f o r
9 e n d F i n i s h ( ) ;

(a) (b)

Fig. 3 (a) a Cilk program with conditional syncs and (b) its translation to AFIPL program.

endFinishand AFIPL’s lexical finish construct is akin to that ofMonitorEnter/ MonitorExit
bytecode instructions and Java’s lexicalsynchronizedstatement (though bytecode verifica-
tion rather than dynamic checking is used to check the propernesting ofMonitorEnter /
MonitorExit instructions).

Using beginFinishandendFinish, we can represent all of the sync constructs of Cilk
(includingconditional syncs) as follows:

1. Generate abeginFinishon entry to every function.
2. Replace each occurrence of sync byendFinish; beginFinish.
3. Generate anendFinishon function exit to reflect Cilk’s implicit sync on function exit.

Figure 3 shows an example Cilk program with conditional syncs and its translation to
AFIPL program. Note the conditional sync on line 4 in the Cilkprogram. It is translated
into endFinish(); beginFinish();in the AFIPL program. This shows that the async-finish
constructs subsume all of spawn-sync constructs. Our race detection algorithm works by
intercepting the start and end of finish and async constructs. Hence, it can be applied directly
to spawn and sync constructs of Cilk as well.

In contrast to Cilk, with the use of nested finish operations in AFIPL, it is possible for
a task to join withsomerather than all of its descendant tasks. These descendant tasks are
specified at the language level with thefinish construct: upon encountering the end of a
finish block, the task waits until all of the descendant taskscreated inside the finish scope
have completed.

The computation graph in Fig. 2 illustrates the differencesbetween Cilk and AFIPL.
Each vertical sequence of circles denotes a task. Here we have four sequences for four tasks.
Each circle in the graph represents a program label, and an edge represents the execution of
a statement at that label. Note that at label 22, the main taskwaits only for T3 and T4 but
not for T2, which is not possible using the spawn-sync semantics in Cilk.

Another restriction in Cilk is that every task must execute async statement upon its
return. That is, a task cannot terminate unless all of its descendants have terminated. In
contrast, in AFIPL, a task can outlive its parents: i.e., a task can complete even while its
children are still alive. For instance, in the example of Fig. 2, in Cilk, T3 would need to
wait until T4 has terminated. That is, the edge from node 19 to22 would change to an edge
from 19 to 21. This need not be the case in AFIPL: task T3 can terminate before task T4 has
finished.

More generally, the class of computations generated by the spawn-sync constructs is
said to befully-strict [6], while the computations generated by our language are called
terminally-strict [2]. The set of terminally-strict computations subsumes the set of fully-
strict computations. All of these relaxations mean that it is not possible to convert a AFIPL
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program directly into the spawn-sync semantics of Cilk, which in turn implies that we can-
not use its SP-bags algorithm directly and that we need to generalize that algorithm to our
setting. We show how that is accomplished in the next section.

3 ESP-bags Algorithm

In this section, we first summarize the SP-bags algorithm used for spawn-sync computa-
tions. Then, we present our extension of SP-bags, called ESP-bags, for detecting data races
in AFPL programs. For a given input, ESP-bags and SP-bags detect data races in a given
program if and only if a data race exists (Theorem 5 in Section4). That is, if the ESP-bags
algorithm does not detect a data race for a given input, then it is guaranteed that there is no
data race in any schedule of the program for that given input.On the other hand, if a race
is found, the algorithm stops after the first one is detected.This means that there is some
schedule of the program, with the given input, for which the reported race is the first one en-
countered. There may be other schedules with the given inputthat may encounter a different
set of races in a different order.

The SP-bags algorithm was designed for Cilk’s spawn-sync computations. As men-
tioned earlier, we can always translate spawn-sync computations into async-finish compu-
tations. Therefore, we present the operations of the original SP-bags algorithm in terms of
async and finish, rather than spawn and sync constructs, so that the extensions are easily
understood.

3.1 SP-bags

Although the program being tested for data races is a parallel program, the SP-bags algo-
rithm is a serial algorithm that performs a sequential depth-first execution of the program on
a single processor.

We assume that each dynamic task (async) instance is given a unique task ID. The basic
idea behind the SP-bags algorithm is to attach two “bags”, S and P, to each dynamic task
instance (S stands for Serial and P for Parallel). Each bag contains a set of task IDs. When
a statement E that belongs to a task A is being executed, the S-bag of task A will hold all
of the descendant tasks of A that always precede E in any execution of the program. The
S-bag of A will also include A itself since any statement G in Athat executes before E in
the sequential depth-first execution will always precede E in any execution of the program.
The P-bag of A holds all descendant tasks of A that may executein parallel with E.

At any point during the depth-first execution of the program,a task ID will always
belong to at most one bag. Therefore, all bags can be efficiently represented using a single
disjoint-set data structure.

The intuition behind the algorithm can be stated as follows:when a program is executed
in a depth-first manner, a writeW1 to a shared memory locationL by a taskτ1 races with
an earlier read/write toL by any taskτ2 that is in a P-bag whenW1 occurs, and it does not
race with a read/write by any task that is in an S-bag whenW1 occurs. A read races with an
earlier write in the same way.

The following table shows the update rules for the SP-bags algorithm:
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1 Read l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag then Data Race ;
3 I f L . r e a d e r i s i n a S−bag then L . r e a d e r = t ;

1 Wr i te l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 then Data Race ;
4 L . w r i t e r = t ;

Fig. 4 Instrumentation on shared memory access. Applies both to SP-bags and ESP-bags

Async A : SA ← {A}, PA ← ∅

Task A returns to Task B : PB ← PB ∪ SA ∪ PA, SA ← ∅, PA ← ∅

EndFinish F in a Task B : SB ← SB ∪ PB , PB ← ∅

When a task A is created, its S bag is initialized to contain its own task ID because no
pair of accesses to a memory location in task A should conflict. The P bag of A is initialized
to an empty set because when A begins it has no descendants. When a task A returns to a
task B during the depth-first execution, the contents of the Sand P bags of A are moved to
the P bag of B. This is because the code following task A in B canexecute in parallel with
A and hence, while executing this part of the code in B, A and its descendants should be
in a P bag. When a join point is encountered in a task A, the P bagof A is moved to its S
bag. This is because the code after the join point in A can never execute in parallel with the
descendants of A before the join, and thus, while executing this part of the code in A, all
descendants of A before the join should be in an S bag.

In addition to the above steps, during the depth-first execution of a program, the SP-bags
algorithm maintains two additional fields for each memory location: areader task ID and
a writer task ID, and takes an action on every read and write of a sharedvariable. Figure 4
shows the required instrumentation forreadandwrite operations. For each operation on a
shared memory locationL, we only need to check those fields ofL that could conflict with
the current operation.

3.2 ESP-bags

Next, we present our extensions to the SP-bags algorithm. Recall that the key difference
between AFPL and spawn-sync lies in the flexibility of selecting which of its descendant
tasks a parent task can join. The following table shows the update rules for the ESP-bags
algorithm. The extensions to SP-bags are highlighted inbold.

Async A- fork a new task A :SA ← {A}, PA ← ∅

Task A returns toParent B : PB ← PB ∪ SA ∪ PA, SA ← ∅, PA ← ∅

StartFinish F : PF ← ∅

EndFinish F in a Task B : SB ← SB ∪ PF , PF ← ∅

The key extension lies in attaching a P bag not only to tasks but also to identifiers of
finish blocks. At the start of a finish block F, its P bag is initialized to an empty set because
it has no descendants yet. When a finish block F ends in a task B,the contents of the P bag
of F are moved to the S bag of B. This is because at the end of the finish block F, all the tasks
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within the scope of F are guaranteed to complete. The code following the end of F in B can
never execute in parallel with any task in F and hence, while executing this part of the code
in B, all the descendants of F must be in an S bag. Further, during the depth-first execution,
when a task A returns to its parent B, B may be either a taskor a finish block. The actual
operations on the S and P bags in that case are identical to SP-bags.

The need for this extension comes from the fact that at the endof a finish block, only the
tasks created inside the finish block are guaranteed to complete and therefore will precede
the tasks that follow the finish block. Therefore, only the tasks created inside the finish block
need to be added to the S-bag of the parent task when the finish completes, and those tasks
created before the finish block began need to stay in the P-bagof the parent task.

This extension generalizes the SP-bags presented earlier.This means that the ESP-bags
algorithm can be applied directly to spawn-sync programs aswell by first translating them
to async-finish as shown earlier and then by applying the algorithm. Of course, if we know
that the finish blocks have a particular structure, and we know that translated spawn-sync
programs do, then we can safely optimize away the P bag for thefinish ID’s and directly
update the bag of the parent task (as done in the original SP-bags algorithm).

3.3 Space Overhead

The space overhead of this algorithm is O(1) for each memory location, since we only store
the reader and writer task IDs for each memory location. In addition, we need space to store
all the task IDs in the form of a disjoint-set data structure.Note that we need to store the
IDs of completed tasks as well, since there might be a need to look up such a task to check
if it is in an S or a P bag as part of some memory access. However,this space is generally
insignificant compared to the space needed for each memory location.

3.4 Time Overhead

In this algorithm, there are up to two look-ups for every memory access in the program.
Also there are two union operations for each task instance inthe program and one union
operation for each finish instance. All these operations, look-ups and unions, happen on the
disjoint-set data structure that contains all the tasks in the program. Tarjan showed that in the
worst case, time taken for any operation on a disjoint-set structure is bounded by the inverse
Ackermann function of the size of the data structure [24,25]. Hence, each of these operations
(look-up and union) will take time proportional to the inverse Ackermann function of the
total number of tasks in the program. Note that the Ackermannfunction grows so fast that
we can take the value of the inverse of Ackermann function to be 4 (the upper bound for all
practical purposes). Since the number of memory accesses dominates the number of tasks
in most programs, the total time complexity of the algorithmis proportional to four times
the number of memory accesses in the program.

3.5 Discussion

In summary, the ESP-bags algorithm works by updating thereaderandwriter fields of a
shared memory location whenever that memory location is read or written by a task. On
each such read/write operation, the algorithm also checks to see if the previously recorded
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task in these fields (if any) can conflict with the current task, using the S and the P bags of
the current task. We now show an example of how the algorithm works for the AFPL code
in Fig. 2. Suppose that the main task,T1, starts executing that code. We refer to the finish
in line 4 asF1 and the first instance of the finish in line 15 asF2. Also, we refer to the
first instance of the tasks generated by the asyncs in lines 7,16, and 17 asT2, T3, andT4,
respectively.

Table 1 ESP-bags Example

PC T1 F1 T2 F2 T3 T4 B[0]
S P S P P S S Writer

1 {T1} - - - - - - -
4 {T1} ∅ - - - - - -
7 {T1} ∅ {T2} - - - - -
8 {T1} ∅ {T2} - - - - T2

14 {T1} {T2} ∅ - - - - T2

15 {T1} {T2} ∅ ∅ - - - T2

16 {T1} {T2} ∅ ∅ ∅ {T3} - T2

17 {T1} {T2} ∅ ∅ ∅ {T3} {T4} T2

*18 {T1} {T2} ∅ ∅ ∅ {T3} {T4} T4

19 {T1} {T2} ∅ ∅ {T4} {T3} ∅ T4

21 {T1} {T2} ∅ {T4,T3} ∅ ∅ ∅ T4

22 {T1,T4,T3} {T2} ∅ ∅ ∅ ∅ ∅ T4

Table 1 shows how the S and P bags of the tasks (T1, T2, T3, andT4) and the P bags
of the finishes (F1 andF2) are modified by the algorithm as the code in Fig. 2 is executed.
Each row shows the status of these S and P bags after the execution of a particular statement
in the code. The PC refers to the statement number (from Fig. 2) that is executed. This table
only shows the status corresponding to the first iteration ofthe for loop in line 5. The table
also tracks the contents of the writer field of the memory location B[0] . The P bags of the
tasksT1, T2, andT4 are omitted here since they remain empty through the first iteration of
the for loop.

In the first three steps in the table, the S and P bags ofT1, F1, andT2 are initialized
appropriately. When the statement in line 8 is executed, thewriter field of B[0] is set to the
current task,T2. Then, on completion ofT2 in line 14, the contents of its S and P bags are
moved to the P bag ofF1. When the write toB[0] in line 18 (in TaskT4) is executed, the
algorithm finds the task in its writer field,T2, in a P bag (the P bag ofF1), and is reported
as a data race. Further, whenT4 completes in line 19, the contents of its S and P bags are
moved to the P bag of its parentT3. Similarly, whenT3 completes in line 21, the contents
of its S and P bags are moved to the P bag of its parentF2. When the finishF2 completes in
line 22, the contents of its P bag are moved to the S bag of its parentT1.

4 Correctness of the ESP-bags Algorithm

In this section, we prove the correctness of the ESP-bags algorithm for AFPL. Section 5
shows the extension of ESP-bags for AFIPL. First, we start bydefining the Computation
Graph for an AFPL program. We then introduce the Dynamic Program Structure Tree
(DPST) and how to construct the DPST for a given program with finish and async con-
structs. The DPST abstraction is used to establish the correctness proof and is not actually
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constructed by our algorithm. We then discuss the invariants that hold on the DPST when
two tasks may-happen-in-parallel (Definition 3) and otherwise. Using the invariants on the
DPST, we establish a relation between may-happen-in-parallel and the contents of the P-
bag. Finally, we prove that the ESP-bags algorithm detects adata race in a program for a
given input if and only if a data race exists; that is, the algorithm is precise and sound for
thegiven input.

Definition 1 A Computation Graph (CG),Φ(N, E), for a scheduleΨ of an AFPL program
P is a directed acyclic graph (dag) where

1. N is the set of nodes such that each noden ∈ N corresponds to a statement instance5 in
Ψ .

2. E is the set of edges that connects the statement instancessuch that each edgee ∈

E belongs to one of the following types:continue, async, and join [5,15]. There is a
continueedge from every instance of a statement in a task to the instance of its next
statement in the same task according to the program order. There is anasyncedge from
every async statement instance to the instance of the first statement of the new task that
it creates. There is ajoin edge from the instance of the last statement of every task to the
statement instance that marks the end of its immediately enclosing finish.

Figure 2 shows an AFPL program with finish and async constructs and the computation
graph corresponding to its execution in which the for loop inline 5 is executed only once.

Definition 2 A continue-edge-onlypath in a computation graph is a path in which all the
edges are of typecontinue.

Definition 3 Two statement instancess1 ands2 in a scheduleΨ of a program may-happen-
in-parallel,6 written as MHP(s1, s2) = true, if and only if there is no path froms1 to s2 and
from s2 to s1 in the computation graph ofΨ .

When two statement instancess1 ands2 in a scheduleΨ of a programP for an inputξ
may-happen-in-parallel, MHP(s1, s2) = true, it means that there is a possible schedule ofP

with input ξ in which s1 ands2 execute in parallel.
The Dynamic Program Structure Tree (DPST) is a runtime representation of the Program

Structure Tree (PST) introduced in [3]. There are some important differences between a
DPST and a PST. While the PST is a static data structure for a procedure in a program, the
DPST is a dynamic data structure that spans the entire program. Since the DPST is a runtime
data structure, it creates one node for every statement instance created during the program
execution. A DPST node is one of three types:finish, async, andstatement. The other three
types of nodes in a PST,root, loop, andisolated, are not present in a DPST. Theroot is not
present in a DPST because the implicit finish node in the main method is always the root of
a DPST. Since the DPST is a runtime representation, the loopsare unrolled and hence there
is no need for aloopnode. Because we restrict ourselves to AFPL in this section,we do not
includeisolatednodes.

Definition 4 A Dynamic Program Structure Tree (DPST),Γ (N,E,Par,C), for a scheduleΨ
of an AFPL programP for a given inputξ is an ordered rooted tree where

5 We refer to an execution of a statement as either a dynamic statement instance or a statement instance.
6 The definition of the static version of MHP can be found in [3].
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Fig. 5 Dynamic Program Structure Tree for the program and computation graph in Figure 2

1. N is a set of nodes, one for every statement instance inΨ . Every internal node belongs
to one of the two types,finishandasync, and every leaf node is of the typestatement.
The root node is always of the typefinish, and it corresponds to the implicit finish sur-
rounding the body ofmain() in the program.

2. Par defines the parent relation between nodes inΓ as follows:
– Par(n) = α, for everyfinish nodeα and every noden that satisfies the following

condition:α is the immediately enclosing finish ofn, and there is acontinue-edge-
only path from the start of thefinishα to n in the computation graph corresponding
to Ψ .

– Par(n) = β, for everyasyncnodeβ and every noden that satisfies the following
condition:n belongs to the task corresponding toβ, and the immediately enclosing
finish ofn is not inβ.

3. E is a set of tree edges that are obtained as follows:E = {(n1, n2) : Par(n2) = n1}

4. C defines the children relation among nodes inΓ as follows:C(α) = {n : Par(n) = α}

Note that the setC(α) is ordered, which reflects the order of the children for everyparent
in Γ .

Definition 5 The Lowest Common Ancestor of two nodess1 ands2, LCA(s1, s2), in a tree
Γ is the nodeϕ that is an ancestor7 of boths1 ands2 with the greatest depth8 in Γ .

Definition 6 In an ordered treeΓ , a nodes1 is said to beto the left ofa nodes2 if and only
if s1 appears befores2 in the inorder traversal ofΓ . The relationto the left ofis defined on
two nodess1 ands2 if and only if LCA(s1, s2) 6= s1 andLCA(s1, s2) 6= s2.

The set of edges from every internal node to its children in a DPST are arranged to reflect
the program order, i.e., if a statement instances1 executes before a statement instances2 in
a scheduleΨ , the nodes1 will appearto the left ofthe nodes2 in the DPST corresponding
to Ψ .

7 A node is considered both an ancestor and a descendant of itself.
8 The depth of a node in a tree is the length of the path from the root to the node.
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Figure 5 shows the DPST for the AFPL program in Figure 2. Note that the finish node 0
is the implicit finish in the body ofmain()(assuming that the code shown in Figure 2 is the
body of the main).

Theorem 1 Every data-race-free AFPL program with finish and async constructs has a
unique DPST that corresponds to all possible executions fora given input.

Proof Let us consider an AFPL programP with finish and async constructs that contains no
data races. The immediately enclosing finish for every statement inP is the same across all
possible executions ofP for a given inputξ. Also every statement inP belongs to the same
task across all possible executions ofP for input ξ. Hence in every DPST ofP that corre-
sponds to different executions ofP for an inputξ, the parent-child relationship is unique
between nodes corresponding to all the instances of finish, async, and statements inP . In
other words, if nodeα is the parent of nodeβ in a DPST ofP , thenα is the parent ofβ in
every DPST ofP for an inputξ.

The only other source of non-determinism could be in the order of edges from an internal
node to its children. By definition of the DPST, all the edges from every internal node to its
children are arranged according to the program order. Hence, there is a unique DPST for
every AFPL program with finish and async constructs for a given input.

Theorem 2 The sequential depth-first execution of an AFPL program explores the DPST of
the program corresponding to this execution in depth-first order from left to right.

Proof By definition of DPST, the edges from every internal node to its children are ordered
according to the program order of the corresponding statements. The sequential depth-first
execution of an AFPL program will execute the statements in the program order, which
corresponds to the left to right depth-first order of the nodes in its DPST.

Theorem 3 Let Γ be the DPST corresponding to the sequential depth-first execution Ψ of
an AFPL programP with inputξ. Lets1 ands2 be two nodes inΓ . Lets1 be to the left of
s2 in Γ . Let LCA(s1, s2) = ϕ, ϕ 6= s1, ϕ 6= s2. LetA1 denote the DPST ancestor ofs1 that
is the child ofϕ. The following conditions hold:

1. MHP(s1, s2) = true if and only ifA1 is an async node.
2. MHP(s1, s2) = false if and only ifA1 is a finish node.

Proof Let Φ denote the computation graph corresponding toΓ .

1. if: Let A1 be an async node. LetF1 denote the immediately enclosing finish ofA1. In Φ,
any path starting ats1 (that goes out ofA1) has to go to the end ofA1 and then directly
to the end ofF1. But s2 is outside the asyncA1 and inside the finishF1. Hence there
can be no path froms1 to s2 in Φ. Sinces1 is to the left ofs2 in Γ , it follows from
Theorem 2 thats1 executes befores2 in Ψ . Hence there can be no path froms2 to s1 in
Γ . Thus, MHP(s1, s2) = true.
only if: Let MHP(s1, s2) = true. By definition, there can be no path froms1 to s2 and
from s2 to s1 in Φ. If A1 is a finish node, then there is a path inΦ starting ats1 that
goes to the end ofA1 and then tos2. HenceA1 can not be a finish node.A1 can not be
a statement node because all statement nodes are leaf nodes.ThusA1 is an async node.

2. if: Let A1 be a finish node. There is a path inΦ that starts ats1, goes to the end ofA1,
and then tos2. Hence MHP(s1, s2) = false.
only if : Let MHP(s1, s2) = false. By definition, there is path froms1 to s2 or from s2

to s1 in Φ. Sinces1 is to the left ofs2 in Γ , it follows from Theorem 2 thats1 executes
befores2 in Ψ . Hence there can be no path froms2 to s1 in Γ . If A1 is an async node,
then there can be no path froms1 to s2 as well.A1 must be a finish node.
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Theorem 4 Let Γ be the DPST corresponding to the sequential depth-first execution of
an AFPL programP with an inputξ. Let statement instances1 be to the left of statement
instances2 in Γ . During the sequential depth-first execution ofP with inputξ in the ESP-
bags algorithm, whens2 is being executed, the ID of the taskτ that executess1 will be in a
P-bag if and only ifs1 may-happen-in-parallel withs2.

Proof Let Γ be the DPST ofP for input ξ. Let LCA(s1, s2) = ϕ. Consider the case when
ϕ 6= s1 andϕ 6= s2. If ϕ = s1, thens1 has to be an internal node, i.e., a finish or an async
node. This case is not necessary because we are only interested in the MHP relation between
two statement instances. The same holds whenϕ = s2.

if: Let us assumes1 may-happen-in-parallel withs2. During the sequential depth-first
execution ofP , s1 will be executed befores2 because of the assumption thats1 is to the left
of s2. LetA1 denote the DPST ancestor ofs1 that is the child ofϕ. We know from Theorem 3
that A1 must be an async node. According to the rules of the ESP-bags algorithm from
Section 3.2, when the sequential depth-first execution returns from an async to its parent,
the contents of the S and P bags of the async are emptied into the P bag of the parent. These
contents stay in the P bag of the parent until the execution reaches the end of the parent. In
our case, when the sequential depth-first execution of ESP-bags returns fromA1, the ID of
the taskτ that ownss1 will be put in the P-bag ofϕ, which is the parent ofA1 in Γ . The ID
of τ will stay in the P-bag ofϕ until the execution completes the execution of the subtree
underϕ. By definition ofϕ andA1 we know thats2 is in a subtree whose root is a peer of
A1 and is to the right ofA1. Hence whens2 is executed, the ID ofτ will be in a P-bag.

only if: Let us assume that the ID of the taskτ that ownss1 is in a P-bag whens2

is executed under the sequential depth-first execution of the ESP-bags algorithm. LetA1

denote the DPST ancestor ofs1 that is the child ofϕ.

Case 1:A1 is a finish node. In this caseτ will be in a S bag whens2 is executed, according
to the rules from Section 3.2.

Case 2:A1 is the node corresponding tos1. Again in this caseτ will be in a S bag when
s2 is executed, according to the rules from Section 3.2.

HenceA1 can neither be a finish node nor the node corresponding tos1. A1 must be an
async node. Following from Theorem 3,s1 may-happen-in-parallel withs2.

Theorem 5 (Precision and Soundness)The ESP-bags algorithm detects a data race in an
AFPL program for a given input if and only if a data race exists.

Proof Let us consider an AFPL programP that is executed with an inputξ. Let Γ denote
the DPST corresponding to the sequential depth-first execution of P with input ξ.

if: Let us assume that there is a data race in some schedule ofP with input ξ. There are
two statements,s1 ands2, that may-happen-in-parallel, both accessing the same memory
locationL, and one of those is a write. Without loss of generality, let us assume thats1

executes befores2 during the ESP-bags’s sequential depth-first execution ofP . Thuss1 will
be to the left ofs2 in Γ . From Theorem 4 it follows that whens2 is executed, the taskτ that
ownss1 will be in a P-bag.

Case 1:s2 contains a read ofL. In this case,s1 will contain a write toL. Whens2 is
executed during the sequential depth-first execution, the ESP-bags algorithm checks if
the previous writer ofL is in a P-bag (according to the rules in Figure 4). In this case,
sinceτ is in a P-bag, the algorithm signals a data race.
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1 I s o l a t e d Read of l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag then Data Race ;
3 I f L . i s o l a t e d R e a d e r i s i n a S−bag then L . i s o l a t e d R e a d e r = t ;

1 I s o l a t e d Wr i te o f l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 then Data Race ;
4 I f L . i s o l a t e d W r i t e r i s i n a S−bag then L . i s o l a t e d W r i t e r = t ;

1 Read l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . i s o l a t e d W r i t e r i s i n a P−bag
3 then Data Race ;
4 I f L . r e a d e r i s i n a S−bag then L . r e a d e r = t ;

1 Wr i te l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 or L . i s o l a t e d W r i t e r i s i n a P−bag or L . i s o l a t e d R e a d e r i s i n a P−bag
4 then Data Race ;
5 L . w r i t e r = t ;

Fig. 6 ESP-bags algorithm for AFIPL

Case 2:s2 contains a write ofL. Nows1 may contain either a read or a write toL. Whens2

is executed during the sequential depth-first execution, the ESP-bags algorithm checks
if the previous reader or writer ofL is in a P-bag (according to the rules in Figure 4). In
this case, sinceτ is in a P-bag, the algorithm signals a data race.

only if: Let us assume that the ESP-bags algorithm detects a data racein P with inputξ.
According to the rules of the algorithm in Figure 4, a data race will be signaled only in two
cases:

Case 1: On the read of a memory locationL in a statements2, the previous writer of
L (corresponding to a write in a statements1), sayτ , is in a P-bag. It follows from
Theorem 4 thats1 may-happen-in-parallel withs2. Hence, there is a data race in some
execution ofP with input ξ.

Case 2: On the write of a memory locationL, the previous reader or writer ofL (corre-
sponding to a read or a write in a statements1), sayτ , is in a P-bag. It follows from
Theorem 4 thats1 may-happen-in-parallel withs2. Hence, there is a data race in some
execution ofP with input ξ.

In summary, if there are races in the program for the given input, ESP-bags will find
them and will never report races that do not exist.

5 Handling Isolated Blocks

In this section, we describe an extension to the ESP-bags algorithm for handling isolated
sections. Isolated sections are useful since they allow theprogrammer to write data-race-
free parallel programs in which multiple tasks interact andupdate shared memory locations.

When an AFIPL program contains isolated sections, the data race detector must check
for conflicts between isolated and non-isolated accesses tothe same memory location that
may execute in parallel. If an accessa1 to a memory locationL in an isolated section con-
flicts with another accessa2 to L in a non-isolated section, then it is a data race.
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1 f i n i s h {
2 async {
3 i s o l a t e d { t = 0 ; }
4 } / / async
5 i s o l a t e d { t = 1 ; }
6 } / / f i n i s h
7 i f ( t == 0) {
8 async { x = 20 ; }
9 x = 10 ; / / a da ta race

10 } / / i f

Fig. 7 An example AFIPL program that depicts a scenario in which the ESP-bags algorithm is not sound.

Note that, accesses within isolated sections do not conflictwith other accesses within
isolated sections because of the mutual exclusion semantics guaranteed by isolated con-
structs. Hence, these isolated accesses themselves cannotcause data races.

The extension for handling isolated sections includes checking that isolated and non-
isolated accesses that may execute in parallel do not interfere. For this, we extend ESP-bags
as follows: two additional fields are added to every memory location,isolatedReader, and
isolatedWriter. These fields are used to record the task that performs anisolatedread or
write on the location. The additional fields need only be added to memory locations that are
accessed within isolated sections.

We need to handle reads and writes inisolatedblocks differently thannon-isolatedop-
erations. Fig. 6 shows the required steps during each of the operations:read, write, isolated-
read, andisolated-write.

CorrectnessWith the extension to support isolated sections, the ESP-bags algorithm loses
soundness (i.e., there may be false negatives): there are example programs with isolated
constructs that contain races for a given input for which AFIPL fails to find the race. Note
that the ESP-bags algorithm is precise (i.e., there are no false positives) even in the presence
of isolated sections.

The problem is that with isolated sections, there may be cases when the sequential depth-
first execution does not execute certain paths of the code that may be executed in some par-
allel schedule for the same input. This happens when the isolated sections in the program do
not commute. In this case, for the same input, the isolated sections may produce a different
result in some parallel schedule compared to the result produced in a depth-first execution,
and there may be some code conditioned on this result that hasa data race. The ESP-bags
algorithm does not report this data race because the code with the data race is never executed
during the sequential depth-first execution of the algorithm.

Figure 7 shows an example AFIPL program that depicts a scenario in which the ESP-
bags algorithm is not sound in the presence of isolated sections. In this example, during
the depth-first execution of our algorithm, the isolated block in line 3 executes before the
isolated block in line5. Hence, in such an execution, theif statement in line7 evaluates to
false, due to which the code in lines8 and9 does not execute, and our algorithm reports no
data races. However, there is a parallel schedule of this program for the same input in which
the execution happens such that the isolated block in line5 executes first, followed by the
isolated block in line3. In this schedule, theif in line 7 will evaluate totrue, the code in
lines8 and9 will execute, and there will be a data race. This happens because the isolated
blocks in lines3 and5 do not commute, and hence they produce different results based on
the order in which they are executed.
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However, if the isolated sections in the input program commute, the sequential depth-
first execution is sufficient. In such cases, the ESP-bags algorithm does not miss data races
for the given input. In practice, isolated sections are usedonly with very small scopes, and it
is easy to show that they commute (for instance, they use onlycommutative operations such
as addition, to increment a counter).

In summary, when the isolated sections commute, the ESP-bags algorithm is precise and
sound for the given input. When the isolated sections do not commute, it is precise but not
sound.

6 Optimizations

The ESP-bags algorithm is implemented as aJava library. Recall that the ESP-bags algo-
rithm requires that action is taken on every read and write toa shared memory location. It
is during these actions that the algorithm checks if the current task can race with the task
recorded in the reader or writer fields of the memory location. Now, to test a given program
for determinism using the ESP-bags algorithm, we need a compiler transformation pass that
instruments read and write operations on a heap location or an array in the program with
appropriate calls to the library. It would be naive to instrument every access to every shared
memory location because some of these instrumentations maybe redundant; i.e., removing
them will not affect the process of checking for data races inthe program. Because some
read and write operations are guaranteed to never cause any additional data races in the
program, such operations need not be instrumented.

As mentioned earlier, because the ESP-bags algorithm also keeps track of thefinish,
async, andisolatedblocks in the program, it requires instrumentations for thestart and end
of every such block in the program. These instrumentations are all necessary to maintain the
structure of parallelism at runtime in the ESP-bags algorithm.

In this section, we describe the static analyses that can be used to reduce the instru-
mentation and hence improve the runtime performance of the instrumented program. We
also include an example that depicts how each of these staticanalyses are used to eliminate
instrumentation points. Figure 8 shows a program in AFPL with all its read and write oper-
ations instrumented (DJCReadandDJCWriterefers to the call to the library). Suppose that
the main task is always guaranteed to start executing this portion of the program. This will
be used as the baseline to depict these optimizations. Note that the instrumentations that are
needed for thefinishandasyncblocks are not shown in this example.

6.1 Main Task Check Elimination in Sequential Code Regions

The first static optimization aims to eliminate redundant instrumentation points that are
added in the sequential code regions. A parallel program will always start and end with
sequential code regions and will contain alternating parallel and sequential code regions in
the middle. It is trivial to show that no read or write operation in the sequential code regions
of the program can result in a data race. Hence, there is no need to instrument the read and
write operations in such sequential code regions of the program. In an AFPL program, the
sequential code regions are the regions of the program that are outside the outermostfinish
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blocks9 and are executed by themain task. Thus, in an AFPL program, there is no need to
instrument the read and write operations in such sequentialcode regions of the main task.

Figure 9 shows the result of eliminating the instrumentation points in the sequential
code regions of the program in Figure 8. The program in Figure8 contains a write to a heap
locationp.x in line 4 that is part of the sequential code region executed by the main task.
Hence the corresponding call to the library in line 3 can be eliminated.

6.2 Read-only Check Elimination in Parallel Code Regions

The input program may have shared memory locations that are written by the sequential
regions of the program and only read within parallel regionsof the program. Such read
operations need not be instrumented because parallel tasksreading from the same memory
location will never lead to a conflict. In order to perform this optimization, the compiler
implements an inter-procedural side-effect analysis to detect potential write operations to
shared memory locations within the parallel regions of the given program. If there is no
possible write to a shared memory locationM in the parallel regions of the program, that
clearly shows that all accesses toM in the parallel regions must be read-only, and hence the
instrumentation points corresponding to these reads can beeliminated. The checks for the
writes in the sequential regions, if any, will be eliminatedby the rule in Section 6.1.

The result for applying this optimization on the program in Figure 9 is shown in Fig-
ure 10. There is no write to arrayA within the parallel regions of the program in Figure 9,
so the instrumentation in line 8 corresponding to the read ofA in line 11 can be removed.

6.3 Escape Analysis

The input program may include many parallel tasks. A determinacy race occurs in the pro-
gram only when two or more tasks access a shared memory location and at least one of them
is a write. Suppose an object is created inside a task, and it never escapes that task; because
no other task can access this object, it cannot lead to a determinacy race. In order to ensure
the task-local attribute, the compiler performs an inter-procedural analysis that determines
if an object is shared among tasks. This also requires an alias analysis to ensure that no alias
of the object escapes the task. Thus, if an objectO is proven to not escape a task, then the
instrumentation points corresponding to all accesses toO can be eliminated.

The objectq in the program in Figure 10 is created in line 11 within a task and it never
escapes this task. No access toq can lead to a determinacy race, so the instrumentation
points in lines 14 and 16 corresponding to access toq are eliminated. The resulting program
is shown in Figure 11.

6.4 Loop Invariant Check Motion

Recall that the instrumentation corresponding to a memory access toM will first check
if the task that previously accessedM conflicts with the current task and also update the
information that the current task now accessedM . If there are multiple accesses of the

9 This is assuming there are noasyncs outside anyfinish in the program. If there are any suchasyncs, then
the only sequential code regions in the program are the regions outside the outermostfinish and before the
first suchasync.
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same type (read or write) toM by a task, then it is sufficient to instrument one such access
because other instrumentations will only add to the overhead with redundant steps. Suppose
the input program accesses a shared memory locationM unconditionally inside a loop; the
instrumentation corresponding to this access toM can be moved outside the loop in order
to prevent multiple calls to the instrumented function forM .

In summary, given a memory accessM that is performed unconditionally on every iter-
ation of a sequential loop, the instrumentation forM can be hoisted out of the loop by using
classical loop-invariant code motion. This transformation includes the insertion of a zero-
trip test to ensure that the loop-invariant check is performed only when the loop executes for
one or more iterations.

In Figure 11, the program contains a read ofp.x in line 13 that is inside a sequential
loop. Since the same memory location is accessed in every iteration of the loop, the instru-
mentation for this access is moved out of the loop as shown in Figure 12. Note the test for
the non-zero trip count in line 12 guards this instrumentation outside the loop.

6.5 Read/Write Check Elimination

In the previous optimization we showed that it is sufficient to instrument one access to a
memory locationM if there are multiple accesses of the same type toM by a task. In
this optimization, we claim that if there are two accessesM1 andM2 to the same memory
location in a task, then we can use the following rules to eliminate one of them. It works on
the basic idea that the instrumentation for a write subsumesthat for a read in the algorithm
presented in this paper. Intuitively, if a read to a memory locationM in a taskτ causes a
determinacy race, then a write toM in τ will definitely cause a determinacy race.

1. If M1 dominatesM2 andM2 is a read operation, then the instrumentation forM2 can
be eliminated (sinceM1 is either a read or write operation).

2. If M2 postdominatesM1 andM1 is a read operation, then the check forM1 can be
eliminated (sinceM2 is either a read or write operation). In practice, this rule tends to
apply to fewer situations than the previous rule, because computation of postdominance
includes the possibility of exceptional control flow.

Consider the program in Figure 12 that contains an instrumentation for the write top.x
in line 9 and an instrumentation corresponding to the read ofthe same memory location in
line 13. Since the instrumentation in line 9 dominates the one in line 13 and the latter is not
a write, line 13’s instrumentation can be eliminated.

7 Evaluation

We now present the experimental results of our race detection algorithm. We evaluated the
ESP-bags algorithm on eight Java Grande Forum (JGF) benchmarks, three Shootout bench-
marks, and one EC2 challenge benchmark, listed in Table 2. Though we performed our
experiments on different sizes of the JGF benchmarks, we only report the results of the
maximum size in each case. We were unable to obtain the results of size B for MolDyn
since both versions (original and instrumented) ran out of memory. All the benchmarks
were written in HJ using only the AFIPL constructs and are available from [1].

The ESP-bags algorithm was implemented as a Java library fordetecting data races in
HJ programs containing async, finish, and isolated constructs. The benchmarks written in
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1 i n t [ ] A, B ; Foo p ;
2 . . . . . .
3 DJCWrite ( p , x ) ;
4 p . x = 0 ;
5 f i n i s h {
6 f o r ( i n t i =0 ; i<s i z e ; i ++ ) {
7 f i n a l i n t i nd = i ;
8 async {
9 DJCRead (A, ind ) ;

10 DJCRead (B , ind ) ;
11 DJCWrite ( p , x ) ;
12 p . x = A[ ind ] + B[ ind ] ;
13 Foo q = new Foo ( ) ;
14 f o r ( i n t j =0 ; j<i nd ; j ++) {
15 DJCRead ( p , x ) ;
16 DJCWrite ( q , x ) ;
17 q . x = p . x + 1 ;
18 DJCRead ( q , y ) ;
19 DJCWrite (B , j ) ;
20 B[ i ] = q . y + ind ;
21 }
22 }
23 }
24 }

Fig. 8 An example AFPL program with all read
and write operations instrumented

1 i n t [ ] A, B ; Foo p ;
2 . . . . . .
3 p . x = 0 ;
4 f i n i s h {
5 f o r ( i n t i =0 ; i<s i z e ; i ++ ) {
6 f i n a l i n t i nd = i ;
7 async {
8 DJCRead (A, ind ) ;
9 DJCRead (B , ind ) ;

10 DJCWrite ( p , x ) ;
11 p . x = A[ ind ] + B[ ind ] ;
12 Foo q = new Foo ( ) ;
13 f o r ( i n t j =0 ; j<i nd ; j ++) {
14 DJCRead ( p , x ) ;
15 DJCWrite ( q , x ) ;
16 q . x = p . x + 1 ;
17 DJCRead ( q , y ) ;
18 DJCWrite (B , j ) ;
19 B[ i ] = q . y + ind ;
20 }
21 }
22 }
23 }

Fig. 9 After applying the main task check elimination
optimization on the program in Figure 8

1 i n t [ ] A, B ; Foo p ;
2 . . . . . .
3 p . x = 0 ;
4 f i n i s h {
5 f o r ( i n t i =0 ; i<s i z e ; i ++ ) {
6 f i n a l i n t i nd = i ;
7 async {
8 DJCRead (B , ind ) ;
9 DJCWrite ( p , x ) ;

10 p . x = A[ ind ] + B[ ind ] ;
11 Foo q = new Foo ( ) ;
12 f o r ( i n t j =0 ; j<i nd ; j ++) {
13 DJCRead ( p , x ) ;
14 DJCWrite ( q , x ) ;
15 q . x = p . x + 1 ;
16 DJCRead ( q , y ) ;
17 DJCWrite (B , j ) ;
18 B[ j ] = q . y + ind ;
19 }
20 }
21 }
22 }

Fig. 10 After applying the read-only check opti-
mization on the program in Figure 9

1 i n t [ ] A, B ; Foo p ;
2 . . . . . .
3 p . x = 0 ;
4 f i n i s h {
5 f o r ( i n t i =0 ; i<s i z e ; i ++ ) {
6 f i n a l i n t i nd = i ;
7 async {
8 DJCRead (B , ind ) ;
9 DJCWrite ( p , x ) ;

10 p . x = A[ ind ] + B[ ind ] ;
11 Foo q = new Foo ( ) ;
12 f o r ( i n t j =0 ; j<i nd ; j ++) {
13 DJCRead ( p , x ) ;
14 q . x = p . x + 1 ;
15 DJCWrite (B , j ) ;
16 B[ j ] = q . y + ind ;
17 }
18 }
19 }
20 }

Fig. 11 After applying the escape analysis and check
elimination optimization on the program in Figure 10

1 i n t [ ] A, B ; Foo p ;
2 . . . . . .
3 p . x = 0 ;
4 f i n i s h {
5 f o r ( i n t i =0 ; i<s i z e ; i ++ ) {
6 f i n a l i n t i nd = i ;
7 async {
8 DJCRead (B , ind ) ;
9 DJCWrite ( p , x ) ;

10 p . x = A[ ind ] + B[ ind ] ;
11 Foo q = new Foo ( ) ;
12 i f ( i nd > 0)
13 DJCRead ( p , x ) ;
14 f o r ( i n t j =0 ; j<i nd ; j ++) {
15 q . x = p . x + 1 ;
16 DJCWrite (B , j ) ;
17 B[ j ] = q . y + ind ;
18 }
19 }
20 }
21 }

Fig. 12 After applying the loop invariant check
elimination optimization on the program in Fig-
ure 11

1 i n t [ ] A, B ; Foo p ;
2 . . . . . .
3 p . x = 0 ;
4 f i n i s h {
5 f o r ( i n t i =0 ; i<s i z e ; i ++) {
6 f i n a l i n t i nd = i ;
7 async {
8 DJCRead (B , ind ) ;
9 DJCWrite ( p , x ) ;

10 p . x = A[ ind ] + B[ ind ] ;
11 Foo q = new Foo ( ) ;
12 f o r ( i n t j =0 ; j<i nd ; j ++) {
13 q . x = p . x + 1 ;
14 DJCWrite (B , j ) ;
15 B[ j ] = q . y + ind ;
16 }
17 }
18 }
19 }

Fig. 13 After applying the read/write check elimina-
tion optimization on the program in Figure 12
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Table 2 List of Benchmarks Evaluated

Source Benchmark Description

JGF (Section 2)

Series Fourier coefficient analysis
LUFact LU Factorization
SOR Successive over-relaxation
Crypt IDEA encryption
Sparse Sparse Matrix multiplication

JGF (Section 3)
MolDyn Molecular Dynamics simulation
MonteCarlo Monte Carlo simulation
RayTracer 3D Ray Tracer

Shootout
Fannkuch Indexed-access to tiny integer-sequence
Fasta Generate and write random DNA sequences
Mandelbrot Generate Mandelbrot set portable bitmap file

EC2 Matmul Matrix Multiplication (two 1000*1000 double matrix)

HJ were instrumented for race detection during a bytecode-level transformation pass im-
plemented on HJ’s Parallel Intermediate Representation (PIR) [27]. The PIR extends Soot’s
Jimple IR [26] with parallel constructs such as async, finish, and isolated. The instrumenta-
tion pass adds the necessary calls to our race detection library at async and finish boundaries
and also on reads and writes to shared memory locations.

We report the performance results of our experiments on a 16-way (quad-socket, quad-
core per socket) Intel Xeon 2.4GHz system with 30GB memory, running Red Hat Linux
(RHEL 5). The JVM used is the Sun Hotspot JDK1.6 with a maximum heap size of 3GB.

Results of ESP-bags algorithmTable 3 shows the results of applying the ESP-bags algo-
rithm to our benchmarks. The table gives the original execution time for each benchmark
without any instrumentation. It also shows the slowdown of the benchmark when instru-
mented for the ESP-bags algorithm, with and without the optimizations described in Sec-
tion 6. The outcome of the ESP-bags algorithm is also included in the table and shows there
are no data races in any of the benchmarks. The same was observed for all input sizes.
Hence all the benchmarks are free of data races for the inputsconsidered. Note that though
RayTracer has someisolatedconflicts, it is free of data races since there were no conflicts
between isolated and non-isolated accesses.

ESP-bags slowdownOn average, the slowdown of the benchmarks with the ESP-bagsal-
gorithm is4.86× without optimization. When all the static optimizations are applied, the
average slowdown drops to3.05×. The slowdown of all benchmarks except LUFact is less
than10×. The slowdown for benchmarks like MolDyn, MonteCarlo, and Sparse is less than
5×. There is no slowdown in the case of Series because most of thecode uses stack vari-
ables. InHJ none of the stack variables can be shared across tasks, so we do not instrument
any access to these variables. On the other hand, the slowdown for SOR and RayTracer
benchmarks is around9×.

Performance of OptimizationsWe now discuss the effects of the compiler optimizations
on the benchmarks. The static optimizations that were performed include check elimination
in sequential code regions in the main task, read-only checkelimination in parallel code
regions, escape analysis, loop invariant check motion, andread/write check elimination. The
compile time overhead of instrumenting the input program for race detection with ESP-bags
is2% on an average. On the other hand, the compile time overhead ofthe static optimizations
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Table 3 Slowdown of ESP-bags Algorithm

Benchmark Number Time ESP-bags Result
of (s) Slowdown Factor

asyncs w/o opts w/ opts

Crypt - C 13000000 15.24 7.63 7.29 No Data Races
LUFact - C 1600000 15.19 12.45 10.08 No Data Races

MolDyn - A 510000 45.88 10.57 3.93 No Data Races
MonteCarlo - B 300000 19.55 1.99 1.57 No Data Races

RayTracer - B 500 38.85 11.89 9.48 No Data Races
(Isolated conflict)

Series - C 1000000 1395.81 1.01 1.00 No Data Races
SOR - C 200000 3.03 14.99 9.05 No Data Races

Sparse - C 64 13.59 12.79 2.73 No Data Races
Fannkuch 1000000 7.71 1.49 1.38 No Data Races

Fasta 4 1.39 3.88 3.73 No Data Races
Mandelbrot 16 11.89 1.02 1.02 No Data Races

Matmul 1000 19.59 6.43 1.16 No Data Races

Geo Mean 4.86 3.05
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Fig. 14 Breakdown of static optimizations

is 25% on an average across the benchmarks considered. This is because of the extra time
required to perform the static analyses needed to eliminateredundant instrumentations.

As evident from the table, some of the benchmarks, such as SOR, Sparse, MolDyn, and
Matmul, greatly benefit from the optimizations, with a maximum reduction in slowdown of
about 78% for Sparse. On the other hand, for other benchmarksthe reduction is relatively
small. The optimizations do not reduce the slowdown much forCrypt and LUFact because
very few instrumentation points are eliminated. In the cases of MonteCarlo and RayTracer,
though a good number of instrumentation points are eliminated, a significant fraction of
them still remain, so there is not much performance improvement in these benchmarks due
to optimizations. On average, there is a 37% reduction in theslowdown of the benchmarks
due to these optimizations.
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Breakdown of the OptimizationsWe now describe the effects of each of the static optimiza-
tions separately on the performance of the benchmarks. Figure 14 shows the breakdown of
the effects of each of the static optimizations. The graph also shows the slowdown without
any optimization and with the whole set of optimizations enabled. The Main Task Check
Elimination optimization described in Section 6 is appliedto all the versions discussed here,
including the unoptimized version, because it is a basic optimization that avoids excessive
instrumentations.

The read-only check elimination performs much better than the other optimizations for
most of the benchmarks, such as MolDyn, SOR, and SparseMatmult. This is because in
these benchmarks the parallel regions include reads to manyarrays that are written only in
the sequential regions of the code. Hence, this optimization eliminates the instrumentation
for all these reads. It contributes the most to the overall performance improvement in the
fully optimized version. The read-write optimization works well in the case of SOR but
does not have much effect on other benchmarks. The loop invariant check motion helps
improve the performance of MonteCarlo the most, and the escape analysis does not seem to
help any of these benchmarks significantly.

Note that the performance of these four static optimizations do not directly add up to
the performance of the fully optimized code. Because some ofthese optimizations create
more chances for other optimizations, their combined effect is much more than their sum.
For example, the loop invariant check motion creates more chances for the read-only and
read-write optimization. So, when these two optimizationsare performed after loop invariant
check motion, their effect would be more than that is shown here. Finally, we only evaluated
the performance of these optimizations on the set of benchmarks shown here. For a different
set of benchmarks, their effects may vary. However, we believe that these static optimiza-
tions, when combined, can generally improve the performance of most of the benchmarks.

8 Related Work

The Cilk paper [12] introduces SP-bags for spawn-sync computations. We generalize that
algorithm so that it also applies to async-finish computations while still being able to check
spawn-sync programs. An extension to SP-bags was proposed by Cheng et al. [10] to handle
locks in Cilk programs. Their approach includes a data race detection algorithm for pro-
grams that satisfy a particular locking discipline. However, the slowdown factors reported in
[10] were in the 33× - 78× range for programs that follow their locking discipline, and up
to 3700× for programs that don’t. In this work, we detect data races inprograms with async,
finish, and isolated constructs.We outline and implement a range of static optimizations to
reduce the slowdown factor to 3.05× on average.

A recent result on detecting data races by Flanagan et al. [13] (FastTrack) reduces the
overhead of using vector clocks during data race detection.Their technique focuses on the
more general setting of fork-join programs. The major problem with using vector clocks for
race detection is that the space required for vector clocks is linear in the number of threads
in the program, and hence any vector clock operation also takes time linear in the number of
threads. In a program containing millions of tasks that can run in parallel, it is not feasible to
use vector clocks to detect data races (if we directly extendvector clocks to tasks). Though
FastTrack reduces this space (and thus the time for any vector clock operation) to a constant
by using epochs instead of vector clocks, it needs vector clocks whenever a memory location
has shared read accesses. Even a few such instances would make it infeasible for programs
with millions of parallel tasks. On the other hand, our approach requires only a constant
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space overhead for every shared memory location and a time overhead proportional to the
inverse Ackermann function for every shared memory access.

The other approach to use FastTrack for task-parallel languages is to fix the threads the
program runs on to a small number (say eight) and use vector clocks of this fixed size. With
this change, FastTrack would just check for data races in a particular schedule of a program.
Our approach can guarantee the non-existence of data races for all possible schedules of a
given input. However, the price we have to pay for this guarantee is that we have to execute
the given program sequentially. Given that this needs to be done only during the development
stage, we feel our approach is of value.

Sadowski et al. [23] propose a technique for checking determinism by using interfer-
ence checks based on happens-before relations. This involves detecting conflicting races
in threads that can run in parallel. Though they can guarantee the non-existence of races
in all possible schedules of a given input, the fact that theyuse vector clocks makes these
infeasible in a program with millions of tasks that can run inparallel.

The static optimizations that we use to eliminate the redundant instrumentations and thus
reduce the overhead is similar to the compile-time analysesproposed by Mellor-Crummey [21].
His work uses a dependence graph that contains edges for all data dependences to eliminate
instrumentations for variable references that are not partof these data dependences. His
technique is applicable for loop carried data dependences across parallel loops and also for
data dependences across parallel blocks of code. In our approach, we concentrate on the
instrumentations within a particular task and try to eliminate redundant instrumentations for
memory locations that are guaranteed to have already been instrumented in that task.

The Clara framework [8] also performs static analyses to reduce the overhead of runtime
verification tools. It is a general framework for staticallyanalyzing runtime monitors, which
uses a finite-state-machine model of the property and generates runtime monitors in the form
of AspectJ aspects. This framework has been used to eliminate all the runtime monitors for
68% of the cases considered, thereby completely obviating the need for runtime monitor-
ing. In other cases, it reduces the overhead of the runtime monitors, similar to our static
optimizations. To use this framework for our static optimizations, we need to specify data
race detection as a finite-state-machine model. It would be interesting to see if Clara can
eliminate all the runtime monitors for race detection. We would like to explore this in future
models of our race detector.

Our static optimization that moves loop invariant checks out of the loop (outlined in Sec-
tion 6.4) is similar in effect to the stutter-equivalent loop transformation described in [22].
They present a general framework for optimizing the monitoring of loops relative to a prop-
erty. Their framework allows monitors inside a loop to be processed in a constant time rather
than time that is proportional to the number of iterations ofthe loop. This is achieved by cal-
culating the loop iteration after which the remaining iterations are said to be stutter relative
to the property under consideration and transforming the loop accordingly to reduce the
overhead of runtime monitoring. Again, this requires that the property to be monitored is
specified as a finite-state-machine. In future, we plan to evaluate this approach to see if it
reduces the overhead of our race detector even further.

9 Conclusion

In this paper we proposed a precise, sound, and efficient dynamic data-race detection al-
gorithm called ESP-bags (i.e., there are neither any false positives nor any false negatives).
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ESP-bags supports both the async-finish parallel programming model as well as the spawn-
sync model used in Cilk.

We implemented ESP-bags in a tool calledTASKCHECKER and augmented it with a set of
compiler optimizations that reduce the incurred average overhead by37% with respect to the
unoptimized version. Evaluation ofTASKCHECKERon a suite of 12 benchmarks shows that the
dynamic analysis introduces an average slowdown of4.86× without compiler optimizations,
and3.05× with compiler optimizations, making the tool suitable for practical use.

In future, we plan to investigate the applicability of ESP-bags to the fork-join concur-
rency model. Also, we plan to explore data race detection by executing the input program in
parallel, which is not possible with ESP-bags algorithm.
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