Noname manuscript No.
(will be inserted by the editor)

Efficient Data Race Detection for Async-Finish Parallelism

Raghavan Raman - Jisheng Zhao - Vivek Sarkar -
Martin Vechev - Eran Yahav

Received: date / Accepted: date

Abstract A major productivity hurdle for parallel programming is tpeesence oflata
races Data races can lead to all kinds of harmful program behayiocluding determinism
violations and corrupted memory. However, runtime ovedises current dynamic data race
detectors are still prohibitively large (often incurringwdowns of 16« or more) for use in
mainstream software development.

In this paper, we present an efficient dynamic race detectigarithm that handles
both the async-finish task-parallel programming model uiséanguages such as X10 and
Habanero Java (HJ) and the spawn-sync constructs usedkin Cil

We have implemented our algorithm in a tool calfedkCHecker and evaluated it on a
suite of 12 benchmarks. To reduce overhead of the dynamic analysisawe dso imple-
mented various static optimizations in the tool. Our experital results indicate that our
approach performs well in practice, incurring an averagedbwn of3.05x compared to a
serial execution in the optimized case.

Raghavan Raman

Rice University, 6100 Main St, Houston, TX 77005, USA
Tel.: +1-713-348-4834, Fax: +1-713-348-5930

E-mail: raghav@rice.edu

Jisheng Zhao

Rice University, 6100 Main St, Houston, TX 77005, USA
Tel.: +1-713-348-4834, Fax: +1-713-348-5930

E-mail: jisheng.zhao@rice.edu

Vivek Sarkar

Rice University, 6100 Main St, Houston, TX 77005, USA
Tel.: +1-713-348-5304, Fax: +1-713-348-5014

E-mail: vsarkar@rice.edu

Martin Vechev

ETH Zurich, UNG H 14, Universétstrasse 19, #ich 8092, Switzerland
Tel.: +41 44 632 98 48

E-mail: martin.vechev@inf.ethz.ch

Eran Yahav

Technion, Taub Building 734, Technion Israel Institute etfinology, Haifa 32000, Israel
Tel.: +972-4-829-4318, Fax: +972-4-829-3900

E-mail: yahave@cs.technion.ac.il

Deloro Fellow

2 Raghavan Raman et al.

Keywords parallel programming, program analysis, data races, matem

1 Introduction

Designing and implementing correct and efficient parallefpams is a notoriously difficult
task, yet, with the proliferation of multi-core processqgrarallel programming will play a
central role in mainstream software development. One afthie difficulties in parallel pro-

gramming is that programmers are often required to reasgplicil/ about the interleavings
of operations in their programs. The vast number of inteifegs makes this task difficult
even for small programs and intractable for sizable apftina. Unstructured and low-level
frameworks such as Java threads allow the programmer tesxpich and complicated
patterns of parallelism but also to make mistakes.

Structured Parallelism Structured parallelism makes it easier to determine théegom
which an operation is executed and to identify other openatithat can execute in parallel
with it. This simplifies manual and automatic reasoning akiba program, enabling the
programmer to produce a program that is more robust and oftee efficient.

Realizing these benefits, significant efforts have been rtasiard structuring parallel
computations, starting with constructs suclcabegin-coend11] andmonitors Recently,
additional support for fork-join task parallelism has beelded in the form of libraries [17,
20] to existing programming environments and languagels asdava and .NET.

Parallel languages such as Cilk [5], X10 [9], and Habaneva ({dJ) [4] provide simple,
yet powerful, high-level concurrency constructs thatriestraditional fork-join parallelism
yet are sufficiently expressive for a wide range of problemte key restriction in these
languages is in the flexibility of choosing which tasks a gitesk can join. The async-finish
computations that we consider are desirable because thputation graphs generated in
the language are deadlock-free [19] (unlike unrestrictekl-foin computations).

Data Race and Determinism Detection We present an efficient dynamic analysis algorithm,
ESP-bags, that checks for the presence of data races (are$plata race freedom) in async-
finish style parallel computations. In this work, we focusloa constructasyng finish, and
isolated The asyncconstruct is used to create a new task that can execute itighattee
finishconstruct is used to specify a join point for a group of tasks| theisolatedconstruct

is used for mutual exclusion. These constructs form the obte larger X10 and HJ
parallel languages. Usirasyng finish, andisolated one can express a wide range of useful
and interesting parallel computations (both regular aragyirlar) such as factorizations and
graph computations.

Our analysis is a generalization of Feng and Leiserson’d&J3-algorithm [12], which
was designed for checking determinism of spawn-sync Cilgmams. The original algo-
rithm cannot be applied directly to the async-finish stylpraigramming because this model
allows for a superset of the executions allowed by the tiatht spawn-sync Cilk programs.
Both the SP-bags algorithm and our extension to it are peesis sound for a given ingut
if a violation is reported, then the race really exists (itkere are no false positives). Con-
versely, if a data race exists for that input, a violatiorl @ reported (i.e., there are no false
negatives).

1 The construct for mutual exclusion is callatbmicin X10 andisolatedin HJ.

2 The ESP-bags algorithm is precise and sound when the progmatainsasyncand finish constructs
only. When the program contairnisolated constructs, it is precise but not sound (i.e., there may ks fal
negatives).

Efficient Data Race Detection for Async-Finish Parallelism 3

main{ finish { es} }
finish { es} | async{ es} | isolated{ s}
if (b) eselsees | eses | while (b)es | ---

Program P
Eaxtended Statement €s::

Fig. 1 The syntax of AFIPL.

Data race freedom affects the correctness of paralleligthgos and in some cases, it can
imply determinism [7,18]. For instance, in the absence ¢& daces, all parallel programs
with asyncandfinish, but withoutisolatedconstructs, are guaranteed to deterministic
Therefore, if we can prove data-race freedom of prograntdithaot contairisolatedcon-
structs, then we can conclude that the program is detertiginis

Main Contributions To the best of our knowledge, this is the first detailed stufiyhe
problem of data race detection for async-finish task-paraliograms as embodied in the
X10 and HJ languages. The main contributions of this pagger ar

— A dynamic analysis algorithm for efficient data race detactf structured async-finish
parallel programs. Our algorithm generalizes the clad8ib&gs algorithm designed for
the spawn-sync Cilk model (we also show how any spawn-syogram can be checked
with our algorithm).

— An implementation of our dynamic analysis in a tool narmesk CHECKER.

— Compiler optimizations to reduce the overhead incurredhgydynamic analysis al-
gorithm. These optimizations reduce the average overhgad% with respect to the
unoptimized version for the benchmarks used in our evaloati

— An evaluation ofTaskCHecker on a suite ofl2 benchmarks. We show that for these
benchmarksTaskCHEckeR is able to perform data race detection with an average (geo-
metric mean) slowdown of.86x in the absence of compiler optimizations, &b x
with compiler optimizations, compared to a sequential etien.

The rest of the paper is organized as follows. Section 2dnizes the structured parallel
setting that our algorithm targets. Section 3 describe&®ie-bags algorithm for detecting
data races in async-finish parallel programs. Section 4egrtive correctness of the ESP-
bags algorithm. Section 5 describes the extensions needéd IESP-bags algorithm to
support isolated constructs. Section 6 outlines the canpptimizations that are performed
to reduce the overhead incurred by our algorithm. Sectioestiibes the evaluation of our
algorithm on a suite ol2 benchmarks. Section 8 discusses related work, and Section 9
concludes the paper.

2 Background

We present our approach to data-race detection using araetsinguage AFIPLAsync
Finish Isolated Parallel LanguageNe first present our language AFIPL and informally
describe its semantics. To motivate the generalizatiohetraditional SP-bags algorithm,
we give an example where our language allows for broaderagdighaviors than those
expressible with the spawn-sync constructs in the Cilk mogning language.

2.1 Syntax

Fig. 1 shows the relevant statements of our language. Tlgeidaye extends any imperative
sequential language with three statemeasyng finish andisolated The language allows

4 Raghavan Raman et al.

1 final int[] A, B;

2 —» continue edge

3 A[0] = 10; _—_—_: J_a:i\:‘n:de:ege

4 finish {

5 for (int i=0; i<size; i++) {

6 final int ind = i;

7 async {

8 B[ind] += ind; .
9 Foo q = new Foo();

10 for (int j=0; j<ind; j++) { ¥ T T T T _
11 q.x += 1; °
12 Blind] = A[j] + ind;

13 } 11 for e
14 } 11 async 13

15 finish { ==

16 async { a a
17 async { [T4

18 B[ind] = A[ind]; =
B ORONO
20 B[ind+1] = Alind+1] + 5;

21 } /1 async Q
22 } 1/ finish | Q

23 } /1 for \“:«:)

24} /I finish e a

1
\

Fig. 2 An example AFIPL program and its computation graph. This cedke body of the main method in
the program.

for nesting offinish andasyncstatements, but does not allow any of the new statements to
appear insidésolatedstatements: async and finish statements cannot appea issldted
sections. However, isolated statements may contain arhedfaditional statements: loops,
conditionals, and so on. To reflect that, we use the nante denote an extended statement
and s to denote a traditional statement { above is used to denote the remaining basic
statements such as primitive assignments, heap assigsre&)t We refer to the subset of
AFIPL without isolated sections as AFPL, tieync Finish Parallel Languageéur data
race detection algorithm is largely independent of the setjal constructs in the language.
For example, the sequential portion of the language can $edban the sequential portions

of C, C++, Fortran, or Java.

2.2 Informal Language Semantics

Next, we briefly discuss the relevant semantics of the carogy constructs. For a formal
semantics of the async and finish constructs, see FX10 [a@Rlly, the program begins
execution with the main task. When async{ s } statement is executed by task A, a new
child task, B, is created. The new task B can now proceed witltiging statement in
parallel with its parent task A. For example, consider thePAFcode of Fig. 2. The main
task starts executing this code. Témyncstatement in line 7 creates a new child task, which
will now execute the block of code in lines 7-14 in paralletiwihe main task. When a
finish { s } statement is executed by task A, it means that task A musk alod wait at the

Efficient Data Race Detection for Async-Finish Parallelism 5

end of this statement until all descendant tasks createdihy Aincluding their recursively
created children tasks), have terminated. Thafiésh can be used to create a join point
for all descendant tasks dynamically created inside itpecin the example in Fig. 2, the
finish in line 15 would wait for the tasks created bByyncs in lines 16 and 17 to complete.
The statemerisolated{ s } means that the statemenis executed atomically with respect
to other isolated statemerit$\ote that in AFIPL, there is an implicfinish surrounding
the body of the main method, which ensures that the prograes dot complete before all
spawned tasks complete.

2.3 Cilk vs. AFIPL

Our data race detection algorithm, ESP-bags, presentateindections, is an adaptation of
the SP-bags algorithm [12] developed for the Cilk prograngrianguage. Unfortunately,
the SP-bags algorithm cannot be applied directly to ourdagg and needs to be extended
because the async-finish constructs of AFIPL language stgmore relaxed concurrency
model than the spawn-sync Cilk computations [14]. Thectakical scope of async-finish
subsumes all of spawn-sync excludiconditional syncé On the other hand, the dynamic
computation graph of async-finish subsumes all of spawe-gygtudingconditional syncs

The key semantic relaxation lies in the way a task is alloveebin with other tasks.
In Cilk, at any given (join) point of the task execution, tlask should join withall of its
descendant tasks (including all recursive descendans)tas&ated in between the start of
the task and the join point. The join is accomplished by etiegithe statemergync The
semantics of spawn construct is exactly the same as the asystruct.

The spawn-sync constructs can be translated to async-@aissiructs as follows: each
spawn construct can be directly replaced by an async catns#&€ilk function with uncon-
ditional sync statements can be directly translated to aesezg of finish blocks, where the
start of the finish block is the start of the function or theviwas sync, and the end of the
finish block is the label of the sync statement. For instamgecan translate the following
Cilk program,

spawn £1(); syng spawn £2(); syng s1;

into the following AFIPL program:
finish { asyncf1(); }; finish { asyncf2(); }; s1;

However, it is not possible to directly translate tmnditional synco a finish because of
the syntactic structure of finish. To handle all programs ¢aa be written with spawn and
sync, we extend the AFIPL language with two keywords (omlifgrcalls),beginFinishand
endFinish The semantics dbeginFinishis that it begins a finish block and the semantics
of endFinishis that it completes a finish block. These dynaféginFinishandendFinish
scopes can be nested arbitrarily unlike the lexical finiststrmct. These constructs allow
us to define the scope of the finish blatknamically Note that while the programmer may
usebeginFinishandendFinishin an arbitrary order, the runtime system checks that they ar
properly nested: anpeginFinisheventually completes with a matchimgdFinish(in the
same task), and nendFinishis issued without a correspondibgginFinishalready having
started (in the same task). As a high-level analogy, theioelship betweereginFinish/

3 As advocated in [16], we use theolatedkeyword instead otomicto make explicit the fact that the
construct supports weak isolation rather than strong aigmic
4 We refer to a sync that is executed under some condition ineitmbody as @onditional sync

6 Raghavan Raman et al.

1 beginFinish ();
1 for (int i=0; i<size; i++) { 2 for (int i=0; i<size; i++) {
2 spawn f(); 3 async f();
3 if (i ==3){ 4 if (i ==23){
4 sync; 5 endFinish ();
5 } 6 beginFinish ();
6 } /I for 7 }
7 sync; 8 } I/l for
9 endFinish ();

(@) (b)
Fig. 3 (a) a Cilk program with conditional syncs and (b) its tratislato AFIPL program.

endFinishand AFIPL’s lexical finish construct is akin to thatnitorEnter/ MonitorExit
bytecode instructions and Java’s lexisghchronizedtatement (though bytecode verifica-
tion rather than dynamic checking is used to check the propsting ofMonitorEnter/
MonitorExitinstructions).

Using beginFinishand endFinish we can represent all of the sync constructs of Cilk
(including conditional synckas follows:

1. Generate beginFinishon entry to every function.
2. Replace each occurrence of synceoyiFinish beginFinish
3. Generate aandFinishon function exit to reflect Cilk’s implicit sync on functiorxié.

Figure 3 shows an example Cilk program with conditional syacd its translation to
AFIPL program. Note the conditional sync on line 4 in the Gilogram. It is translated
into endFinish(); beginFinish()in the AFIPL program. This shows that the async-finish
constructs subsume all of spawn-sync constructs. Our raetibn algorithm works by
intercepting the start and end of finish and async constrdetsce, it can be applied directly
to spawn and sync constructs of Cilk as well.

In contrast to Cilk, with the use of nested finish operation&FIPL, it is possible for
a task to join withsomerather than all of its descendant tasks. These descenddstdee
specified at the language level with tfieish construct: upon encountering the end of a
finish block, the task waits until all of the descendant tagksited inside the finish scope
have completed.

The computation graph in Fig. 2 illustrates the differenbbesveen Cilk and AFIPL.
Each vertical sequence of circles denotes a task. Here vesfbiavsequences for four tasks.
Each circle in the graph represents a program label, andgmregresents the execution of
a statement at that label. Note that at label 22, the mainviasls only for T3 and T4 but
not for T2, which is not possible using the spawn-sync seitsint Cilk.

Another restriction in Cilk is that every task must executgyac statement upon its
return. That is, a task cannot terminate unless all of itcedants have terminated. In
contrast, in AFIPL, a task can outlive its parents: i.e.,sktean complete even while its
children are still alive. For instance, in the example of.FAgin Cilk, T3 would need to
wait until T4 has terminated. That is, the edge from node 1ZPtwould change to an edge
from 19 to 21. This need not be the case in AFIPL: task T3 canitexte before task T4 has
finished.

More generally, the class of computations generated by lhe/is-sync constructs is
said to befully-strict [6], while the computations generated by our language alledca
terminally-strict[2]. The set of terminally-strict computations subsumes bt of fully-
strict computations. All of these relaxations mean that ot possible to convert a AFIPL

Efficient Data Race Detection for Async-Finish Parallelism 7

program directly into the spawn-sync semantics of Cilk,chtin turn implies that we can-
not use its SP-bags algorithm directly and that we need tergéire that algorithm to our
setting. We show how that is accomplished in the next section

3 ESP-bags Algorithm

In this section, we first summarize the SP-bags algorithnd digespawn-sync computa-
tions. Then, we present our extension of SP-bags, calleddagPp, for detecting data races
in AFPL programs. For a given input, ESP-bags and SP-bagstdgata races in a given
program if and only if a data race exists (Theorem 5 in SectjoiThat is, if the ESP-bags
algorithm does not detect a data race for a given input, thisrguaranteed that there is no
data race in any schedule of the program for that given infpotthe other hand, if a race
is found, the algorithm stops after the first one is deteciéis means that there is some
schedule of the program, with the given input, for which thgarted race is the first one en-
countered. There may be other schedules with the given thptimay encounter a different
set of races in a different order.

The SP-bags algorithm was designed for Cilk's spawn-symapeations. As men-
tioned earlier, we can always translate spawn-sync cortipoginto async-finish compu-
tations. Therefore, we present the operations of the @ig@®-bags algorithm in terms of
async and finish, rather than spawn and sync constructs asthth extensions are easily
understood.

3.1 SP-bags

Although the program being tested for data races is a paptigram, the SP-bags algo-
rithm is a serial algorithm that performs a sequential ddpgh execution of the program on
a single processor.

We assume that each dynamic task (async) instance is giveig@eutask ID. The basic
idea behind the SP-bags algorithm is to attach two “bagshSR to each dynamic task
instance (S stands for Serial and P for Parallel). Each batatts a set of task IDs. When
a statement E that belongs to a task A is being executed, teg ®f task A will hold all
of the descendant tasks of A that always precede E in any gaaaf the program. The
S-bag of A will also include A itself since any statement G irihat executes before E in
the sequential depth-first execution will always precede &ny execution of the program.
The P-bag of A holds all descendant tasks of A that may exécydarallel with E.

At any point during the depth-first execution of the progrartask ID will always
belong to at most one bag. Therefore, all bags can be effigiegresented using a single
disjoint-set data structure.

The intuition behind the algorithm can be stated as follomfsen a program is executed
in a depth-first manner, a wrifd’; to a shared memory locatiah by a taskr; races with
an earlier read/write t@, by any taskr, that is in a P-bag wheW occurs, and it does not
race with a read/write by any task that is in an S-bag wiigroccurs. A read races with an
earlier write in the same way.

The following table shows the update rules for the SP-bagsrighm:

WN P

A WN P

8 Raghavan Raman et al.

Read location L by Task t:
If L.writer is in a P-bag then Data Race;
If L.reader is in a Sbag then L.reader = t;

Write location L by Task t:
If L.writer is in a P-bag or L.reader is in a-fbag
then Data Race;
L.writer = t;

Fig. 4 Instrumentation on shared memory access. Applies both to §Pamal ESP-bags

Async A 1Sy — {A}, Py 0
Task Areturnsto Task B : Py «— Pg US4 UP4, Sq— 0, Py — 0
EndFinishFinaTaskB :Sg « SgU PR, Pg «

When a task A is created, its S bag is initialized to contaroivn task ID because no
pair of accesses to a memory location in task A should confitee P bag of A is initialized
to an empty set because when A begins it has no descendarngs. &\thsk A returns to a
task B during the depth-first execution, the contents of taa®&P bags of A are moved to
the P bag of B. This is because the code following task A in Beoatute in parallel with
A and hence, while executing this part of the code in B, A asdlgscendants should be
in a P bag. When a join point is encountered in a task A, the Pobégis moved to its S
bag. This is because the code after the join point in A canmexexute in parallel with the
descendants of A before the join, and thus, while executilgdart of the code in A, all
descendants of A before the join should be in an S bag.

In addition to the above steps, during the depth-first execwtf a program, the SP-bags
algorithm maintains two additional fields for each memormgalion: areadertask ID and
awriter task ID, and takes an action on every read and write of a shargable. Figure 4
shows the required instrumentation fead andwrite operations. For each operation on a
shared memory locatioh, we only need to check those fieldsbthat could conflict with
the current operation.

3.2 ESP-bags

Next, we present our extensions to the SP-bags algorithralRiat the key difference

between AFPL and spawn-sync lies in the flexibility of sategtwhich of its descendant
tasks a parent task can join. The following table shows ttdategrules for the ESP-bags
algorithm. The extensions to SP-bags are highlightdzbid.

Async A-forkanewtask A Sy «— {A}, Py < 0

Task A returns tParent B : Pg «— Pg US4 UP4, 5S4 — 0, Py —0
StartFinish F i Pp— 0

EndFinish F in a Task B :Sp«— SpUPR, Ppr 0

The key extension lies in attaching a P bag not only to taskalso to identifiers of
finish blocks. At the start of a finish block F, its P bag is mliied to an empty set because
it has no descendants yet. When a finish block F ends in a tatslieBpntents of the P bag
of F are moved to the S bag of B. This is because at the end ofikk filock F, all the tasks

Efficient Data Race Detection for Async-Finish Parallelism 9

within the scope of F are guaranteed to complete. The cotiaiolg the end of F in B can
never execute in parallel with any task in F and hence, wixibe@ating this part of the code
in B, all the descendants of F must be in an S bag. Furthengltine depth-first execution,
when a task A returns to its parent B, B may be either a taisk finish block. The actual
operations on the S and P bags in that case are identical ba@R-

The need for this extension comes from the fact that at the@eadinish block, only the
tasks created inside the finish block are guaranteed to etenahd therefore will precede
the tasks that follow the finish block. Therefore, only thektacreated inside the finish block
need to be added to the S-bag of the parent task when the foispletes, and those tasks
created before the finish block began need to stay in the Rihg parent task.

This extension generalizes the SP-bags presented e@Hisnmeans that the ESP-bags
algorithm can be applied directly to spawn-sync programwelkby first translating them
to async-finish as shown earlier and then by applying therighgo. Of course, if we know
that the finish blocks have a particular structure, and wenkitnat translated spawn-sync
programs do, then we can safely optimize away the P bag fdiirtteh ID’s and directly
update the bag of the parent task (as done in the originala&gB-&lgorithm).

3.3 Space Overhead

The space overhead of this algorithm is O(1) for each menmmation, since we only store
the reader and writer task IDs for each memory location. titawh, we need space to store
all the task IDs in the form of a disjoint-set data structiMete that we need to store the
IDs of completed tasks as well, since there might be a neambtoup such a task to check
if itisin an S or a P bag as part of some memory access. Howngispace is generally
insignificant compared to the space needed for each memeagido.

3.4 Time Overhead

In this algorithm, there are up to two look-ups for every meynaccess in the program.
Also there are two union operations for each task instan¢bdrprogram and one union
operation for each finish instance. All these operatiorsk-gps and unions, happen on the
disjoint-set data structure that contains all the taskiserprogram. Tarjan showed that in the
worst case, time taken for any operation on a disjoint-setsire is bounded by the inverse
Ackermann function of the size of the data structure [24,B8hce, each of these operations
(look-up and union) will take time proportional to the ingerAckermann function of the
total number of tasks in the program. Note that the Ackernfanation grows so fast that
we can take the value of the inverse of Ackermann functioretd (the upper bound for all
practical purposes). Since the number of memory accessemal@s the number of tasks
in most programs, the total time complexity of the algorittenproportional to four times
the number of memory accesses in the program.

3.5 Discussion
In summary, the ESP-bags algorithm works by updatingrdaelerandwriter fields of a

shared memory location whenever that memory location id cgawritten by a task. On
each such read/write operation, the algorithm also chexkee if the previously recorded

10 Raghavan Raman et al.

task in these fields (if any) can conflict with the current tasding the S and the P bags of
the current task. We now show an example of how the algoritlumksvfor the AFPL code

in Fig. 2. Suppose that the main tagk, starts executing that code. We refer to the finish
in line 4 asFy and the first instance of the finish in line 15 As. Also, we refer to the
first instance of the tasks generated by the asyncs in ling6,@nd 17 ag%, T3, andTy,
respectively.

Table 1 ESP-bags Example

PC T I T, Fy Ty Ty B[0]
S P S P P S S Writer

1 {1} -

4 {1} 0 -

7 {Tv} 0 {Tz} - - - - -
8 {I} 0 {T>} - - - - T2
14 (n} (D} 0 - : .o
15 {1} {Tu} 0 0 - - T,
16 {Tv} {T»} 0 0 0 {15} - Ty
17 {T1} {T»} 0 1] 0 {T5} {14} T
*18 {11} {T»} 0 0 0 {T3} {Tu} Ty
19 {T1} {T>} 0 0 {Tx} {713} 0 Ty
21 {T\} {12} 0 {14, T3} 1] 1] 1] Ty
22 {Tl ,T4,T3} {TQ} @ @ @ @ @ Ty

Table 1 shows how the S and P bags of the tagks1{(», 75, andT,) and the P bags
of the finishes {1 and F») are modified by the algorithm as the code in Fig. 2 is executed
Each row shows the status of these S and P bags after theiexesia particular statement
in the code. The PC refers to the statement number (from Fihais executed. This table
only shows the status corresponding to the first iteratioe@for loop in line 5. The table
also tracks the contents of the writer field of the memorytioceB[0]. The P bags of the
tasksTh, T, andTy are omitted here since they remain empty through the finsttiten of
the for loop.

In the first three steps in the table, the S and P bads, p#1, andT> are initialized
appropriately. When the statement in line 8 is executedwiiiter field of B[0] is set to the
current taski». Then, on completion of% in line 14, the contents of its S and P bags are
moved to the P bag afy. When the write tdB[0] in line 18 (in TaskT}) is executed, the
algorithm finds the task in its writer field, in a P bag (the P bag df;), and is reported
as a data race. Further, wh&h completes in line 19, the contents of its S and P bags are
moved to the P bag of its pareft. Similarly, whenTs completes in line 21, the contents
of its S and P bags are moved to the P bag of its parenéVhen the finishF> completes in
line 22, the contents of its P bag are moved to the S bag of ienpa; .

4 Correctness of the ESP-bags Algorithm

In this section, we prove the correctness of the ESP-bagsitim for AFPL. Section 5
shows the extension of ESP-bags for AFIPL. First, we startidéfjning the Computation
Graph for an AFPL program. We then introduce the Dynamic RmogStructure Tree
(DPST) and how to construct the DPST for a given program wiilsti and async con-
structs. The DPST abstraction is used to establish theatoass proof and is not actually

Efficient Data Race Detection for Async-Finish Parallelism 11

constructed by our algorithm. We then discuss the invasi#trdgt hold on the DPST when
two tasks may-happen-in-parallel (Definition 3) and othisewUsing the invariants on the
DPST, we establish a relation between may-happen-inipheaid the contents of the P-
bag. Finally, we prove that the ESP-bags algorithm detedta race in a program for a
given input if and only if a data race exists; that is, the athm is precise and sound for
thegiven input

Definition 1 A Computation Graph (CG}(N, E), for a schedul@ of an AFPL program
P is a directed acyclic graph (dag) where

1. Nis the set of nodes such that each node N corresponds to a statement instahioe
v.

2. E is the set of edges that connects the statement instanchsthat each edge e
E belongs to one of the following typesontinue asyng andjoin [5,15]. There is a
continueedge from every instance of a statement in a task to the icstahits next
statement in the same task according to the program ordereTharasyncedge from
every async statement instance to the instance of the fitetnsént of the new task that
it creates. There isjain edge from the instance of the last statement of every tasieto t
statement instance that marks the end of its immediatelpsing finish.

Figure 2 shows an AFPL program with finish and async constraretl the computation
graph corresponding to its execution in which the for loofirie 5 is executed only once.

Definition 2 A continue-edge-onlpath in a computation graph is a path in which all the
edges are of typeontinue

Definition 3 Two statement instances andss in a schedul@ of a program may-happen-
in-parallel® written as MHP§;, s2) = true, if and only if there is no path from to s2 and
from s2 t0 s1 in the computation graph af.

When two statement instancesands-: in a schedul& of a programP for an inputé
may-happen-in-parallel, MHPF{, s2) = true, it means that there is a possible schedule of
with input £ in which s; andsy execute in parallel.

The Dynamic Program Structure Tree (DPST) is a runtime sgprtion of the Program
Structure Tree (PST) introduced in [3]. There are some itapordifferences between a
DPST and a PST. While the PST is a static data structure fov@gure in a program, the
DPST is a dynamic data structure that spans the entire pro@iace the DPST is a runtime
data structure, it creates one node for every statemenmtnicstcreated during the program
execution. A DPST node is one of three typisish asyn¢ andstatementThe other three
types of nodes in a PS1got, loop, andisolated are not present in a DPST. Thaot is not
presentin a DPST because the implicit finish node in the maihaod is always the root of
a DPST. Since the DPST is a runtime representation, the k@psnrolled and hence there
is no need for doop node. Because we restrict ourselves to AFPL in this seatiergo not
includeisolatednodes.

Definition 4 A Dynamic Program Structure Tree (DPST)N,E,Par,C), for a schedule
of an AFPL progran® for a given input is an ordered rooted tree where

5 We refer to an execution of a statement as either a dynamierstaténstance or a statement instance.
6 The definition of the static version of MHP can be found in [3].

12 Raghavan Raman et al.

0:finish
/\
1 2 3 4:finish
%N
5 6 7:async 15:finish 23 24
%\ /\
8 9 . 14 16:async 22
/\
17:async 20 21
/\
18 19

Fig. 5 Dynamic Program Structure Tree for the program and computgtiaph in Figure 2

1. Nis a set of nodes, one for every statement instanée Every internal node belongs
to one of the two typedijnishandasyn¢ and every leaf node is of the tygétatement
The root node is always of the tyfi@ish and it corresponds to the implicit finish sur-
rounding the body omain()in the program.

2. Par defines the parent relation between nodésas follows:

— Par@) = a, for everyfinish node« and every node: that satisfies the following
condition:« is the immediately enclosing finish af and there is @ontinue-edge-
only path from the start of thBnish« to nin the computation graph corresponding
tov.

— Par@) = 3, for everyasyncnode and every node: that satisfies the following
condition:n belongs to the task correspondingioand the immediately enclosing
finish of n is not in 3.

3. Eis asetof tree edges that are obtained as foll@ws: {(n1,n2) : Par(nz) = n1}

4. Cdefines the children relation among nodes as follows:C'(«) = {n : Par(n) = «a}
Note that the set'(«) is ordered, which reflects the order of the children for eyement
inrl.

Definition 5 The Lowest Common Ancestor of two nodasandsa, LCA(s1, s2), in a tree
I' is the nodey that is an ancestbof boths; ands, with the greatest depthin I".

Definition 6 In an ordered treé’, a nodes; is said to bdo the left ofa nodess if and only
if s; appears before;, in the inorder traversal of'. The relationto the left ofis defined on
two nodess; ands: if and only if LC'A(s1,s2) # s1 andLC A(s1, s2) # s2.

The set of edges from every internal node to its children iff&Dare arranged to reflect
the program order, i.e., if a statement instasicexecutes before a statement instance
a scheduler, the nodes; will appearto the left ofthe nodess in the DPST corresponding
tov.

7 Anode is considered both an ancestor and a descendantlbf itse
8 The depth of a node in a tree is the length of the path from tbetecthe node.

Efficient Data Race Detection for Async-Finish Parallelism 13

Figure 5 shows the DPST for the AFPL program in Figure 2. Nad the finish node 0
is the implicit finish in the body ofnain() (assuming that the code shown in Figure 2 is the
body of the main).

Theorem 1 Every data-race-free AFPL program with finish and async tmiess has a
unique DPST that corresponds to all possible executiona fgiven input.

Proof Let us consider an AFPL programwith finish and async constructs that contains no
data races. The immediately enclosing finish for every stat# in P is the same across all
possible executions @? for a given input. Also every statement iff belongs to the same
task across all possible executionsfofor input£. Hence in every DPST aP that corre-
sponds to different executions &f for an inputé, the parent-child relationship is unique
between nodes corresponding to all the instances of finsgimca and statements iA. In
other words, if nodex is the parent of nodg in a DPST ofP, thena is the parent ofs in
every DPST ofP for an input¢.

The only other source of non-determinism could be in theratledges from an internal
node to its children. By definition of the DPST, all the edgesif every internal node to its
children are arranged according to the program order. Heheee is a unique DPST for
every AFPL program with finish and async constructs for amgingut.

Theorem 2 The sequential depth-first execution of an AFPL programaeplthe DPST of
the program corresponding to this execution in depth-firdeofrom left to right.

Proof By definition of DPST, the edges from every internal nodesiftildren are ordered

according to the program order of the corresponding statessn&he sequential depth-first
execution of an AFPL program will execute the statementh@ grogram order, which

corresponds to the left to right depth-first order of the rsodets DPST.

Theorem 3 Let I" be the DPST corresponding to the sequential depth-firstuticety of
an AFPL programP with inputé. Lets; and sz be two nodes i Lets; beto the left of
sain I'. Let LCAG1, s2) = ¢, ¢ # s1, ¢ 7# s2. Let A; denote the DPST ancestorgf that
is the child ofp. The following conditions hold:

1. MHP(s1, s2) = true if and only if A is an async node.
2. MHP(s1, s2) = false if and only ifA; is a finish node.

Proof Let @ denote the computation graph corresponding to

1. if: Let A; be an async node. Lét; denote the immediately enclosing finish4f. In &,
any path starting at; (that goes out ofi1) has to go to the end of; and then directly
to the end off;. But s is outside the asynd; and inside the finist¥ . Hence there
can be no path from; to s2 in @. Sinces; is to the left ofss in I, it follows from
Theorem 2 that; executes before, in ¥. Hence there can be no path fremto s; in
I'. Thus, MHPé§1, s2) = true.
only if: Let MHP(s1, s2) = true. By definition, there can be no path fremto s and
from s to s1 in @. If Ay is a finish node, then there is a pathdirstarting ats; that
goes to the end ofl; and then toss. HenceA; can not be a finish nodel; can not be
a statement node because all statement nodes are leaf Mbdss\; is an async node.

2. if: Let A; be afinish node. There is a pathdrthat starts at;, goes to the end ofl;,
and then tos2. Hence MHP4;, s2) = false.
only if : Let MHP(s1, s2) = false. By definition, there is path from to s2 or from sq
to s1 in @. Sinces; is to the left ofsy in I, it follows from Theorem 2 tha; executes
befores, in ¥. Hence there can be no path framto s; in I". If A; is an async node,
then there can be no path fromto s2 as well. A; must be a finish node.

14 Raghavan Raman et al.

Theorem 4 Let I" be the DPST corresponding to the sequential depth-firstugixec of
an AFPL programP with an inputé. Let statement instancg be to the left of statement
instancesz in I". During the sequential depth-first executionfotvith inputé in the ESP-
bags algorithm, whens is being executed, the ID of the taskhat executes; will be in a
P-bag if and only ifs; may-happen-in-parallel with.

Proof Let I" be the DPST ofP for input&. Let LCA(s1, s2) = ¢. Consider the case when
¢ # s1 ande # so. If o = s1, thens; has to be an internal node, i.e., a finish or an async
node. This case is not necessary because we are only iettieshe MHP relation between
two statement instances. The same holds whenss.

if: Let us assume; may-happen-in-parallel with;. During the sequential depth-first
execution ofP, s will be executed before, because of the assumption thatis to the left
of s2. Let A; denote the DPST ancestorgfthat is the child ofp. We know from Theorem 3
that A; must be an async node. According to the rules of the ESP-dggsthm from
Section 3.2, when the sequential depth-first executiorrmstirom an async to its parent,
the contents of the S and P bags of the async are emptied eltag of the parent. These
contents stay in the P bag of the parent until the executiaches the end of the parent. In
our case, when the sequential depth-first execution of E&f3-teturns fromi, the ID of
the taskr that ownss; will be put in the P-bag of, which is the parent ofi; in I". The ID
of 7 will stay in the P-bag ofp until the execution completes the execution of the subtree
undery. By definition of o and A; we know thatss is in a subtree whose root is a peer of
A; and is to the right ofd;. Hence wher is executed, the ID of will be in a P-bag.

only if: Let us assume that the ID of the taskhat ownss; is in a P-bag whem:
is executed under the sequential depth-first executioneoEtBP-bags algorithm. Let;
denote the DPST ancestorgfthat is the child ofp.

Case 1:4; is afinish node. In this casewill be in a S bag when; is executed, according
to the rules from Section 3.2.

Case 2:A; is the node corresponding t@. Again in this case will be in a S bag when
s9 is executed, according to the rules from Section 3.2.

HenceA; can neither be a finish node nor the node corresponding.tel; must be an
async node. Following from Theorem 3, may-happen-in-parallel witk,.

Theorem 5 (Precision and Soundnesdjhe ESP-bags algorithm detects a data race in an
AFPL program for a given input if and only if a data race exists

Proof Let us consider an AFPL program that is executed with an inpgt Let I" denote
the DPST corresponding to the sequential depth-first ei@tof P with inputé.

if: Let us assume that there is a data race in some schedilevith input£. There are
two statementss; and sz, that may-happen-in-parallel, both accessing the sameamyem
location L, and one of those is a write. Without loss of generality, ketagsume that;
executes before, during the ESP-bags’s sequential depth-first executidn. dhuss; will
be to the left ofsy in I". From Theorem 4 it follows that whes is executed, the taskthat
ownss; will be in a P-bag.

Case lis; contains a read of. In this cases; will contain a write toL. When s, is
executed during the sequential depth-first execution, ®le-Eags algorithm checks if
the previous writer of. is in a P-bag (according to the rules in Figure 4). In this case
sincer is in a P-bag, the algorithm signals a data race.

B WNE A WN P WN

GO WN P

Efficient Data Race Detection for Async-Finish Parallelism 15

Isolated Read of location L by Task t:
If L.writer is in a P-bag then Data Race;
If L.isolatedReader is in a-$%ag then L.isolatedReader = t;

Isolated Write of location L by Task t:
If L.writer is in a P-bag or L.reader is in a -bag
then Data Race;
If L.isolatedWriter is in a Sbag then L.isolatedWriter = t;

Read location L by Task t:
If L.writer is in a P-bag or L.isolatedWriter is in a -Phag
then Data Race;
If L.reader is in a Shag then L.reader = t;

Write location L by Task t:
If L.writer is in a P-bag or L.reader is in a-fbag
or L.isolatedWriter is in a Pbag or L.isolatedReader is in a—Bag
then Data Race;
L.writer = t;

Fig. 6 ESP-bags algorithm for AFIPL

Case 235 contains a write of.. Now s; may contain either a read or a writetoWhenss
is executed during the sequential depth-first executianEBP-bags algorithm checks
if the previous reader or writer df is in a P-bag (according to the rules in Figure 4). In
this case, since is in a P-bag, the algorithm signals a data race.

only if: Let us assume that the ESP-bags algorithm detects a data rAagith input&.
According to the rules of the algorithm in Figure 4, a dataeradl be signaled only in two
cases:

Case 1: On the read of a memory locatibnin a statemens., the previous writer of
L (corresponding to a write in a statemen), sayr, is in a P-bag. It follows from
Theorem 4 that; may-happen-in-parallel with,. Hence, there is a data race in some
execution ofP with input&.

Case 2: On the write of a memory locatidn the previous reader or writer df (corre-
sponding to a read or a write in a statemenk, sayr, is in a P-bag. It follows from
Theorem 4 that; may-happen-in-parallel witk,. Hence, there is a data race in some
execution ofP with input&.

In summary, if there are races in the program for the giventingSP-bags will find
them and will never report races that do not exist.

5 Handling Isolated Blocks

In this section, we describe an extension to the ESP-bagsithlgy for handling isolated
sections. Isolated sections are useful since they allowptbgrammer to write data-race-
free parallel programs in which multiple tasks interact apdate shared memory locations.

When an AFIPL program contains isolated sections, the @t detector must check
for conflicts between isolated and non-isolated accesstteame memory location that
may execute in parallel. If an accessto a memory locatiorL in an isolated section con-
flicts with another access to L in a non-isolated section, then it is a data race.

16 Raghavan Raman et al.

finish {
async {
isolated { t = 0; }
} /1 async
isolated { t = 1; }
} /1 finish
if (t ==20){
async { x = 20; }
x = 10; // a data race
Yoot

OQWOWONOUTAWNE

=

Fig. 7 An example AFIPL program that depicts a scenario in which t8B4bags algorithm is not sound.

Note that, accesses within isolated sections do not conflitt other accesses within
isolated sections because of the mutual exclusion sersagtiaranteed by isolated con-
structs. Hence, these isolated accesses themselves cansetdata races.

The extension for handling isolated sections includes kihgcthat isolated and non-
isolated accesses that may execute in parallel do notémgerfor this, we extend ESP-bags
as follows: two additional fields are added to every memocgtion,isolatedReaderand
isolatedWriter These fields are used to record the task that performscdatedread or
write on the location. The additional fields need only be @ddememory locations that are
accessed within isolated sections.

We need to handle reads and writessiolatedblocks differently thamon-isolatedop-
erations. Fig. 6 shows the required steps during each ofgetonsread, write, isolated-
read andisolated-write

CorrectnessWith the extension to support isolated sections, the ESQj2-bigorithm loses
soundness (i.e., there may be false negatives): there ampdx programs with isolated
constructs that contain races for a given input for which{Ffails to find the race. Note
that the ESP-bags algorithm is precise (i.e., there arelse fesitives) even in the presence
of isolated sections.

The problem is that with isolated sections, there may besoaken the sequential depth-
first execution does not execute certain paths of the coderténabe executed in some par-
allel schedule for the same input. This happens when thatesbsections in the program do
not commute. In this case, for the same input, the isolatetioss may produce a different
result in some parallel schedule compared to the resultysextiin a depth-first execution,
and there may be some code conditioned on this result that Hata race. The ESP-bags
algorithm does not report this data race because the coti¢heidata race is never executed
during the sequential depth-first execution of the algarith

Figure 7 shows an example AFIPL program that depicts a siceimwhich the ESP-
bags algorithm is not sound in the presence of isolatedsectin this example, during
the depth-first execution of our algorithm, the isolateccklo line 3 executes before the
isolated block in line5. Hence, in such an execution, tliestatement in ling evaluates to
false due to which the code in lingsand9 does not execute, and our algorithm reports no
data races. However, there is a parallel schedule of thgrano for the same input in which
the execution happens such that the isolated block infliarecutes first, followed by the
isolated block in line3. In this schedule, thé in line 7 will evaluate totrue, the code in
lines8 and9 will execute, and there will be a data race. This happensusectoe isolated
blocks in lines3 and5 do not commute, and hence they produce different resuledbas
the order in which they are executed.

Efficient Data Race Detection for Async-Finish Parallelism 17

However, if the isolated sections in the input program cortemthe sequential depth-
first execution is sufficient. In such cases, the ESP-bagsitigh does not miss data races
for the given input. In practice, isolated sections are wseg with very small scopes, and it
is easy to show that they commute (for instance, they useammhmutative operations such
as addition, to increment a counter).

In summary, when the isolated sections commute, the ESBdbggrithm is precise and
sound for the given input. When the isolated sections do owtraute, it is precise but not
sound.

6 Optimizations

The ESP-bags algorithm is implemented aawalibrary. Recall that the ESP-bags algo-
rithm requires that action is taken on every read and writ@ sbared memory location. It
is during these actions that the algorithm checks if theenirtask can race with the task
recorded in the reader or writer fields of the memory locatidow, to test a given program
for determinism using the ESP-bags algorithm, we need a tentansformation pass that
instruments read and write operations on a heap locatiom @rray in the program with
appropriate calls to the library. It would be naive to ingtent every access to every shared
memory location because some of these instrumentationdmesdundant; i.e., removing
them will not affect the process of checking for data racethéprogram. Because some
read and write operations are guaranteed to never causedditipaal data races in the
program, such operations need not be instrumented.

As mentioned earlier, because the ESP-bags algorithm akspsktrack of thdinish,
asyng andisolatedblocks in the program, it requires instrumentations fordtat and end
of every such block in the program. These instrumentatiomsthnecessary to maintain the
structure of parallelism at runtime in the ESP-bags algorit

In this section, we describe the static analyses that carseeé to reduce the instru-
mentation and hence improve the runtime performance ofrtbelimented program. We
also include an example that depicts how each of these ataigses are used to eliminate
instrumentation points. Figure 8 shows a program in AFPIhalt its read and write oper-
ations instrumentedJCReadandDJCWriterefers to the call to the library). Suppose that
the main task is always guaranteed to start executing thitsopaf the program. This will
be used as the baseline to depict these optimizations. Natéte instrumentations that are
needed for théinishandasyncblocks are not shown in this example.

6.1 Main Task Check Elimination in Sequential Code Regions

The first static optimization aims to eliminate redundargtrimmentation points that are
added in the sequential code regions. A parallel prograrhalilays start and end with
sequential code regions and will contain alternating pelrahd sequential code regions in
the middle. It is trivial to show that no read or write opeoatin the sequential code regions
of the program can result in a data race. Hence, there is ribtnéestrument the read and
write operations in such sequential code regions of therarogin an AFPL program, the
sequential code regions are the regions of the program thatuaside the outermoghish

18 Raghavan Raman et al.

blocks’ and are executed by timeain task Thus, in an AFPL program, there is no need to
instrument the read and write operations in such sequeifd regions of the main task.

Figure 9 shows the result of eliminating the instrumentag@ints in the sequential
code regions of the program in Figure 8. The program in Fi§uwentains a write to a heap
locationp.xin line 4 that is part of the sequential code region executethb main task.
Hence the corresponding call to the library in line 3 can lmaiehted.

6.2 Read-only Check Elimination in Parallel Code Regions

The input program may have shared memory locations that ateemvby the sequential
regions of the program and only read within parallel regiohshe program. Such read
operations need not be instrumented because parallelrestig from the same memory
location will never lead to a conflict. In order to performghaptimization, the compiler
implements an inter-procedural side-effect analysis teatepotential write operations to
shared memory locations within the parallel regions of tiverg program. If there is no
possible write to a shared memory locatibhin the parallel regions of the program, that
clearly shows that all accessesitbin the parallel regions must be read-only, and hence the
instrumentation points corresponding to these reads catirbeated. The checks for the
writes in the sequential regions, if any, will be eliminat®dthe rule in Section 6.1.

The result for applying this optimization on the program igufe 9 is shown in Fig-
ure 10. There is no write to arraywithin the parallel regions of the program in Figure 9,
so the instrumentation in line 8 corresponding to the reaMiafline 11 can be removed.

6.3 Escape Analysis

The input program may include many parallel tasks. A deteacy race occurs in the pro-
gram only when two or more tasks access a shared memorydocatd at least one of them
is a write. Suppose an object is created inside a task, ardérescapes that task; because
no other task can access this object, it cannot lead to andigi@ey race. In order to ensure
the task-local attribute, the compiler performs an interepdural analysis that determines
if an object is shared among tasks. This also requires asatialysis to ensure that no alias
of the object escapes the task. Thus, if an objecs proven to not escape a task, then the
instrumentation points corresponding to all accesséstan be eliminated.

The objecty in the program in Figure 10 is created in line 11 within a tas# & never
escapes this task. No accessgtoan lead to a determinacy race, so the instrumentation
points in lines 14 and 16 corresponding to accegsa eliminated. The resulting program
is shown in Figure 11.

6.4 Loop Invariant Check Motion
Recall that the instrumentation corresponding to a memocgss toM will first check

if the task that previously accessed conflicts with the current task and also update the
information that the current task now acces3€d If there are multiple accesses of the

9 This is assuming there are msyne outside aninishin the program. If there are any suabynes, then
the only sequential code regions in the program are the megatside the outermoghish and before the
first suchasync

Efficient Data Race Detection for Async-Finish Parallelism 19

same type (read or write) tof by a task, then it is sufficient to instrument one such access
because other instrumentations will only add to the ovethéth redundant steps. Suppose
the input program accesses a shared memory locatiamconditionally inside a loop; the
instrumentation corresponding to this accesaft@an be moved outside the loop in order
to prevent multiple calls to the instrumented function fér

In summary, given a memory acceksthat is performed unconditionally on every iter-
ation of a sequential loop, the instrumentationAércan be hoisted out of the loop by using
classical loop-invariant code motion. This transform@tiocludes the insertion of a zero-
trip test to ensure that the loop-invariant check is perfrmnly when the loop executes for
one or more iterations.

In Figure 11, the program contains a readpofin line 13 that is inside a sequential
loop. Since the same memory location is accessed in eveajide of the loop, the instru-
mentation for this access is moved out of the loop as showgiar& 12. Note the test for
the non-zero trip count in line 12 guards this instrumeantatutside the loop.

6.5 Read/Write Check Elimination

In the previous optimization we showed that it is sufficiemiristrument one access to a
memory locationM if there are multiple accesses of the same typéftdy a task. In
this optimization, we claim that if there are two accessgsand M, to the same memory
location in a task, then we can use the following rules to iglate one of them. It works on
the basic idea that the instrumentation for a write subsuhwssfor a read in the algorithm
presented in this paper. Intuitively, if a read to a memoat®mn M in a taskr causes a
determinacy race, then a write 4@ in ~ will definitely cause a determinacy race.

1. If M; dominatesMs and My is a read operation, then the instrumentationy can
be eliminated (sinc@/; is either a read or write operation).

2. If My postdominates\/; and M is a read operation, then the check fak can be
eliminated (sinceVls is either a read or write operation). In practice, this releds to
apply to fewer situations than the previous rule, becausgatation of postdominance
includes the possibility of exceptional control flow.

Consider the program in Figure 12 that contains an instraatien for the write tgp.x
in line 9 and an instrumentation corresponding to the reatiesame memory location in
line 13. Since the instrumentation in line 9 dominates theiarine 13 and the latter is not
a write, line 13’s instrumentation can be eliminated.

7 Evaluation

We now present the experimental results of our race deteatgorithm. We evaluated the
ESP-bags algorithm on eight Java Grande Forum (JGF) bemkbntlaree Shootout bench-
marks, and one EC2 challenge benchmark, listed in Table @udth we performed our
experiments on different sizes of the JGF benchmarks, we mplort the results of the
maximum size in each case. We were unable to obtain the sesiuttize B for MolDyn
since both versions (original and instrumented) ran out efrory. All the benchmarks
were written in HJ using only the AFIPL constructs and arelalste from [1].

The ESP-bags algorithm was implemented as a Java librageftecting data races in
HJ programs containing async, finish, and isolated cortstritie benchmarks written in

©OO~NOU A WNRE

©oO~NOOUTAWNPRE

©CO~NOORWNERE

20

Raghavan Raman et al.

int[] A, B; Foo p;

1

DJCWrite (p, X); g
p.x = 0; 4
finish { 5
for (int i=0; i<size; i++) { 6
final int ind = i; 7
async { 8
DJCRead (A, ind); 9
DJCRead(B, ind); 10
DJCWrite (p, Xx); 11
p.x = Alind] + B[ind]; 12

Foo g =new Foo(); 13

for (int j=0; j<ind; j++) { 14
DJCRead(p, X); 15
DJCWrite(q, X); 16

q.x = p.x + 1; 17
DJCRead(q, y); 18
DJCWrite (B, j); 19

B[i] = g.y + ind; 20

} 21

} 4 22
23

Fig. 8 An example AFPL program with all read
and write operations instrumented

int[] A, B; Foo p;

1
p.x = 0; 2
finish { 3
for (int i=0; i<size; i++) { 4
final int ind = i; 5
async { 6
DJCRead (B, ind); 7
DJCWrite (p, Xx); 8
p.x = Alind] + B[ind]; 9
Foo g =new Foo(); 10
for (int j=0; j<ind; j++) { 11
DJCRead(p, X); 12
DJCWrite(q, X); 13
q.Xx = p.x + 1; 14
DJCRead(q, Y); 15
DJCWrite (B, j); 16
B[j] = g.y + ind; 17
1 18
} 19
} 20
}
Fig. 10 After applying the read-only check opti-
mization on the program in Figure 9
int[] A, B; Foo p;
p.x = 0; ;
finish { 3
for (int i=0; i<size; i++) { 2
final int ind = i; 5
async { 6
DJCRead (B, ind); 7
DJCWrite (p, x); 8
p.x = Alind] + B[ind]; 9
Foo g =new Foo (); 10
if (ind > 0) 1
DJCRead(p, Xx); 12
for (int j=0; j<ind; j++) { 13
q.X = p.x + 1; 14
DJCWrite (B, j); 15
B[j] = q.y + ind; 16
17
} 18
4 19

Fig. 12 After applying the loop invariant check
elimination optimization on the program in Fig-
ure 11

int[] A, B; Foo p:

p.x = 0;
finish {
for (int i=0; i<size; i++) {
final int ind = i;
async {
DJCRead (A, ind);
DJCRead (B, ind);
DJCWrite (p, X);
p.x = Alind] + B[ind];
Foo g =new Foo ();
for (int j=0; j<ind; j++) {
DJCRead(p, Xx);
DJCWrite(q, x);
qg.Xx = p.x + 1;
DJCRead(q, Y);
DJCWrite (B, j);
B[i] = q.y + ind;

Fig. 9 After applying the main task check elimination
optimization on the program in Figure 8

int[] A, B; Foo p;

p.x = 0;
finish {
for (int i=0; i<size; i++) {
final int ind = i;
async {
DJCRead (B, ind);
DJCWrite (p, Xx);
p.x = Alind] + B[ind];
Foo g =new Foo ();
for (int j=0; j<ind; j++) {
DJCRead(p, Xx);
qg.Xx = p.x + 1;
DJCWrite (B, j);
B[j] = g.y + ind;

Fig. 11 After applying the escape analysis and check
elimination optimization on the program in Figure 10

int[] A, B; Foo p;

p.x = 0;
finish {
for (int i=0; i<size; i++) {
final int ind = i;
async {
DJCRead (B, ind);
DJCWrite (p, Xx);
p.x = Alind] + B[ind];
Foo g =new Foo ();
for (int j=0; j<ind; j++) {
q.x = p.x + 1;
DJCWrite (B, j);
B[j] = q.y + ind;

Fig. 13 After applying the read/write check elimina-
tion optimization on the program in Figure 12

Efficient Data Race Detection for Async-Finish Parallelism 21

Table 2 List of Benchmarks Evaluated

[Source | Benchmark [Description
Series Fourier coefficient analysis
LUFact LU Factorization
JGF (Section 2)| SOR Successive over-relaxation
Crypt IDEA encryption
Sparse Sparse Matrix multiplication
MolDyn Molecular Dynamics simulation

JGF (Section 3)| MonteCarlo | Monte Carlo simulation
RayTracer 3D Ray Tracer

Fannkuch Indexed-access to tiny integer-sequence

Shootout Fasta Generate and write random DNA sequences
Mandelbrot | Generate Mandelbrot set portable bitmap file

EC2 Matmul Matrix Multiplication (two 1000*1000 double matrix

HJ were instrumented for race detection during a bytecede-transformation pass im-
plemented on HJ's Parallel Intermediate Representatiti®) (R7]. The PIR extends Soot’s
Jimple IR [26] with parallel constructs such as async, finistd isolated. The instrumenta-
tion pass adds the necessary calls to our race detectianfiar async and finish boundaries
and also on reads and writes to shared memory locations.

We report the performance results of our experiments onwady6tquad-socket, quad-
core per socket) Intel Xeon 2.4GHz system with 30GB memamning Red Hat Linux
(RHEL 5). The JVM used is the Sun Hotspot JDK with a maximum heap size of 3GB.

Results of ESP-bags algorithifable 3 shows the results of applying the ESP-bags algo-
rithm to our benchmarks. The table gives the original exeauime for each benchmark
without any instrumentation. It also shows the slowdownhaf benchmark when instru-
mented for the ESP-bags algorithm, with and without thenoigtitions described in Sec-
tion 6. The outcome of the ESP-bags algorithm is also indudéhe table and shows there
are no data races in any of the benchmarks. The same was ethdervall input sizes.
Hence all the benchmarks are free of data races for the igpuatsidered. Note that though
RayTracer has sonisolatedconflicts, it is free of data races since there were no cosflict
between isolated and non-isolated accesses.

ESP-bags slowdowi®n average, the slowdown of the benchmarks with the ESP-dlags
gorithm is4.86x without optimization. When all the static optimization® applied, the
average slowdown drops 805 x. The slowdown of all benchmarks except LUFact is less
than10x. The slowdown for benchmarks like MolDyn, MonteCarlo, apd&e is less than
5x. There is no slowdown in the case of Series because most abthe uses stack vari-
ables. InHJ none of the stack variables can be shared across tasks, sowes ithstrument
any access to these variables. On the other hand, the slowfisw6OR and RayTracer
benchmarks is arourfaix.

Performance of OptimizationsVe now discuss the effects of the compiler optimizations
on the benchmarks. The static optimizations that were paed include check elimination
in sequential code regions in the main task, read-only cledichkination in parallel code
regions, escape analysis, loop invariant check motionreadfwrite check elimination. The
compile time overhead of instrumenting the input progranmrdge detection with ESP-bags
is 2% on an average. On the other hand, the compile time overhehd sfatic optimizations

22

Raghavan Raman et al.

Table 3 Slowdown of ESP-bags Algorithm

Benchmark Number Time ESP-bags Result
of (s) Slowdown Factor
asyncs w/o opts w/ opts
Crypt-C 13000000 15.24 7.63 7.29 No Data Races
LUFact-C 1600000 15.19 12.45 10.08 No Data Races
MolDyn - A 510000 45.88 10.57 3.93 No Data Races
MonteCarlo - B 300000 19.55 1.99 1.57 No Data Races
RayTracer - B 500 38.85 11.89 9.48 No Data Races
(Isolated conflict)
Series-C 1000000 1395.81 1.01 1.00 No Data Races
SOR-C 200000 3.03 14.99 9.05 No Data Races
Sparse - C 64 13.59 12.79 2.73 No Data Races
Fannkuch 1000000 7.71 1.49 1.38 No Data Races
Fasta 4 1.39 3.88 3.73 No Data Races
Mandelbrot 16 11.89 1.02 1.02 No Data Races
Matmul 1000 19.59 6.43 1.16 No Data Races
Geo Mean 4.86 3.05

B NoOpt M Read-only Opt M Escape Opt MLICM Opt MRW Opt Full Opt

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

Slowdown relative to 1-thread uninstrumented

2.00

0.00

e
&

& <
& & <§ 2

% & o o
& @ o A

< N S @(’ K\ K 2

@oo & W

Fig. 14 Breakdown of static optimizations

is 25% on an average across the benchmarks considered. This issieeshthe extra time
required to perform the static analyses needed to elimnealiendant instrumentations.

As evident from the table, some of the benchmarks, such as SP&Rse, MolDyn, and
Matmul, greatly benefit from the optimizations, with a mawimreduction in slowdown of
about 78% for Sparse. On the other hand, for other benchntfaeksduction is relatively
small. The optimizations do not reduce the slowdown muclCiypt and LUFact because
very few instrumentation points are eliminated. In the safféeMonteCarlo and RayTracer,
though a good number of instrumentation points are elirethaa significant fraction of
them still remain, so there is not much performance impra@mrn these benchmarks due
to optimizations. On average, there is a 37% reduction irskbdown of the benchmarks
due to these optimizations.

Efficient Data Race Detection for Async-Finish Parallelism 23

Breakdown of the Optimizationg/e now describe the effects of each of the static optimiza-
tions separately on the performance of the benchmarksrd-ijtishows the breakdown of
the effects of each of the static optimizations. The graph ahows the slowdown without
any optimization and with the whole set of optimizationstdad. The Main Task Check
Elimination optimization described in Section 6 is applieall the versions discussed here,
including the unoptimized version, because it is a basigropation that avoids excessive
instrumentations.

The read-only check elimination performs much better thenather optimizations for
most of the benchmarks, such as MolDyn, SOR, and SparseMatfhis is because in
these benchmarks the parallel regions include reads to axaays that are written only in
the sequential regions of the code. Hence, this optimizatloninates the instrumentation
for all these reads. It contributes the most to the overaflopmance improvement in the
fully optimized version. The read-write optimization werkvell in the case of SOR but
does not have much effect on other benchmarks. The loopiamtacheck motion helps
improve the performance of MonteCarlo the most, and thepesanalysis does not seem to
help any of these benchmarks significantly.

Note that the performance of these four static optimizatida not directly add up to
the performance of the fully optimized code. Because sonteeaxfe optimizations create
more chances for other optimizations, their combined effemuch more than their sum.
For example, the loop invariant check motion creates moama@és for the read-only and
read-write optimization. So, when these two optimizatiaresperformed after loop invariant
check motion, their effect would be more than that is showe Heinally, we only evaluated
the performance of these optimizations on the set of bendtessiown here. For a different
set of benchmarks, their effects may vary. However, we beltbat these static optimiza-
tions, when combined, can generally improve the perforrmafienost of the benchmarks.

8 Related Work

The Cilk paper [12] introduces SP-bags for spawn-sync caatioms. \We generalize that
algorithm so that it also applies to async-finish computetihile still being able to check
spawn-sync programs. An extension to SP-bags was propg<eldmg et al. [10] to handle
locks in Cilk programs. Their approach includes a data ratedtion algorithm for pro-
grams that satisfy a particular locking discipline. Howetlee slowdown factors reported in
[10] were in the 3% - 78x range for programs that follow their locking discipline damp
to 3700x for programs that don't. In this work, we detect data racesagrams with async,
finish, and isolated constructs.We outline and implemeinge of static optimizations to
reduce the slowdown factor to 3.0%n average.

A recent result on detecting data races by Flanagan et §l(fF&3tTrack) reduces the
overhead of using vector clocks during data race detecfibair technique focuses on the
more general setting of fork-join programs. The major peablvith using vector clocks for
race detection is that the space required for vector clackeear in the number of threads
in the program, and hence any vector clock operation alssttike linear in the number of
threads. In a program containing millions of tasks that camim parallel, it is not feasible to
use vector clocks to detect data races (if we directly extemdor clocks to tasks). Though
FastTrack reduces this space (and thus the time for anyn@otk operation) to a constant
by using epochs instead of vector clocks, it needs vectakslevhenever a memory location
has shared read accesses. Even a few such instances wowdt imé&kasible for programs
with millions of parallel tasks. On the other hand, our aggio requires only a constant

24 Raghavan Raman et al.

space overhead for every shared memory location and a tier@ad proportional to the
inverse Ackermann function for every shared memory access.

The other approach to use FastTrack for task-parallel lagesiis to fix the threads the
program runs on to a small number (say eight) and use vedoksbf this fixed size. With
this change, FastTrack would just check for data races imtecpkar schedule of a program.
Our approach can guarantee the non-existence of data i@cei fossible schedules of a
given input. However, the price we have to pay for this gusaiis that we have to execute
the given program sequentially. Given that this needs tmbe dnly during the development
stage, we feel our approach is of value.

Sadowski et al. [23] propose a technique for checking detésm by using interfer-
ence checks based on happens-before relations. This @svdetecting conflicting races
in threads that can run in parallel. Though they can guaeatfite non-existence of races
in all possible schedules of a given input, the fact that thssy vector clocks makes these
infeasible in a program with millions of tasks that can ruparallel.

The static optimizations that we use to eliminate the redahihstrumentations and thus
reduce the overhead is similar to the compile-time analysgsosed by Mellor-Crummey [21].
His work uses a dependence graph that contains edges fatalldpendences to eliminate
instrumentations for variable references that are not giathese data dependences. His
technique is applicable for loop carried data dependenessparallel loops and also for
data dependences across parallel blocks of code. In ouoagprwe concentrate on the
instrumentations within a particular task and try to elist@redundant instrumentations for
memory locations that are guaranteed to have already bsgnonmented in that task.

The Clara framework [8] also performs static analyses tacedhe overhead of runtime
verification tools. It is a general framework for staticadlyalyzing runtime monitors, which
uses a finite-state-machine model of the property and gersatantime monitors in the form
of AspectJ aspects. This framework has been used to elienatlethe runtime monitors for
68% of the cases considered, thereby completely obviating &eel fior runtime monitor-
ing. In other cases, it reduces the overhead of the runtimeitors, similar to our static
optimizations. To use this framework for our static optiatians, we need to specify data
race detection as a finite-state-machine model. It woulcthterasting to see if Clara can
eliminate all the runtime monitors for race detection. Weulddike to explore this in future
models of our race detector.

Our static optimization that moves loop invariant checkisodthe loop (outlined in Sec-
tion 6.4) is similar in effect to the stutter-equivalent fowansformation described in [22].
They present a general framework for optimizing the momitpof loops relative to a prop-
erty. Their framework allows monitors inside a loop to beqassed in a constant time rather
than time that is proportional to the number of iterationthefloop. This is achieved by cal-
culating the loop iteration after which the remaining itevas are said to be stutter relative
to the property under consideration and transforming tlog laccordingly to reduce the
overhead of runtime monitoring. Again, this requires theg property to be monitored is
specified as a finite-state-machine. In future, we plan ttuat@ this approach to see if it
reduces the overhead of our race detector even further.

9 Conclusion

In this paper we proposed a precise, sound, and efficientnoigndata-race detection al-
gorithm called ESP-bags (i.e., there are neither any falséipes nor any false negatives).

Efficient Data Race Detection for Async-Finish Parallelism 25

ESP-bags supports both the async-finish parallel programmmbdel as well as the spawn-
sync model used in Cilk.

We implemented ESP-bags in a tool caliedkCHecker and augmented it with a set of
compiler optimizations that reduce the incurred averagetmad by37% with respect to the
unoptimized version. Evaluation Bhsk CHEckerON a suite of 12 benchmarks shows that the
dynamic analysis introduces an average slowdown&ifx without compiler optimizations,
and3.05x with compiler optimizations, making the tool suitable foaptical use.

In future, we plan to investigate the applicability of ES&gb to the fork-join concur-
rency model. Also, we plan to explore data race detectiorxbgwing the input program in
parallel, which is not possible with ESP-bags algorithm.

10 Acknowledgments

We would like to thank Jacob Burnim and Koushik Sen from UCkBy, Jaeheon Yi and
Cormac Flanagan from UC Santa Cruz, and John Mellor-CrunfroayRice University for
their feedback on an earlier version of this paper. We tham&rlés Leiserson for pointing
out the conditional sync example. We are grateful to Jilldigle for her assistance with
copy-editing the final version of this paper.

References

1. Habanero Java. http://habanero.rice.edu/hj.

2. AGARWAL, S., BARIK, R., BONACHEA, D., SARKAR, V., SHYAMASUNDAR, R. K., AND YELICK,
K. Deadlock-free scheduling of X10 computations with bouhdesources. I5PAA '07: Proceedings
of the 19th symposium on Parallel algorithms and architeeg(2007), ACM, pp. 229-240.

3. AGARWAL, S., BaRIK, R., SARKAR, V., AND SHYAMASUNDAR, R. K. May-happen-in-parallel anal-
ysis of x10 programs. |®PoPP '07: Proceedings of the 12th symposium on Principtesractice of
parallel programming2007), ACM, pp. 183-193.

4. BARIK, R., BuDIMLIC, Z., CAVE, V., CHATTERJEE, S., QJUO, Y., PEIXOTTO, D., RAMAN, R., $HI-
RAKO, J., TASIRLAR, S., YAN, Y., ZHAO, Y., AND SARKAR, V. The habanero multicore software
research project. IOOPSLA '09: Proceeding of the 24th ACM SIGPLAN confereneepamion on
Object oriented programming systems languages and apjgits{New York, NY, USA, 2009), ACM,
pp. 735-736.

5. BLUMOFE, R. D., DERG, C. F., KuszmauL, B. C., LEISERSON C. E., RANDALL, K. H., AND
ZHou, Y. Cilk: an efficient multithreaded runtime system. Rroceedings of the Fifth ACM SIGPLAN
Symposium on Principles and P ractice of Parallel ProgramgniPPoPP(Oct. 1995), pp. 207-216.

6. BLUMOFE, R. D.,AND LEISERSON C. E. Scheduling multithreaded computations by work stgalin
J. ACM 46 5 (1999), 720-748.

7. BOCCHINO, R., ADVE, V., ADVE, S.,AND SNIR, M. Parallel programming must be deterministic by
default. InFirst USENIX Workship on Hot Topics in Parallelism (HOTPABOQ) (2009).

8. BODDEN, E., LAM, P., AND HENDREN, L. Clara: a framework for statically evaluating finite-stat
runtime monitors. IriLst International Conference on Runtime Verification (R\Wv. 2010), vol. 6418
of LNCS Springer, pp. 74-88.

9. CHARLES, P., GROTHOFF, C., SARASWAT, V. A., DONAWA, C., KIELSTRA, A., EBCIOGLU, K., VON
PRAUN, C.,AND SARKAR, V. X10: an object-oriented approach to non-uniform clustmputing. In
Proceedings of the Twentieth Annual ACM SIGPLAN Conferemc®Dbject-Oriented Programming,
Systems, Languages, and Applications, OOP>. 2005), pp. 519-538.

10. CHENG, G.-I., FENG, M., LEISERSON C. E., RANDALL, K. H., AND STARK, A. F. Detecting data
races in cilk programs that use locks. Rroceedings of the Tenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA '9@)uerto Vallarta, Mexico, June 28-July 2 1998), pp. 298-309

11. DIIKSTRA, E. W. Cooperating sequential processes. 65-138.

12. FENG, M., AND LEISERSON C. E. Efficient detection of determinacy races in cilk progsa INSPAA
'97: Proceedings of the ninth annual ACM symposium on Patallgorithms and architecturg4997),
ACM, pp. 1-11.

26

Raghavan Raman et al.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

FLANAGAN, C., AND FREUND, S. N. Fasttrack: efficient and precise dynamic race detectim
PLDI '09: Proceedings of the 2009 ACM SIGPLAN conference mgRmming language design and
implementatior{2009), ACM, pp. 121-133.

FRIGO, M., LEISERSON C. E.,AND RANDALL , K. H. The implementation of the cilk-5 multithreaded
language. IPLDI'98 (NY, USA, 1998), ACM, pp. 212-223.

Guo, Y., BARIK, R., RAMAN, R., AND SARKAR, V. Work-first and help-first scheduling policies
for async-finish task parallelism. IRDPS '09: Proceedings of the International Symposium oralPa
lel&Distributed Processing2009), IEEE Computer Society, pp. 1-12.

LARUS, J. R.,AND RAJWAR, R. Transactional MemoryMorgan and Claypool, 2006.

LEA, D. A java fork/join framework. InJAVA '00: Proceedings of the ACM 2000 conference on Java
Grande(2000), ACM, pp. 36-43.

LEE, E. A. The problem with thread€Computer 395 (2006), 33—42.

LEE, J. K., AND PALSBERG, J. Featherweight x10: a core calculus for async-finishligdiem. In
PPoPP '10: Proceedings of the 15th ACM SIGPLAN symposiumrirtiBles and practice of parallel
computing(2010), ACM, pp. 25-36.

LEIJEN, D., SCHULTE, W., AND BURCKHARDT, S. The design of a task parallel library. @OP-
SLA '09: Proceeding of the 24th ACM SIGPLAN conference ore@lgriented programming systems
languages and applicatior(2009), ACM, pp. 227-242.

MELLOR-CRUMMEY, J. Compile-time support for efficient data race detectiorharsd-memory par-
allel programs. IFPADD '93: Proceedings of the 1993 ACM/ONR workshop on Patalhd distributed
debuggingNew York, NY, USA, 1993), ACM, pp. 129-139.

PURANDARE, R., DWYER, M. B., AND ELBAUM, S. Monitor optimization via stutter-equivalent loop
transformation. IProceedings of the ACM international conference on Objeieinbed programming
systems languages and applicatighew York, NY, USA, 2010), OOPSLA '10, ACM, pp. 270-285.
Sapowskl, C., FREUND, S. N.,AND FLANAGAN, C. SingleTrack: A dynamic determinism checker
for multithreaded programs. Programming Languages and Syste2309), vol. 5502 of ecture Notes
in Computer Scien¢é&pringer Berlin / Heidelberg, pp. 394-409.

TARJAN, R. E. Efficiency of a good but not linear set union algoritlmACM 22(April 1975), 215-225.
TARJAN, R. E. Data structures and network algorithmSociety for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA, 1983.

VALL EE-RAI, R.,ET AL. Soot - a Java Optimization Framework. Pnoceedings of CASCON 1999
(1999), pp. 125-135.

ZHAO, J., AND SARKAR, V. Intermediate language extensions for parallelism.VMIL'11 (2011),
pp. 333-334.

