
Fine-grained parallelism in
probabilistic parsing with
Habanero Java
Matthew Francis-Landau1, Bing Xue2, Jason Eisner1 and Vivek
Sarkar2

This material is based upon work supported by the National Science
Foundation under Collaborative Grants No. 1629564 and 1629459

Probabilistic Parsing

● Core problem in Natural Language Processing (NLP)
○ Computationally expensive
○ Load-balancing is hard at fine-grained level

● Similar programming patterns appear in many machine learning
(ML) algorithms
○ Parallelizing probabilistic parsing algorithms can be a proxy task for

parallelization of a large set of ML algorithms

2

Stochastic
Grammar

Baa ba ba

Production: a rewrite rule
specifying a symbol substitution that
can be recursively performed to
generate new symbol sequences
(from Wikipedia)

3

Millions of
productions!

Stochastic
Grammar

Baa ba ba

4

Probabilistic Parsing

CKY expressed declaratively in Dyna[1]

a(X,I,K) max= word(W,I,K) * rule_prob(X,W).
a(X,I,K) max= a(Y,I,J) * a(Z,J,K) * rule_prob(X,Y,Z)
goal = a("Sentence", 0, n).

[1] J. Eisner and N. W. Filardo, “Dyna: Extending Datalog for modern AI,” in Datalog Reloaded, ser. Lecture Notes in Computer Science, O. de Moor, G. Gottlob, T. Furche, and A. Sellers, Eds. Springer, 2011, vol. 6702, pp. 181–220, longer version available as tech
report. [Online]. Available: http://cs.jhu.edu/~jason/papers/#eisner-filardo-2011

5

● A[x, i, k] is max of all probabilities of
substring [i:k] producing non-terminal
symbol x from symbols y and z

● We want to derive the Sentence symbol

Probabilistic Parsing

i
(starting position of substring)

k (end position of substring)

x
(every
non-terminal
symbol)

2 nested loops through all productions

6

Probabilistic Parsing

● Fill in each cell for substrings of size 2
i

k

x = Sentence

2 nested loops through all productions

7

Probabilistic Parsing

● Fill in each cell for substrings of size 3
based on values from substrings of size 2
according to the production rules

k

i

x = Sentence

2 nested loops through all productions

8

Probabilistic Parsing

● The parse tree with the largest probability
ends up at position (Sentence, 0, N)

k

i

x = Sentence

9

Probabilistic Parsing

k

i

x = Sentence
More realistically, probabilistic parsing is an
irregular application ...

● Not all cells get filled
○ Some productions do not exist for x
○ Lower half of the matrix is unused

● Not all cells take the same amount of
time to fill

○ Number of possible productions varies for each
substring

● Most work wasted
○ Most cells do not contribute to final result (the

upper left corner) because their contributions
are ultimately beaten in some “max” operation

10

Alternative to CKY: Agenda Parsing

● Worklist version of CKY parsing (or an approximation)
○ Each update to a cell is a work item, and put them into an agenda
○ Prioritizes updates with higher probability

● Stop early and save work given “good enough” parse tree
○ Eliminates much unneeded computation in CKY
○ Reaches “good enough” parse tree faster with its greedy approach
○ If the priority function is an admissible A* heuristic, the algorithm becomes exact

● A generalized Dijkstra’s Algorithm
○ Can be applied to machine learning algorithms similar to probabilistic parsing
○ A “meta-algorithm” for dynamic programming schemes

11

Cell-level Parallel Agenda Parsing

i

k

x = Sentence
● Need to process multiple agenda

items (cell update) in parallel
○ use Java’s BlockingPriorityQueue

for thread-safe worklist and Habanero

Java (HJLib)[2] parallel constructs for
asynchronous processing

● Need to ensure total order of
execution on agenda

○ Capture top m items on agenda to
process in parallel

[2] V. Cave’, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-java: The new adventures of old x10,” in Proceedings of the 9th International Conference on Principles and Practice of Programming in Java, ser. PPPJ ’11. New York, NY, USA: ACM, 2011, pp. 51–61.
[Online]. Available: http://www.cs.rice.edu/~vs3/PDF/hj-pppj11.pdf

12

Cell-level Parallel Agenda Parsing

i

k

x = Sentence
● Write-write conflict happens when

two agenda items want to update
the same cell

● Need to ensure atomic max
operation on cell updates

○ Max operation implemented with CAS
(Compare-And-Swap)

write-write
conflict at
duplicate
updates

13

Cell-level Parallel Agenda Parsing

i

k

x = Sentence
● Two serially dependent cells can be

updated at the same time
● Need to ensure the most recent

maximum value is considered
○ An update to cell value will generate

new update with higher priority on
agenda

read-write conflict
at serially
dependent
updates

14

Parallel Agenda Parsing with Habanero Java[2]

class AgendaParser {
 …
 while(!agenda.isEmpty()){
 Collection<T> taskItems =

agenda.slice(0,m);
 forall(taskItems, (t)->{

 process(t);
});
//implicit finish

 }
 …
}

● Treat all agenda items as individual
asynchronous tasks

● Capture top m items on agenda to
process in parallel

● HJLib forall construct creates
asynchronous tasks for each item
in a Collection with an implicit
barrier

15
[2] V. Cave’, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-java: The new adventures of old x10,” in Proceedings of the 9th International Conference on Principles and Practice of Programming in Java, ser. PPPJ ’11. New York, NY, USA: ACM, 2011, pp. 51–61.
[Online]. Available: http://www.cs.rice.edu/~vs3/PDF/hj-pppj11.pdf

Parallel Agenda Parsing with Habanero Java[2]

● New API
forasyncLazy(numTasks,
taskItems, processBody)

○ numTasks - number of async
processes to create

○ taskItems - an iterator as task generator

○ processBody - lambda expression to
operate on an task item

● Agenda as taskItems always
returns true for hasNext() until
parse completes

public static <T> void forasyncLazy(...) {
 finish(() -> {
 for (int i=0; i < numTasks; i++) {

 async(() -> {
 while (taskItems.hasNext()) {

 processBody.apply(
taskItems.next()

);
});

 }
});

}

[2] V. Cave’, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-java: The new adventures of old x10,” in Proceedings of the 9th International Conference on Principles and Practice of Programming in Java, ser. PPPJ ’11. New York, NY, USA: ACM, 2011, pp. 51–61.
[Online]. Available: http://www.cs.rice.edu/~vs3/PDF/hj-pppj11.pdf

16

Experimental Results
● Extend the bubs-parser[3][4] code

base’s agenda parser
● 2.8GHz Westmere-EP computing

nodes
○ 12 Intel Xeon X5660 processor

cores
○ 48GB RAM per node

● 25 sentences
○ < 30 words per sentence

● Grammar with ~2 Million
productions

17
[3] “bubs-parser.” [Online]. Available: https://code.google.com/archive/p/bubs-parser/ [4] Adaptive Beam-Width Prediction for Efficient CYK Parsing Nathan Bodenstab, Aaron Dunlop, Keith Hall, and Brian Roark - ACL/HLT 2011, pages 440-449.

Conclusion and Future Work
● ~5x performance improvements

due to parallelism without
impairment on accuracy

● Methods applicable to general
dynamic programming schemes

● Dyna language[1] provides high-level
specification of DP schemes

● Our long-term goal is to support
source-to-source compilation of
Dyna programs into parallel HJ
programs for multicore and
distributed-memory parallelism

CKY expressed declaratively in Dyna[1]

a(X,I,K) max= word(W,I,K) * rule_prob(X,W).
a(X,I,K) max= a(Y,I,J) * a(Z,J,K) * rule_prob(X,Y,Z)
goal = a("Sentence", 0, n).

18

(Incomplete) HJLib code

Iterator<ChartCell> agendaItems = new Iterator<>(){
public boolean hasNext() { return !doneParsing;}
public T next() { return agenda.take(); }

}
finish(()->{

forasyncLazy(numTasks, agendaItems, (c) -> {
chartUpdate(c.i, c.k, c.x);
agendaUpdate(c, chart);

}
});

return chart.get(“Sentence”)[0][N];

References
[1] J. Eisner and N. W. Filardo, “Dyna: Extending Datalog for modern AI,” in Datalog Reloaded, ser. Lecture Notes in
Computer Science, O. de Moor, G. Gottlob, T. Furche, and A. Sellers, Eds. Springer, 2011, vol. 6702, pp. 181–220, longer
version available as tech report. [Online]. Available: http://cs.jhu.edu/~jason/papers/#eisner-filardo-2011

[2] V. Cave’, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-java: The new adventures of old x10,” in Proceedings of the 9th
International Conference on Principles and Practice of Programming in Java, ser. PPPJ ’11. New York, NY, USA: ACM, 2011,
pp. 51–61. [Online]. Available: http://www.cs.rice.edu/~vs3/PDF/hj-pppj11.pdf

[3] “bubs-parser.” [Online]. Available: https://code.google.com/archive/p/bubs-parser/

[4] Adaptive Beam-Width Prediction for Efficient CYK Parsing Nathan Bodenstab, Aaron Dunlop, Keith Hall, and Brian Roark -
ACL/HLT 2011, pages 440-449.

19

Thank you for your time!
Questions?

20

Java Grammar

Parsing Java Programs

21

Grammar: a set of production rules that
describes how valid strings are formed
according to a language’s syntax

Java Grammar

Deterministic grammar
Small number of grammar rules

Parsing Java Programs

22

Baa ba ba

?
Parsing Natural Language

23

