Optimized Distributed Work-Stealing

Vivek Kumar
Rice University

Karthik Murthy
Rice University

Abstract—Work-stealing is a popular approach for dynamic
load balancing of task-parallel programs. However, as has been
widely studied, the use of classical work-stealing algorithms on
massively parallel and distributed supercomputers introduces
several performance issues. One such issue is the overhead of
failed steals (communicating with a victim that has no work),
which is far more severe in the distributed context than within a
single SMP node. Due to the cost of inter-node communication,
it is critical to reduce the number of failed steals in a distributed
context. Prior work has demonstrated that load-aware victim
processor selection can reduce the number of failed steals, but it
cannot eliminate the failed steals completely.

In this paper, we present two different load-aware implementa-
tions of distributed work-stealing algorithm in HabaneroUPC++
PGAS library — BaselineWS and SuccessOnlyWS. BaselineWS
follows prior work in implementing a distributed work-stealing
strategy. SuccessOnlyWS implements a novel distributed work-
stealing strategy that completely eliminate inter-node failed
attempts by introducing a new policy for moving work from
busy to idle processors. This strategy also avoids querying the
same processor multiple times with failed steals. We evaluate
both BaselineWS and SuccessOnlyWS by using up to 12288
cores of Edison, a CRAY-XC30 supercomputer and by using
dynamic irregular applications, as exemplified by the UTS and
NQueens benchmarks. We demonstrate that SuccessOnlyWS
provides performance improvements up to 7% over BaselineWS.

Index Terms—Distributed work-stealing; Habanero, PGAS;

I. INTRODUCTION AND BACKGROUND

Work-stealing [1] is a popular load balancing technique for
dynamic task-parallelism. It maintains a pool of workers, each
of which maintains a double-ended queue (deque) of tasks.
When local deque becomes empty, worker becomes a thief
and seeks a victim from which to steal work. However, it may
happen that the victim has run out of work when it receives
the steal attempt from the thief. This situation is called a failed
steal attempt, as the thief did not receive any task.

Today almost all supercomputers are built from multi-core
processors connected via high speed interconnects, offering
a mixture of shared memory and distributed memory paral-
lelism. Prior studies have demonstrated the benefits of using
a hybrid-programming model based distributed work-stealing
runtimes [2], [3]. These runtimes employ one process per
node, each containing multiple worker threads. The benefits
include improving memory utilization per node, computation-
communication overlap, and scalability. One dedicated thread
(communication worker) takes the role of managing all inter-
node communications, while the rest of the threads (com-
putation workers) participate in local computations and steal
among themselves using low-overhead compare-and-swap op-
erations. When computation workers run out of work within
a process, they contact their communication worker to request

IA3 2016; Salt Lake City, Utah, USA; November 2016
978-1-5090-3867-1/16/$31.00 (©2016 IEEE

Vivek Sarkar
Rice University

Yili Zheng
Lawrence Berkeley National Laboratory

initiation of distributed work-stealing by communicating with
remote (victim) communication workers. The victim commu-
nication worker can either maintain a ready queue of tasks
to send to the remote thief [3], or lazily performs intra-node
steals to send tasks to the remote thief [2].

While intra-node failed steals only waste the thief’s CPU
cycles, inter-node work-stealing wastes the victim’s CPU
cycles as well (e.g., when the communication worker in the
victim process performs lazy intra-node steals). It is critical
to reduce the number of failed steals in a distributed context
due to the cost of inter node communication. Techniques such
as load-aware victim selection (by using network RDMA to
estimate total tasks at victim [4]) and lifeline graphs [5] can
reduce the number of failed attempts but cannot completely
avoid the issue.

In this paper, we analyze inter-node failed steals as a source
of performance degradation in a hybrid-programming model
based distributed work-stealing. With inspiration from the
lifeline graphs [5], we introduce a new policy to choose a
remote victim that completely avoids the failed steals at inter-
node level. To the best of our knowledge, this paper is the first
to completely remove the inter-node failed steals in distributed
work-stealing.

In summary, this paper makes the following contributions:

o Two different implementations of distributed work-
stealing in HabaneroUPC++ PGAS library — Base-
lineWS and SuccessOnlyWS.

o We implement BaselineWS using traditional approaches
to distributed work-stealing algorithm, whereas in Suc-
cessOnlyWS we introduce a new victim selection policy
that completely avoid all inter-node failed steal attempts.

o We demonstrate the benefits of SuccessOnlyWS over
BaselineWS by scaling irregular computations up to
12288 cores on the Edison supercomputer at NERSC. Our
evaluation shows that by avoiding inter-node failed steals
attempts, SuccessOnlyWS deliver performance benefits
up to 7% without ever degrading the performance.

II. DESIGN AND IMPLEMENTATION
A. Programming model for distributed work-stealing

In our prior work, we introduced HabaneroUPC++ [6] as a
compiler-free PGAS library that supports a tighter integration
of intra-place and inter-place parallelism than standard hy-
brid programming approaches. It uses C++11 lambda-based
user interfaces for launching asynchronous tasks, such as:
a) async, asyncAwait, asyncPhased and forasync
(at the intra-place level); b) asyncAt for asynchronous
remote function invocation; ¢) asyncCopy for asynchronous

local/remote copy; and d) a barrier style £inish_spmd for
joining all these asynchronous tasks. HabaneroUPC++ uses a
dedicated communication worker per place.

Now, for supporting distributed work-stealing in Habaner-
oUPC++, we introduce a new user interface to launch locality
flexible asynchronous tasks [3]. We call this new interface
as asyncAny and it accepts a user defined C++11 lambda
function representing a locality flexible task. asyncAny
tasks can be arbitrarily nested and can be joined by using
finish_spmd, similar to other tasks in HabaneroUPC++.

B. Load-aware victim selection in HabaneroUPC++

As in prior work [4], both BaselineWS and SuccessOnlyWS
use load-aware inter-place victim selection. In both these
runtimes, asyncAny tasks are free to execute anywhere
in the cluster. Total asyncAny tasks at a place are the
sum of asyncAny tasks at each of its computation work-
ers. Communication worker at each HabaneroUPC++ place
publishes current count of asyncAny tasks (at its place)
in a shared variable in global address space (placeLoad).
Remote places uses network RDMA to read this information
to get an estimate of total number of asyncAny tasks at the
destination place. Today most of the HPC platforms support
RDMA. These RDMA operations do not require any remote
CPU involvement and are very efficient.

Computation workers steal among themselves (intra-place
steals) using low overhead compare-and-swap operations.
Inter-place steals are routed only through the communication
worker. A communication worker will become a thief if any
of the computation workers at its place are idle.

C. Remote steal request from thief to victim

Algorithm 1 Remote steal request from thief to victim
1: procedure STEAL_ASYNCANY
2: while global_termination_detection # true do
3 v <= GET_RANDOM_VICTIM_ID(total_places)
4 if placeLoad[v]| > THRESHOLD then
5 if SuccessOnlyW S then
6: if already_contacted|v] # true then
7
8
9

ASYNCAT(v, queue_my_place)
WAIT_UNTIL_ASYNCAT_INFLIGHT()

: else > BaselineWS
10: if TRYLOCK(v) then
11: thief_queued[v] < my_place
12: WAIT_UNTIL_VICTIM_REPLY()
13: UNLOCK(V)
14: if asyncAny_received then
15: if SuccessOnlyW S then
16: FORGET_VICTIM(asyncAny_source)
17: break

Algorithm 1 shows the pseudocode for sending steal request
from the thief to the victim for both BaselineWS and Succes-
sOnlyWS. Once the communication worker becomes a thief,

it enters the global task search cycle (line 2) where it attempts
to steal task from a potential victim (lines 3 and 4).

In BaselineWS, the thief will mark this remote victim as
occupied (line 11) using a lock and a flag in victim’s global
address space. The thief can never choose a pre-occupied
victim. Thief will wait until it receives the victim’s response
(line 12). The victim can either send asyncAny tasks to this
thief or may deny the request if it has started experiencing
shortage of asyncAny tasks (failed steal). The thief might
even try same victim multiple times in failed steals. The thief
will restart the entire procedure until it succeeds or it decides
that all the victims are idle.

Unlike BaselineWS, in SuccessOnlyWS the thief neither
uses a lock (line 10), nor marks a victim as occupied (line 11).
A thief remembers the place id of all the victims it attempts
to steal from (line 6). It will never steal from a victim, which
is still registered in its memory. It will forget a victim only
after it receives any task from it (line 16). Once a victim
has been decided, the thief will send a steal request to this
victim using asyncAt (line 7). This asyncAt terminates
after executing at victim’s place (communication worker) and
pushing place id of the thief on the victim’s memory. As this
design does not use a lock (line 10), thieves will be registered
at the victim in the order messages arrive at the victim. Also,
multiple thieves can simultaneously send steal requests to a
same victim. Similar to thief, victim also memorizes the place
id of all the thieves who have requested tasks from it. Once
the asyncAt has terminated (line 8), the thief will continue
its task search cycle. It will hunt its next potential victim and
repeats the entire procedure until: a) it either receives task
(line 14) from any of the previously contacted victims (end
of current task search cycle); or b) it is unable to find any
potential victim.

In SuccessOnlyWS the thief wait until the asyncAt is in
flight (line 8), whereas in BaselineWS the thief wait until
it receives the victim’s response (line 12). The cpu cycles
spent by the thief while waiting will be wasted in BaselineWS
for every failed steal attempt. However, this is not true for
SuccessOnlyWS as every steal attempt is guaranteed to fetch
asyncAny tasks. This wait is a necessary design choice
in SuccessOnlyWS as otherwise thief may end up sending
asyncAt (steal requests) to several remote victims.

D. Transferring tasks from victim to remote thief

The pseudocode for transferring tasks from victim to re-
mote thief is shown in Algorithm 2, for both BaselineWS
and SuccessOnlyWS. We don’t take the approach of [3] to
maintain a ready queue of asyncAny tasks at communication
worker. This design may suffer when there is large number
of computation workers as they will try to steal back from
the communication worker (akin to work-sharing overheads).
Hence, in HabaneroUPC++ the communication worker follows
a lazy approach by stealing from local computation workers
(line 4 and 13) only in case of a pending remote steal request.
Maximum number of asyncAny tasks sent to remote thief is
specified by a user defined environment variable.

Algorithm 2 Transferring tasks from victim to remote thief
1: procedure SEND_ASYNCANY

2: if SuccessOnlyW S then

3: while total_queued_thieves > 0 do

4: count < LOCAL_STEAL(task_array)
5: if count > 0 then

6: thief_place <— POP_THIEF()

7: ASYNCAT(thief_place, task_array)
8: FORGET_THIEF(thief_place)

9: else break

10: else > BaselineWS
11: thief < thief_queued[my_place]

12: if thief # EMPTY then

13: count < LOCAL_STEAL(task_array)
14: ASYNCAT(thief, task_array, count)

15: thief_queued[my_place] + EMPTY

In BaselineWS, at any given time only one thief can steal
from a particular victim (line 12). Remote communication
worker (victim) can deny (failed steal) or send asyncAny
tasks to the waiting thief (line 14). Unlike BaselineWS, in
SuccessOnlyWS several thieves could be registered at victim’s
memory and none of these requests should fail. For each
pending steal requests, communication worker (victim) in
SuccessOnlyWS performs a round of local steal (line 4). If
it were successful, it would pop a thief id from its memory
(line 6) and send the tasks to the remote thief (line 7). It
then forgets this thief (line 8) and repeat the entire procedure,
unless either its running short of asyncAny tasks, or if there
are no more pending steal requests. Remote thief also forgets
this victim after receiving the tasks.

The only caveat in SuccessOnlyWS is the steal cycle forma-
tion, which could happen in following scenario. Thief sends
multiple steal requests. However, by the time a steal request
gets queued at a victim, the victim gets shortage of tasks at its
place and himself becomes a thief. The original thief receives
task from some other victim and now is sufficiently busy. The
original victim (now a thief) queues its own steal request at this
thief (now a victim) even though it is already having a pending
steal request from this place. The maximum percentage of
cyclic steals we observed was 0.2% (Figure 1(d)), which is
insignificant. Also, note that cyclic steals is not a deadlock,
since both these places will send/obtain tasks from others.

III. EXPERIMENTAL EVALUATION

1) Methodology: We have used two different trees (TIWL
and T3WL) of the UTS benchmark [7] and the NQueens
(henceforth mentioned as “NQ”) test for all our experimental
evaluations. We remove all the work-stealing related code
from the open-sourced UPC implementation of UTS [7] and
use asyncAny to create HabaneroUPC++ UTS version.
We found the best performing chunk sizes (-c) and polling
intervals (-i) as 8 and 10 respectively for both trees. NQ’s
objective is to find a placement for N queens on an N x N
chessboard such that none of the queens attacks any other.

We used N=18. When the search tree depth becomes greater
than 6, we stop creating new asyncAny tasks. We used
the Edison supercomputer at NERSC for our experiments.
It has two sockets per node and each socket has 12 cores.
In HabaneroUPC++, we allocate one place per node where
one core is dedicated to be a communication worker and the
remaining 23 cores are computation workers.

2) Results: Figure 1(a) shows the execution time for all the
three benchmarks using BaselineWS runtime. Recall that we
used all the node resources. Hence, for each runtime, at 512
nodes the total number of cores used is 12,288.

Both BaselineWS and SuccessOnlyWS policies in Habaner-
oUPC++ take the same approach of load-aware remote victim
selection, but they too hold chances to attempt remote steal
from idle victims. This is a failed steal in BaselineWS but
not in SuccessOnlyWS where the victim will eventually return
tasks or terminate. Figure 1(b) shows the total number of inter-
place failed steals in BaselineWS. We only report inter-place
failed steal attempts as steals within a place is performed using
negligible overhead compare-and-swap operations.

SuccessOnlyWS avoids any inter-place failed steal attempts
and this has a direct impact on the performance improve-
ments achieved by using SuccessOnlyWS. Figure 1(c) plots
the speedup of SuccessOnlyWS over BaselineWS for all
benchmarks. At 12288 cores by using SuccessOnlyWS, the
benchmarks TIWL, T3WL and NQ executed 3%, 7% and
4% faster (respectively) than by using BaselineWS. It’s worth
noticing that SuccessOnlyWS never degrades the performance,
even at smaller node counts.

In SuccessOnlyWS when a thief enters the global task
search phase, it registers its place id on multiple victims until it
receives task from any of the victims (end of a search phase).
We performed analysis to understand the maximum number
of victims that SuccessOnlyWS can attempt during its each
task search phase. For this, we calculated the total number
of victims contacted in each search phase of the thief. We
then calculated the percentage of total search phases showing
similar numbers of total victims contacted. Figure 1(d) shows
the result of this experiment with SuccessOnlyWS using 12288
cores (similar results for other node values). We noticed that in
more than 85% of cases, the thief contacts only two victims for
all the benchmarks. Also, contacting more than four victims
in any search phase is extremely rare for the thief.

Section II-D explains the chances of steal cycle formations
in SuccessOnlyWS. Figure 1(e) shows the total cyclic steals in
SuccessOnlyWS as a percentage of total steals. The maximum
percentage we observed was 0.2%, which is almost insignifi-
cant. We also implemented a variant of SuccessOnlyWS that
would never allow any cyclic steals. In Figure 1(f) we compare
the performance of SuccessOnlyWS at 12288 cores both with
and without cyclic steals. We found both these versions of
SuccessOnlyWS to perform similar.

IV. RELATED WORK

SuccessOnlyWS was inspired from lifeline based Global
Load Balancing (GLB) [5] and hence shares some resemblance

100 . 1e+06 o 1.1
% < 2 1.09 I
3 80 § 100000 S 1.08 |
3 =
s 0 < 10000 g 107
g 60 o S 1.06 I
50 £ 1000 1 5 1.05 ‘
o >
ER 8 100 1 2 1os |
] S 3
% e
| g & 1.01 A
0 = 11 14
1536 3072 6144 12288 1536 3072 6144 12288 1536 3072 6144 12288
Total cores Total cores Total cores
 T1WL . T3WL . NQ S T1WL . T3WL . NQ S T1WL . T3WL NQ
(a) Execution time using BaselineWS (b) Total inter-place failed steals in BaselineWS (c) SuccessOnlyWS speedup over BaselineWS
100 & ! g 11
—~ 90 3 1.09
g o % 01 1 2 108
° o 2 1.07
» 70 2 @
g w0 8= 001 1 & 1.06
Q B 5 1.05 +
£ 50 3 2
3] 20 3 1.04 +
© 40 o a 0.001 4 5 1041
o) Gﬁ 2 1.03
= 30 k<l 3 1.02 1
g 20 5 0.0001 - 2 1.01 A
= 10 N IZI I
o =~ 1e-05 - TIWL T3WL NQ

1 2 3 4
Victims contacted in each search phase

. T1WL - T3WL s NQ

1536 3072 6144 12288
Total cores

I T1WL . T3WL E NQ

Total of 12288 cores

I SuccessOnlyWsS with cycles
N SuccessOnlyWS without cycles

(d) Total remote victims contacted by thief (e) Steal cycle formations in SuccessOnlyWS (f) Speedup of SuccessOnlyWS over Base-

in SuccessOnlyWS during each search phase (smaller is better)
(using 12288 cores)
Fig. 1. Experimental evaluation of BaselineWS

to GLB. In GLB, once the program is launched, the runtime
thief performs two rounds of searches. In the first round, it
performs w random victim selections (w is subset of total
number of place). If all w attempts results in failed steals,
the thief attempts the second round in which it tries to steal
from its lifeline buddies (victims). The total number (z) of
lifeline buddies for each place is pre-computed using lifeline
graphs (each place knows all its lifeline buddies). If the lifeline
buddies are also idle, they remember incoming thief requests
and send some work once they receive it.

SuccessOnlyWS differs from GLB as following: a)
asyncAny based programming model in SuccessOnlyWS is
simple and provides serial elision to sequential code, whereas
in GLB the user application is extensively modified; b) unlike
GLB, prior to attempting a steal from a remote victim, Suc-
cessOnlyWS uses network RDMA based load-aware victim
selection to maximize the success probability; c) thief in
SuccessOnlyWS is free to attempt steal from any number of
remote victims and its very rare for it to contact three or more
victims (Section III) in any search phase (adaptively choosing
lifelines, which are generally very few); d) GLB does not
uses communication and computation workers based hybrid
programming model as in SuccessOnlyWS.

V. CONCLUSION

We believe that work-stealing will be an increasingly im-
portant approach for effectively exploiting the performance
of modern supercomputers, which tend to have more and

lineWS for both with and without cyclic steals
(using 12288 cores)
and SuccessOnlyWS (strong scaling in each case)

more cores per node. However, work-stealing on a large scale
cluster also introduces several performance issues due to the
cost of inter-node communications. In this work we analyzed
inter-node failed steal attempts as a source of performance
degradation. We introduced a new design of distributed work-
stealing, which completely removes the inter-node failed steal
attempts and improves the performance by up to 7%.

ACKNOWLEDGMENT

This work is supported by the X-Stack program funded by
the U.S. Department of Energy Office of Advanced Scientific
Computing Research. Any opinions, findings and conclusions
expressed herein are the author’s and do not necessarily reflect
those of the sponsors.

REFERENCES

[1] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM, vol. 46, Sep. 1999.

S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Grossman,
V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism with
MPL,” in IPDPS ’13, 2013.

J. Paudel, O. Tardieu, and J. N. Amaral, “On the merits of distributed
work-stealing on selective locality-aware tasks,” in ICPP ’13, 2013.

S. Olivier and J. Prins, “Scalable dynamic load balancing using UPC,”
in ICPP ’08, 2008.

V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Krishnamoor-
thy, “Lifeline-based global load balancing,” in PPoPP '11, 2011.

V. Kumar, Y. Zheng, V. Cavé, Z. Budimli¢, and V. Sarkar, “Habaner-
oUPC++: A compiler-free PGAS library,” in PGAS ’14, 2014.

[7] “UTS-1.1." [Online]. Available: http://sourceforge.net/p/uts-benchmark/
wiki/Home/

(2]

(3]
[4]
(5]
(6]

