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ABSTRACT

Modern languages for shared-memory parallelism are mov-
ing from a bulk-synchronous Single Program Multiple Data
(SPMD) execution model to lightweight Task Parallel execu-
tion models for improved productivity. This shift is intended
to encourage programmers to express the ideal parallelism
in an application at a fine granularity that is natural for the
underlying domain, while delegating to the compiler and
runtime system the job of extracting coarser-grained useful
parallelism for a given target system. A simple and impor-
tant example of this separation of concerns between ideal
and useful parallelism can be found in chunking of parallel
loops, where the programmer expresses ideal parallelism by
declaring all iterations of a loop to be parallel and the imple-
mentation exploits useful parallelism by executing iterations
of the loop in sequential chunks.

Though chunking of parallel loops has been used as a
standard transformation for several years, it poses some
interesting challenges when the parallel loop may directly
or indirectly (via procedure calls) perform synchronization
operations such as barrier, signal or wait statements. In
such cases, a straightforward transformation that attempts
to execute a chunk of loops in sequence in a single thread
may violate the semantics of the original parallel program.
In this paper, we address the problem of chunking paral-
lel loops that may contain synchronization operations. We
present a transformation framework that uses a combination
of transformations from past work (e.g., loop strip-mining,
interchange, distribution, unswitching) to obtain an equiv-
alent set of parallel loops that chunk together statements
from multiple iterations while preserving the semantics of
the original parallel program. These transformations re-
sult in reduced synchronization and scheduling overheads,
thereby improving performance and scalability. Our ex-
perimental results for 11 benchmark programs on an Ul-
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traSPARC II multicore processor showed a geometric mean
speedup of 0.52× for the unchunked case and 9.59× for au-
tomatic chunking using the techniques described in this pa-
per. This wide gap underscores the importance of using
these techniques in future compiler and runtime systems for
programming models with lightweight parallelism.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.3.4 [Programming Languages]: Processors

General Terms

Algorithms, Languages, Performance

1. INTRODUCTION
Historically, the most successful runtimes for shared mem-

ory multiprocessors have been based on bulk-synchronous
Single Program Multiple Data (SPMD) execution models [6].
OpenMP [17] represents one such embodiment in which the
programmer’s view of the runtime is that of a fixed num-
ber of threads executing tasks in “work-sharing” parallel
constructs. However, modern languages such as Cilk [4],
Chapel [13], Fortress [1], and X10 [5] have moved from SPMD
to lightweight dynamic Task Parallel execution models for
improved programmer productivity. This shift is intended
to encourage programmers to express the ideal parallelism
in an application at a fine granularity that is natural for the
underlying domain, while delegating to the compiler and
runtime system the job of extracting coarser-grained useful
parallelism for a given target system. A simple and impor-
tant example of this separation of concerns between ideal
and useful parallelism can be found in chunking of paral-
lel loops, where the programmer expresses ideal parallelism
by declaring all iterations of a loop to be parallel and the
implementation exploits useful parallelism by executing it-
erations of the loop in sequential chunks [15, 18]. In models
like OpenMP, the programmer can guide the implementa-
tion by providing chunk policy and chunk size values that
can be set dynamically for different platforms.

Though chunking of parallel loops has been employed as
a standard transformation for several years, it poses some
interesting challenges when the parallel loop may directly
or indirectly (via procedure calls) perform synchronization



delta = epsilon+1; iters = 0;

#pragma omp parallel for

for (int j = 1 ; j <= n ; j++ ) {

while ( delta > epsilon ) {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0 ;

diff[j] = abs(newA[j]-oldA[j]);

#pragma omp barrier

if (j == 1) {

delta = sum(diff); iters++;

temp = newA; newA = oldA; oldA = temp;

}

#pragma omp barrier

} }

Figure 1: One-Dimensional Iterative Averaging Ex-
ample in Non-conformable OpenMP C

delta = epsilon+1; iters = 0;

phaser ph = new phaser(single);

foreach ( point[j] : [1:n] ) phased(single(ph)) {

while ( delta > epsilon ) {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0 ;

diff[j] = Math.abs(newA[j]-oldA[j]);

next { // barrier with single statement

delta = diff.sum(); iters++;

temp = newA; newA = oldA; oldA = temp;

} } }

Figure 2: One-Dimensional Iterative Averaging Ex-
ample in X10 with Phasers

operations such as barrier, signal or wait statements. In
such cases, a straightforward transformation that attempts
to execute a chunk of loop iterations in sequence in a single
thread may violate the semantics of the original program.

For example, consider the OpenMP code fragment in Fig-
ure 1. It embodies the pedagogical One-Dimensional Itera-
tive Averaging program from [7]. The goal of this program
is to perform iterative averaging on an one-dimensional ar-
ray A. As shown in Figure 1, the program does not conform
with the OpenMP specification because OpenMP prohibits
a barrier region from being nested inside a loop region. This
restriction harks back to the basic bulk-synchronous nature
of SPMD computations. Attempting to run the OpenMP
code in Figure 1 yields unpredictable results on different
platforms ranging from deadlock to runtime error messages
(but no compile-time error messages).

Even though illegal in OpenMP, the intent behind the
code in Figure 1 is clear enough. The programmer wishes
to create a parallel j loop with n iterations, in which each
parallel iteration consists of a sequential while loop. Barrier
operations are inserted to ensure that different j iterations
synchronize with each other before advancing to the next
iteration of the while loop, and that new values of delta and
iters are computed by the j=1 iteration between the two
barriers. Modern languages such as Chapel [13], Fortress [1],
and X10 [5] support this form of synchronization with fine-
grained dynamic parallelism. We show the X10 version1 in
Figure 2 using the phasers extension described in [20]. The

1While X10 is the language used to describe the problem and
our solution, the approach described in this paper is applica-

delta = epsilon+1; iters = 0;

phaser ph = new phaser(single);

foreach ( point[jj] : [1:n:S] ) phased(single(ph)) {

for (int j = jj ; j <= min(jj+S-1,n) ; j++) {

while ( delta > epsilon ) {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0 ;

diff[j] = Math.abs(newA[j]-oldA[j]);

next { // barrier with single statement

delta = diff.sum(); iters++;

temp = newA; newA = oldA; oldA = temp;

} } } }

Figure 3: Naive (Incorrect) Chunking of X10 version
from Figure 2

parallel j loop is now expressed as a foreach statement in
X10. All iterations of the foreach are registered on the
same phaser variable, ph. The next statement serves as a
barrier with a single statement [25] that is guaranteed to be
executed by only one thread.

The code in Figure 2 correctly captures the programmer’s
intent. However, if n is larger than the number of available
hardware threads, this code can incur significant overhead
since the barrier synchronization performed by the phaser
involves all n iterations. As indicated earlier, loop chunking
is a standard approach to improve the efficiency of a paral-
lel loop. Figure 3 shows the result of performing a chunking
transformation mechanically on the foreach loop, with the
goal of decomposing the foreach loop into chunks of S it-
erations2. However, though this chunking transformation is
legal for parallel loops that do not contain synchronization
operations, it is not legal for the example in Figure 2 since
it contains a next (barrier) operation. In particular, the
transformed version (Figure 3) will attempt to complete all
iterations of the while loop for iteration j before starting
iteration j+1 from the same chunk, which is different from
the semantics of the original code in Figure 2. A similar
problem would arise if the original foreach loop contained
signal and wait operations instead of barrier operations.

In this paper, we address the problem of chunking paral-
lel loops that may contain synchronization operations. We
present a transformation framework that uses a combination
of transformations from past work (e.g., loop strip-mining,
interchange, distribution, unswitching) to obtain an equiv-
alent set of parallel loops that chunk statements from mul-
tiple iterations while preserving the semantics of the origi-
nal program. These transformations result in reduced syn-
chronization and scheduling overheads, thereby improving
performance and scalability. Our experimental results for
11 benchmark programs on an UltraSPARC II multicore
processor showed a geometric mean speedup of 0.52× for
the unchunked case and 9.59× for automatic chunking using
the techniques described in this paper. This wide gap un-
derscores the importance of using these techniques in com-
piler and runtime systems for programming models with
lightweight parallelism. A hand-coded study of different
chunking policies for two benchmarks revealed the potential
for even greater performance improvements in the future.

ble to any language that permits synchronization operations
to occur in a parallel loop.
2The 1:n:S notation in the new jj foreach loop is akin to
the low : high : stride triple notation in Fortran 90 [16].



The rest of the paper is organized as follows. Section 2
includes background on X10 and on classical loop transfor-
mations. Section 3 describes the loop chunking transfor-
mation framework. Section 4 discusses how the framework
in Section 3 can be extended to support exceptions. Sec-
tion 5 contains our experimental results. Section 6 discusses
related work, and Section 7 contains our conclusions.

2. BACKGROUND

2.1 X10 and Phasers
This section provides a brief summary of the async, finish,

and foreach constructs introduced in v0.41 of the X10 pro-
gramming language [5], as well as the phasers extension from
[20]. Additional X10 constructs such as places and futures
that are not central to the paper have been omitted.

2.1.1 async 〈stmt〉

Async is the X10 construct for creating or forking a new
asynchronous activity. The statement, async 〈stmt〉, causes
the parent activity to create a new child activity to execute
〈stmt〉. Execution of the async statement returns immedi-
ately i.e., the parent activity can proceed immediately to its
following statement.

2.1.2 finish 〈stmt〉

The X10 statement, finish 〈stmt〉, causes the parent activ-
ity to execute 〈stmt〉 and then wait till all sub-activities cre-
ated within 〈stmt〉 have terminated (including transitively
spawned activities). Operationally, each instruction exe-
cuted in an X10 activity has a unique Immediately Enclosing
Finish (IEF) dynamic statement instance.

Besides termination detection, the finish statement plays
an important role with regard to exception semantics. An
X10 activity may terminate normally or abruptly. A state-
ment terminates abruptly when it throws an exception that
is not handled within its scope; otherwise it terminates nor-
mally. X10 requires that if statement S or an activity spawned
by S terminates abruptly, and all activities spawned by S

terminate, then finish S terminates abruptly and throws a
single exception formed from the collection of all exceptions
thrown by S or its descendant activities.

2.1.3 Foreach

The statement foreach (point p : R) S supports par-
allel iteration over all the points in region R by launch-
ing each iteration as a separate async. A point is an el-
ement of an n-dimensional Cartesian space (n ≥ 1) with
integer-valued coordinates.A region is a set of points, and
can be used to specify an array allocation or iteration con-
structs as in the case of foreach. For instance, the re-
gion [0:200,1:100] specifies a collection of two-dimensional
points (i,j) with i ranging from 0 to 200 and j ranging
from 1 to 100.

A foreach statement does not have an implicit finish

(join) operation, but its termination can be ensured by en-
closing it within a finish statement at an appropriate outer
level. Further, any exceptions thrown by the spawned iter-
ations are propagated to its IEF instance.

2.1.4 Phasers

In this section, we summarize the phaser construct intro-
duced in [20] as an extension to X10 clocks [5]. Phasers inte-

grate collective and point-to-point synchronization by giving
each activity (task) the option of registering with a phaser
in signal-only/wait-only mode for producer/consumer syn-
chronization or signal-waitmode for barrier synchronization.
In addition, a next statement for phasers can optionally in-
clude a single statement (as in Figure 2) which is guaranteed
to be executed exactly once during a phase transition [25].
These properties, along with the generality of dynamic par-
allelism and the phase-ordering and deadlock-freedom safety
properties, distinguish phasers from synchronization con-
structs in past work including barriers [11, 17], counting
semaphores [19], and X10’s clocks [5]. Though phasers as
described in this paper may seem X10-specific, they are a
general unification of point-to-point and collective synchro-
nizations that can be added to any programming model with
dynamic parallelism such as OpenMP [17], Intel’s Thread
Building Blocks, Microsoft’s Task Parallel Library, and Java
Concurrency Utilities [10].

A phaser is a synchronization object that supports the
following five operations by an activity Ai:
• new: When Ai performs a new phaser(MODE) operation,
it results in the creation of a new phaser ph such that Ai is
registered with ph according to MODE.
• drop: Ai drops its registration on all phasers when it
terminates. In addition, when Ai executes an end-finish in-
struction for finish statement F , it completely de-registers
from each phaser ph for which F is the IEF for ph’s cre-
ation. This constraint is necessary for the deadlock freedom
property for phasers [20].
• next: The next operation has the effect of advancing each
phaser on which Ai is registered to its next phase, thereby
synchronizing all activities registered on the same phaser.
The semantics of next depends on the registration mode
that Ai has on each phaser, thereby making it possible for
the next statement to be used for both barrier and point-
to-point synchronizations [20].
• signal: A signal operation performed by Ai is shorthand
for a ph.signal() operation performed on each phaser ph
with which Ai is registered with a signal capability.
• wait: Like next, the wait operation has the effect of ad-
vancing each phaser that Ai is registered on to its next
phase. However unlike next, the wait operation does not
include signal operations on any phasers.

2.2 Classical Loop Transformations
This section briefly summarizes some classical loop re-

structuring techniques that have historically been used to
improve parallelism and data locality, and expose other op-
portunities for compiler optimization [23, 14]:
• Strip Mining is a loop transformation that fragments
a single loop into two nested loops with smaller segments.
This restructuring is an important preliminary step for vec-
torization, tiling, SIMDization, and other transformations
for improving locality and parallelism.
• Loop Interchange results in a permutation of the order
of loops in a loop nest, and can be used to improve data
locality, coarse-grained parallelism and vectorization oppor-
tunities.
• Loop Distribution divides the body of a loop and gener-
ates several loops for different parts of the loop body. This
transformation can be used to convert loop-carried depen-
dences to loop-independent dependences, thereby exposing
more parallelism.



Figure 4: Block diagram for Transformation Frame-
work

• Loop Unswitching is akin to interchanging a loop and a
conditional construct. If the condition value is loop-invariant
it can be moved outside so that it is not evaluated in every
iteration.

The legality constraints for these transformations are well
understood for the case when the input program is sequen-
tial. In Sections 3 and 4, we show how these transformations
can be extended to enable chunking of parallel loops in the
presence of synchronizations and exceptions.

3. TRANSFORMATION FRAMEWORK
In this section we present our transformation framework

to enable chunking of foreach loops containing synchroniza-
tion operations. To simplify the presentation, this section
will focus on the restricted case when the loop body is known
to be exception-free. Section 4 discusses how the framework
in this section can be extended to support exceptions. The
synchronization operation that we will focus on in this de-
scription is the next statement for clocks and phasers; as
mentioned in Section 2.1, the phaser next statement can
be used to support both barrier and point-to-point synchro-
nizations.

Figure 4 shows a block diagram for our transformation
framework. The general strategy to chunk parallel loops
containing synchronization operations is as follows. The
foreach loop is first strip-mined into two nested parallel
loops. If the loop body contains no next statements, then
the inner loop can be serialized and a chunked version can
be obtained after performing some clean-up transformations
(the “no” case in the flow chart). If the loop body con-
tains next statements, then a combination of three trans-
formations — loop distribution, loop interchange, and loop
unswitching — is applied repeatedly until a) no next state-

finish {

ph = new phaser(); // SIG_WAIT mode by default

foreach (point i: R) phased(ph) {

for (int j = 0; j < m; j++) {

S1;

next;

if (array[j] != 0) {

for (int k = 0; k < l; k++) {

S2;

next; } } } } }

Figure 5: Example foreach loop containing next

statements

ments occur inside any instance of an inner foreach loop or
b) no further change is possible. In case a), we can proceed
to the serialization and clean-up transformations as before
to obtain a chunked parallel loop. In case b), the compiler is
unable to chunk the parallel loop and the foreach statement
is left unchanged. The motivation for selecting loop distri-
bution, loop interchange, and loop unswitching as the three
transformations to iterate on is to attempt to isolate the
next statements by moving the inner parallel loop as far in-
wards as possible. These three transformations used in this
framework are monotonic — though they may be applied in
any order, the resulting transformed code is guaranteed to be
deterministic. Of these three transformations, the Loop dis-
tribution is the basic transformation needed for chunking by
isolating next operations. Interchange and unswitching in-
crease the opportunities for isolation. Next contraction and
choice of chunking policy are used to improve the efficiency
of the chunked version. In this work, we assume that all
programmer-specified conditions guarding a next statement
are invariant in the initial foreach loop i.e., the conditions
are single-valued [25]. However, as we will see in Section 4,
our transformation framework can handle cases when a next
statement is guarded by implicit exception conditions.

Figure 5 contains an example foreach loop with next

statements. In this example, all iterations of the foreach

loop are registered in signal-wait mode on phaser ph, which
means that the next statements serve as barrier operations.
However, the transformation framework is also applicable to
other phaser registration modes for which a next statement
may result in point-to-point synchronizations instead of a
barrier operation. It is obvious that a standard chunking
of the foreach loop in Figure 5 will not be legal. The fol-
lowing sections describe the transformations performed by a
framework that can lead to a legal chunking.

3.1 Strip Mining
The classical strip-mining transformation results in chunks

of contiguous iterations. However, for generality, we will
define strip-mining of a region (iteration space) R to be
an ordered pair (Ig, Ie), where Ig(R) is an iterator over
multiple chunks and for each chunk g, Ie(R, g) returns an
iterator over the different indices in the chunk. In addi-
tion to the ability to specify chunks of non-contiguous it-
erations, this formulation allows us to specify chunking of
multi-dimensional loops since regions can be multidimen-
sional in X10. Figure 6 shows the iteration spaces for Block
and Cyclic chunking policies for region R = [0 : N − 1] with
P chunks.



Chunking Policy Iteration Sets
Block {0, 1, · · ·N/P − 1}, {N/P,N/P + 1, · · · 2×N/P − 1}, · · · , {(P − 1) ×N/P, · · ·N − 1}
Cyclic {0, P, · · · , }, {1, P + 1, · · · , }, · · · , {P − 1, 2× P − 1, · · · , }

Figure 6: Iteration sets for Block and Cyclic chunking policies for region R = [0 : N − 1] and P chunks.

foreach (point p: R) phased(〈phaser-regs〉)
S =⇒

foreach (point g: Ig(R)) phased(〈phaser-regs〉)
i-foreach (point p: Ie(R, g)) phased

S

Figure 7: foreach Strip Mining Transformation Rule

Our rule for strip-mining foreach loops is shown in Fig-
ure 7. The i-foreach is a special “inner foreach” construct
that is defined only for our transformation framework. It is
not available to the programmer and it will not be present
in the final output code. This new construct carries forward
the dependence information and the exception semantics till
we do the actual transformation. If chunking is successful,
then all instances of i-foreach are replaced by sequential
for loops; otherwise the original foreach loop remains un-
changed. This all-or-nothing approach is proposed for sim-
plicity; extensions to support partial chunking is a topic for
future work. Also, the real benefit of chunking in practice
will only be realized when it is performed across all state-
ments in the original foreach, since even a single unchunked
statement will result in the creation of a large number of
fine-grained activities.
i-foreach represents a foreach loop with an implicit fin-

ish operation. This is in contrast to a normal foreach which
is asynchronous by default and needs explicit finish opera-
tions. i-foreach also has an empty phased clause, which by
definition registers on all the parent’s phasers with the same
modes as the parent activity [20] i.e., the outer foreach.
Also, though transmission of clocks and phasers is not per-
mitted through explicit finish operations in X10, it is per-
mitted through the implicit finish in an i-foreach because
we know that all i-foreach’s will eventually be replaced by
sequential loops if a chunking transformation is performed.

As shown in Figure 7, the strip-mining transformation is
always legal since the inner i-foreach loop is still parallel.
The fact that the inner i-foreach has an implicit finish

does not limit the parallelism in the original loop. Figure 8
shows the result of the strip-mining transformation when
applied to the code example in Figure 5 (the changes are
shown in bold face).

3.2 Loop Interchange, Loop Unswitching,
Loop Distribution, Next Contraction

Our serialization mechanism (described in Section 3.3) re-
quires that no next operations appear in any i-foreach con-
struct. In this section, we describe an iterative approach to
either move all next operations out of the i-foreach loops
targeted for serialization, or declare the original foreach

loop to be non-chunkable. This approach is based on re-
peated applications of the transformations shown in Fig-
ure 9. We now briefly describe each rule in Figure 9 and
summarize their assumptions. If any of the assumptions is
not satisfied, then the rule cannot be applied and the com-

finish {

ph = new phaser(); // SIG_WAIT mode by default

foreach (point g: Ig(R)) phased(ph) {
i-foreach (point i : Ie(R, g)) phased {
for (int j = 0; j < m; j++) {

S1;

next;

if (array[j] != 0) {

for (int k = 0; k < l; k++) {

S2;

next; } } } } } }

Figure 8: Strip-mining of foreach loop in Figure 5.

piler will have to conclude that the original foreach loop
cannot be chunked.

Rule 1 (Loop Interchange) builds on a well known observa-
tion from classical vectorization namely,“a loop that carries
no dependences cannot carry any dependences that prevent
interchange with other loops nested inside it” [14]. Though
this observation was developed for sequential loops that are
parallelizable, it is just as applicable to parallel i-foreach
loops. Thus, the interchange in Rule 1 can be performed
without the need for checking any data dependences. For
simplicity, we assume that the inner sequential loop’s it-
eration space, R2, is independent of the outer i-foreach

loop’s index variable. Extension of this rule to support in-
terchange of trapezoidal loops should be straightforward as
in past work on loop interchange in sequential programs [14].
We also assume that the loop body S does not contain any
break or continue statements; support for those statements
is more complicated, but can be built on the exception sup-
port in Section 4.

Rule 2 (Loop Unswitching) builds on the classical unswitch-
ing transformation for sequential code [14]. The main as-
sumption here is that the condition e is independent of the
i-foreach loop’s index variable.

Rule 3 (Loop Distribution) builds on another well known
observation that a parallel loop can always be fully dis-
tributed [14] since a loop-carried dependence is needed to
create a distribution-preventing cycle. Hence the i-foreach
loops can be fully distributed. The implicit finish opera-
tions in i-foreach ensure the correctness of the resulting
transformation. As in classical loop distribution, it may be
necessary in some cases to perform scalar expansion [14] on
any iteration-private scalar variables that may be accessed
in both S1 and S2.



1. Loop Interchange:
i-foreach (point p : R1) phased

for (point q : R2)

// R2 is assumed to be independent of p
S // S contains no break/continue statements

=⇒







for (point q : R2)

i-foreach (point p : R1) phased

S

2. Loop Unswitching:
i-foreach (point p : R1) phased

if (e)

// e is assumed to be independent of p
S

=⇒







if (e)

i-foreach (point p : R1) phased

S

3. Loop Distribution:

i-foreach (point p : R1) phased

{ S1; S2; }
=⇒















i-foreach (point p : R1) phased

S1;
i-foreach (point p : R1) phased

S2;

4. Next Contraction:
i-foreach (point p : R1) phased

// Region R1 is assumed to be non-empty.
next

=⇒







next

Figure 9: Rules for Loop Interchange, Loop Unswitching, Loop Distribution, and Next Contraction

// After Loop Interchange

finish {

ph = new phaser(); // SIG_WAIT mode by default

foreach (point g: Ig(R)) phased(ph) {

for (int j = 0; j < m; j++) {
i-foreach (point i : Ie(R, g)) phased {
S1;

next;

if (array[j] != 0) {

for (int k = 0; k < l; k++) {

S2;

next; } } } } } }

(a)

// After Loop Distribution

finish {

ph = new phaser(); // SIG_WAIT mode by default

foreach (point g: Ig(R)) phased(ph) {

for (int j = 0; j < m; j++) {

i-foreach (point i : Ie(R, g)) phased {
S1; }

i-foreach (point i : Ie(R, g)) phased {
next; }

i-foreach (point i : Ie(R, g)) phased {
if (array[j] != 0) {

for (int k = 0; k < l; k++) {

S2;

next; } } } } } }

(b)

// After Next Contraction and Loop Unswitching

finish {

ph = new phaser(); // SIG_WAIT mode by default

foreach (point g: Ig(R)) phased(ph) {

for (int j = 0; j < m; j++) {

i-foreach (point i : Ie(R, g)) phased {

S1; }

next; // Contracted
if (array[j] != 0) {

i-foreach (point i : Ie(R, g)) phased {
for (int k = 0; k < l; k++) {

S2;

next; } } } } } }

(c)

// After Loop Interchange, Loop Distribution,

// and Next Contraction

finish {

ph = new phaser(); // SIG_WAIT mode by default

foreach (point g: Ig(R)) phased(ph) {

for (int j = 0; j < m; j++) {

i-foreach (point i : Ie(R, g)) phased {

S1; }

next;

if (array[j] != 0) {
for (int k = 0; k < l; k++) {

i-foreach (point i : Ie(R, g)) phased {
S2; }

next; // Contracted
} } } } }

(d)

Figure 10: Applying our iterative transformation framework on the strip-mined code in Figure 8. The changes
in each step are shown in bold face.



finish {

ph = new phaser(); // SIG_WAIT mode by default

foreach (point g: Ig(R)) phased(ph) {

for (int j = 0; j < m; j++) {

for (point i : Ie(R, g)) {
S1; }

next;

if (array[j] != 0) {

for (int k = 0; k < l; k++) {

for (point i : Ie(R, g)) {
S2; }

next; } } } } }

Figure 11: The chunked code for the running exam-
ple shown in Figure 5.

Finally, Rule 4 (Next Contraction) is a new transforma-
tion that is specific to clocks and phasers. If we have an
i-foreach loop that contains only a next statement, then
we can replace it by a single next statement provided that
its region is non-empty. This is because the only visible
effect of an “i-foreach next” statement is synchronization
with other activities, which can be achieved just as well by
a single next statement.

Figure 10(a-d) shows the results of applying our trans-
formations on the strip-mined code in Figure 8. First, Fig-
ure 10(a) shows the result of interchanging the i-foreach

loop with the sequential for-j loop. Next, Figure 10(b)
shows the result of distributing the i-foreach into three
new i-foreach loops. Then, Figure 10(c) shows the result of
Next Contraction and Loop Unswitching to move the third
i-foreach further inwards. Finally, Figure 10(d) shows the
result of Loop Interchange, Loop Distribution, and Next
Contraction transformations, after which our desired goal
of isolating all next statements have been achieved.

3.3 Serialization
The job of Serialization is to confirm that no i-foreach

statement contains a next, and (if so) to serialize all the
i-foreach constructs. Figure 11 shows the generated code
after the serialization pass is performed on the transformed
code in Figure 10(d). A quick comparison with the origi-
nal code in Figure 5 confirms that foreach chunking is not
a straightforward transformation in general. Likewise, Fig-
ure 12 shows the correctly chunked transformation of the
example in Figure 2 from Section 1, unlike the naive incor-
rect version in Figure 3.

4. EXTENSIONS FOR EXCEPTIONS
In this section, we discuss rules to perform loop-chunking

transformations in the presence of exceptions. The rules
in this section are presented in the context of the X10 v1.5
exception model (which in turn builds on the Java exception
model), but the overall approach should be relevant to other
languages with exception semantics (such as C++).

As discussed in section 2.1, an uncaught exception thrown
inside an async statement terminates the async but not its
parent activity. The enclosing finish statement captures all
the exceptions that are thrown inside its body, aggregates
them into a MultiException data structure and throws this
collection instead of a single exception – which unless han-

delta = epsilon+1; iters = 0;

phaser ph = new phaser(single);

foreach ( point[jj] : [1:n:S] ) phased(single(ph)) {

while ( delta > epsilon ) {

for (int j = jj ; j <= min(jj+S-1,n) ; j++) {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0 ;

diff[j] = Math.abs(newA[j]-oldA[j]);

}

next { // barrier with single statement

delta = diff.sum(); iters++;

temp = newA; newA = oldA; oldA = temp;

}

} // while

} // parallel for

Figure 12: Correctly chunked transformation of X10
example from Figure 2.

dled will in turn terminate the activity invoking the finish.
Exceptions thrown in the iterations of a foreach loop are
handled similarly (does not impact the execution of other
iterations), as each iteration of the foreach statement can
be viewed as an independent async statement.

We first discuss the exception semantics of the i-foreach
statement. An i-foreach statement is a temporary place-
holder for a sequential for loop. Any exception thrown in
a sequential for loop typically terminates the loop. How-
ever, since the for loop generated from the i-foreach state-
ment is originally part of a foreach statement, we must
execute each iteration of the i-foreach regardless of ex-
ceptions thrown in other iterations. Thus, we define the
exception semantics of the i-foreach as follows: all the ex-
ceptions thrown by different iterations of the i-foreach are
thrown as independent asynchronous exceptions i.e., are in-
serted into the MultiException collection collected at the
explicit IEF (Immediately Enclosing Finish) instance for the
i-foreach (ignoring implicit finish operations in i-foreach

statements).
We follow the same overall approach as shown in Figure 4

even in the presence of exceptions. We however modify the
rules for some of the transformations. Figure 13 presents the
modified rules to handle exceptions, which are also briefly
discussed below. As we can see, the rules have now be-
come more complicated than the rules in Figure 9, thereby
underscoring the value of performing these transformations
automatically with a compiler rather than depending on pro-
grammers to implement these transformations by hand.

Strip mining: We re-use the strip mining rule presented
in Figure 7; the exception semantics of the i-foreach state-
ment guarantees correct translation, keeping in mind that
the implicit finish in an i-foreach does not collect excep-
tions like an explicit finish.

Loop interchange: Loop interchange (Rule 1) requires spe-
cial handling in the presence of exceptions since an exception
thrown in the original inner for loop terminates the rest of
the iterations of the for loop, but does not impact other
iterations of the i-foreach loop. Thus, in the transformed
program, for any iteration of the outer sequential for loop,
the inner i-foreach should be invoked at program point Q
only if no exception was thrown by any of the previous se-
quential iterations while executing the activity at point Q.
We capture this behavior by maintaining a region of points



1. Loop interchange:

i-foreach (p: Ie(R, g)) phased
for (s1;e;s2)

// s1, e, s2 don’t depend on p
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boolean c; Exception EX = null;

try {s1; c = e;}

catch (Exception ex) {EX = ex; c = false;}

if (EX 6= null) foreach (p: Ie(R, g)) throw EX;

Region newR = new Region(Ie(R, g));

Exception [] exArr = new Exceptions[newR.size()];

for (;c;) {
for (q: newR) if (exArr[q] 6= null) newR.remove(q);

i-foreach (p: newR) phased {
// might have to do renaming

try {

S;

s2; c = false; c = e;

} catch (Exception e) {exArr[p] = e; }

}

}

foreach (p: Ie(R, g))

if (exArr[p] 6=null)

throw exArr[p];

2. Loop unswitching:

i-foreach (p: Ie(R, g)) phased
if (e)

// e doesn’t depend on p and
// is side effect free

S
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boolean c; Exception EX = null;

try {c = e;}

catch (Exception ex) {EX = ex; c = false;}

if (EX 6= null) foreach (p: Ie(R, g)) throw EX;

if (c)

i-foreach (p: Ie(R, g)) phased
S

3. Loop unswitching (try-catch):

i-foreach (p: Ie(R, g)) phased
try {

S1

} catch (E e) S2
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try {

finish i-foreach (p: Ie(R, g)) phased
S1

} catch (MultiException e) {

Region newR = new Region();

for (p: Ie(R, g)) {

ex = e.exceptions[p];

if (ex 6= null && ex instanceof E)

newR.add(p);

}

i-foreach (p: newR) phased {
Exception e = e.exceptions[p];

S2

}

foreach (Exception ex: e.exceptions())

if (ex 6= null && !(ex instanceof E)) {throw ex;}

}

4. Loop distribution:

i-foreach (p: Ie(R, g)) phased {
S1;

S2

}
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Exception exArr[] = new Exception [R.size()];

boolean exFlag[] = new boolean [R.size()];

i-foreach (p: Ie(R, g)) phased
try {S1}

catch (Exception e) {exFlag[p] = true; throw e;}

Region newR = new Region();

for (p: Ie(R, g)) if (!exFlag[p]) newR.add(p);

i-foreach (p: newR) phased
S2;

5. Next-Contraction

i-foreach (p: Ie(R, g)) phased
next

=⇒







next

Figure 13: Rules for loop interchange, unswitching, distribution, and next contraction in the presence of
exceptions.



(newR) for which no exception has been thrown. For any ex-
ception thrown, it is stored in an array and after the whole
loop is executed, the contents of the array are individually
thrown in an asynchronous manner.

Loop unswitching: If the predicate of the if statement is
loop invariant and is side effect free, then we can compute
the predicate outside the loop as shown in Rule 2.

Loop unswitching (try-catch): A try block within a foreach
statement can be lifted out of the loop, by treating the try
block and the catch block as two computations in sequence
(the catch block is executed conditionally). We have to catch
all the exception that might be thrown in the try-block.
We do so, by first unswitching and then enclosing the inner
i-foreach with a finish statement. As shown in Rule 3,
any exception thrown in S1 is caught by the finish and is
thrown as a MultiException. In the catch statement, we an-
alyze the MultiException, and execute S2 inside a i-foreach
loop over all the points for which we had caught an excep-
tion while executing S1 (newR). All the exceptions that are
not caught by the catch-clause (exception not of type E) are
thrown to the next level.

Loop distribution: Given the body of a foreach loop to
be {S1; S2}, after the loop distribution, S2 is executed only
by those iterations where S1 did not throw any exception.
We create a new region newR to represent the collection of
points that executed S1 normally (did not throw an excep-
tion outside) and use it to iterate over S2 as shown in Rule 4.

Next simplification: This rule is same as the rule presented
in Figure 9.

Serialization of i-foreach statements must respect their
exception semantics. We present below the rule for serial-
ization in the presence of exceptions.

i-foreach (p: Ie(R, g)) phased
S

=⇒











for(p:Ie(R, g))
try {S}
catch (Exception e)
{async throw e;}

In each iteration, we catch any exception that is thrown and
throw it asynchronously. This guarantees that we throw all
the caught exceptions with the same semantics as the origi-
nal foreach loop.

5. EXPERIMENTAL RESULTS
In this section, we present experimental results obtained

using the compiler framework shown in Figure 14. The input
programs are written in X10 (v 1.5) language [5] extended
with phasers [20], but the approach is applicable to chunking
of parallel loops with synchronization in other languages as
well. We modified the Polyglot-based front-end for X10 [24]
to emit a new Parallel Intermediate Representation (PIR)
extension to the Jimple intermediate representation in the
SOOT bytecode analysis and transformation framework [22].
The PIR includes explicit constructs for parallel operations
such as foreach, async and finish. The transformations
described in Section 3 are performed in the PIR Analysis &
Optimization component, after which the PIR is translated
to Java bytecodes. The transformed Java class files are ex-
ecuted using the X10 runtime based on the ThreadPoolEx-
ecutor utility from the java.util.concurrent library [2].

In this section, we report results for the 11 benchmarks
listed in Table 1. The asterisk-ed benchmarks contain foreach

loops with phaser next operations3; compiler analysis was

3In most cases, next was used as a barrier, but in one case
(SOR), next was used for point-to-point synchronization as
described in [20].

Polyglot 
Frontend

Source Code

AST

PIR Gen

Parallel Intermediate 
Representation

PIR Analysis &  
Optimization (e.g. 
Loop Chunking)

Java Class Files

Soot PIR Framework

ByteCode 
Gen

Figure 14: Soot-based PIR Compiler Framework
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Figure 15: Speedup for JGF Benchmarks with Au-
tomatic Chunking for 64 threads on an UltraSPARC
T2 SMP

necessary to establish the absence of next operations for the
other benchmarks. All results were obtained on a 64-way (8
cores × 8 threads per core) 1.2 GHz UltraSPARC T2 (Nia-
gara 2) with 32 GB main memory running Solaris 10, using a
Java 5 Runtime Environment (build 1.5.0 12-b04) with Java
HotSpot Server VM (build 1.5.0 12-b04, mixed mode) and
the “-Xms1000M -Xmx1000M” options to set the heap size
to 1GB. For all runs, the main program was extended with a
30-iteration loop within the same Java process, and the best
of the 30 times was reported in each case so as to reduce the
impact of JIT compilation time in the performance results,
in accordance with the methodology reported in [9]. For the
X10 runtime options, -NUMBER_OF_LOCAL_PLACES was set to
1 and -INIT_THREADS_PER_PLACE was set equal to the num-
ber of worker threads for which the measurement was being
performed.

5.1 Performance Results for Automatic Chunk-
ing of Foreach Loops

In this section, we present results on a 64-way Sun Ultra-
SPARC T2 server for the following variants of each bench-
mark:
• Serial. Sequential Java version without any parallel con-



Benchmark Source Benchmark Suite Data Size
Crypt, FFT, LUFact*, Series Java Grande Forum (JGF) Benchmarks v2.0 Section 2 Size C (largest)

SOR*, SparseMatmult JGF Benchmarks thread v1.0 Section 2 Size C (largest)
Euler*, MonteCarlo, RayTracer JGF Benchmarks v2.0 Section 3 Size B (largest)

MolDyn* JGF Benchmarks v2.0 Section 3 Size A(smallest)
CG* Nas Parallel Benchmarks Size A (between sizes S,W,A,B,C)

Table 1: List of benchmarks

finish {

final phaser ph = new phaser(single);

foreach (point [j]:[1:n-1]) phased(single(ph)) {
for (k = 0; k < nm1; k++) {

int l = idamax(...,a[k],...) + k;

...

if (a[k][l] != 0) {

next { // Barrier with single stmts

... dscal(...,a[k],...); }
if (j >= k+1) {

... daxpy(...a[k],...,a[j],...); } }

...

next; // Barrier

} } }

Figure 16: LUFact kernel loop before chunking

finish {

final phaser ph = new phaser(single);

final int np = getNumProc();
foreach (point [g]:[0:np-1]) phased(single(ph)) {

for (k = 0; k < nm1; k++) {

int l = idamax(...,a[k],...) + k;

...

if (a[k][l] != 0) {

next { // Barrier with single stmts

... dscal(...,a[k],...); }
for (point [j] : Ie([1:n-1], g)) {

if (j >= k+1) {

... daxpy(...a[k],...,a[j],...); } } }

...

next; // Barrier

} } }

Figure 17: LUFact kernel loop after chunking

structs from the original benchmark release. This version is
used as the baseline for all speedup results.
• NoChunk. Fine-grained parallel X10 version using the
finish, foreach and next statements. As described in [5],
this corresponds to a high productivity variant for single
place execution.
• Chunk. This version is the result of automatic compiler
transformation of the NoChunk version using the foreach

loop chunking transformations described in Section 3. A
simple static chunking policy (one contiguous chunk per pro-
cessor) was used in all cases. The next section includes
hand-coded results for alternate chunking policies for two
benchmarks.

Figure 15 shows the speedup obtained for the all bench-
marks shown in Table 1 with 64 threads. The data size
used for each benchmark is shown in the last column of
Table 1; we used the largest input size for all benchmarks
except MolDyn and CG for which the NoChunk versions could
not complete execution for the largest sizes. We measured
speedup relative to the original Java serial version. As shown
in the chart, the fine-grained NoChunk case can lead to sig-
nificant overhead — for 8 of 11 benchmarks (Crypt, FFT,
LUFact, SOR, Euler, MolDyn, RayTracer, CG) the NoChunk
parallel version on 64 threads was much slower than the Se-
rial version on 1 thread, by three orders of magnitude in
one case. This is not surprising, since the relative over-
head of spawning each iteration of a foreach loop as a new
activity can be prohibitively large for fine-grained foreach

loops. The geometric mean of all speedups for the NoChunk
case is 0.73×. On the other hand, the Chunk case shows
that the techniques introduced in this paper are very effec-
tive in eliminating this overhead. None of the benchmarks
showed a slowdown, and the overall geometric mean speedup
is 11.3×. The geometric mean speedup among the bench-
marks that had next phaser operations was 6.8×. Among
all the benchmarks the largest gap was observed for Crypt

where the Chunk version ran more than 2180× faster than
the NoChunk case. Figure 16 shows the kernel parallel loop
of LUFact, which includes two barrier operations. Here, n is
2000 with Size C, and the speedup without foreach chunking
is less than one due to huge barrier overhead among 1999
activities. The foreach chunking transformation shown in
Figure 17 reduced # activities to the optimal number and
obtained 12.9× speedup. SOR, Euler, MolDyn and CG also
have next operations in the loop bodies of foreach loops.

5.2 Hand-coded Comparison of Different
Chunking Policies

The previous section presented performance results for au-
tomatic chunking of foreach loops using a fixed static chunk-
ing policy. It is well known that different chunking policies
may be best for different parallel loops depending on the
load imbalance and locality across different iterations. In
this section, we use hand-coded transformations to explore
the impact of chunking policy on two benchmarks, LUFact
and MolDyn. In future work, we plan to obtain these mea-
surements automatically by allowing the programmer to an-
notate a foreach loop with a desired chunking policy (as in
OpenMP), and by also investigating automatic selection of
chunking policies in the compiler.

These hand-coded performance results include some ad-
ditional transformations that we expect to include in a fu-
ture version of our compiler. Loop-invariant-code-motion
(LICM) moves the loop invariant code out of the foreach

loop. Given the example in Figure 10(c), if all of the operands



0

5

10

15

20

25

30

35

40

45

Size A Size B Size C

S
p

ee
d

u
p

 r
el

at
ed

 t
o

 S
er

ia
l 

Ja
v

a

LUFact

NoChunk Block Cyclic Block-Cyclic Dynamic

Size A Size B

MolDyn

0.03

8.7 9.0 9.0
6.2

0.1

23.0

27.3
26.6

25.6

0.3

30.4

39.4

34.9
35.9

0.4

19.7

30.5

26.9
28.5

27.9

40.0
39.4

40.7

Figure 18: Speedup for JGF LUFact and Mol-
Dyn with Hand-Optimized Chunking Policies for 64
threads on an UltraSPARC T2 SMP

in S1 are loop invariants in the i-foreach loop, then S1
can be moved outside the i-foreach and its surrounding
i-foreach can be eliminated as an empty loop. Another
optimization performed in the hand-coded version is con-
traction of reduction arrays as follows:

foreach ( point i : R ) phased(ph) {

A[i] = foo(i);

next { sum = A.sum; }

... }

If the compiler can recognize that array A is only used in a
reduction, a future extension to the foreach chunking trans-
formation should be able to replace A by a new array whose
size is equal to # processors.

We hand-coded four different scheduling policies to eval-
uate the impact of chunking on them:
1. Block. Statically divide the N iterations into P chunks
for P processors (one chunk of contiguous iterations per
processor) as in the Chunk case in the previous section.
The main difference between Chunk and Block is that the
Block version includes the additional hand-coded optimiza-
tions listed above.
2. Cyclic. Perform a cyclic partitioning of the iterations
into P chunks of non-contiguous iterations, so that each
chunk executes iterations that are P apart.
3. Block-cyclic. Divide the iteration space into H×P con-
tiguous chunks, where H is the number of “hops” and the
block size for each chunk is N/(H×P ). These H×P chunks
are assigned to the P processors in a cyclic manner. We used
H = 4 for the results in this section.
4. Dynamic. Create one activity per processor at the outer
level, but enable the activities to dynamically share chunks
of parallel loop iterations, with chunk size N/(H × P ) and
H = 4 as in the Block-cyclic case. This is analogous to work-
sharing parallel loops in an SPMD execution model except
that the Dynamic policy is augmented with locality improve-
ment techniques in our implementation where each activity
keeps a history of executed chunks and accessed data, and
uses it to take the next chunk.

Figure 18 shows the speedup for the JGF LUFact and
MolDyn benchmarks when using all 64 threads on an Ultra-
SPARC II. As we saw earlier, the versions without foreach
chunking are slower than serial execution for LUFact and
MolDyn (even with the hand-coded optimizations). Further,

the NoChunk version did not complete for Size B for MolDyn
due to OutOfMemory and other runtime errors resulting
from the creation of too many activities. On the other hand,
all the chunked versions show good speedup. The speedups
relative to the serial Java version for LUFact with Size C
(the largest size for LUFact) are 30.4× for Block, 39.4× for
Cyclic, 34.9× for Block-Cyclic, and 35.9× for Dynamic. It
is not surprising that Cyclic yields the best performance for
LUFact, since the work in each parallel iteration is embodied
in a triangular sequential loop. However, the other policies
deliver reasonable performance as well.

For MolDyn, the speedups relative to the serial Java ver-
sion for Size B (the largest size for MolDyn) are 27.9× for
Block, 40.0× for Cyclic, 39.4× for Block-Cyclic, and 40.7×
for Dynamic. The Dynamic policy worked best for MolDyn

because it was able to address load balancing issues without
compromising data locality.

6. RELATED WORK
There has been a lot of past work on reducing synchro-

nization and thread creation overheads. These include SP-
MDization [3], synchronization optimizations [8], and bar-
rier elimination [21]. Researchers have studied the impact
of loop chunking on different parameters of interest. Hari
et al. [12] use loop chunking as a means of efficient schedul-
ing temperature-aware code. OpenMP 3.0 [17] supports
different loop scheduling policies, as specified by the pro-
grammer, in parallel loops. However, the OpenMP language
framework is restrictive in its support for synchronization
operations inside parallel loops.

There has also been significant interest in loop schedul-
ing [14]. Akin to chunking, loop scheduling has been di-
rected at reducing the number of overall barriers and thread
creation overheads. The loop scheduling techniques also use
different loop transformation techniques (for example, loop
interchange and loop coalescing) to identify chunks of iter-
ations that can be scheduled together. Loop chunking can
be seen as a special version of loop scheduling where all the
iterations scheduled to be executed on the same processor
are executed sequentially.

We are not aware of any past work that supports chunking
of parallel loops in the presence of synchronization, as in this
paper, for languages that support dynamic parallelism with
fine grain synchronization.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a transformation framework

for chunking parallel loops in the presence of synchroniza-
tion operations and exceptions. We presented a systematic
method that extends past classical loop transformation tech-
niques to automate the loop chunking procedure in a safe
way. These transformations resulted in reduced synchro-
nization and scheduling overheads, thereby improving per-
formance and scalability. Our experimental results for 11
benchmark programs on an UltraSPARC II multicore pro-
cessor showed a geometric mean speedup of 0.52× for the
unchunked case and 9.59× for automatic chunking using the
techniques described in this paper. This wide gap under-
scores the importance of using these techniques in future
compiler and runtime systems for programming models with
lightweight parallelism.



We have also identified opportunities for further refine-
ment of the approach presented in this paper. As mentioned
earlier, our framework follows an all-or-nothing approach
with respect to transforming i-foreach loops; however, this
could be extended to transform selected i-foreach loops
and leave the others unchanged. In this work, we also as-
sumed that all programmer-specified conditions guarding a
next statement are invariant in the initial foreach loop,
even though we could handle cases when a next statement
is guarded by implicit exception conditions. An extension
that supports arbitrary conditional expressions as guards for
next operations is a challenging subject for future research.
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