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Abstract. OpenMP is a widely used programming standard for a broad
range of parallel systems. In the OpenMP programming model, syn-
chronization points are specified by implicit or explicit barrier opera-
tions within a parallel region. However, certain classes of computations,
such as stencil algorithms, can be supported with better synchronization
efficiency and data locality when using doacross parallelism with point-
to-point synchronization than wavefront parallelism with barrier syn-
chronization. In this paper, we propose new synchronization constructs
to enable doacross parallelism in the context of the OpenMP program-
ming model. Experimental results on a 32-core IBM Power7 system using
four benchmark programs show performance improvements of the pro-
posed doacross approach over OpenMP barriers by factors of 1.4× to
5.2× when using all 32 cores.

1 Introduction

Multicore and manycore processors are now becoming mainstream in the
computer industry. Instead of using processors with faster clock speeds, all
computers— embedded, mainstream, and high-end systems — are being built
using chips with an increasing number of processor cores with little or no in-
crease in clock speed per core. This trend has forced the need for improved
productivity in parallel programming models. A major obstacle to productivity
lies in the programmability and performance challenges related to coordinat-
ing and synchronizing parallel tasks. Effective use of barrier and point-to-point
synchronization are major sources of complexity in that regard. In the OpenMP
programming model [1, 2], synchronization points are specified by implicit or ex-
plicit barrier operations, which force all parallel threads in the current parallel
region to synchronize with each other1. However, certain classes of computations
such as stencil algorithms require to specify synchronization only among particu-
lar iterations so as to support doacross parallelism [3] with better synchronization
efficiency and data locality than wavefront parallelism using all-to-all barriers.

In this paper, we propose new synchronization constructs to express cross-
iteration dependences of a parallelized loop and enable doacross parallelism in

1 This paper focuses on extensions to OpenMP synchronization constructs for parallel
loops rather than parallel tasks.
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the context of the OpenMP programming model. Note that the proposed con-
structs aim to express ordering constraints among iterations and we do not
distinguish among flow, anti and output dependences. Experimental results on
a 32-core IBM Power7 system using numerical applications show performance
improvements of the proposed doacross approach over OpenMP barriers by the
factors of 1.4–5.2 when using all 32 cores.

The rest of the paper is organized as follows. Section 2 provides background
on OpenMP and discusses current limitations in expressing iteration-level de-
pendences. This section also includes examples of low-level hand-coded doacross
synchronization in current OpenMP programs, thereby providing additional mo-
tivation for our proposed doacross extensions. Section 3 introduces the proposed
extensions to support cross-iteration dependence in OpenMP. Section 4 discusses
the interaction of the proposed doacross extensions with existing OpenMP con-
structs. Section 5 describes compiler optimizations to reduce synchronization
overhead and runtime implementations to support efficient cross-iteration syn-
chronizations. Section 6 presents our experimental results on a 32-core IBM
Power7 platform. Related work is discussed in Section 7, and we conclude in
Section 8.

2 Background

2.1 OpenMP

In this section, we give a brief summary of the OpenMP constructs [2] that are
most relevant to this paper. The parallel construct supports the functionality
to start parallel execution by creating parallel threads. The number of threads
created is determined by the environment variable OMP NUM THREADS, runtime
function omp set num threads or num threads clause specified on the parallel
construct. The barrier construct specifies an all-to-all barrier operation among
threads in the current parallel region2. Therefore, each barrier region must be
encountered by all threads or by none at all. The loop constructs, for construct
in C/C++ and do construct in Fortran, are work-sharing constructs to specify
that the iterations of the loop will be executed in parallel. An implicit barrier
is performed immediately after the loop region. The implicit barrier may be
omitted if a nowait clause is specified on the loop directive. Further, a barrier

is not allowed inside a loop region. The collapse clause on a loop directive
collapses multiple perfectly nested rectangular loops into a singly nested loop
with an equivalent size of iteration space. The ordered construct specifies a
structured block in a loop region that will be executed in the order of the loop
iterations. This sequentializes and orders the code within an ordered region
while allowing code outside the region to run in parallel. Note that an ordered

clause must be specified on the loop directive, and the ordered region must be
executed only once per iteration of the loop.

2 A region may be thought of as the dynamic or runtime extent of construct - i.e.,
region includes any code in called routines while a construct does not.
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1 #pragma omp p a r a l l e l for c o l l a p s e (2) ordered
2 for ( i = 1 ; i < n−1; i++) {
3 for ( j = 1 ; j < m−1; j++) {
4 #pragma omp ordered
5 A[ i ] [ j ] = s t e n c i l (A[ i ] [ j ] , A[ i ] [ j −1] , A[ i ] [ j +1] ,
6 A[ i −1] [ j ] , A[ i +1] [ j ] ) ;
7 } }
8 ( a ) Ordered cons t ruc t
9

10 #pragma omp p a r a l l e l p r i v a t e ( i 2 )
11 {
12 for ( i 2 = 2 ; i 2 < n+m−3; i 2++) { /∗ Loop skewing ∗/
13 #pragma omp for
14 for ( j = max(1 , i2−n+2) ; j < min(m−1, i 2 ) ; j++) {
15 int i = i 2 − j ;
16 A[ i ] [ j ] = s t e n c i l (A[ i ] [ j ] , A[ i ] [ j −1] , A[ i ] [ j +1] ,
17 A[ i −1] [ j ] , A[ i +1] [ j ] ) ;
18 } } }
19 (b ) Doal l with imp l i c i t b a r r i e r

Fig. 1. 2-D Stencil using existing OpenMP constructs: (a) serialized execution using
ordered construct, (b) doall with all-to-all barrier after loop skewing

2.2 Expressiveness of Loop Dependences in OpenMP

As mentioned earlier, a barrier construct is not allowed within a loop region,
and ordered is the only synchronization construct that expresses cross-iteration
loop dependences among for/do loop iterations. However, the expressiveness of
loop dependence by ordered construct is limited to sequential order and does not
cover general loop dependence expressions such as dependence distance vectors.
Figure 1a shows an example code for 2-D stencil computation using ordered.
The collapse clause on the for directive converts the doubly nested loops into a
single nest. This clause is used to ensure that the ordered region is executed only
once per iteration of the parallel loop, as required by the specifications. Although
the dependence distance vectors of the doubly nested loop are (1,0) and (0,1) and
hence it has doacross parallelism, the ordered construct serializes the execution
and no parallelism is available as shown in Figure 2a. An alternative way to
exploit parallelism is to apply loop skewing so as to convert doacross parallelism
into doall in wavefront fashion. Figure 1b shows the code after loop skewing
and parallelizing the inner j-loop using a for construct, which is followed by an
implicit barrier. As shown in Figure 2b, the major performance drawback of this
approach is using all-to-all barrier synchronizations, which are generally more
expensive than point-to-point synchronizations used for doacross. Further, this
requires programmer expertise in loop restructuring techniques - i.e., selecting
correct loop skewing factor and providing skewed loop boundaries.
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Fig. 2. Synchronization Pattern for 2-D Stencil

2.3 Examples of Hand-Coded Doacross Synchronization in Current
OpenMP Programs

Some expert users provide customized barriers/point-to-point synchronizations
based on busy-wait local spinning implementations [4] using additional volatile
variables for handling synchronization. Although such customized implementa-
tions can bring fully optimized performance, they require solid knowledge of
parallel programming and the underlying system and are easy to introduce error
and/or potential deadlock.

Examples can be found in the OpenMP version of the NAS Parallel Bench-
mark [5, 6], which is a widely used HPC benchmark suite since 1992. E.g., in
NPB3.3.1/NPB3.3-OMP/LU, the pipelining of the SSOR algorithm is achieved
by point-to-point synchronizations through extra synchronization variables,
busy-waiting, and flush directive for memory consistency. The code utilizes
OpenMP library functions, threadprivate directive in addition to the loop
construct with schedule(static) and nowait clauses. The end result is code
that is non-intuitive and unduly complicated.

Further, the LU implementation in NPB reveals a non-compliant usage of
nowait. Although it makes an assumption that a nowait is always enforced,
the OpenMP standard states that “... If a nowait clause is present, an imple-
mentation may omit the barrier at the end of the worksharing region.”. Because
of “may”, implementations are allowed to ignore the nowait and introduce a
barrier. However, if this happens, then the LU implementation will deadlock.

Our proposal aims to address all those issues regarding complexity and dead-
lock avoidance while keeping the synchronization efficiency via point-to-point
synchronizations.

3 New Pragmas for Doacross Parallelization

This section introduces our proposed OpenMP extensions to express general
cross-iteration loop dependences and thereby support doacross parallelization.
Due to space limitations, we focus on the pragma syntax for C/C++ in this pa-
per, although our proposal is naturally applicable to both C/C++ and Fortran.
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The proposed doacross annotations consist of nest clause to specify target
loops of doacross parallelization and post/await constructs to express source/
sink of cross-iteration dependences. Ideally, an await construct works as a block-
ing operation that waits for post constructs in specific loop iterations. The post
construct serves as the corresponding unblocking operation. According to the
OpenMP terminology, loops that are affected by a loop directive are called as-
sociated loops. For ease of presentation, we will call the associated loops that are
the target of doacross parallelization as a doacross loop nest. According to the
OpenMP specification [2], all the associated loops must be perfectly nested and
have canonical form.

– nest clause:
The “nest(n)” clause, which appears on a loop directive, specifies the nest-
level of a doacross loop nest. Although nest clause defines associated loops
as with collapse clause, there are two semantical differences from collapse

clause: 1) nest clause is an informational clause and does not necessarily im-
ply any loop restructuring, and 2) nest clause permits triangular/trapezoidal
loops, whereas collapse clause is restricted to rectangular loops.

– await construct:
The “await depend(vect)[[,] depend(vect)...]” construct specifies the source
iteration vectors of the cross-iteration dependences. There must be at least
one depend clause on an await directive. The current iteration is blocked
until all the source iterations specified by vect of depend clauses3 execute
their post constructs. Based on OpenMP’s default sequential semantics,
the loop dependence vector defined by depend clause must be lexicograph-
ically positive, and we also require that the dependence vector is constant
at compile-time so as to simplify the legality check. Therefore, we restrict
the form of vect to (x1 − d1, x2 − d2, ..., xn − dn), where n is the dimension
specified by the nest clause, xi denotes the loop index of i-th nested loop,
and di is a constant integer for all 1 ≤ i ≤ n 4. The dependence distance
vector is simply defined as (d1, d2, ..., dn). If the vect indicates an invalid
iteration (i.e., if vector (d1, . . . , dn) is lexicographically non-positive) then
the depend clause is ignored implying that there is no real cross-iteration
dependence. The await is a stand-alone directive without associated exe-
cutable user codes and designates the location where the blocking operation
is invoked. Note that at most one await construct can exist in the lexical
scope5 of the loop body of a doacross loop nest.

– post construct:
The “post” construct indicates the termination of the computation that
causes loop dependences from the current iteration. This stand-alone

3 The depend clause is also under consideration for expressing “inter-task” depen-
dences for task construct in OpenMP 4.0.

4 It is a simple matter to also permit + operators in this syntax since xi + d is the
same as xi − (−d).

5 This means await and post cannot be dynamically nested inside a function invoked
from the loop body because they are closely associated with the induction variables
of the doacross loop nest.
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1 #pragma omp p a r a l l e l for nest (2 )
2 for ( i = 1 ; i < n−1; i++) {
3 for ( j = 1 ; j < m−1; j++) {
4 #pragma omp await depend ( i −1, j ) depend ( i , j−1)
5 A[ i ] [ j ] = s t e n c i l (A[ i ] [ j ] , A[ i ] [ j −1] , A[ i ] [ j +1] ,
6 A[ i −1] [ j ] , A[ i +1] [ j ] ) ;
7 } }
8 ( a ) I t e r a t i on−l e v e l dependences : e x p l i c i t await at top and

imp l i c i t post at bottom
9

10 #pragma omp p a r a l l e l for nest (2 )
11 for ( i = 1 ; i < n−1; i++) {
12 for ( j = 1 ; j < m−1; j++) {
13 int tmp = foo (A[ i ] [ j ] ) ;
14 #pragma omp await depend ( i −1, j ) depend ( i , j−1)
15 A[ i ] [ j ] = s t e n c i l (tmp , A[ i ] [ j −1] , A[ i ] [ j +1] ,
16 A[ i −1] [ j ] , A[ i +1] [ j ] ) ;
17 #pragma omp post
18 B[ i ] [ j ] = bar (A[ i ] [ j ] ) ;
19 } }
20 (b) Statement−l e v e l dependences : e x p l i c i t await b e f o r e l i n e

15 and e x p l i c i t post a f t e r l i n e 16

Fig. 3. 2-D Stencil with the doacross extensions

directive designates the location to invoke the unblocking operation. Anal-
ogous to await construct, the location must be in the loop body of the
doacross loop nest. The difference from await construct is that there is an
implicit post at the end of the loop body. Note that the parameter in the
nest clause determines the location of the implicit post. Due to the presence
of the implicit post, it is legal to have no post constructs inserted by users
while the explicit post is allowed at most once. The implicit post becomes
no-op when the invocation of the explicit post per loop body is detected at
runtime. Finally, it is possible for an explicit post to be invoked before an
await in the loop body.

Figure 3 contains two example codes for the 2-D stencil with the doacross ex-
tensions that specify cross-iteration dependences (1, 0) and (0, 1). As shown in
Figure 3a, programmers can specify iteration-level dependences very simply by
placing an await construct at the start of the loop body and relying on the im-
plicit post construct at the end of the loop body. On the other hand, Figure 3b
shows a case in which post and await are optimally placed around lines 15 and
16 to optimize statement-level dependences and minimize the critical path length
of the doacross loop nest. Note that functions foo and bar at lines 13 and 18 do
not contribute to the cross-iteration dependences; foo can be executed before the
await and bar can execute after the post. The post/await constructs semanti-
cally specify the source/sink of cross-iteration dependences and allow flexibility
on how to parallelize the doacross loop nest.
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4 Interaction with Other OpenMP Constructs

This section discusses the interaction of the proposed doacross extensions with
the existing OpenMP constructs. We classify the existing constructs into three
categories: 1) constructs that cannot be legally used in conjunction with the
doacross extensions, 2) constructs that can be safely used with the doacross
extensions, and 3) constructs that require careful consideration when used with
the doacross extensions.

4.1 Illegal Usage with Doacross

The nest, await and post constructs make sense only in the context of loops.
So the usage of these constructs along with the sections, single and master

constructs are illegal. Similarly using them with a parallel region without an
associate loop construct is illegal, e.g., #pragma omp parallel for nest() is
legitimate but #pragma omp parallel nest() is not.

4.2 Safe Usage with Doacross

The nest, await and post constructs are to be used in conjunction with loops
only. The doacross extension can be safely used with the following clauses.

– private/firstprivate/lastprivate clauses:
These are data handling clauses that appear on a loop construct. Because
they are only concerned with the data and have not affect on loop scheduling
nor synchronization, it is always safe to use with the doacross extensions.

– reduction clause:
This clause appears on a loop directive and specifies a reduction opera-
tor, e.g., + and *, and target variable(s). Analogous to private constructs,
reduction clause can be safely combined with the doacross constructs.

– ordered construct:
The ordered clause to appear on a loop directive serializes loop iterations as
demonstrated in Section 2. The ordered construct specifies a statement or
structured block to be serialized in the loop body. Because loop dependences
specified by await constructs are lexicographically positive, any doacross de-
pendence does not go against with the sequential order by the ordered con-
struct, and hence the combination of ordered and await constructs creates
no theoretical deadlock cycle.

– collapse clause:
The collapse clause attached on a loop directive is to specify how many
loops are associated with the loop construct, and the iterations of all as-
sociated loops are collapsed into one iteration space with equivalent size.
We allow the combination of collapse clause and nest clause in the fol-
lowing manner. When collapse(m) and nest(n) clauses are specified on
a loop nest whose nest-level is l, the loop transformation due to collapse

clause is first processed and the original l-level loop nest is converted into
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a (l − m + 1)-level loop nest. Then, the nest(n) clause and correspond-
ing post/await constructs are applied to the resulting loop nest. Note that
l ≥ m+ n− 1, otherwise it results in a compile-timer error.

– schedule clause:
The schedule clause attached on a loop directive is to specify how the
parallel loop iterations are divided into chunks, which are contiguous non-
empty subsets, and how these chunks are distributed among threads. The
schedule clause supports several loop scheduling kinds: static, dynamic,
guided, auto and runtime, and allows users to specify the chunk size. As
discussed in Section 5, any scheduling kind and chunk size are safe to use
with the doacross extensions.

– task construct:
The task construct to define an explicit task is available within a loop region.
Analogous to ordered construct, we prohibit a post construct from being
used within a task region since such a post will have a race condition with
the implicit post at the loop body end.

– atomic/critical constructs:
The atomic and critical constructs to support atomicity and mutual ex-
clusion respectively can be used within a loop region. In order to avoid
deadlock, we disallow a critical region to contain an await construct as
with ordered construct.

– simd construct:
The simd construct, which will be introduced in the OpenMP 4.0, can be ap-
plied to a loop to indicate that the loop can be transformed into a SIMD loop
(that is, multiple iterations of the loop can be executed concurrently using
SIMD instructions). We disallow simd clause and nest clause from appear-
ing on the same loop construct due to conflict in semantics, i.e., nest clause
implies loop dependence while simd mentions SIMD parallelism. Instead, we
allow SIMD loop(s) to be nested inside a doacross loop nest.

4.3 Constructs Requiring Careful Consideration

The lock routines supported in the OpenMP library can cause a deadlock when
interacted with the await construct, especially under the following situation: 1)
an await construct is located between lock and unlock operations and 2) a post

construct is located after the lock operation. It is user’s responsibility to avoid
such deadlock situations due to the interaction.

5 Implementation

This section describes a simple and efficient implementation approach for the
proposed doacross extensions to OpenMP; however, other implementation ap-
proaches are possible as well. Our approach only parallelizes the outermost loop
of the doacross loop nest and keeps inner loops as sequential to be processed
by a single thread. The loop dependences that cross the parallelized iterations
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are enforced via runtime point-to-point synchronizations. Figure 2c shows the
synchronization pattern of this approach for the doacross loop in Figure 3, where
the outer i-loop is parallelized and its cross-iteration dependence, (1, 0), is pre-
served by the point-to-point synchronizations. In order to avoid deadlock due to
the point-to-point synchronization, the runtime loop scheduling must satisfy a
condition that an earlier iteration of the parallel loop is scheduled to a thread
before a later iteration. According to the OpenMP Specification (lines 19–21
in page 49 for 4.0 RC2) [2], this condition is satisfied by any OpenMP loop
scheduling policy. Note that the same condition is necessary for ordered clause
to avoid deadlock. Further, any chunk size can be used without causing deadlock.
However, chunk sizes greater than the dependence distance of the parallel loop
significantly reduce doacross parallelism. Therefore, we assume that the default
chunk size for doacross loops is 1. Further, the default loop schedule is static
so as to enable the lightweight version of synchronization runtime as discussed
in Section 5.2.

5.1 Compiler Supports for Doacross Extension

The major task for compilers is to check the legality of the annotated informa-
tion via the nest and post/await constructs, and convert the information into
runtime calls to POST/WAIT operations. Further, we introduce a compile-time
optimization called dependence folding [7], which integrates the specified cross-
iteration dependences into a conservative dependence vector so as to reduce the
runtime synchronizations [7].

Legality Check and Parsing for Doacross Annotations: As with collapse

clause, the loop nest specified by nest clause must be perfectly nested and have
canonical loop form [2]. To verify nest clauses, we can reuse the same check
as collapse clause. The legality check for await, depend and post constructs
ensure 1) at most one post/await directive exists at the nest-level specified by
the nest clause, 2) the dependence vector of a depend clause is lexicographically
positive and constant, and 3) the dimension of the dependence vector is same as
the parameter of the nest clause.

After all checks are passed and the optimization described in next paragraph is
applied, the doacross information is converted into the POST and WAIT runtime
calls. The locations for these calls are same as the post/await constructs. The
argument for the POST call is the current iteration vector (x1, x2, ..., xn), while
the argument for the WAIT call is defined as (x1 − c1, x2 − c2, ..., xn − cn) by
using the conservative dependence vector discussed below.

Dependence Folding: In order to reduce the runtime synchronization
overhead, we employ dependence folding [7] that integrates the multiple cross-
iteration dependences specified by the await construct into a single conservative
dependence. First, we ignore dependence vectors whose first dimension - i.e., the
dependence distance of the outermost loop - is zero because such dependences
are always preserved by the single thread execution. The following discussion
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assumes that any dependence vector has a positive value in the first dimension
in addition to the guarantee of constant dependence vectors.

For an n-th nested doacross loop with k dependence distance vectors, let
Di = (di1, d

i
2, ..., d

i
n) denote the i-th dependence vector (1 ≤ i ≤ k). We define

the conservative dependence vector C = (c1, c2, ..., cn) of all k dependences as
follow.

C =

(
C[1] : (c1)

C[2..n] : (c2, c3, ..., cn)

)
=

(
gcd(d11, d

2
1, ..., d

k
1)

min vect(D1[2..n], D2[2..n], ..., Dk[2..n])

)

Because the outermost loop is parallelized, the first dimension of Di, di1, denotes
the stride of dependence across parallel iterations. Therefore, the first dimension
of C should correspond to the GCD value of d11, d21, ..., dk1 . The remaining
dimensions, C[2..n], can be computed as the lexicographical minimum vector of
D1[2..n],D2[2..n], ...,Dk[2..n] because such a minimum vector and the sequential
execution of inner loops should preserve all other dependence vectors. After
dependence folding, the conservative dependence C is used for the POST call as
described in the previous paragraph.

5.2 Runtime Supports for POST/WAIT Synchronizations

This section briefly introduces the runtime algorithms of the POST/WAIT op-
erations. When the loop schedule kind is specified as static, which is the de-
fault for doacross loops, we employ the algorithms introduced in our previous
work [7]. For other schedule kinds such as dynamic, guided, auto, and runtime,
we use the following simple extensions. Figure 4 shows the pseudo codes for
the extended POST/WAIT operations. To trace the POST operations, we pro-
vides a 2-dimensional synchronization field sync vec[lw : up][1 : n], where lw/up
is the lower/upper bound of the outermost loop and n is the nest-level of the
doacross loop nest. Because the iteration space of the outermost loop is paral-
lelized and scheduled to arbitrary threads at runtime, we need to trace all the
parallel iterations separately while the status of an iteration i (lw ≤ i ≤ up) is
represented by sync vec[i][1 : n]. During the execution of inner loops by a single
thread, the thread keeps updating the sync vec[i] via the POST operation with
the current iteration vector pvec, while the WAIT operation is implemented as
a local-spinning until the POST operation corresponding to the current WAIT is
done - i.e., sync vec[i] becomes greater or equal to the dependence source itera-
tion vector wvec. As shown at Line 9 of Figure 4, the WAIT operation becomes
no-op if the wvec is outside the legal loop boundaries.

6 Experimental Results

In this section, we present the experimental results for the proposed doacross
extensions in OpenMP. The experiments were performed on a Power7 system
with 32-core 3.55GHz processors running Red Hat Enterprise Linux release 5.4.
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1 volat i le int sync vec [ lw : up ] [ 1 : n ] ;
2
3 void post ( int pvec [ 1 : n ] ) {
4 int i = pvec [ 1 ] ; /∗ Outermost loop index va lue ∗/
5 for ( int j = n ; j > 0 ; j−−) sync vec [ i ] [ j ] = pvec [ j ] ;
6 }
7
8 void wait ( int wvec [ 1 : n ] ) {
9 i f ( out s ide l oop bounds (wvec ) ) return ; /∗ i n v a l i d awai t ∗/

10 int i = wvec [ 1 ] ; /∗ Outermost loop index va lue ∗/
11 while ( vector compare ( sync vec [ i ] , wvec ] ) < 0) s l e e p ( ) ;
12 }

Fig. 4. Pseudo codes for POST and WAIT operations

The measurements were done using a development version of the XL Fortran 13.1
for Linux, which supports automatic doacross loop parallelization in addition to
doall parallelization. Although we use the Fortran compiler and benchmarks for
our experiments, essential functionalities to support the doacross paralleliza-
tion are also common for any C compilers. We used 4 benchmark programs
for our evaluation: SOR and Jacobi, which are variants of the 2-dimensional
stencil computation, Poisson computation, and 2-dimensional LU from the NAS
Parallel Benchmarks Suite (Version 3.2). All these benchmarks are excellent can-
didates for doacross parallelization. All benchmarks were compiled with option
“-O5” for the sequential baseline, and “-O5 -qsmp” for the parallel executions.
a) omp doacross is the speedup where the doacross parallelism is enabled by the
proposed doacross extensions (right), b) omp existing is the speedup where the
same doacross parallelism is converted into doall parallelism via manual loop
skewing and parallelized by the OpenMP loop construct (center), and c) auto
par represents the speedup where the automatic parallelization for doall and
doacross loops by the XL compiler is enabled (left). As shown below, auto par
does not always find the same doacross parallelism as omp doacross. We used
default schedule kind and chunk size, i.e., static with chunk size = 1 for omp
doacross and auto par, and static with no chunk size specified for omp existing.

6.1 SOR and Jacobi

Figure 5 shows the kernel computation of SOR, which repeats mjmax×mimax

2-D stencil by nstep times. We selected nstep = 10000, mjmax = 10000 and
mimax = 100 so as to highlight the existing OpenMP performance with loop
skewing. Jacobi has a very similar computation to SOR and both have the same
pattern of cross-iteration dependences. For the proposed doacross extensions,
we specified the outermost l-loop and middle j-loop as doubly nested doacross
loops with cross-iteration dependences (1,-1) and (0,1). For the existing OpenMP
parallelization, we converted the same doacross parallelism into doall via loop
skewing.
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1 ! $omp p a r a l l e l do nest (2 )
2 do 10 l = 1 , nstep
3 do 10 j = 2 , mjmax
4 ! $omp await ( l −1, j +1) await ( l , j−1)
5 do 10 i = 2 , mimax
6 p( i , j )=(p( i , j )+p( i +1, j )+p( i −1, j )+p( i , j +1)+p( i , j−1) ) /5
7 10 continue
8 ! $omp end p a r a l l e l do

Fig. 5. SOR Kernel

Figure 6 shows the speedups of the three versions listed above when compared
to the sequential execution. As shown in the Figure 6a and 6b, omp doacross has
better scalability than omp existing for both SOR and Jacobi despite of the same
degree of parallelism. This is mainly because the doacross version enables point-
to-point synchronizations between neighboring threads, which is more efficient
than the all-to-all barrier operations by the existing approach. The version of
auto par applied doacross parallelization to the middle j-loop and innermost i-
loop; the scalability is worse than the manual approaches due to the finer-grained
parallelism. Note that the outermost l-loop is time dimension and difficult for
compilers to automatically compute dependence distance vectors. The enhanced
dependence analysis in the XL compiler should be addressed in future work

6.2 Poisson

The kernel loop of Poisson is also a triply nested doacross loop with size of
400×400×400. As with SOR and Jacobi, omp doacross and omp existing use
the doubly nested doacross parallelism of the outermost and middle loops, and
the innermost loop is executed without any synchronization. Figure 6c shows
the doacross version has better scalability due to the point-to-point synchro-
nizations. On the other hand, although auto par exactly detected all the depen-
dence distance vectors and applied doacross parallelization at the outermost loop
level, it parallelized the loop nest as a triply nested doacross and inserted the
POST/WAIT synchronizations at the innermost loop body. Note that auto par
applies compile-time and runtime granularity controls (loop unrolling and POST

canceling, respectively) based on the cost estimation [7]. However, selecting the
doacross nest-level as 2 brought more efficiency for the manual versions as shown
in Figure 6c. The automatic selection of doacross nest-level is another important
future work for the doacross parallelization by the XL compiler.

6.3 LU

LU has 2 doacross loop nests in subroutines blts and buts, which are 160×160
doubly nested doacross loops and account for about 40% of the sequential execu-
tion time. As observed for other benchmarks, omp doacross has better scalability
than omp existing due to the synchronization efficiency. For the case of LU, both
omp doacross and auto par use the same doacross parallelism. A difference is that
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Fig. 6. Speedup related to sequential run on Power7

the granularity control is disabled for omp doacross since we should not assume
such optimizations in the language specification. However, the execution cost for
the doacross loop bodies in blts and buts is not small; disabling granularity
control did not result in large performance degradation with up to 8 cores, and
even better/same performance was shown with 32/16 cores because increasing
granularity can also affect the amount of parallelism.

7 Related Work

There is an extensive body of literature on doacross parallelization and point-
to-point synchronization. In this section, we focus on past contributions that are
most closely related to this paper.

Some of the seminal work in synchronization mechanism was done by Padua
and Midkiff [8, 9], where they focused on synchronization techniques for single-
nested doacross loops using synchronization variable per loop dependence. MPI
supports several functions for point-to-point synchronization and communica-
tion among threads, such as MPI send and MPI recv. As a recent research out-
come, phasers in the Habanero project [10] and java.util.concurrent.Phaser

from Java 7, which was influenced by Habanero phasers [11], support point-
to-point synchronizations among dynamically created tasks. Further, a large
amount of existing work on handling non-uniform cross-iteration dependences
at runtime [12–15] have been proposed.
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There is also a long history on doacross loop scheduling and granularity con-
trol [3, 16–18] and compile-time/runtime optimizations for synchronizations [19–
21]. These techniques are applicable to the proposed doacross extensions.

8 Conclusions

This paper proposed new synchronization constructs to express cross-iteration
dependences of a parallelized loop and enable doacross parallelism in the con-
text of OpenMP programming model. We introduced the proposed API designs
and detailed semantics, and discussed the interaction with the existing OpenMP
constructs. Further, we described the fundamental implementations for compil-
ers and runtime libraries to support the proposed doacross extensions. Exper-
imental results on a 32-core IBM Power7 system using numerical applications
show performance improvements of the proposed doacross approach over exist-
ing OpenMP approach with additional loop restructuring by factors of 1.4–5.2
when using all 32 cores. Opportunities for future research include performance
experiments with different program sizes and platforms, explorations for the
combination with other OpenMP features, e.g., simd and task constructs, and
generalization of point-to-point synchronization aiming for the support of task
dependence in OpenMP 4.0.
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