
Automatic Parallelization of Pure Method
Calls via Conditional Future Synthesis

Rishi Surendran
Rice University

Houston, TX, USA
rishi@rice.edu

Vivek Sarkar
Rice University

Houston, TX, USA
vsarkar@rice.edu

Abstract
We introduce a novel approach for using futures to automat-
ically parallelize the execution of pure method calls. Our
approach is built on three new techniques to address the
challenge of automatic parallelization via future synthesis:
candidate future synthesis, parallelism benefit analysis, and
threshold expression synthesis. During candidate future syn-
thesis, our system annotates pure method calls as async ex-
pressions and synthesizes a parallel program with future ob-
jects and their type declarations. Next, the system performs
a parallel benefit analysis to determine which async expres-
sions may need to be executed sequentially due to overhead
reasons, based on execution profile information collected
from multiple test inputs. Finally, threshold expression syn-
thesis uses the output from parallelism benefit analysis to
synthesize predicate expressions that can be used to deter-
mine at runtime if a specific pure method call should be ex-
ecuted sequentially or in parallel.

We have implemented our approach, and the results ob-
tained from an experimental evaluation of the complete sys-
tem on a range of sequential Java benchmarks are very en-
couraging. Our evaluation shows that our approach can pro-
vide significant parallel speedups of up to 7.4× (geometric
mean of 3.69×) relative to the sequential programs when us-
ing 8 processor cores, with zero programmer effort beyond
providing the sequential program and test cases for paral-
lelism benefit analysis.

Categories and Subject Descriptors D.1.3 [Program-
ming Techniques]: Concurrent Programming—Parallel pro-
gramming; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages—Program analysis;

I.2.2 [Artificial Intelligence]: Automatic Programming—
Program Synthesis, Program Transformation

Keywords Futures, Automatic Parallelization

1. Introduction
Parallelizing programs to effectively utilize multicore archi-
tectures is a major challenge facing application developers
and domain experts. In this paper, we introduce a novel ap-
proach for automatically parallelizing pure method calls us-
ing futures as the primary parallel construct. A method is
pure [18, 32] if it (or any method that it calls) does not mu-
tate any object in the program state that exists before the
method is invoked. However, a pure method is permitted to
mutate objects that are allocated during its execution and re-
turn a newly constructed object as the result. Further, a pure
method is allowed to read global state that may be later mu-
tated by the method’s caller.

Automatic parallelization is a very challenging problem
in general. As an example, the current state of the art in au-
tomatic parallelization of loops with array accesses (includ-
ing program dependence graphs [12] and polyhedral frame-
works [11]) was developed over four decades with many re-
strictions along the way with respect to array subscript ex-
pressions and procedure calls in loops. The seminal papers in
this field (e.g. [21]) included results for simple loop nests,
and it took many years for the original ideas to be refined
and applied to real-world programs. This paper is the first to
address the problem of automatic parallelization by generat-
ing futures, which is different from past work on automatic
loop/statement-level parallelization using control and data
dependences since future references can be copied without
waiting for the result to be computed.

A future [15] (or promise [22]) refers to an object that
acts as a proxy for a value, because the computation of
the value may still be in progress as a parallel task. In the
notation used in this paper, the statement, “future<T> f =

async<T> Expr;” creates a new child task to evaluate the
expression Expr asynchronously, where T is the type of the
expression Expr. It also assigns to f a reference to a handle
(future object) for the return value from Expr. The operation

1 class TreeNode {
2 private TreeNode left , right;
3 ...
4 TreeNode bottomUpTree(int item , int depth){
5 if (depth > 0) {
6 TreeNode l = bottomUpTree (2*item -1,

depth -1);
7 TreeNode r = bottomUpTree (2*item , depth -1);
8 return new TreeNode(l, r, item);
9 } else {

10 return new TreeNode(item);
11 }
12 }
13 ...
14 int itemCheck () {
15 ...
16 return item + left.itemCheck () -

right.itemCheck ();
17 }
18 }

Figure 1: Sequential Binary Tree program [23] from Computer
Language Benchmarks Game

f.get() can be performed to obtain the result of the future
task. If the future task has not completed as yet, the task
performing the f.get() operation blocks until the result
of Expr becomes available. There are a number of runtime
approaches (e.g., [19]) that can be employed to reduce the
overhead of the blocking operations related to futures.

Futures are traditionally used for enabling functional
style parallelism, and therefore, are a natural fit for paral-
lelizing the execution of pure method calls. They also have
the advantage that references to future objects can be copied
without waiting for the future tasks to have completed,
thereby exposing more parallelism than in imperative-style
task parallel constructs. Finally, the synchronization patterns
that can be expressed by structured fork-join models (such
as OpenMP’s task parallelism [26], Cilk’s spawn-sync [2]
parallelism) are inherently limited to series-parallel com-
putation graphs, while futures can be used to generate any
arbitrary computation graph.

As an example, consider the program from the Computer
Language Benchmarks Game [23] in Figure 1, which con-
structs a binary tree using method bottomUpTree and then
performs a traversal of the tree using method itemCheck.
The program after parallelization using the approach pre-
sented in this paper (using a test input that constructs a
tree with height = 14) is shown in Figure 2. The paral-
lelization algorithm made the following changes to the pro-
gram: 1) The construction of the tree is performed as fu-
ture tasks, if the current depth1 is greater than or equal to
a certain threshold; 2) The types of the fields left and
right and variables l and r are changed from TreeNode

to mayfuture<TreeNode>, where mayfuture<T> may re-
fer to a future<T> object or an object of type T; 3) A
new constructor is added to the TreeNode class which ac-
cepts mayfuture<TreeNode> as its first and second argu-

1 This benchmark uses a parameter named depth for what might usually be
considered to be the height of the node. For example, the depth parameter
is zero for all leaf nodes.

1 class TreeNode {
2 private mayfuture<TreeNode> left , right;
3 static int THRESHOLD = 12;
4 ...
5 TreeNode bottomUpTree(int item , int depth){
6 if (depth > 0) {
7 mayfuture<TreeNode> l, r;
8 if (depth -1 >= THRESHOLD) {
9 l = async<TreeNode> {

10 return bottomUpTree (2*item -1, depth -1);
11 }
12 } else
13 l = bottomUpTree (2*item -1, depth -1);
14 if (depth -1 >= THRESHOLD) {
15 r = async<TreeNode> {
16 return bottomUpTree (2*item , depth -1);
17 }
18 } else
19 r = bottomUpTree (2*item , depth -1);
20 return new TreeNode(l, r, item);
21 } else {
22 return new TreeNode(item);
23 }
24 }
25 ...
26 int itemCheck () {
27 ...
28 return item + left.get().itemCheck () -

right.get().itemCheck ();
29 }
30 }

Figure 2: Binary Tree program from Figure 1 after parallelization
using the approach presented in this paper. Our implementation
does the transformations on Java bytecode. The equivalent source
code is shown here.

ments; and, 4) get() calls are inserted before the result of a
future/mayfuture object is used. Another important aspect
of our approach is that even though both bottomUpTree

and itemCheck are pure methods, our approach only paral-
lelizes the execution of the bottomUpTree method since the
work performed by itemCheck is not profitable for paral-
lelization. Compared to using imperative-style task parallel
constructs, this program has more parallelism because it per-
forms a get() only when the result of the future task is used
in line 28 of Figure 2. If the same program is parallelized
using imperative-style constructs such as spawn-sync or
async-finish, the parallelized program will require syn-
chronization to ensure that the tasks created in line 9 and
line 15 complete before the constructor invocation in line 20
of Figure 2.

In summary, the main contributions of this paper are as
follows:

• A static analysis algorithm for future synthesis that can be
used to synthesize a parallel program with future objects,
their type declarations, and async expressions. Our ap-
proach synthesizes object clones when needed, and gen-
erates more precise type information for future objects,
compared to future synthesis algorithms reported in past
work for manual parallelization.
• A parallelism benefit analysis algorithm, which deter-

mines the profitability of executing a method call as a

 Candidate
Future

Synthesis

Input Sequential
Program

Parallel
Program

with Futures
(Useful

Parallelism)
Parallel

Program
with Futures

(Ideal
Parallelism)

Unconditional
Futures

Threshold
Expressions for

Conditional
Futures

Parallelism
Benefit

Analysis

Threshold
Expression
Synthesis

Final Future
Synthesis

Test Inputs

Method Purity
Analysis Pure

Methods

Conditional Futures
w/ Profile Information

Figure 3: High-level view of our approach. The dotted lines represent user inputs and outputs. The grey box (Method Purity Analysis)
represents past work leveraged by our approach, whereas the other boxes represent new contributions.

future task. The analysis is based on execution profile in-
formation collected from multiple test inputs.
• An algorithm to synthesize threshold conditional expres-

sions, which determine dynamically whether a specific
method call should be executed sequentially or in paral-
lel.
• These algorithms have been implemented as analyses

and transformations to generate parallel Habanero Java
(HJ) [6] code from sequential Java code, and evaluated on
a range of benchmark programs. When using 8 processor
cores, the evaluation shows that our approach can provide
significant parallel speedups of up to 7.4× (geometric
mean of 3.69×).

The rest of the paper is organized as follows. Section 2
presents an overview of our approach. Sections 3-6 describe
the technical details of our solution. Section 7 contains our
experiment results. Section 8 discusses related work, and
Section 9 summarizes our conclusions.

2. Overview of Our Approach
A high-level view of our approach is given in Figure 3.
The five main steps in automatic parallelization of eligible
method calls are as follows:

1. Method Purity Analysis: The first step in our approach
is the identification of pure methods. Our implementa-
tion uses past work (ReImInfer [18]) on automatic purity
analysis to identify pure methods in Java programs, but
can also be applied to programs in which methods are
annotated as pure by the programmer.

2. Candidate Future Synthesis (CFS): Our tool annotates
calls to a subset of the pure methods identified by ReIm-
Infer as async expressions. (The subset focuses on meth-

ods containing iterative/recursive subcomputations, so as
not to overwhelm later instrumentation phases with triv-
ial and unprofitable candidates for execution as future
tasks.) Next, we generate a parallel program by synthe-
sizing futures from the async expressions. The synthe-
sis algorithm is presented in Section 3 and involves two
steps: 1) inter-procedural future analysis, which deter-
mines the locations in the input program where a future
object may be accessed, as well as the types of the future
objects and 2) future transformations, which changes the
types of future objects and inserts future get operations.

3. Parallelism Benefit Analysis (PBA): Once we have a
parallel program with futures, we construct Weighted
Computation Graphs (WCGs) for the program for each
of the given test inputs. (The choice of test inputs only
impacts the performance, not the correctness, of paral-
lelization.) The weights of the nodes in the WCG repre-
sent the work done by each of the steps and the overheads
of task creation, task termination and synchronization op-
erations. The weighted computation graphs are then an-
alyzed to identify tasks that provide benefit from paral-
lelization. Based on the analysis results, each method call
site is classified as serial, parallel or conditional parallel.
The parallelism benefit analysis algorithm is presented in
Section 4.

4. Threshold Expression Synthesis (TES): For call sites
that are identified as conditional parallel by PBA, this
step synthesizes an expression that enables conditional
parallel execution of method invocations. The threshold
expression identifies a subset of method invocations at
the call site, for which the work done by the method
is greater than a certain threshold, which we refer to as

1 class TreeNode {
2 private TreeNode left , right;
3 ...
4 TreeNode bottomUpTree(int item , int depth){
5 if (depth > 0) {
6 TreeNode l = async bottomUpTree (2*item -1,

depth -1);
7 TreeNode r = async bottomUpTree (2*item ,

depth -1);
8 return new TreeNode(l, r, item);
9 } else {

10 return new TreeNode(item);
11 }
12 }
13 ...
14 int itemCheck () {
15 ...
16 return item + async left.itemCheck () - async

right.itemCheck ();
17 }
18 }

Figure 4: Binary Tree program from Figure 1 after pure function
analysis and async expression annotation

sequential threshold. The threshold expression synthesis
algorithm is presented in Section 5.

5. Final Future Synthesis: In the last step, we generate
parallel code from the input sequential program based
on the analysis done by the previous steps. This involves
cloning inputs when needed, annotation of parallel call
sites as async expressions, and conditional annotation of
conditional parallel call sites as async expressions. The
final future synthesis step is described in Section 6.

3. Candidate Future Synthesis
In this section, we present our approach for synthesizing
futures in a program annotated with async expressions. The
async expressions that serve as the source for synthesis are
inserted based on the output of method purity analysis. The
program from Figure 1 after async expression annotation
using method purity analysis is shown in Figure 4. The two
functions bottomUpTree and itemCheck do not cause any
side-effects, and their calls are therefore marked as async

expressions. The async expression annotated program is then
passed as input for future synthesis.

The synthesis process involves the following steps:

1. Replacing async expressions by typed future expres-
sions.

2. Identifying inputs that need to be cloned in the final
future synthesis step.

3. Analyzing the whole program and modifying the types of
variables and fields that can refer to a future object. Their
type is changed from T to future<T>, if the variable or
field must refer to a future at all program points where
the variable/field is accessed. If the variable or field may
refer to a future, the type is changed to mayfuture<T>.
This is in contrast to past work [27] in which all future
variables/fields were declared with an Object type in

Statement Data flow function

t := async e; λY .(Y ∪ {t})

x := new τ ; λY .(Y − {x})

x.f := t; λY .(if t ∈ Y then Y ∪ {f} else Y)

t := x.f; λY .(if f ∈ Y then Y ∪ {t} else Y)

x := t; λY .(if t ∈ Y then Y ∪ {x} else Y)

Figure 5: Examples of normal flow function for computing M
(may-be-future)

both cases, and cast operations were inserted whenever
they needed to be accessed as future objects (Section 3.1).

4. Identify methods that perform non-constant amount of
work and are candidates for asynchronous execution
(Section 3.2).

5. Insertion of calls to get() before the result of a fu-
ture task is used, along with instanceof checks when
needed for mayfuture objects.

Section 3.1 presents an inter-procedural data flow analy-
sis that identifies the locations in the program where a future
object may be accessed, as well as the types of the future ob-
jects. Section 3.2 presents an algorithm to identify methods
that perform non-constant amount of work and are candi-
dates for asynchronous execution, and Section 3.3 discusses
how our transformation preserves the data dependences in
the input program.

3.1 Inter-procedural Future Analysis

As indicated earlier, past work on future synthesis did not an-
alyze the types of the future objects. Instead, they set the type
of all future objects to Object in Java programs as in [27], or
worked with untyped programs as in MultiLisp [15]. In con-
trast, our work attempts to determine the most precise type
information for future objects as possible. We do so by using
the IFDS [28] algorithm as the foundation for solving the
future-analysis problem. IFDS can be used to compute the
meet-over-all-valid-paths solution for all inter-procedural, fi-
nite, distributive subset problems. In the IFDS framework,
the input program is represented as a directed graph called
the super graph. The super graph consists of a collection of
flow graphs, one for each procedure in the input program.
The analysis is solved in polynomial time by reducing it to a
graph-reachability problem.

The goal of the analysis is to find the set of variables
and fields that may/must refer to a future object during all
its accesses in the program, as well as the most precise
type that can be identified statically for the future object,
where a future object is the result of any expression of the
form async expr. Our analysis finds the solution to two
problems: may-be-future and must-be-future. The solution to
the must-be-future problem is computed as the complement
of the solution to the may-not-be-future problem. At any

given statement,M represents the set of variables and fields
that may-be-future andN represents the set of variables and
fields that may-not-be-future. TheM andN sets need not be
disjoint; in fact, the most conservative solution is to simply
state that all variables and fields belong to both sets.

Normal flow functions are applied to all statements that
contain neither call nor return statements. Examples of nor-
mal flow functions for computingM are given in Figure 5.
An async expression generates a future object, whereas the
result of a new expression cannot be a future object. The
other three kinds of assignment statements may propagate
a reference to a future object from the right-hand side to
the left-hand side of the assignment. Our analysis builds on
type-based alias analysis [9], and its precision can be im-
proved by incorporating more complex alias analysis algo-
rithms into the framework. However, more precise whole
program alias analysis could be a scalability bottleneck for
large applications. One drawback of using type-based alias
analysis is that all elements of arrays of type τ in the pro-
gram will be marked as may-future if any future object is
stored into an array of type τ . We assume a universe Var of
variable names, F of field names, T of class names, where
x,t,r,a0,...an,p0,...pn ∈ Var , f ∈ F , and τ ∈ T .

Call flow functions handle the data flow from a method
call statement into the called procedure. The context change
from the body of the caller to the body of the callee is
modeled by replacing references to actual parameters, ai by
references to formal parameters, pi. All fields that may be a
future at the call site may also be a future at the start node of
the callee. The call flow function at the call site, c is shown
below, where ai

c−−→ pi represents the binding of the actual
parameter ai to the formal parameter pi.

λY .{∀i, pi | ai ∈ Y ∧ ai
c−−→ pi}∪{f | f ∈ Y ∧ f ∈ F}

At a return statement, the data flow set at the callee is
mapped back to the caller by the return flow function. The
return value, r in the callee is mapped to the left hand side
of the assignment in the caller. All fields that may be a future
in the callee may also be a future at the call site. Return flow
function at the call site, c is given below, where r

c−−→ x

represents the binding of the return value, r in the callee to
the variable x in the caller.

λY .{x | r ∈ Y ∧ r c−−→ x} ∪ {f | f ∈ Y ∧ f ∈ F}
A call-to-return flow function intra-procedurally propa-

gates data flow values that are independent of the call. The
call-to-return flow function for computingM is the identity
function.

The may-not-be-future analysis is performed after may-
be-future analysis. Examples of normal flow functions for
may-not-be-future analysis are given in Figure 6. The main
difference relative to may-be-future is in the functions for
the async and the new expressions. The synthesis algo-
rithm does not create a future task from an async expres-
sion, async e, if e may be a future object (thereby ensuring

Statement Data flow function

s: t := async e; λY .(if e ∈M(s) then Y ∪ {t} else Y)

x := new τ ; λY .(Y ∪ {x})

x.f := t; λY .(if t ∈ Y then Y ∪ {f} else Y)

t := x.f; λY .(if f ∈ Y then Y ∪ {t} else Y)

x := t; λY .(if t ∈ Y then Y ∪ {x} else Y)

Figure 6: Examples of normal flow function for computing N
(may-not-be-future)

1 class TreeNode {
2 private future<TreeNode> left , right;
3 ...
4 TreeNode bottomUpTree(int item , int depth){
5 if (depth > 0) {
6 future<TreeNode> l = async<TreeNode> {
7 return bottomUpTree (2*item -1, depth -1);
8 }
9 future<TreeNode> r = async<TreeNode> {

10 return bottomUpTree (2*item , depth -1);
11 }
12 return new TreeNode(l, r, item);
13 } else {
14 return new TreeNode(item);
15 }
16 }
17 ...
18 int itemCheck () {
19 ...
20 future<Integer> li = async<Integer> {
21 return left.get().itemCheck ();
22 };
23 future<Integer> ri = async<Integer> {
24 return right.get().itemCheck ();
25 };
26 return item + li.get() - ri.get();
27 }
28 }

Figure 7: Binary Tree program after synthesis of futures

that no nested futures are created). Therefore the flow func-
tion for s: t := async e; checks that e ∈ M(s), before
adding t toN , whereM(s) denotes the set of variables and
fields that may refer to a future immediately before statement
s.

The result of future analysis are the sets M and N ,
which will be available after the IFDS algorithm converges.
The algorithm has worst-case complexity O(ED3), where
E is the number of control-flow edges (or statements) of the
analyzed program and D is the size of the analysis domain,
where the domain consists of the set of all variables and
fields in the program. We have not found this worst-case
complexity to be a limitation in practice.

Appendix A contains the details of the transformation
step based on the result of the data flow analysis. The pro-
gram from Figure 4 after synthesis of futures is shown
in Figure 7. The calls to bottomupTree and itemCheck

are translated to future tasks. The types of the local vari-
ables l and r and fields left and right are changed to
future<TreeNode>. The synthesis algorithm also inserts

get operations before the use of future objects in lines 20-
26. Note that the synthesis algorithm does not insert get
operations in line 12, where references to future objects are
passed as arguments to the TreeNode constructor.

3.2 Candidate Future Identification

Our tool annotates calls to a subset of the pure methods
identified by ReImInfer as async expressions. Although it is
safe to execute all pure method calls as future tasks, it is not
beneficial to execute method calls that perform insignificant
work as separate tasks. Therefore, we identify methods that
perform repetitive computations as candidates, by analyzing
the call graph of the program and control flow graphs of each
of the methods in the program.

Algorithm 1 Async method identification
Input: Call Graph of the Program , CFGs of each of the Methods
Output: Set of async methods A, Set of non-async methods S

1: for each M ∈ {M1, ..,Mn} do
2: if (ISLEAF(M) and not HASLOOPS(M)) or
3: not ISPURE(M) or HASEXCEPTIONS(M) then
4: S ← S ∪ {M}
5: end if
6: if (ISRECURSIVE(M) or HASLOOPS(M)) and
7: ISPURE(M) and not HASEXCEPTIONS(M) then
8: A← A ∪ {M}
9: end if

10: end for
11: Worklist ← {M1, ..,Mn} − S −A
12: while Worklist 6= ∅ do
13: M ← EXTRACT(Worklist)
14: async ← False

15: for each C ∈ CALLEES(M) do
16: if C ∈ A then
17: A← A ∪ {M}
18: async ← True

19: break
20: end if
21: end for
22: if async = False then
23: S ← S ∪ {M}
24: end if
25: end while

Algorithm 1 classifies the methods in the input program
as async methods and non-async methods. A method
is classified as an async method if it or any method that
it calls contains repetitive structures in the form of loops
or recursive cycles. This classification is refined later in
the Parallelism Benefit Analysis (PBA) step. Lines 1-10 of
Algorithm 1 initialize the sets A and S, which are the set of
async methods and set of non-async methods respectively.
S is initialized to contain all non-pure methods and leaf
methods (methods which do not call other methods) with
no loops in the method body. A is initialized to contain
methods that are either recursive or contain a loop, with two
further constraints: the method must be pure (ISPURE(M)),

and must not throw any exceptions (HASEXCEPTIONS(M)
is false).

Purity ensures that asynchronous execution of the method
with a future result will not result in non-deterministic be-
havior (provided that any input variables that may be mu-
tated after the method call are cloned, as discussed in Sec-
tion 3.3). Exceptions represent a special kind of side effect
that is typically not included in the scope of purity analysis.
A common assumption in defining the semantics of excep-
tions with futures is to propagate any exception thrown by
the asynchronous task at the point when the get() operation
is performed. However that approach makes it challenging
to execute foo() asynchronously in scenarios such as the
following,

try { x = foo() ; } catch { } ; y = x.z;

in which any exception thrown by foo() in the sequential
version will be “swallowed” before the result of x is accessed
as x.z, while, under common assumptions, x.get().z

could throw an exception in the parallel version. The not
HASEXCEPTIONS(M) check ensures that this situation will
not occur in our approach. While it is possible to identify
some weaker sufficient conditions to be used as a replace-
ment for not HASEXCEPTIONS(M), our experience has been
that the not HASEXCEPTIONS(M) check provides a simple
and effective means for ensuring correctness of our approach
in the presence of exception semantics without limiting par-
allelism in practice.

The loop in lines 12-25 iteratively adds the remaining
methods to S and A. The EXTRACT method extracts a
method M from the worklist such that all the methods in-
voked by M are already classified as async or non-async.
A method that calls an async method is added to A and a
method that calls only non-async methods is added to S.

3.3 Preserving Data Dependences

The parallel program after future synthesis is data race free
and deterministic if it preserves all data dependences in the
input sequential program. Purity analysis ensures that asyn-
chronous execution of the candidate future methods do not
violate flow (Read after Write) and output (Write after Write)
dependences, since pure methods do not mutate global data.
To preserve anti (Write after Read) dependences in the input
program, our algorithm copies (clones) all mutable data read
by candidate futures and the future tasks performs all reads
on the copied data. A weaker sufficient condition (which
leads to less copying) is to copy all memory locations, L
such that L ∈ READ(F) ∩MOD(C), where F is the can-
didate future function, and C is the continuation after the
call to F . READ is computed by standard side-effect anal-
ysis, and MOD is computed by a backward data flow analy-
sis on the inter-procedural control flow graph, where READ
and MOD represent the read set and modification set respec-
tively.

4. Parallelism Benefit Analysis
Section 3 presented the analysis for synthesizing a parallel
program, in which all pure method invocations are executed
asynchronously. We refer to this program as a parallel pro-
gram with ideal parallelism, which has the smallest possi-
ble critical path length (CPL) if we ignore all overheads of
parallelism including those arising from task creation, task
termination, and task synchronization. In practice, these op-
erations can incur significant overhead, and it is necessary
to ensure that every task has sufficient granularity to justify
the task creation, task termination, and synchronization over-
heads, and there is parallelism benefit that arises from each
task creation. We now present an algorithm to classify in-
vocations of a pure method, M at call site c into one of the
following three classes:

• Sequential: A method call is classified as sequential
if all invocations of M at call site c must be executed
sequentially.
• Parallel: A method call is classified as parallel if all

invocations of M at call site c can be executed asyn-
chronously.
• Conditional Parallel: A method call is classified as con-

ditional parallel if a subset of the invocations of M at c
must be executed asynchronously and the rest must be
executed sequentially. In this case, the determination of
whether a specific dynamic call should be executed se-
quentially or in parallel will be made by evaluating an au-
tomatically synthesized predicate expression at runtime.

The classification algorithm first constructs a data struc-
ture called the weighted computation graph (WCG), which
is introduced in Section 4.1. Next, Section 4.2 presents an
algorithm that uses the WCG to classify the calls into the
three categories listed above. The WCG construction algo-
rithm takes as input the parallel program with ideal paral-
lelism synthesized by the algorithm in Section 3 and one or
more test inputs for the program.

4.1 Weighted Computation Graph

A weighted computation graph (WCG) is a directed acyclic
graph that is built at runtime to capture 1) the happens-
before relationships among the step instances of a parallel
program’s execution, 2) the work done by each of the steps,
and 3) the overheads incurred in task creation, task termina-
tion, and synchronization. Computations are represented in
the WCG using step nodes, which are defined as follows:

Definition 1. A step node represents a maximal sequence
of statement instances such that no statement instance in the
sequence includes the start or end of an async or a future get
operation.

Definition 2. The weighted computation graph (WCG) for a
given execution is a directed acyclic graph with five different
types of nodes:

• A step node, Sn represents a sequential computation. The
weight of step node is the total number of instructions
executed to complete the step.
• A spawn node Fn represents the creation of child task.

The weight of spawn node Tspawn represents the over-
head in the parent task for task creation. This weight in-
cludes the overhead of copying the mutable data read by
the child task.
• A join node Jn represents the join operation with another

task. The weight of join node Tjoin represents the over-
head of a join operation in the waiter task.
• A start node Bn is the first step in a task. The weight of

start node Tstart represents the overhead of creating and
scheduling a task.
• An end node En is the last step in a task. The weight of

end node Tend represents the overhead of task termina-
tion.

Next, we discuss how to build the WCG during program
execution. We first instrument the parallel program with
ideal parallelism generated by the algorithm in Section 3.
The instrumented program is then executed on a test input
in serial, depth-first order (like a sequential Java program)
to construct the WCG. The instrumented code performs the
WCG construction as follows: When the main task starts
execution, the WCG will contain two nodes: 1) B1 which
corresponds to the start node of the main task and 2) step
node S1 which corresponds to the starting computation in-
side main. The edge B1 → S1 represents the ordering be-
tween B1 and S1.
Future Task Creation When a task Ta creates a child task
Tb, a spawn node Fi is created and an edge is inserted from
Sj to Fi, where Sj is the step immediately preceding the
spawn operation in Ta. A start node Bk corresponding to Tb
is created and an edge is inserted from Fi to Bk. Task Tb
is now executed, and the next node N (step, spawn, join, or
end node) is added as a successor of Bk.
Future Task Termination When a task Tb completes execu-
tion, an end node Ei is created and an edge is inserted from
Sj to Ei, where Sj is the last step in Tb. The program exe-
cution now continues in Ta which is the parent task of Tb.
The next node to be added is the successor of Fk which is
the spawn node in Ta corresponding to the creation of Tb.
Future Join When task Ta performs a join operation on task
Tb, a join node Ji is created, and an edge is inserted from Sj

to Ji, where Sj is the step immediately preceding the join
operation in Ta. An edge is inserted from Ek to Ji, where
Ek is the end node in Tb. Execution of Ta continues at node
N , which is the successor of Ji.
Example The WCG for the Binary Tree program in Figure 7
for input depth=2 is shown in Figure 8. The weights of
each of the nodes are shown above the node. Task T1 which
consists of the directed path from B1 to E1 is the main
task. T2, T3, T4, T5, T6, and T7 are future tasks created in

B1 S11 F11 F12 S12 J11 J12 F13 F14 J13 J14

B2 S21 F21 F22 S22 E2

B3 S31 F31 F32 S32 E3

B4 S41 E4

B5 S51 E5

B6 S61 E6

B7 S71 E7

B8 S81 J81 J82 S82 E8

B9 S91 J91 J92 S92 E9

T1

T2

T9

T8

T6

T3

T4

T5 T7

WB WE

WB

WB

WB

WB

WE

WE
WE

WE

WE

WEWB

WB

WB

WB

WF WF

WF WF

WF WF

WF WF

WS11 WS12
S13

WJ WJ WJ WJ

WJ WJ

WJ WJ

WS13

WS21 WS22

WS31 WS32

WS41

WS51 WS71

WS61

WS81

WS91

WS82

WS92

spawn

join

WE

WE

E1

Figure 8: Weighted computation graph for Binary Tree program in Figure 7 for depth=2

line 6 and line 9 for the invocations of bottomupTree. T8
and T9 are future tasks created in line 20 and line 23 for
the invocation of itemCheck. This WCG demonstrates the
generality of synchronization patterns possible with futures.
For instance, the edge from E7 to J92 (T7 to T9) due to the
future get operation is not possible in more structured fork-
join models.

4.2 Classification of Pure Function Calls

We now analyze the WCG to identify tasks that give no bene-
fit from asynchronous execution. Based on this analysis, we
classify pure method invocations as parallel, sequential or
conditional parallel. For every task Ta, our analysis tries to
answer two questions: 1) Is the work done by task Ta of suf-
ficiently coarse granularity to justify the task creation, task
termination, and synchronization overhead? and 2) Is there
sufficient work that can be overlapped with the execution of
Ta? We use the critical path length (CPL) as the cost metric
for evaluating the profitability of parallelization, where the
critical path is defined as follows.

Definition 3. The critical path of a weighted computation
graph is the longest weighted path in the WCG, where the
weight of a path is the sum of the weights of all the nodes
included in the path.

Algorithm 2 presents our approach for evaluating the par-
allelism benefit for each of the tasks in the WCG. The algo-
rithm takes as input the WCG, G and the set of all tasks, T.
The outputs of the algorithm are the set of parallel tasks, P
and the set of serial tasks, S. The algorithm uses a greedy
strategy, evaluating the tasks in bottom-up, right-to-left or-
der. The algorithm merges a task with its parent, if executing
that particular task asynchronously does not yield any bene-
fit. The bottom-up approach ensures that the tasks of smaller
granularity are first considered as merge candidates. Eval-
uating the right siblings of a task Ta as merge candidates
before Ta itself ensures that the algorithm obtains a more

Algorithm 2 Parallelism benefit analysis
Input: Computation graph G, Set of tasks T
Output: Set of sequential tasks S, Set of parallel tasks P

1: for each t ∈ T do
2: if WORK(t) < Tspawn then
3: S ← S ∪ {t}
4: G← MERGEPARENT(G, t)
5: Visited ← Visited ∪ {t}
6: end if
7: end for
8: for each t ∈ T − V isited do
9: P ← P ∪ {t}

10: if CHILDREN(t) = ∅ and RIGHTSIBLINGS(t) = ∅ then
11: Worklist ←Worklist ∪ {t}
12: end if
13: end for
14: CPL← LONGESTPATH(G)
15: while Worklist 6= ∅ do
16: Remove t from Worklist
17: Visited ← Visited ∪ {t}
18: G′ ← MERGEPARENT(G, t)
19: CPL′ ← LONGESTPATH(G′)
20: if CPL′ < CPL then
21: G← G′

22: P ← P − {t}
23: S ← S ∪ {t}
24: CPL← CPL′

25: end if
26: for each t1 ∈ T −Visited do
27: if (CHILDREN(t1) ∪ RIGHTSIBLINGS(t1))
28: ∩Visited = ∅ then
29: Worklist ←Worklist ∪ {t1}
30: end if
31: end for
32: end while

B1 E1

S1

S3

F2
J2

J1

J3

S2

S4

S5

S6

S7

S8

S9

S1 S3 S2

S4

S5

S6

S7

S8

S9

Ta
MergeParent(Ta)

Figure 9: Merge Parent transformation on the computation graph, where the task Ta is merged with its parent.

accurate estimate of the total work in the continuation be-
fore making a decision on the profitability of executing Ta
asynchronously. Lines 1-7 of Algorithm 2 classify a task as
serial and merges it with its parent if the total work done by
the task is less than Tspawn. Lines 8-13 initialize the work-
list with the set of tasks which have no children and no right
siblings. The set of parallel tasks P is initialized to contain
all non-serial tasks. Lines 15-32 remove a task t from the
worklist, classifies it as serial/parallel and updates the work-
list with tasks which are ready to be evaluated. Lines 18-25
merge t with its parent and checks if the CPL after merging
is smaller than the CPL before merging. If the merging re-
sults in a smaller CPL, the task t is classified as serial, and
the WCG is updated.

Figure 9 shows an example of the MERGEPARENT trans-
formation on the WCG, where the task Ta is merged with its
parent. F2 is the spawn node corresponding to the task Ta
in the parent task. Task Ta consists of the step node S3 in
addition to the start node and the end node. There are three
separate join nodes corresponding to Ta, which are J1, J2,
and J3. The dotted edges from S2 to S4, S5, and S6 repre-
sent paths in the WCG. The MERGEPARENT transformation
removed the spawn, start, end, and join nodes corresponding
to Ta and inserted S3 along the path from S1 to S2 where S1

and S2 are the nodes preceding and succeeding the spawn
node F2 in the WCG. This transformation ensures that there
are paths from S3 to S7, S8, and S9 which are successor
nodes of the join nodes in the input WCG.

Our approach performs parallelism benefit analysis sep-
arately on each of the WCGs corresponding to each of the
test inputs. The output of parallelism benefit analysis is the
set of serial and parallel tasks. Next, we merge the output of
parallelism benefit analysis for all WCGs at a particular call
site and identify parallel and conditional parallel call sites.
Classifying call sites as serial, parallel, and conditional par-
allel based on this output is straightforward. If all instances
of a method at a particular call site are serial/parallel, then
that call site is classified as serial/parallel. If only a subset of
instances of a method at a particular call site are serial, we
mark it as conditional parallel.

5. Threshold Expression Synthesis
Parallelism benefit analysis classifies the pure method calls
as sequential, parallel, and conditional parallel. Conditional
parallel calls are method calls that should be executed asyn-

1 mayfuture<T> x;
2 if (cond)
3 x = async<T> { return obj.f(a1, .., an);};
4 else
5 x = obj.f(a1, .., an);

Figure 10: Conditional parallel execution of method call
obj.f(a1, an)

chronously only if the work done by the method is greater
than the sequential threshold, which is the minimum amount
of work (in terms of instruction count) that must be done by
a task to justify the task overhead. For a method invocation
obj.f(a1, an), which is classified as conditional parallel,
our goal is to generate the code shown in Figure 10. The
conditional expression cond determines if the work done by
f is greater than the sequential threshold and we refer to this
as the threshold expression.

The work done by a pure method call obj.f(a1, an) typ-
ically depends on 1) the type of obj, because a class hi-
erarchy can contain multiple implementations for the same
method and the type of obj determines which implemen-
tation of f is invoked, 2) the values of the arguments of
f, and 3) the values of the fields of obj. For example, the
total work done by the recursive Fibonacci function int

fib(int n) depends on n and the work done by a sort func-
tion int[] sort(int[] A) depends on A.length. Here n
and A.length represent the problem sizes for the two func-
tions respectively.

While instrumenting the input program for WCG con-
struction, we also instrument it to collect the following in-
formation for each invocation of a method f executed as a
future task:

• The type T of the receiver object X
• The problem size parameters p1, .., pk of f, which con-

sists of

The values of numeric type arguments of f

The values of numeric type fields of arguments of f

The values of numeric type fields of X, where X is the
receiver object of f

The size of collection/data structure (List, Array,
String) type arguments of f

• The cumulative work, w done by f and all the methods
that it calls. The work is computed in terms of the number
of instructions executed.

Since f is a pure method, the threshold expression for f is
usually a function of the problem size parameters and the
type of the receiver object.

At each conditional parallel call site, the profile informa-
tion is divided based on the type of the receiver object. Note
that the profile information for each conditional parallel call
site from multiple test inputs is merged before threshold ex-
pression synthesis. For each receiver type T, we construct a
matrix, M with k + 1 columns, where columns 1 to k con-
tains the values of the problem size parameters p1 to pk, and
column k + 1 contains work w. For most pure methods, the
problem size is one of p1, .., pk. In other cases, the problem
size is an expression involving two or more of the param-
eters p1, .., pk. Our approach finds the threshold expression
by performing a search on the space of expressions formed
from p1, .., pk and a set of arithmetic operators. Our current
implementation handles arithmetic operators +, -, min and
max. The search algorithm looks for an expression e, such
that e has a monotonic relationship with w – as the value of
e increases, so does the value of w. We use Spearman’s rank
correlation [30] coefficient, ρ as the metric for monotonicity.
Spearman’s correlation coefficient assesses how well the re-
lationship between two variables X and Y can be described
using a monotonic function. Note that ρ is a non-parametric
measure and is not based on a possible relationship of a pa-
rameterized form (such as a linear relationship). The value
of ρ lies between +1 and -1 inclusive, where 1 is a total pos-
itive correlation, 0 is no correlation, and -1 is a total neg-
ative correlation. Our algorithm starts by computing ρ be-
tween each of the problem size parameters pi and the work
w. If the algorithm finds a pi which has high rank correla-
tion to w (ρ(pi, w) > ρthreshold, where ρthreshold = 0.9),
the algorithm terminates returning pi as the problem size. If
none of the parameters has high correlation with w, the al-
gorithm computes the correlation of expressions involving
two parameters such as pi + pj and pi − pj . This is done by
constructing a new matrix in which each of the columns cor-
responds to an expression. The search continues with larger
expressions until an expression with the desired correlation
is found or when the algorithm has explored all expressions
of size n, where n is a tuning parameter for the search. This
search algorithm for an expression with syntactic constraints
which meets a correctness specification (high correlation) is
similar in spirit to syntax guided synthesis [1]. If TES for a
call site c is unable to find a threshold expression, we clas-
sify c as parallel/serial based on the frequency of parallel/se-
rial invocations in the output of parallelism benefit analy-
sis. Next, we find the minimum value, v of e for which the
method must be executed asynchronously by a lookup ofM .
This information on which rows in M corresponds to paral-
lel execution is available from parallelism benefit analysis.

The result of threshold expression synthesis for a given re-
ceiver type T is the expression ((obj instanceof T) ∧
(e ≤ v)) or ((obj instanceof T) ∧ (e ≥ v)), depending
on whether the correlation between the expression and the
work is positive or negative. The final threshold expression
is a disjunction of threshold expressions for each of the re-
ceiver types. The instanceof check can be eliminated if the
declared type of the receiver object is same as T. Appendix B
presents the full algorithm for threshold expression synthe-
sis.

As an example, consider the int[] mergesort(int

a[], int start, int end) function, which sorts the el-
ements of array a[] starting at index start and ending at
index end. The problem size parameters for this function are
1) a.length, which is the length of the array a, 2) start
and 3) end. The TES algorithm computes the rank correla-
tion between each of these parameters and the work w did
by the function. The algorithm continues the search since
none of these parameters have a high correlation with the
work. Next, the algorithm computes the correlation between
expressions involving two parameters such as a.length +

start, start + end, and end - start. Finally, the al-
gorithm returns end - start as the threshold expression,
since it has a high correlation to the work done by the func-
tion.

6. Final Future Synthesis
The last step in our parallelization tool is the generation of
parallel code, in which pure method calls which are found
to be beneficial by the analysis in Section 4 are executed
asynchronously (and the others are executed sequentially).
The inputs to the parallel code generation are the input
sequential program, the set of parallel call sites, the set of
conditional parallel call sites and the threshold expressions
for each of the conditional parallel call sites computed by the
algorithm in Section 5. (Note that this step uses the original
sequential program as input, and not the parallel program
from Section 3.)

The final future synthesis step includes the following
steps:

1. Generate conditional statements at conditional parallel
call sites using threshold expressions. The true branch
represents the case where the work done by the method is
greater than the sequential threshold and the false branch
represents the case where the work done by the method
is less than the sequential threshold. We annotate the
method call in the true branch as an async expression.

2. Annotate all parallel call sites as async expressions

3. Clone all inputs to each pure method that may be mod-
ified in any of the continuations that follow each of the
parallel and conditional parallel calls, and replace all ref-
erences to those inputs in the pure method by references
to the cloned data.

4. Synthesize futures in the async-annotated program result-
ing from the previous steps, using the synthesis algorithm
presented in Section 3.1 (with additional details in Ap-
pendix A).

As discussed earlier, the result of final future synthesis for
the program in Figure 1 can be seen in Figure 2.

7. Experimental Evaluation
7.1 Experimental Setup

In this section, we summarize the implementation and setup
used in our experimental evaluation. The different compo-
nents of our system were implemented in Habanero Java
(HJ) [6] compiler and runtime as follows. The HJ compiler
extends the Soot framework [35] for bytecode transforma-
tions. The inter-procedural future analysis is implemented
as a new compiler analysis pass in Heros [3], a scalable,
highly multi-threaded implementation of the IFDS frame-
work, which can be invoked from Soot. Our inter-procedural
analyses used the call graph provided by the Soot frame-
work, which is obtained through class hierarchy analysis and
is sound. The insertion of future operations is implemented
as a subsequent compiler transformation pass that updates
Soot’s Jimple [35] intermediate representation extended for
HJ programs. Instrumentation of programs for WCG con-
struction and computation of instruction counts of steps is
also implemented as a bytecode-level transformation pass
on Jimple. The instrumentation pass inserts callbacks to the
HJ runtime at all future task creation, task termination, and
synchronization points in the program and also inserts coun-
ters to compute the dynamic number of instructions executed
during the program execution. For each method call that is
executed as a future task, we instrument the bytecode to col-
lect the values of the arguments of the method, the type and
the fields of the receiver object. This information is used for
threshold expression synthesis. The instrumented program,
during execution, writes the profile information to a file. Par-
allelism benefit analysis is implemented as a compiler pass
in the HJ compiler which reads the profile information, ana-
lyzes it and finds the set of method calls that are parallel and
conditional parallel. We used the JGF ForkJoin microbench-
mark to measure the overheads of task creation and task ter-
mination for our runtime and a given hardware platform.
This information and the profile information is passed to
threshold expression synthesis, which determines the thresh-
old expressions for each of the conditional parallel method
calls. Finally, the parallel code is generated by invoking the
inter-procedural future analysis and the future transforma-
tion pass.

Our experiments were conducted on a 16-core Intel Ivy-
bridge 2.6 GHz system with 48 GB memory, running Red
Hat Enterprise Linux Server release 7.1, and Sun Hotspot
JDK 1.7. To reduce the impact of JIT compilation, garbage
collection, and other JVM services, we report the steady
state mean execution time of 30 runs repeated in the same

1 Integer f1 = fib(n-1);
2 Integer f2 = fib(n-2);
3 return f1+f2;

Figure 11: Sequential recursive Fibonacci invocation

JVM instance for each data point. In all our measurements,
we only used 8 of the 16 cores to execute the application (by
using HJ’s “-places 1:8” option), so as to further reduce the
impact of system perturbations.

We evaluated the parallelization tool on a suite of nine
benchmarks listed in Table 1. Our approach targets appli-
cations in which pure method calls perform a significant
amount of work. Therefore, we chose benchmarks in which
at least 50% of the sequential work is performed in pure
method calls. We did this by using ReImInfer to identify
pure methods and by inserting timers around calls to pure
methods. The fourth column of Table 1 shows the input size
used for profiling the program (“Train”). The fifth column
shows the input size used for performance evaluation of the
parallelized programs (“Ref”).

7.2 Experimental Results

We now present experimental results for our automatic par-
allelization approach. Table 2 shows the results of paral-
lelism benefit analysis. The second column shows the num-
ber of call sites that were identified as candidates for fu-
ture task creation by the algorithm in Section 3.2. The third,
fourth, and fifth columns show the number of call sites that
were identified as serial, parallel, and conditional parallel re-
spectively by parallelism benefit analysis.

A call site may be classified as serial if there is insuf-
ficient work done by the method or if there is insufficient
parallelism. For example, in the Fibonacci program in Fig-
ure 11, the call to fib in line 2 will be classified as serial,
since there is no benefit in executing it as a separate future
task, whereas the call in line 1 will be classified as condi-
tional parallel, because 1) the work done by the function de-
pends on the value of n and 2) if the call is executed as a
future task, it can execute in parallel with the call in line 2.

Table 2 shows that a subset of methods identified by the
algorithm in Section 3.2 benefit from asynchronous execu-
tion, thereby reinforcing the importance of parallelism ben-
efit analysis in choosing method calls for parallelization.

Table 3 shows the statistics resulting from the final future
synthesis step, which is performed after parallelism bene-
fit analysis and threshold expression synthesis. It shows the
number of variable types that were changed, and the num-
ber of get(), instanceof, and cast operations that were
inserted by future synthesis. Overall, these statistics indicate
that significant programmer effort is required to manually
parallelize a sequential program using futures and that this
effort may need to repeat for different platforms (due to dif-
ferences in overheads and available hardware parallelism).

Source Benchmark Description Input Size Input Size
(Train) (Ref)

JGF [4] Series Fourier coefficient analysis size A size B
SPECjvm2008 [31] MPEGaudio MPEG audio decoder 4 mp3 files 12 mp3 files
CLBG [23] Binary Tree Tree construction depth = 14 depth = 20

traversal
Jolden [5] TreeAdd Recursive depth-first depth = 15 depth = 24

traversal of a tree
BOTS Nqueens N Queens problem n = 9 n = 13

HJ Bench Fibonacci Compute nth Fibonacci n = 22 n = 38
number

MatrixEval Matrix expression evalu- 200x200 500x500
ation

Mergesort Mergesort n = 16000 n = 1000000
Quicksort Quicksort n = 10000 n = 1000000

Table 1: List of benchmarks evaluated. Input Size(Train) is the input size used for profiling the parallel program for parallelism benefit
analysis and Input Size(Ref) is the input size used for performance evaluation.

Benchmark #Candidate #Serial #Parallel #Conditional
Series 3 1 2 0
MPEGaudio 1 0 1 0
Binary Tree 12 9 1 2
TreeAdd 6 4 0 2
Fibonacci 3 2 0 1
MatrixEval 3 2 1 0
Mergesort 4 3 0 1
Nqueens 3 2 0 1
Quicksort 3 2 0 1

Table 2: Number of call sites identified as serial, parallel, and
conditional parallel by parallelism benefit analysis

Table 4 compares the execution times of the sequential
and automatically parallelized versions of each program in
our benchmark suite. All programs were run with 16GB
heap space. Par(No PBA) shows the parallel execution time
without parallelism benefit analysis. All call sites that were
identified as candidates for future task creation by the algo-
rithm in Section 3.2 were executed as parallel tasks with no
threshold expressions. OOM (Out Of Memory) represents
cases where execution did not complete because of insuf-
ficient heap memory. Par(No TES) shows the parallel ex-
ecution times with parallelism benefit analysis but without
threshold expression synthesis. In this case, we used the par-
allel/serial frequency information at a call site to classify a
method call as either serial or parallel. There are no condi-
tional parallel method calls in this case. Par is the parallel
execution time with parallelism benefit analysis and thresh-
old expression synthesis. All the applications showed signif-
icant performance improvements with our approach.

Table 5 compares the execution times of the parallel ver-
sions of each program with conditional parallel sites when
using different threshold values. Threshold shows the par-
allel execution time when using threshold values computed
by our threshold expression synthesis algorithm. For this

sensitivity analysis, we used two threshold values which al-
low higher parallelism and two threshold values which allow
lower parallelism compared to the threshold value computed
by threshold expression synthesis. Threshold - 1 shows the
parallel execution time when a threshold value that allows
higher parallelism compared to Threshold is used. Thresh-
old - 2 shows the parallel execution time where the thresh-
old value allows higher parallelism compared to Threshold
- 1. Similarly, Threshold + 1 and Threshold + 2 shows the
parallel execution times where the parallelism is lower com-
pared to Threshold. For example, the threshold value com-
puted by TES for the Binary Tree benchmark is 12. There-
fore, we used threshold values of 10 (Threshold - 2), 11
(Threshold - 1), 12 (Threshold), 13 (Threshold + 1) and 14
(Threshold + 2) for the sensitivity analysis. For Quicksort
and Mergesort benchmarks, the threshold values are varied
by a factor of two. The results indicate that the performance
of the parallel program when using threshold values com-
puted by threshold expression synthesis is better or compara-
ble to the performance of the program when using a different
threshold value.

In summary, these results indicate the importance of par-
allelism benefit analysis and threshold expression synthesis
in automatic generation of task parallelism.

8. Related Work

8.1 Futures

Futures were introduced by Halstead as an explicit con-
currency primitive for functional programming in Multil-
isp [15], an untyped language that did not need the syn-
thesis capabilities introduced in our work. Flanagan and
Felleisen [13] defined a whole program analysis to reduce
runtime checks for futures in dynamically typed languages.
In contrast, our work synthesizes future operations, synchro-
nization, and runtime checks, while also providing paral-

Benchmark #Future #MayFuture #Gets #Instanceof #Typecasts
Series 2 3 2 4 4
MPEGaudio 3 0 1 0 1
Binary Tree 2 15 4 6 7
TreeAdd 0 10 4 8 8
Fibonacci 0 2 1 2 2
MatrixEval 8 0 3 0 3
Mergesort 0 4 1 2 2
Nqueens 0 4 2 4 4
Quicksort 0 2 1 2 2

Table 3: Synthesis statistics. #Future gives the number of variables and fields whose type got changed to future<T>, #MayFuture gives
the number of variables and fields whose type got changed to mayfuture<T>. #Gets , #Instanceof and #Typecasts are the number of
get(), instanceof and cast operations inserted by future synthesis.

Benchmark Seq Par(No PBA) Par(No TES) Par Speedup
(Seq/Par)

Series 25,973.35 4,175.49 4,203.84 4,201.22 6.18
MPEGaudio 6,691.52 2,839.76 2,838.51 2,835.21 2.36
Binary Tree 527.50 167,674.52 529.11 271.33 1.94
TreeAdd 586.54 293,431.26 602.21 259.49 2.26
Fibonacci 473.92 OOM 474.33 64.07 7.40
Quicksort 282.71 OOM 296.39 70.58 4.00
MatrixEval 1,853.83 884.11 359.23 358.86 5.17
Mergesort 151.31 OOM 151.57 40.96 3.69
Nqueens 4,242.57 OOM 4,211.21 1,199.07 3.54
GeoMean - - - - 3.69

Table 4: Comparison of execution times in milliseconds of the sequential and parallel versions of the program. Seq is the sequential execution
time, Par(No PBA) is parallel execution time without parallelism benefit analysis, Par(No TES) is parallel execution time without threshold
expression synthesis and Par is the parallel execution time of the final program generated by our approach. Parallel versions were run on 8
cores. OOM (Out Of Memory) represents cases where execution did not complete because of insufficient heap memory.

Benchmark Threshold - 2 Threshold - 1 Threshold Threshold + 1 Threshold + 2
Binary Tree 309.18 292.13 271.33 295.85 306.62
TreeAdd 349.83 279.53 259.49 259.26 256.93
Fibonacci OOM 88.2 64.07 57.71 54.37
Quicksort 89.74 85.18 70.58 66.69 69.73
Mergesort 43.92 40.68 40.96 41.79 41.76
Nqueens 1,461.63 1,261.53 1,199.07 1,556.3 4,665.8

Table 5: Comparison of execution times in milliseconds of the parallel versions of the programs with different threshold values for conditional
parallel call sites. Threshold is the execution time with threshold expressions computed by TES. Threshold - 1 and Threshold - 2 are
execution times of parallel programs with higher parallelism compared to Threshold. Threshold + 1 and Threshold + 2 are execution times
of parallel programs with lower parallelism compared to Threshold.

lelism benefit analysis and threshold expression synthesis
capabilities.

Safe futures [36] implement futures as software transac-
tions so that safety violations (data races) can be avoided
or corrected. Their approach requires a heavyweight run-
time which supports object versioning, operation logging
and other metadata. Performance results can vary widely de-
pending on the number of safety violations detected at run-
time. Navabi et al. [25] use static analysis to insert barri-
ers, which preserve sequential semantics with the help of a
lightweight runtime. Swaine et al. [33] provide a way to add
parallelism to legacy runtime systems using futures. These
approaches require the programmer to parallelize the pro-
gram, and the framework handles conflicts due to shared data
accesses. In contrast, our approach is fully automatic, targets
pure method calls and has to deal with only anti dependences
on mutable data, which are preserved by copying the data.

Pratikakis et al. [27] present a framework for transpar-
ently executing programs with asynchronous calls. They em-
ploy a static analysis based on qualifier inference to iden-
tify the proxy variables in the program. Their analysis is
flow-insensitive and context-insensitive and does not dif-
ferentiate maybe proxy variables from mustbe proxy vari-
ables. Due to these differences, their approach changes the
types of all variables which could potentially be a proxy to
java.lang.Object. Their framework also requires a type
cast and an instanceof check at every potential proxy ac-
cess. Their framework requires the programmer to annotate
the async expressions, which can cause data races. The pro-
grammer also has to determine whether the annotated ex-
pressions would benefit from asynchronous execution.

Harris and Singh [16] presented a profile based par-
allelization for Haskell programs. Their approach selects
thunks for parallel execution which are likely to be needed
by the program and will run long enough to compensate the
overheads. In contrast to our work, their approach does not
require future synthesis and does not find threshold expres-
sions which can dynamically determine if the work is of
sufficient granularity to justify task creation overhead.

Directive-based Lazy Futures [38] require users to anno-
tate declarations of all variables that store the return value
from a function that can be potentially executed as futures
with @future directives. Their approach does not allow the
propagation of future objects across method boundaries,
which can limit parallelism in many cases. In contrast, our
approach automatically identifies the variables and fields
which may hold references to future objects and inserts
get(), without limiting the parallelism at method bound-
aries. Zhang et al. [39] and Navabi et al. [24] presented
approaches for precise exceptions in the presence of futures,
which is orthogonal to our work which addresses automatic
parallelization.

8.2 Parallelism and Performance Profiling

Past work has used profile information and critical path anal-
ysis to analyze the parallelism in a given application. Kulka-
rni et al. [20] used a critical path based analysis to bring
insight into the parallelism inherent in irregular algorithms
that exhibit amorphous data parallelism. Kremlin [14], given
a serial version of a program, will make recommendations
to the user as to what regions (e.g. loops or functions) of
the program to parallelize first using a hierarchical critical
path analysis. It also provides a ranked order of specific re-
gions to the programmer that are likely to have the largest
performance impact when parallelized. Cilkview [17] scala-
bility analyzer is a software tool for profiling and estimating
scalability of parallel Cilk++ applications. It monitors the
logical parallelism during an instrumented execution of the
application on a single core. As Cilkview executes, it ana-
lyzes logical dependencies within the computation to deter-
mine its work and critical path length. It uses these metrics
to estimate parallelism and predict the scalability of the ap-
plication. Unlike Cilkview, which analyzes only the whole-
program scalability of a Cilk computation, Cilkprof [29] col-
lects work and critical-path length for each call site in the
computation to assess how much each call site contributes to
the overall work and span.

Alchemist [40] presents a profiling technique to automat-
ically detect available concurrency in C programs. The pro-
filer detects dependences between a construct (a loop, a pro-
cedure, or a conditional statement) and its continuation. The
dependence distances between program points are then used
to measure the effectiveness of parallelizing the construct, as
well as identifying the transformations necessary to facilitate
the parallelization.

Threshold expression synthesis finds an expression in-
volving method arguments and receiver object fields, which
is monotonic with respect to the work done by the function.
Past work has tried to model the performance of programs as
a function of the size of the input. Emilio Coppa et al. in [7]
presented input-sensitive profiling, a method for automati-
cally measuring how the performance of individual routines
scales as a function of the size of the input. The key feature
of their method is the ability to automatically measure the
size of the input given to a generic code fragment. The tool
estimates the input size by using the amount of distinct mem-
ory first accessed by a routine or its descendants as reads.
This work was extended in [8] which takes into account dy-
namic workloads produced by memory stores performed by
other threads and by the OS kernel. As noted in [7], their
approach fails to characterize pure functional computations
such as Fibonacci where the running time (or work) is de-
termined by the values of one or more arguments. Algorith-
mic profiling [37] is an approach to automatically infer ap-
proximations of the expected algorithmic cost functions of
algorithm implementations. Our method of determining the
inputs to a function is similar to their approach. Their imple-

mentation automatically infers the inputs to the program, but
the fitting of cost functions is done by hand. In contrast, our
approach does not try to find an exact cost function, but uses
a search algorithm to find an expression which is monotonic
with respect to the work done by the method.

Duran et al. [10] presented a runtime technique to adap-
tively coalesce OpenMP tasks by employing a dynamic pro-
filer. The profiler estimates the work performed by a task as
the average work performed by all previously profiled tasks
at that particular level/depth of the spawn tree. The work es-
timation does not depend on the computation performed by
the task or the arguments to the computation, whereas our
approach computes a distinct threshold expression for every
call site and takes into account the arguments to the compu-
tation.

Thoman et al. [34] presented a combined compiler and
runtime approach that enables automatic granularity con-
trol. They generate multiple versions of a given task of in-
creasing granularity by task unrolling at compile time, and
the runtime system selects a task version by estimating task
demand. The number of generated versions depend on the
granularity of the initial tasks, but the paper does not discuss
how the task granularity is estimated. A runtime estimate of
task demand could be combined with our approach to pre-
vent task creation if the demand is low.

9. Conclusions
We presented a novel approach for automatically paralleliz-
ing pure method calls by using futures as the primary parallel
construct. Given a sequential program, our algorithm auto-
matically generates a parallel program in which pure method
calls that benefit from asynchronous execution are executed
as future tasks. Our approach addresses the major drawbacks
of manually parallelizing programs using futures. Section 3
contains our algorithm for synthesizing future tasks and their
associated type declarations with more precision than in past
work. Section 4 describes our approach to classifying each
pure method call as sequential, parallel, or conditional par-
allel, based on computing critical path lengths in a weighted
computation graph that takes task creation, termination, and
synchronization overheads into account. Section 5 contains
our algorithm for synthesizing threshold expressions that can
be evaluated at runtime, to ensure that a future task is only
created when it is profitable to do so. We implemented all
three steps in our approach, and evaluated the complete tool
chain on a range of applications written in Java. When using
8 processor cores, the evaluation shows that our approach
can provide significant parallel speedups of up to 7.4× (geo-
metric mean of 3.69×) for sequential programs with zero
programmer effort, beyond providing test cases for paral-
lelism benefit analysis.

There are many opportunities for future research to
build on the results of this paper. Future synthesis is inter-
procedural in scope and requires whole-program static anal-

ysis in general. A direction for future work is to make our
approach modular by ensuring that there is no asynchronous
information flow through future objects across components.
Enhancements in alias analysis could further increase the
precision of type information in the synthesized program.
Alternatively, our approach can be applied to dynamically
typed languages for which no type declarations need to be
generated. There is also room to further study the impact
of exception semantics on automatic parallelization with fu-
tures, and to explore the use of runtime checks for potential
exceptions in candidate future tasks. There is a promising
opportunity for code motion to separate future task creation,
and the corresponding future get() operations as far as
possible, so as to increase the parallelism in the program
(akin to global instruction scheduling). Yet another direc-
tion for future work is to extend our approach so that it
can be applied to programs with explicit task parallelism,
thereby using future tasks to further increase parallelism;
it would also be interesting to perform parallelism benefit
analysis and threshold expression synthesis for explicitly-
parallel programs so as to aid the programmer in granularity
control of their parallelism. Finally, it would be desirable
(albeit challenging) to perform parallelism benefit analysis
and threshold expression synthesis at runtime, so that they
can be better tuned to the underlying platform.

Acknowledgments
We are grateful to the authors of the ReImInfer tool [18], Wei
Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst
for sharing their implementation of ReImInfer, and for an-
swering our questions related to ReImInfer. We thank Swarat
Chaudhuri and John Mellor-Crummey from Rice University
for their feedback and suggestions. We also thank members
of the Habanero group at Rice for valuable discussions re-
lated to this work and contributions to the Habanero Java
infrastructure used in this research. We are grateful to the
anonymous reviewers for their comments and suggestions.
This work was supported in part by NSF award 1302570.

A. Future Transformation
In this section, we present transformation rules for synthe-
sizing futures based on the result of inter-procedural anal-
ysis from section 3.1. The transformation rules are shown
in Table 6. The third column shows the input code, and the
fourth column shows the transformed code if the conditions
in the second column hold true. M(s) denotes the set of
variables and fields which may refer to a future immediately
before statement s. Similarly, N (s) denotes the set of vari-
ables and fields which may not refer to a future immediately
before statement s. Rule 1 translates an async expression
async e to a future task creation expression, if e may not
be a future. Rule 2 changes the type of a variable from T

to future<T>, if the variable must refer to a future object.
Rule 3 changes the type of a variable to mayfuture<T>, if
it may hold a reference to a future and a non-future object,
where T is an application class. If T is a library class, the
type is changed to Object. Rules 4-7 handle the different
cases, where the object field, f is accessed. Rule 4 and 6
handle the case, where x must refer to a future object by in-
serting an x.get() operation which obtains the result of the
future task. Rule 5 handles the case where x may not refer to
a future object at statement s, but may refer to a future ob-
ject at a different statement s1. In this case, a cast operation
from mayfuture<T> to T is required before the field access
at statement s. Rule 7 is the most general case, where x may
refer to a future object or a non-future object at statement s.
In this case, a runtime check is inserted which handles both
the possible scenarios.

Our implementation also changes method parameter
types and return types based on the result of the future anal-
ysis. When the parameter type (or return type) of a class
member function is changed, the type declaration of the
corresponding function in the super class is also updated.
For instance, let D1, .., Dn be the subclasses of C and let
T1, ..., Tn be the inferred type of the ith parameter of mem-
ber function F in D1, .., Dn respectively. The transforma-
tion algorithm then updates the type of ith parameter of
F in C to lub(T1, ..., Tn) which is the least upper bound
type of the types T1..Tn, where for any given type T, T ≤
mayfuture<T> and future<T> ≤ mayfuture<T>.

B. Threshold Expression Synthesis Algorithm
Algorithm 3 presents the high level view of our approach
for threshold expression synthesis for a given call site
obj.f(a1..an). Line 1 of the algorithm initializes the
threshold expression to false. The loop in lines 2-22 iter-
ates through each of the possible types of the receiver object
and finds the threshold expression. Lines 3-18 handle the
case where the call site is conditional parallel for type T.
CONSTRUCTMATRIX constructs a matrix with m columns,
where columns 1 to m − 1 contains the data corresponding
to the expressions and columnm contains the work. MAXS-
PEARMANCORR computes the Spearman’s rank correlation

Algorithm 3 Threshold expression synthesis
Input: Profile data, P for call site obj.f(a1..an)
Output: Threshold expression for call site obj.f(a1..an)

1: TExpr ← False

2: for each T ∈ TYPES(obj) do
3: if obj.f(a1..an) is conditional parallel for type T then
4: for size = 1 to n do
5: M ← CONSTRUCTMATRIX(P, size)
6: (ρmax , exprmax)← MAXSPEARMANCORR(M)
7: if |ρmax | ≥ ρthreshold then
8: value ← GETSEQTHRESHOLD(M, exprmax)
9: if ρmax > 0.0 then

10: TExpr ← TExpr ∨ ((obj
11: instanceof T) ∧ (exprmax ≥ value))
12: else
13: TExpr ← TExpr ∨ ((obj
14: instanceof T) ∧ (exprmax ≤ value))
15: end if
16: break
17: end if
18: end for
19: else if obj.f(a1..an) is parallel for type T then
20: TExpr ← TExpr ∨ (obj instanceof T)

21: end if
22: end for

between each of the columns 1..m − 1 and column m and
returns the maximum correlation, ρmax and the expression
exprmax having the highest correlation. If the absolute value
of ρmax is greater than or equal to ρthreshold, we have found
the threshold expression, else we continue the search with
expressions of larger size. Lines 9-15 extends the threshold
expression depending on whether the correlation between
the expression and work is positive or negative. The method
GETSEQUENTIALTHRESHOLD returns the minimum/max-
imum value of exprmax for which the call site must be
executed asynchronously, depending on whether the work
done by f increases or decreases as the value of exprmax

increases.

Rule IFDS Results Input Code Output Code
1 e 6∈ M(s) s: async e async<T> { return e; }

2 6 ∃s1 : x ∈ N (s1) T x future<T> x

3 ∃s1 : x ∈M(s1) ∧ T x mayfuture<T> x

∃s2 : x ∈ N (s2)

4 x ∈ N (s) s: a = x.f; T y = x.get();

5 ∃s1 : x ∈M(s1) ∧ s: a = x.f; T y = (T)x;

∃s2 : x ∈ N (s2) ∧ a = y.f;

x 6∈ M(s)

6 ∃s1 : x ∈M(s1) ∧ s: a = x.f; future<T> t = (future<T>)x;

∃s2 : x ∈ N (s2) ∧ T y = t.get();

x ∈ N (s) a = y.f;

7 ∃s1 : x ∈M(s1) ∧ s: a = x.f; T y;

∃s2 : x ∈ N (s2) ∧ if (x instanceof future<T>)

x ∈M(s) ∧ x 6∈ N (s) future<T> t = (future<T>)x;

y = t.get();

else

y = x;

a = y.f;

Table 6: Example transformation rules based on future-analysis results

References
[1] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin,

M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, and A. Udupa. Syntax-guided synthesis. In FM-
CAD 2013, pages 1–8, 2013.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In PPoPP ’95, pages 207–216, New York,
NY, USA, 1995. ACM.

[3] E. Bodden. Inter-procedural data-flow analysis with IFD-
S/IDE and Soot. In SOAP ’12, pages 3–8, New York, NY,
USA, 2012. ACM.

[4] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and
R. A. Davey. A benchmark suite for high performance Java.
Concurrency: Practice and Experience, 12(6):375–388, 2000.

[5] B. Cahoon and K. S. McKinley. Data flow analysis for soft-
ware prefetching linked data structures in Java. In PACT ’01,
pages 280–291, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[6] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java:
the new adventures of old X10. In PPPJ ’11, pages 51–61,
New York, NY, USA, 2011. ACM.

[7] E. Coppa, C. Demetrescu, and I. Finocchi. Input-sensitive
profiling. In PLDI ’12, pages 89–98, New York, NY, USA,
2012. ACM.

[8] E. Coppa, C. Demetrescu, I. Finocchi, and R. Marotta. Es-
timating the empirical cost function of routines with dynamic
workloads. In CGO ’14, pages 230–239, New York, NY, USA,
2014. ACM.

[9] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based
alias analysis. In PLDI ’98, pages 106–117, New York, NY,
USA, 1998. ACM.

[10] A. Duran, J. Corbalán, and E. Ayguadé. An adaptive cut-off
for task parallelism. In SC ’08, pages 36:1–36:11, Piscataway,
NJ, USA, 2008. IEEE Press.

[11] P. Feautrier and C. Lengauer. Polyhedron Model, pages 1581–
1592. Springer US, Boston, MA, 2011.

[12] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans.
Program. Lang. Syst., 9(3):319–349, July 1987.

[13] C. Flanagan and M. Felleisen. The semantics of future and its
use in program optimization. In POPL ’95, pages 209–220,
New York, NY, USA, 1995. ACM.

[14] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor. Kremlin:
Rethinking and rebooting gprof for the multicore age. In PLDI
’11, pages 458–469, New York, NY, USA, 2011. ACM.

[15] R. H. Halstead, Jr. Multilisp: A language for concurrent
symbolic computation. ACM Trans. Program. Lang. Syst., 7
(4):501–538, 1985.

[16] T. Harris and S. Singh. Feedback directed implicit parallelism.
In ICFP ’07, pages 251–264, New York, NY, USA, 2007.
ACM.

[17] Y. He, C. E. Leiserson, and W. M. Leiserson. The cilkview
scalability analyzer. In SPAA ’10, pages 145–156, New York,
NY, USA, 2010. ACM.

[18] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst. Reim &
Reiminfer: Checking and inference of reference immutability
and method purity. In OOPSLA ’12, pages 879–896, New
York, NY, USA, 2012. ACM.

[19] S. Imam and V. Sarkar. Cooperative scheduling of parallel
tasks with general synchronization patterns. In ECOOP 2014,
volume 8586, pages 618–643. Springer Berlin Heidelberg,
2014.

[20] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and
C. Casçaval. How much parallelism is there in irregular ap-
plications? In PPoPP ’09, pages 3–14, New York, NY, USA,
2009. ACM.

[21] L. Lamport. The parallel execution of do loops. Commun.
ACM, 17(2):83–93, Feb. 1974.

[22] B. Liskov and L. Shrira. Promises: Linguistic support for
efficient asynchronous procedure calls in distributed systems.
In PLDI ’88, pages 260–267, New York, NY, USA, 1988.
ACM.

[23] J. Miettinen. Computer language benchmarks game.
http://benchmarksgame.alioth.debian.org/u64q/

program.php?test=binarytrees&lang=java&id=6.
Accessed: 2015-11-06.

[24] A. Navabi and S. Jagannathan. Exceptionally safe futures.
In COORDINATION ’09, pages 47–65, Berlin, Heidelberg,
2009. Springer-Verlag.

[25] A. Navabi, X. Zhang, and S. Jagannathan. Quasi-static
scheduling for safe futures. In PPoPP ’08, pages 23–32, New
York, NY, USA, 2008. ACM.

[26] OpenMP. OpenMP specifications. http://www.openmp.

org/specs.

[27] P. Pratikakis, J. Spacco, and M. Hicks. Transparent proxies
for Java futures. In OOPSLA ’04, pages 206–223, New York,
NY, USA, 2004. ACM.

[28] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL ’95, pages
49–61, New York, NY, USA, 1995. ACM.

[29] T. B. Schardl, B. C. Kuszmaul, I.-T. A. Lee, W. M. Leiserson,
and C. E. Leiserson. The cilkprof scalability profiler. In SPAA
’15, pages 89–100, New York, NY, USA, 2015. ACM.

[30] C. Spearman. The proof and measurement of association
between two things. American Journal of Psychology, 15:
88–103, 1904.

[31] SPECjvm2008. Specjvm2008. https://www.spec.org/

jvm2008/.

[32] A. Sălcianu and M. Rinard. Purity and side effect analysis
for Java programs. In VMCAI’05, pages 199–215, Berlin,
Heidelberg, 2005. Springer-Verlag.

[33] J. Swaine, K. Tew, P. Dinda, R. B. Findler, and M. Flatt.
Back to the futures: Incremental parallelization of existing
sequential runtime systems. In OOPSLA ’10, pages 583–597,
New York, NY, USA, 2010. ACM.

[34] P. Thoman, H. Jordan, and T. Fahringer. Adaptive granular-
ity control in task parallel programs using multiversioning.
In Euro-Par’13, pages 164–177, Berlin, Heidelberg, 2013.
Springer-Verlag.

[35] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a Java bytecode optimization frame-
work. In CASCON ’99. IBM Press, 1999.

[36] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for
Java. In OOPSLA ’05, pages 439–453, New York, NY, USA,
2005. ACM.

[37] D. Zaparanuks and M. Hauswirth. Algorithmic profiling. In
PLDI ’12, pages 67–76, New York, NY, USA, 2012. ACM.

[38] L. Zhang, C. Krintz, and P. Nagpurkar. Language and vir-
tual machine support for efficient fine-grained futures in Java.

In PACT ’07, pages 130–139, Washington, DC, USA, 2007.
IEEE Computer Society.

[39] L. Zhang, C. Krintz, and P. Nagpurkar. Supporting exception
handling for futures in Java. In PPPJ ’07, pages 175–184,
New York, NY, USA, 2007. ACM.

[40] X. Zhang, A. Navabi, and S. Jagannathan. Alchemist: A
transparent dependence distance profiling infrastructure. In
CGO ’09, pages 47–58, Washington, DC, USA, 2009. IEEE
Computer Society.

