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1. Motivation & Introduction

The polyhedral model is a powerful algebraic framework that
has enabled significant advances in analysis and transforma-
tion of sequential affine (sub)programs, relative to traditional
AST-based approaches. However, given the rapid growth of
parallel software, there is a need for increased attention
to using polyhedral compilation techniques to analyze and
transform explicitly parallel programs. In our PACT’15 pa-
per titled “Polyhedral Optimizations of Explicitly Parallel
Programs” [1, 2], we addressed the problem of analyzing and
transforming programs with explicit parallelism that satisfy
the serial-elision property, i.e., the property that removal of
all parallel constructs results in a sequential program that
is a valid (albeit inefficient) implementation of the parallel
program semantics.

In this poster, we address the problem of analyzing and
transforming more general OpenMP programs that do not
satisfy the serial-elision property. Our contributions include
the following: 1) An extension of the polyhedral model
to represent input OpenMP programs, 2) Formalization
of May Happen in Parallel (MHP) and Happens before
(HB) relations in the extended model, 3) An approach for
static detection of data races in OpenMP programs by
generating race constraints that can be solved by an SMT
solver such as Z3, and 4) An approach for transforming
OpenMP programs.

2. Extended Polyhedral Representation

Loop nests amenable to polyhedral representation are called
Static Control Parts (SCoPs). A SCoP consists of a set of
consecutive statements, and each statement is represented
using three elements 1) Iteration domain D5 to capture
a set of the statement instances S (5, 2) Access relations
AS (5 to identify memory locations accessed in the statement
instances S(?), and 3) Scattering function to describe the
order in which statement instances have to be executed
relative to each other, and contains a schedule map of the
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form @° (57 which assign logical timestamps to the statement
instances S (?).

A major difference between a sequential program and
an explicitly parallel program (such as OpenMP) is that a
sequential program specifies a total execution order among
statement instances, and an explicitly parallel program spec-
ifies a partial execution order. The existing schedule function
(e (7)) for sequential programs captures the total execution
order very effectively. The same schedule function (@° (23)
can also specify parallelism by 1) Not specifying any order-
ing information, which means statement instances can be
executed in any order, 2) Assigning same logical timestamp,
which means statement instances can be executed simulta-
neously at the same time. But, this representation is not
sufficient to specify the kinds of parallelism and synchro-
nization constructs present in OpenMP parallel programs
(e.g., barriers, point-to-point synchronizations).

In our work, the scattering (ordering) function of a state-
ment is extended with additional mapping information such
as allocation (space) and computational phase (phase) to
capture OpenMP constructs. Allocation (space) mapping as-
signs processor ids, expressing on which logical processor a
statement instance S (i) has to be executed. A key property
of OpenMP programs is that their execution can be parti-
tioned into a sequence of phases separated by barriers. The
phase mapping assigns a logical identifier, that we refer to
as a phase stamp, to each statement instance § (?).

3. Static detection of data races

Data races are a major source of errors in parallel programs.
Complicating matters, data races may occur only in few of
the possible schedules of a parallel program, thereby making
them extremely hard to detect and reproduce. Our race
detection algorithm considers a read/write or write/write
pair on the same shared variable in the same parallel region
and generate race constraints as mentioned below.

e Statement instance S, T should touch same memory
location and one of them should be a write.
» Captured from access relations
e S, T should happen in parallel
» S, T should be in same phase of computation
— Captured from phase mappings
= S, T should be executed by different threads

— Captured from space mappings



1// T - total number of threads,
2 // tid - thread ID

3 #pragma omp parallel {

1

Aftid] = .... // s1
5 #pragma omp for schedule (static, 2)
6 for (i 0 to N)
7 Alil = .... // 82
8 #pragma omp barrier
9 A[tid]l = .... // S3

0}

11 /* Extended Schedule (Phase, Space, Time):
12 81: (0, tid, 0), S2: (0, (i % 2T)/2, 1, i),
13 83: (1, tid, 0) =x/

Figure 1: An OpenMP program with a data race (b/w S1 and S2)
involving a loop worksharing construct with static schedule and
chunk size value of 2.

These race constraints encode necessary conditions for
conflicting accesses to that shared variable by two threads.
Then, the race constraint is passed onto a Z3 SMT solver
for the existence of solutions. If the race constraint is not
satisfiable, then we conclude that there are no races on
those pair of accesses. Our approach is guaranteed to be
exact (with neither false positives nor false negatives) if
the input program satisfies all the standard preconditions
of the polyhedral model (without any non-affine constructs)
and the race constraints are decidable by Z3 SMT solver. If
the conservative estimations (for non-affine constructs) are
used during representation and analysis such as may-access
relations, then this approach may induce false positives. The
race conditions between statements S1 and S2 in Figure 1 is
{(tid, tid’, ") | (tid = i") A (tid! = tid") A (tid' = (7 %2T)/2) A (0 =
0)}. The possible solution from the Z3 SMT solver is (T
= 2,tid = 1, tid’ = 0, i’ = 1). It can be interpreted as
a race between statement S1 executed by thread with id
as 1, and statement S2 executed by thread with id as 2
and iterator value as 1. These kinds of races (dependent on
schedule techniques and chunk sizes) are often unreported
by many static analysis techniques.

4. Transformation of OpenMP Programs

As software with explicit parallelism is on the rise, trans-
forming explicitly parallel programs is very crucial in ob-
taining speedups and scalability over a variety of machines.
So, we extend the definition of data dependence with the
happens-before relations for ordering among statement in-
stances.

e Statement instance S, T should touch same memory
location and one of them should be a write.
= Captured from access relations
e S should happen-before T
= S, T should be in different phase of computation
— Captured from phase mappings

* (or) S, T should be executed by same thread and S
occurs before T in the same phase

— Captured from space, time mappings

Based on the data dependence relations between S1 and S2
in Figure 2, the explicit barrier between loop worksharing
constructs can be removed for performance and preserving
semantics of the program.

1// T - total number of threads,
> #pragma omp parallel {
3 #pragma omp for schedule (static, 2) nowait
1+ for (i 0 to N)

5 Afil = .... // s1

6 #pragma omp barrier

7 #pragma omp for schedule (static, 2)

& for (i 0 to N)

9 L. = A[i]l // s2

0 ¥

11 /* Extended Schedule (Phase, Space, Time):
12 81: (0, (i % 2T)/2, 0, i),

1382: (1, (i % 2T)/2, 0, i) */

Figure 2: An OpenMP program, where explicit barrier between
loop worksharing constructs can be removed for performance.

The producer thread of A[i] in the statement S1 is same
as consumer thread of A[i] in the statement S2 even after
removal of barrier statement because of same static schedule
and chunk size present in both worksharing constructs.
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