
Programming Models for Parallel Computing

Edited by Pavan Balaji

The MIT Press
Cambridge, Massachusetts
London, England

Contents

1 Concurrent Collections—K. Knobe, M. Burke, and
F. Schlimbach

1

1.1 Introduction 1

1.2 Motivation 2

1.2.1 Foundational hypotheses 2
1.3 CnC Domain Language 3

1.3.1 Description 3
1.3.2 Characteristics 6
1.3.3 Example 7
1.3.4 Execution Semantics 10
1.3.5 Programming in CnC 11
1.3.6 Futures 17

1.4 CnC Tuning Language 18

1.4.1 Description 19
1.4.2 Characteristics 23
1.4.3 Examples 23
1.4.4 Execution Model 26
1.4.5 Futures 29

1.5 Current Status 30

1.6 Related Work 30

1.6.1 CnC Domain Language 31
1.6.2 CnC Tuning Language 32

1.7 Conclusions 32

1 Concurrent Collections

Kath Knobe, Rice University
Michael G. Burke, Rice University
Frank Schlimbach, Intel

1.1 Introduction

With multicore processors, parallel computing is going mainstream. Yet most software
is still written in traditional serial languages with explicit threading. High-level parallel
programming models, after decades of proposals, have still not seen widespread adoption.
This is beginning to change. Systems like MapReduce are succeeding based on implicit
parallelism. Other systems like NVIDIA CUDA are partway there, providing a restricted
programming model to the user but exposing too many of the hardware details. The payoff
for a high-level programming model is clear—it can provide semantic guarantees and can
simplify the analysis, debugging, and testing of a parallel program.

The CnC programming model is quite different from most other parallel programming
models in several important ways. It is a programming model specifically for coordinating
among potentially parallel chunks of computation and data. As such it is a coordination
language, and so must be paired with a separate language for computation. In addition,
CnC is declarative. It specifies the required orderings among chunks of computation code,
but does not in any way indicate how those requirements are to be met. In particular, it is
not some syntax for connecting with a specific runtime. CnC runtimes might be character-
ized by how they determine: the grain of data and computation; the placement of data and
computation across the platform; the schedule across time within a component of the plat-
form. Instances of CnC implementations have determined all three dynamically [hasnain],
all three statically [hp] and various combinations. Most of the current implementations fix
the grain statically but allow for dynamic choice of mapping across the platform and across
time. We will address the current implementations in more detail in Section 1.5.

The CnC programming model is a high level, declarative model built on past work
with TStreams [8]. CnC falls into the same family as dataflow and stream-processing
languages—a program is a graph of kernels, communicating with one another.

A CnC graph can execute along with its environment, a program written in a sequential
or parallel language. A CnC graph indicates what input it expects from the environment
and what output it returns to the environment. This is all the CnC graph needs to know
about the environment. But a CnC graph may play fundamentally different roles in differ-
ent applications, depending on the relationship of the graph to its environment. Sometimes
we think of the environment of a CnC graph as basically main. It is written in some com-
putation language. Its entire purpose might be to manage a CnC graph execution. In this
case, it creates a graph (see Section 1.3.1), inputs data to the graph, and indicates that it is
done putting input. (In finitely executing CnC graphs, the program cannot know when it is
finished unless it knows that there will be no more input.) The environment waits until the

2 CHAPTER 1. CONCURRENT COLLECTIONS

graph execution completes and then gets output data from the graph. Above we describe a
single execution of a single CnC graph. The environment might be much more complex.
In particular, most of the application might be in the environment. A single instance of the
graph as described above might, for example, be in a loop. Then the same graph might
execute multiple times with different inputs. In addition, the environment may have many
distinct CnC graphs at separate places in the code. The environment itself might be a par-
allel program. This would allow for the distinct dynamic instances of a given graph and/or
instances of distinct graphs to execute in parallel.

1.2 Motivation

Explicitly parallel languages and explicitly serial languages are each over-constrained,
though in different ways. Concurrent Collections (CnC) avoids both forms of unneces-
sary constraints. A CnC program is an implicitly parallel program that avoids unnecessary
constraints and thereby maximizes the scheduling freedom in executing the program for a
given target (efficiency) and also among distinct targets (portability).

The domain expert writing a CnC program focuses on the meaning of the application,
not on how to schedule it. CnC isolates the work of the domain expert (interested in
finance, chemistry, gaming) from the tuning expert (interested in load balance, locality,
scalability). This isolation minimizes the need for the domain expert to think about all the
complications of parallel systems. In the CnC domain language, no particular category of
machine is assumed. This isolation also minimizes the need for the tuning expert to know
about the application domain.

“Old World” languages impair communication between the programmer and the com-
piler. They introduce arbitrary serial constraints due to the serial ordering of statements and
to arbitrary overwriting of variables (resulting in complicated anti-dependences and output
dependences). Program analysis and transformations are then required to expose the true
dependences. In these languages the domain and tuning code are intertwined. One has to
be aware of one when modifying the other, complicating both tasks. Also the programmer
writing the domain code has to commit to the form of parallelism that the application will
use when targeted to a parallel architecture. CnC is neutral to the form of parallelism,
supporting different forms of parallel applications.

1.2.1 Foundational hypotheses

1. User specification of the semantically required constraints, rather than the paral-
lelism, is simpler and leads to comparable if not better performance.

1.3. CNC DOMAIN LANGUAGE 3

2. Separation of computation from coordination simplifies these activities and supports
reuse.

3. Separating the specification of the semantics from the specification of the tuning
simplifies both activities.

4. Starting with too much asynchronous parallelism and providing a separate, simple
and effective way to control it is easier and more effective than starting with a serial
program and adding parallelism.

5. Dynamic single assignment (DSA)/determinism eliminates race conditions, mak-
ing programs less error prone and easier to reason about and debug. The apparent
increase in memory usage can be adequately addressed.

CnC is broader than other parallel programming models along one dimension and nar-
rower along another. CnC is provably deterministic with respect to a program’s output (not
the schedule). Although this makes it easier to use, it also limits the scope of applications
it supports. (We are experimenting with adding controlled nondeterminism to extend the
range of applications supported without losing the ease-of-use advantages.) Some applica-
tions are inherently nondeterministic. On the other hand it allows a wider range of parallel
execution styles than other systems. It supports both static and dynamic forms of task,
data, loop, pipeline, and tree parallelism.

1.3 CnC Domain Language

1.3.1 Description

The CnC domain specification indicates computations of a program, and the control and
data dependences among these computations. These relationships impose constraints on
the execution order. These are the only constraints imposed by the domain specification.
There is no arbitrary serial ordering of statements, only the partial ordering based on the
dependences. These constraints are based on the application logic, and are independent of
the target architecture.

The CnC domain language coordinates among computation steps. These computation
steps are written in a sequential or parallel programming language. For example, Intel R©
Concurrent Collections for C++ supports C++ programs. Other existing systems have Java,
C with OpenMP, Scala, Haskell, Python, Habanero Java, and a subset of MATLAB as the
computation language. The data model is based on tuple spaces.

A computation step instance that produces a data item must execute before the compu-
tation step instance that consumes that data. A computation step instance that produces a

4 CHAPTER 1. CONCURRENT COLLECTIONS

Figure 1.1: Ordering requirements

control tag must execute before the computation step instance controlled by that control
tag. These entities and relationships form the nodes and edges of a graph as illustrated in
Figure 1.1.

This graphical description includes the computation steps (in circles), the data items (in
squares), the control tags (in hexagons) and the producer/consumer relations among them
(arrows, dotted in the case of control dependences). The inputs and outputs are shown
as data items produced by the environment and data items consumed by the environment.
This facilitates composability of graphs. The graph may be cyclic.

In the remainder of the chapter we use our textual notation instead of the graph notation
described above. We represent step, items and tag collections using syntax (stepName),
[itemName] and < tagName >. Arrows are used for producer and consumer relations.
The control relation represented as a dotted line in the graph becomes :: in the text. More
than one relation can appear in a statement. Statements end in a ;.

CnC specification graph. The three main constructs in a CnC specification graph are
step collections, data collections, and control collections. These collections and their rela-
tionships are defined statically. But for each static collection, a set of dynamic instances is
created as the program executes.

A step collection corresponds to a specific computation, and its instances correspond to
invocations of that computation with different input tags. A control collection is said to
control a step collection—adding an instance to the control collection prescribes one or
more step instances i.e., causes the step instances to eventually execute when their inputs
become available. The invoked step may enable other step executions by adding instances
to other control collections, and so on.

Steps also dynamically read (get) and write (put) data instances. The execution order
of step instances is constrained only by their producer and consumer relationships, includ-
ing control relations. A complete CnC specification is a graph where the nodes can be

1.3. CNC DOMAIN LANGUAGE 5

either step, data, or control collections, and the edges represent producer, consumer, and
control relationships.

A whole CnC program includes the specification, the step code and the environment.
Step code implements the computations within individual graph nodes, whereas the envi-
ronment is the external user code that invokes and interacts with the CnC graph while it
executes. The environment can produce data and control instances. It can consume data
instances and use control instances to prescribe conditional execution.

Collections indexed by tags. Within each collection, control, data, and step instances
are each identified by a unique tag. Tags may be of any data type that supports an equality
test and hash function. Typically, tags have a specific meaning within the application. For
example, they may be tuples of integers modeling an iteration space (i.e., the iterations of
a nested loop structure). Tags can also be points in nongrid spaces—nodes in a tree, in an
irregular mesh, elements of a set, etc. Collections use tags as follows:

• A data collection is an associative container indexed by tags. The contents in-
dexed by a tag i, once written, cannot be overwritten (dynamic single assignment).
In a specification file a data collection is referred to with square-bracket syntax:
[x:i,j].

• A step begins execution with the tag indexing that step instance. The tag provides
access to (optional) input data. The next input tag may be a function of the data
found in the first input tag, and so on. So the first input tag serves as a seed value for
computing the tags of all the step’s input and output data.

For example, in a stencil computation a tag “i,j” would be used to access data at
positions “i+1,j+1”, “i-1,j-i” and so on.

• A control tag collection specifies which step instances are to execute. Each tag in
a control tag collection is a tuple which controls the execution of a corresponding
instance of the controlled computation step. A tag function indicates which step
instance corresponds to a control tag instance. Tag functions also indicate the rela-
tionships between step instances and input and output data item instances, as well as
step instances and output control tags.
Each computation step collection is controlled by exactly one control tag collec-
tion. A given control tag collection may control more than one computation step
collection. A producer produces the control tags and data items. In either case, the
producer might be a computation step or the environment, as shown in Figure 1.1.

Below is an example snippet of a CnC specification.

6 CHAPTER 1. CONCURRENT COLLECTIONS

// control relationship : myCtrl prescribes instances of step
<myCtrl> :: (myStep);
// myStep gets items from myData, puts tags in myCtrl and items in myData
[myData] -> (myStep) -> <myCtrl>, [myData];

The CnC specification can indicate tag functions:

[myData: i] -> (myStep: i) -> <myCtrl: i+1>, [myData: i+1];

1.3.2 Characteristics

• DSA Each data instance, that is a name/tag pair, is associated with a unique value:
i.e., the items obey dynamic single assignment (DSA).

• Determinism The step instance as a whole has no side effects and is a pure function
of its input data. This combination of this and the DSA property ensures that the
CnC specification is deterministic. The same specification with the same input can
run on a thousand cores or on a single core, if it fits, and will produce the same
results.

Determinism in the domain specification means the code produces the same output
collections on every execution. These collections are sets so the ordering is not
relevant but the names, tag values and contents must be identical.

• No false dependences A CnC domain specification has implicit asynchronous par-
allelism. The only required orderings are specified semantic dependences, not arbi-
trary orderings.

• Platform Independence The domain specification is independent of the target plat-
form. In particular, it does not make any assumptions about the memory model. Data
is identified by tags and is treated as values and not as memory references. This
makes it possible to use the same domain specification on shared and distributed
memory without changing the step code. In many cases the separate tuning specifi-
cation alone can handle the platform differences. In Section1.4 we will show how a
CnC runtime can handle distributed memory efficiently.

Based on tag functions, DSA, determinism and ordering constraints that are due only
to true dependences, the CnC domain language simplifies analysis and transforma-
tions such as loop interchange, loop splitting, distribution (local vs. distributed tag
component).

1.3. CNC DOMAIN LANGUAGE 7

Figure 1.2: Cholesky factorization

1.3.3 Example

Cholesky factorization takes a symmetric positive definite matrix as an input and factors
it into a lower triangular matrix and its transpose. The computation can be broken down
into three CnC step collections. The step (cholesky) performs unblocked Cholesky fac-
torization of the input symmetric positive definite tile producing a lower triangular matrix
tile. Step (trisolve) applies a triangular system solve on the result of the step (cholesky).
Finally the step (update) is used to update the underlying matrix via a matrix-matrix mul-
tiplication. Figure 1.2 shows the dependences between tiles of (cholesky), (trisolve), and
(update). For more detail, see [2].

Here we describe the four stages for developing a CnC domain specification for an ap-
plication. It starts with a “whiteboard” level, which does not provide sufficient information
for execution. The remaining stages provide the missing information. We use Cholesky
factorization as our example.

• Stage 1: The whiteboard description

8 CHAPTER 1. CONCURRENT COLLECTIONS

This stage identifies the computations, drawn in circles, and the data, drawn in boxes,
as one might describe an application to a colleague at a whiteboard. It includes
arrows between boxes and circles that represent the producer/consumer relations
between computation and data. We call the computations computation steps and
represent them textually in parentheses, e.g., trisolve(). We call the data data items
and represent them in square brackets, e.g., [X]. Producer and consumer relations are
represented by arrows. For example, trisolve()− > [X]. A full producer/consumer
relationship (corresponding to a data dependence) would be represented as:

(trisolve) -> [X]
[X] -> (update)

In CnC, we view input/output as instances of producer/consumer relationships. The
environment of the CnC graph produces and consumes data items. This is written
as env− > [X] or [X]− > env. The environment can also produce and consume
control instances.

• Stage 2: Distinguish among the computation instances

In the whiteboard description, a computation is processing some stream of input
over an indefinite length of time. However there will be distinct instances of the
computation, and each takes place somewhere in the target machine at some point
in time. The programmer distinguishes among these instances by associating each
instance with a distinct tag. In the case of (trisolve), the instances are identified by
a tag that is a row, iter tuple. Thus we write (trisolve : row, iter). The instances
of [X] are distinguished by row, column and iteration. We write [X : col, row, iter].

The tuples such as < column, iteration > or < row, col, iteration > are called
tags. Tags are used to identify instances and distinguish among them. The term
collection indicates that a static computation step, say trisolve() is a collection of
dynamic instances and a static data item, say [X], is a collection of dynamic in-
stances.

• Stage 3: Identify the instances to be executed

We can now distinguish among the instances of (trisolve) by tags of the form
row, iter. But this does not tell us if trisolve(52, 4) will be executed. Each step
collection is controlled by one control collection, that determines which step in-
stances will execute. We represent control collections in angle brackets. A control
collection holds a set of tuples. In our example, (trisolve : row, iter) is controlled
by < tagRowIter : row, iter >. The relationship is represented by ::. We say
< tagRowIter : row, iter > :: (trisolve : row, iter). The meaning of this

1.3. CNC DOMAIN LANGUAGE 9

relationship is that every tuple in < tagRowIter > controls the execution of a cor-
responding instance of (trisolve). During its execution it has access to the value of
its tag.

In the Cholesky application, each of the three computation steps is controlled by its
own control collection. In many applications, a control collection may control more
than one computations step collections. Imagine an application that processes video
frames. A control collection containing frameIDs might control more multiple
computations that are to be performed on each frame.

• Stage 4: Indicate how the control collections are produced

In the case of Cholesky, the control instances are statically known. So in this
case the control collections are produced by the environment. We write this as
env− >< tagIter : k >, and similarly for the other control collections. In general,
however, one computation may determine if another will execute. This is a con-
troller/controllee relation (corresponding to a control dependence). For example, we
might say:

foo() -> <barTag: tag>
<barTag: tag> :: bar()

At this point we have the entire representation of the CnC coordination graph for the
Cholesky application.
The CnC domain specification for Cholesky:

env -> [X];
[X] -> env;

<tagIter: k> :: (cholesky: iter);
<tagRowIter: row, iter > :: (triSolve: row, iter);
<tagColRowIter: col, row, Iter> :: (update: col, row, iter);

[X: iter, iter, iter] ->
(cholesky: iter) ->

[X: iter, iter, iter +1];
[X: iter, iter, iter+1], [X: iter, row, iter] ->

(triSolve: row, Iter) ->
[X: iter, row, iter +1];

[X: col, row, iter], [X: row, col, iter] ->
(update: col, row, iter) ->

[X: col, row, iter +1];

10 CHAPTER 1. CONCURRENT COLLECTIONS

1.3.4 Execution Semantics

During execution, the state of a CnC program is defined by attributes of step, data, and
control instances. (These attributes are not directly visible to the CnC programmer.) Data
instances and control instances each have an attribute Avail, which has the value true if and
only if a put operation has been performed on it. A data instance also has a Value attribute
representing the value assigned to it where Avail is true. When the set of all data instances
to be consumed by a step instance and the control instance that prescribes a step instance
have Avail attribute value true, then the value of the step instance attribute Enabled is set
to true. A step instance has an attribute Done, which has the value true if and only if its
execution is complete.

Instances acquire attribute values monotonically during execution. For example, once an
attribute assumes the value true, it remains true unless an execution error occurs, in which
case all attribute values become undefined. Once the Value attribute of a data instance
has been set to a value through a put operation, assigning it a subsequent value through
another put operation produces an execution error, by the single assignment rule. The
monotonic assumption of attribute values simplifies program understanding, formulating
and understanding the program semantics, and is necessary for deterministic execution.

Given a complete CnC specification, the tuning expert maps the specification to a spe-
cific target architecture, creating an efficient schedule. Tag functions provide a tuning
expert with additional information needed to map the application to a parallel architec-
ture, and for static analysis they provide information needed to optimize distribution and
scheduling of the application.

Strategies for Implementing the Execution Model

They key challenge for every CnC implementation is the execution model of CnC. The
currently available runtimes all use dynamic strategies to schedule the execution of steps.
The most interesting aspect is how a runtime detects steps to be enabled, in particular in
absence of tag-functions. It is a trivial task to determine when a step is prescribed (e.g.,
when the tag is put), but knowing when it is fully inputs-available is generally impossible
without tag-functions. Hence different strategies have been developed to achieve a correct
step execution. All approaches have advantages and disadvantages. They make differ-
ent tradeoffs between what limitations they induce, how much overhead (memory and/or
computation) they imply and how visible they are to the programmer.

To avoid the loss of generality usually increased overhead is accepted with some proba-
bility. Steps can be executed “speculatively” until a needed data item is found unavailable.
When this happens several actions can be taken.

1.3. CNC DOMAIN LANGUAGE 11

• Roll-back step execution and re-play after the item became available.
This solution implies memory overhead and depending on the implementation lan-
guage the programmer must be aware of this behavior to some degree.

• Block thread until the unavailable item becomes available.
This requires special attention to dead-lock prevention like creating a new thread.
As thread (or even process) creation is a relatively costly feature the overhead in
computation and memory is significant.

• Halt step execution and resume after item became available.
Continuations require features that are not available in the common languages (yet).
This solution promises to keep the computation overhead very low, but the effects
on memory consumption are currently unclear.

Runtime performance can be maximized by making certain assumption about and lim-
iting generality. The known approaches which fall into this category do not support data-
dependent gets (e.g., require data-tags which depend on data and not only the step-tag).
As mentioned above, full tag function availability (or equivalent information) provides the
necessary information. An alternative approach limits the scope even further by requiring
that the control and corresponding data are produced at the same place.

1.3.5 Programming in CnC

Expressing the domain

As a coordination language and programming model CnC must be paired with one or more
programming languages to let the developer define the actual step computations. There are
two approaches to connecting the rules for coordination with the actual computations. One
possibility is to specify coordination and computation in the same programming language
via a CnC specific API. The other is to define a new language whose only function is
exactly to express the coordination and let a compiler generate the CnC glue in a com-
putation language. Both approaches have (mostly software engineering related) pros and
cons. Using a single language has two apparent advantages: it keeps the tool-chain needed
to create an application short and, more importantly, it can be fully based on existing
industry-standards. However, it also binds the language-independent semantics to a spe-
cific language (or even implementation). In our CnC domain language, step-collections
are identified with putting their name in parenthesis (step1), data-collections are put
in square brackets [data1] and control-collections are represented in angle brackets
<control1>. The types of data times and control tags precede the collections name.
The data-tag follows the data-collection name in angle-brackets. Figure 1.3 shows side

12 CHAPTER 1. CONCURRENT COLLECTIONS

(step1);
(step2);
[double data1 <int>];
<int control1>;
(step1) -> [data1];
(step2) <- [data1];
control1 :: (step1),

(step2);
(step1) -> <control1>;

step_collection< s1 > step1;
step_collection< s2 > step2;
item_collection< int, double > data1;
tag_collection< int > control1;
step1.produces(data1);
step2.consumes(data1);
control1.prescribes(s1);
control1.prescribes(s2);
step1.controls(control1);

Figure 1.3: CnC semantics expressed in a CnC domain syntax and in a C++ representation

by side equivalent declarations in the domain syntax and a C++ representation, where the
collections are represented as simple template classes. Both express the combined graph
of Figure 1.1.

The CnC domain language expresses producer/consumer relations with arrows ‘‘->’’
and the control relation is expressed with double colons ‘‘::’’. The C++ API uses
methods in the collections for the equivalent functionality. It is clear from Figure 1.3 that
both representations are equivalent and that trivial transformations exist to get from one to
the other.

Example: Cholesky

Domain Specification of Cholesky. As an example, the full CnC domain specification
for Cholesky could look like this:

step collections
(cholesky: iter);
(trisolve: iter, row);
(update: iter, row, col);
data collection
[double X <iter, row, col>];
control collections
<int tagIter>;
<pair tagRowIter>;
<triple tagColRowIter>;
I/O
env -> [X: iter, row, col],

<tagIter: iter>,
<tagRowIter: iter, row>,
<tagColRowIter: iter, row, col>

env <- [X: iter, row, col];
control relations
<tagIter: iter> :: (cholesky: iter);
<tagRowIter: iter, row> :: (triSolve: iter, row);

1.3. CNC DOMAIN LANGUAGE 13

<tagColRowIter: iter, row, col> :: (update: iter, row, col);
producer/consumer relations
[X: iter, iter, iter] -> (cholesky: iter) -> [X: iter, iter, iter +1];
[X: iter, row, iter], [X: iter+1, iter, iter]

-> (triSolve: iter, row)
-> [X: iter, row, iter+1];

[X: iter, row, col], [X: iter+1, row, iter], [X: iter+1, col, iter]
-> (update: iter, row, col)
-> [X: iter+1, row, col];

In the C++ API a CnC graph is defined within a so called context. For Cholesky,
such a context could look like the following: 1

// The context class
struct cholesky_context : public CnC::context< cholesky_context >
{

// Step Collections
CnC::step_collection< cholesky_step > cholesky;
CnC::step_collection< trisolve_step > trisolve;
CnC::step_collection< update_step > update;
// Item collections
CnC::item_collection< triple, tile_const_ptr_type > X;
// Tag collections
CnC::tag_collection< int > tagIter;
CnC::tag_collection< pair > tagRowIter;
CnC::tag_collection< triple > tagColRowIter;
// The context class constructor
cholesky_context(int _b = 0, int _p = 0, int _n = 0)

: cholesky(*this),
trisolve(*this),
update(* this),
X(*this),
tagIter(*this),
tagRowIter(*this),
tagColRowIter(*this)

{
// I /O relations
ENV.produces(X);
ENV.consumes(X);
ENV.controls(tagIter);
ENV.controls(tagRowIter);
ENV.controls(tagColRowIter);
// control relations
tagIter.prescribes(cholesky, *this);
tagRowIter.prescribes(trisolve, *this);
tagColRowIter.prescribes(update, *this);
// producer/consumer relations
cholesky.produces(X);

1The current implementations are evolving. Some of the facilities described here are not available at the time
of this writing.

14 CHAPTER 1. CONCURRENT COLLECTIONS

cholesky.consumes(X);
trisolve.produces(X);
trisolve.consumes(X);
update.produces(X);
update.consumes(X);

}
};

There are several possibilities to express tag functions in the C++ API. One is to describe
them in a separate interface, like

template< class T >
void tuner::depends(const triple & tag, my_context & c, T & dC) const
{

dC.depends(X, tag);
if(tag.col == tag.row) { // Diagonal tile.

dC.depends(X, triple(tag.iter+1, tag.col, tag.iter);
} else { // Nondiagonal tile .

dC.depends(X, triple(tag.iter+1, tag.col, tag.iter);
dC.depends(X, triple(tag.iter+1, tag.row, tag.iter);

}
}

A sample step. Once the CnC semantics are specified, the actual computation needs to be
provided. To let the runtime call the steps they have to conform to a given interface which is
defined by the given CnC implementation. Here we show examples which closely follow
the conventions as defined by the Intel C++ implementation. Different implementations
vary in how strictly they enforce the CnC rules, such as steps having no side effects and
items being immutable. Languages like C/C++ provide less capabilities to actually enforce
such rules than for example Java or even Haskel. In C++ capabilities for disallowing side-
effects are already exhausted with requiring steps to be “const”. The input arguments to a
step are its tag and the collections it has relations with. In the C++ implementation every
step has access to the entire graph through the second ‘‘context’’ argument. As an
illustration, the following shows the step-body of the update step of the Cholesky example:

// Performs symmetric rank−k update of the submatrix .
int update_step::execute(const triple & tag, cholesky_context & c) const
{

// init local vars
const int k = tag[0], j = tag[1], i = tag[2];
tile_const_ptr_type A_tile, L2_tile, L1_tile;

c.X.get(triple(k,j,i), A_tile); // Get the input tile.

if(i==j) { // Diagonal tile , i=j, hence both the tiles are the same.

1.3. CNC DOMAIN LANGUAGE 15

c.Lkji.get(triple(k+1,j,k), L1_tile);
dsyrk(L1_tile, A_tile, ...); // computation

} else { // Nondiagonal tile .
c.X.get(triple(k+1,i,k), L2_tile); // Get the first tile.
c.X.get(triple(k+1,j,k), L1_tile); // Get the second tile.
dgemm(L1_tile, L2_tile, A_tile, ...); // computation

}

c.X.put(triple(k+1,j,i), A_tile); // output for the next iteration
}

This code has no side-effects other than putting a new tile into the data-collection: it uses
only local variables, it has no status and does not overwrite data. In principle, the com-
putation follows the pattern “consume (get) input → compute → produce (put) output”.
More interestingly, this code illustrates that relations in CnC can be conditional. Different
instances of this step consume different numbers of data items: when computing the diag-
onal it depends on only two input tiles, while on nondiagonals three inputs are consumed.
Even though this example puts a condition only on the consumer relations, producer and
controller relations can of course also be conditional.

The Environment. The environment in a CnC program is responsible for instantiating
the actual CnC-graph instance and producing initial data control. The latter is done with
the same interfaces as used by steps. Between consuming the output and producing input
and control, the environment can do arbitrary computation. A simplified environment code
for Cholesky could look like this:

// Create an instance of the context class which defines the graph
cholesky_context ctxt;
// produce input matrix
for(int i = 0; i < N; i++) {

for(int j = 0; j <= i; j++) {
ctxt.X.put(triple(0,j,i), init_tile(j,i));

}
}

// produce control tags
for(int k = 0; k < N; k++) {

ctxt.tagIter.put(k);
for(int j = k+1; j <= N; j++) {

ctxt.tagRowIter.put(pair(k,j));
for(int i = k+1; i <= j; i++) {

ctxt.tagColRowIter.put(triple(k,j,i));
}

}
}

// Wait for all steps to finish (optional)
ctxt.wait();
// get result

16 CHAPTER 1. CONCURRENT COLLECTIONS

for (int k = 0; k < N; k++) {
for (int j = k+1; j < N; j++) {

tile_const_ptr_type tile;
ctxt.X.get(triple(j+1,j,i), tile);
do_something(tile);

}
}

Distributed memory

A CnC domain specification never refers to a particular place (e.g., an address) or time
(e.g., “now”). However, it explicitly identifies all entities needed to map the program
execution to distributed memory: control instances identify what needs to be computed
and data instances identify the data needed for the computations. Moreover, through gets
and puts a CnC program has explicit hooks at all places in the code relevant for distribution
and so does not require explicit message handling. The runtime knows exactly which data
and control instances are needed, there is no need to infer this information indirectly like
other approaches such as virtual shared memory systems or ClusterOpenMP.

Intel Concurrent Collections for C++ allows any legal CnC application to run on dis-
tributed memory. For this, only minimal additional coding is needed. Besides a trivial
initialization variable, only marshaling capabilities for nonstandard data types need to be
provided. The latter is a limitation of the underlying programming language C++, because
it does not provide marshaling features on the language level. Still, marshaling in this sys-
tem is very simple and requires the developer to provide the marshaling functionality only.
The runtime will take care of using it at the appropriate places.

Distributed evaluation is available in two modes, automatic and user-guided. In non-
trivial cases automatic distribution requires tag-function and their analysis to achieve ac-
ceptable efficiency. In the general case the runtime can work distributed even when no tag
functions are available. This default behavior requires significant bookkeeping and over-
head. When a step is executing, the runtime cannot know where (e.g., on which process) an
unavailable item was or will be produced. As a consequence, it needs to synchronize data
between processes, leading to broadcast-like communication patterns (or worse). Never-
theless, applications with few data-dependencies between steps can still perform well with
the automatic distribution feature.

As an example for distributing the computation, the following code would partition a
two-dimensional space (like a matrix) in a row-cyclic manner:

int tuner::compute_on(int row, int column) {
return row % numProcs();

}

1.3. CNC DOMAIN LANGUAGE 17

The runtime will distribute rows cyclically across the processes and all computations within
the same row will be computed on the same process. For column-cyclic distribution one
would use something like:

int tuner::compute_on(int row, int column) {
return column % numProcs();

}

For convenient experiments with different distribution plans and/or to make more dynamic
decisions, one could also provide several options and decide on the fly which distribution
to use. Unlike with explicit message passing approaches changing the distribution plan
does not require any changes to the step-codes.

Tag-functions significantly simplify changes to the distribution. The consumer-steps can
be determined by the tag-functions. With this information the runtime uses compute on
to compute the address space where the consuming step-instances will be executed. This
mechanism is very convenient because it allows changing the distribution plan only for the
computation and the runtime will automatically send the data to where it is needed.

In theory tag-function analysis allows computing good distribution plans automatically
and research on this is in progress. Much of the existing literature on automatic loop trans-
formations and automatic data distributions applies. There are several other differences.
For example, dynamic single assignment makes our problem easier than the general case.

1.3.6 Futures

There are several related topics for future work. The first is a hierarchical domain specifi-
cation. In such a specification, what looks like a step at one level might actually be a CnC
graph at the level below. The inputs/outputs from/to the environment of the lower-level
graph would look like inputs/output to/from the higher level step.

Another potential area of future inclusion is support for reuse or libraries of existing
subgraphs. This might involve hooking up an input of one subgraph to the output of another
or it might be accomplished by using hierarchy. In this case the reused subgraph would be
the lower level implementation of what looks like a step at the level above.

Commonly used abstract patterns like tree walks, reductions, joins, streams are also
being investigated for future inclusion. The user would need to supply some missing in-
formation to make each abstraction concrete.

CnC is deterministic. Some applications are inherently nondeterministic, for example,
any that depend on a random number or have a “choose any one” component. Support
nondeterminism, but in a controlled way, is also planned. For example, we might be able
to continue to support our guarantees but only for a subgraph of the graph of the whole
program.

18 CHAPTER 1. CONCURRENT COLLECTIONS

Standard static analyses based on CnC domain specifications will be implemented. They
are easier and more effective in CnC. Also an application-specific CnC attribute graph can
serve as a base for more aggressive static analysis.

1.4 CnC Tuning Language

The CnC tuning language is separate from the CnC domain language. The tuning specifi-
cation for an application is indicated by a high-level declarative language. A CnC tun-
ing specification and domain specification are distinct specifications written in distinct
but related high-level declarative languages. The tuning specification cannot violate the
constraints of the domain specification. The domain specification is written by a domain
expert. This is a person with expertise in finance, graphics, chemistry, etc. The tuning
specification is written by a tuning expert. This tuning expert might be the same person as
the domain expert but at a later time, a different person with expertise in tuning, a static
analyzer, an auto-tuner, etc.

Since the domain specification indicates constraints based on the application only, a sin-
gle domain specification may be used for a wide range of scenarios (distinct architectures,
configurations, or goals). There are two caveats. First, the appropriate grain may vary
among targets. That may simply be reflected in a parameterized grain but if the appro-
priate grains are very different, the static graphs may have to be different. Second, if the
target machines are too different, different algorithms might be needed. Even with these
caveats, multiple tuning specifications may be used with the same domain specification.
So conceptually they must be distinct specifications. But the tuning specification makes
reference to collections in the domain specification and may add additional collections and
addition relations (constraints). Together they form a single tuned CnC specification.

The domain specification exposes the potential parallelism in the application. Since it
only indicates the semantic constraints, there is typically more than enough parallelism
exposed. The tuned application must obey the constraints provided by the domain speci-
fication but that leaves many possible legal executions (an execution is a mapping across
the platform and through time). The application will execute on a specific architecture,
with a limited capacity and its own performance characteristics. The job of the tuner then,
is to improve performance of the application for a specific platform by guiding execution
away from or actually eliminating some semantically legal executions that result in poor
performance. A primary tuning focus is to improve temporal and spatial locality.

The separation of domain and tuning concerns isolates the domain expert from the tun-
ing facility. This isolation allows the tuning language to provide strong capabilities for
control and flexibility without complicating the work of the domain expert. From the tun-

1.4. CNC TUNING LANGUAGE 19

Figure 1.4: Sample CnC graph

ing expert’s perspective, the value of this isolation is that he/she does not have to wade
through application code.

1.4.1 Description

The tuning specification refers to the step, item, and control collections in the domain
specification. Although separate specifications are written for domain and tuning, some
mechanism such a build model is used to integrate the two specifications into a single spec-
ification. This integration supports the use of the domain collections and their instances in
the tuning specification. The tuning specification generates tags of its own and adds steps
of its own, basically extending the application.

The basic concept of the tuning language is the affinity collection, a set of computations
(collection of steps) that the tuner suggests should be executed close in space and time. We
sometimes refer to an affinity collection as a group of step collections. Affinity collections
could be generated by static analysis. The next basic concept is a hierarchy of these col-
lections: hierarchical affinity collections (HACs). Hierarchical affinity collections allow
the specification of relative levels of affinity, with tighter affinity at lower levels. Com-
putations that touch the same data will not benefit from locality if they are too far apart
in space or time. Hierarchical affinity collections are the tuning mechanism for indicating
computations that must be proximate in both time and space. This is the highest concern.
The tuning language provides additional separate mechanisms for each of space and time.

Hierarchical Affinity Collections

Consider the CnC graph in Figure 1.4. An option for a hierarchical affinity collection
for this graph is shown in Figure 1.5. Assume for our examples that all step collections

20 CHAPTER 1. CONCURRENT COLLECTIONS

Figure 1.5: Affinity graph

in Figure 1.5 form an outer affinity collection. A second grouping option would to be
have a single inner affinity collection made up of the step collections (sonia), (sanjay),
and (simon). A third option would be to have step collections (sonia), (sanjay), and
(simon) form an affinity collection within the outer affinity collection and step collections
(sonia) and (sanjay) form an affinity collection within that one. The domain specification
does not imply a particular affinity grouping. This decision is the work of the tuning expert
and may depend on the target architecture, configuration, characteristics of the data set,
goal (e.g., power vs speed) etc.

We will show the tuning language textual representation for the hierarchical affinity
collection for Figure 1.5. We use curly brackets to show the hierarchical nesting of affinity
collections:

{(sally)
(sam)

{(sonia)
{(sanjay)
(simon)
}

}
}

Affinity collections have names:

{groupa:
(sally)
(sam)
{groupb:

(sonia)
{groupc:

1.4. CNC TUNING LANGUAGE 21

(sanjay)
(simon)

}
}

}

We need a mechanism to indicate the dynamic instances of affinity collections. In the
domain language, steps are used to control conditional execution of step instances. In the
tuning language, these collections are prescribed to control which specific instances of the
collection will exist.

<tony: i> ::
{groupa: (sally: i)

(sam: i)
<tom: i, j> ::

{groupb: (sonia: i, j)
{groupc: (sanjay: i, j)

(simon: i, j)
}

}
}

The above example illustrates the prescription of affinity collections. Recall that step
collections are a static construct and we indicate the instances of a step by a prescribing
control collection. An instance in the prescribing control collection corresponds to a step
instance that will be executed. Here an affinity collection is a static construct, and an
instance in the prescribing control collection corresponds to a collection instance that will
be created. So this specific statement means that for each instance of a tag < tony : i >

there will be a corresponding instance of the affinity collection {groupa : i}.
We will also use prescription to indicate when the tuning actions associated with an

affinity collection will take place. The affinity collection action is controlled by a control
collection.

Time- and space-specific mappings

The hierarchical affinity collections enable the tuning expert to express affinity within
space-time. It is important to provide this general way of expressing locality without re-
quiring a distinction between space and time. But, of course, a tuning expert may want to
distinguish spatial and temporal locality. These specific controls are presented here.

Space. The tuning expert has access to the facilities in Figure 1.6 to express specific
distributions in space.

For example:

22 CHAPTER 1. CONCURRENT COLLECTIONS

Figure 1.6: Space-specific mapping options

<groupTag: j> :: {groupOuter: j replicate_across address_spaces}

Here for each tag the in control collection < groupTag >, the corresponding instance
of groupOuter will eventually be executed on all address spaces. replicate across is a
keyword. address spaces derives from the description of the platform tree.

<groupTag> :: {groupOuter distribute_across sockets
{groupInnerA}
{groupInnerB}
{groupInnerC}
{groupInnerD}

}

Here the four inner affinity collections are distributed among the nodes in the tuning tree
holding sockets. distribute across is a keyword. sockets derives from the description
of the platform tree. In the previous example the components to be placed in space were
dynamic instances of the same static affinity collection. In this example the components
are statically distinct affinity collections. The distribution annotation distributes the (static
or dynamic) components of the annotated affinity collection according to user functions.

<groupTag: j> :: {groupOuter: j distribute_ across address_spaces via f(j)}

Here when a tag j arrives in < groupTag >, the corresponding affinity instance is place
on the queue associated with address space f(j).

Time. The tuner may indicate that the set of components in an affinity collection should
execute in an order specified by a priority or that they are unordered. The set of components
of an affinity collection may be required to run one at a time (or at most N at a time). These
two possibilities for each of two traits result in four possible situations as seen in Figure 1.7.

If the set of components are to be executed in an arbitrary order and they may overlap,
they are not additionally constrained with respect to time. If they are to start according to a

1.4. CNC TUNING LANGUAGE 23

Figure 1.7: Time-specific mapping options

priority and they are not to overlap then they execute serially with a barrier between them.
(Notice that the component may itself be an affinity collection that executes in parallel.)
The other two are the interesting cases. Consider image processing where frames are
entering the system. We want the processed frames to exit in order. Here we will have a
priority order for starting the work on a frame but we do not want to require that there is
a time consuming barrier between them. This is the ordered/overlapping case. The other
interesting case, unordered but nonoverlapping might be used for components with a large
memory footprint. In this case we want to run one at a time but we may not care about the
specific order. This case can be generalized from one at a time to N at a time.

1.4.2 Characteristics

1. The CnC tuning specification is declarative.

2. It is isolated from the domain specification.

3. Determinism remains intact, although the tuning language can be used to specify
different mappings of data and computation in time and space, in accordance with
differing architectures and goals.

4. The hierarchical affinity collection mechanism guides but does not force specific
orderings. It does not explicitly say what goes on in parallel, or that this computation
executes before that (just that they execute close in space and time).

5. It provides time- and space-specific mechanisms that provide more control than the
basic hierarchical affinity collection.

1.4.3 Examples

Here we describe the four stages for developing a CnC tuning specification for an applica-
tion. We again use Cholesky factorization as our example.

24 CHAPTER 1. CONCURRENT COLLECTIONS

• Stage 1: Whiteboard

In the case of tuning, the whiteboard level is simply an indication of the affinity hier-
archy. There are a variety of possibilities for tuning Cholesky. For this example we
create an inner affinity group that includes (trisolve) and (update). An instance of
(trisolve) is used with many of the instances of (update). We call this inner group
groupTU . We choose for (cholesky) to have a weak affinity with that inner group
since an instance of (cholesky) is used with many instances of it. We will call this
groupC. In this tuning specification we have two distinct hierarchical affinity collec-
tions, groupC and groupTU . Further we can define them as: groupC(cholesky)

and groupTU(trisolve), (update).

• Stage 2: Distinguish among the computation instances

As with steps, groups also have instances. We need to distinguish instances so we
can map and schedule distinct instances independently. Instances of groupC will be
distinguished by the tag iter, so we write groupC : iter. Instances of groupTU are
distinguished by the tag row, iter so we write groupTU : row, iter.

• Stage 3: Identify the instances to be executed

These two steps have two different sets of instances, so they will require differ-
ent control collections. In this case the required control collections already ex-
ist in the domain specification. There is an instance of groupC for each tag in
< CholeskyTag > and there is an instance of groupTU for each instance of
< TrisolveTag >, so these are the two control collections.

• Stage 4: Indicate how the control collections are produced

The control collections are produced in the domain specification, so there is no rea-
son to produce them again here. These two specifications will exist together in the
full CnC specification.

For this example, we have added affinity collections but the control, item and step col-
lections all exist in the domain specification. This is often the case, but in general we can
augment the domain specification with additional control, item, and step collections that
are purely in support of tuning and have no semantic impact. Suppose, for example, we
want to create super-tiles to form affinity groups. (The individual step instances may be
tiled, of course, but this would create groups of those step tiles that would execute close in
time and space.) In this case the tuning specification may input a problem size, tile size,
platform configuration size, and/or a goal (power or time). From this input, a new step
might generate the number of rows and columns within a super-tile and/or the number of

1.4. CNC TUNING LANGUAGE 25

rows and columns of super-tiles. This process would include additional, step, item and
control collections. These can then be referenced within the tuning specification. For this
example, the control collection controlling an affinity collection would be a newly com-
puted control collection that identifies the super-tiles. These new collections might have
constraint relationships among them and there might be constraint relationships from the
domain collections to these new tuning collections. In addition, the tuning specification
might even include new constraint relationships among the domain collections. None of
these would have semantic implications for the domain applications but the new orderings
would be enforced as part of the tuning process.

// iters have no affinity with each other
<CholeskyTag: iter> :: {GroupC: iter

// all the work for a given iteration has a weak affinity
(cholesky: iter)
<TrisolveTag: row, iter> :: {GroupTU: row, iter

// the work for a given iter and row has a strong affinity
(trisolve: row, iter)
(update: col = (iter+1 .. N), row, iter)}}

As we have seen, there can be a variety of tuning specifications for Cholesky. Let
us examine the tuning specification above. At the outermost level, there is an affin-
ity collection {groupC} for each value of iter. The distinct instances of {groupC}
are not components of any collection so there is no affinity among them. But inside
a single instance of {groupC : iter}, the multiple components have an affinity with
each other. One is the instance of (cholesky) for this value of iter. The others are
instances of the {groupTU} affinity collection for this value of iter and for multiple
values of row. The set of row, iter instances is determined by tags in the control col-
lection < TrisolveTag > from the domain specification. Within an instance of the
{groupTU : iter} affinity collection there are multiple components: (trisolve : iter) and
(update : col = (iter + 1..N), row, iter). The value of iter referenced by these com-
ponents is that of their parent instance {groupC : iter}. One component is (Trisolve).
There are multiple (Update) components. The exact number is a function of the values of
iter and N . There is reuse here in that this instance of (Trisolve) produces a result that is
used by each (Update) instance in the same row. Note the scoping of the tag components.
Since (cholesky : iter) is within {groupC : iter}, the values of iter are the same. Since
{groupTU : iter} is within {groupC : iter}, the values of iter are the same.

The tuning specification above for Cholesky is an example of an iterative style spec-
ification based on control collections. We anticipate that this will be a commonly used
style. Another option is a recursive style. The following tuning code for Cholesky uses a
recursively defined affinity collection.

26 CHAPTER 1. CONCURRENT COLLECTIONS

<iter= 1> :: {OneIter: iter
{tri-first: iter

(cholesky: iter)
(trisolve: iter+1, iter)
(update: iter+1, iter+1, iter)
// recursive definition of {OneIter}
{OneIter: iter+1}}

<trisolveTag: row, iter> and row > iter+1 ::
{tri-up-rest: iter

(trisolve: row, iter)
(update: col = (iter+1 .. N), row, iter)}}

The {tri − first} affinity collection processes the three top tiles: (cholesky), the top
(trisolve), and the one (update) to the right of that (trisolve). Then it recurses to the
next iter. The rest of the (trisolves) and (updates) are a second component. The first
component corresponds to the critical path, along the main diagonal of the matrix. The first
component cannot complete its recursions without some of the results from instances of the
second components. These constraints are part of the domain specification and do not need
to be repeated here. The control tags for {oneIter} are not from the domain specification.
They are defined explicitly in the tuning specification. They begin at < iter = 1 > and
recurse via the statement {OneIter : iter + 1}.

One more possible tuning for Cholesky would be a tiling. Most tiles would be two di-
mensional rectangles, a set of instances for the same iteration and for a neighborhood of
rows and columns. Tiles along the diagonal would be triangular. For this tuning specifica-
tion, prescriptions identify tiles. There is no concept of a tile in the domain specification.
The tuning specification has to create a new control collection that identifies tile instances.
This will involve new step collections that compute the tile tags. These tags, steps and items
are in the language of the domain specification but are not part of the domain specification.
They belong to the tuning specification, and will differ among tuning specifications. For
instance they were not used in our initial version of Cholesky, nor in the recursive version.
We have shown three distinct tunings for Cholesky. The first followed the loop structure
of the naive code and focused on reuse of the result of the (trisolve) computation. The
second was recursive. The third was tiled. The domain specification remained untouched
for all three.

1.4.4 Execution Model

An execution model is needed to implement the higher level tuning language. Here we
describe one such execution model. Other execution models are possible.

The foundation of the execution model is a representation of the target platform. We
assume only that the platform is hierarchical. A description of this hierarchy is used as

1.4. CNC TUNING LANGUAGE 27

Figure 1.8: Tuning tree

the foundation of the tuning commands. The platform description names each level, for
example, Level1, Level2, etc. or it might be address space, socket, core, etc..

The execution model for hierarchical affinity collections is as follows. We distinguish
between two components of the CnC runtime: the tuning component and the domain com-
ponent. The tuning component serves as a staging area for the execution of step instances
in the domain component. All tuning actions belong to the tuning component.

The tuning component consists of four parts.

• Tuning actions: one for each affinity collection. These specify the low-level pro-
cessing for that collection in the tuning tree. The tuning actions control the flow of
work to the domain runtime.

• Event handlers: one for each control collection in the tuning specification. These
control which instances of the tuning actions take place. When a tag in the normal
domain execution becomes available, the handler for that event will cause some
dynamic action instances to be instantiated.

• Queue manager: one for each queue. These control when to remove items from the
queue and execute them.

• The tuning tree (see Figure 1.8): same shape as the platform tree. There is a work
queue associated with each node in the tuning tree. The items in the queue are ei-
ther static affinity collections/steps or dynamic instances of affinity collections/steps.

28 CHAPTER 1. CONCURRENT COLLECTIONS

Figure 1.9: Tuning action example

Each queue contains work that is ready for an action to be performed (such as moving
down the tree) and work that is not ready. An instance is ready when its associated
tag is available. The tuning runtime system selects from a queue the ready work
item(s) that are nearest the head of the queue.

Large static outer affinity collections start at the top of the tuning tree. As an affinity
collection is moved down a level in the tree, it will be decomposed into its components.
Since components of a collection at some node only move to children of that node (there
is no work stealing), they have a tendency to remain close in the platform, in that nodes
in the tuning tree correspond to nodes in the platform tree. To the extent possible, affinity
collections are moved down from a node in order of their arrival, so the components of
a collection have a tendency to remain close in time. Of course there is a significant
opportunity here for interesting policies (not addressed here) and for the tuning expert
to be more specific about when affinity collections are moved and to where.

For example, the static outer level affinity collection Cholesky can have an action de-
fined where an instance of Cholesky is moved down to a child node and the static affinity
collection groupTU is unpacked and moved down to a child node. See Figure 1.9, which
shows pseduo-API code for an action on the Cholesky static affinity collection. An action
defined on a leaf node can move instances of a static affinity collection or dynamic affinity
instances into the domain runtime for execution.

Control tags

In previous examples, we have used control collections from the domain specification to
prescribe collections. We use tags in the execution model to determine when the actions
on those instances are to be performed.

1.4. CNC TUNING LANGUAGE 29

Recall that instances of steps, items and tags from the domain specification acquire
attributes as the program executes. We also associate attributes, representing state changes,
with affinity collection instances. Collections are similar to steps. Instances of affinity
collections can be prescribed (their control tag is true). They can also be executed in the
domain runtime. Although steps have an attribute inputs available, affinity collections
currently do not.

Strategies for Implementing the Execution Model

The key to efficient execution on distributed memory is how data and work are distributed
and/or shared across address spaces. Hence the system allows the developer (e.g., the
tuning expert) to specify a distribution plan which defines how data and work is mapped to
the address spaces. In the spirit of separating the domain from tuning, this plan is defined
in a tuning layer which is separate from the step code. In a structure called “tuner” the
programmer specifies where data- and step-instances should be placed. Tuners are separate
objects attached to collections when they are initialized. Whenever the runtime needs this
information it will calls the respective tuning callback and takes the required actions.

1.4.5 Futures

When using prescription for steps, the prescription not only determines which instances
will execute but also has some influence on when (some time after the prescribing tag is
produced). For prescribing steps, the question of “when” is secondary. In the case of
prescribing affinity collections, the control of “when” is a major goal of tuning. We can
provide the tuning expert with more control over when affinity collection actions occur so
that the tuning process can be more effective in controlling when computations are fed to
the domain runtime.

The state of instances can be used to refer to points in the partial order of execu-
tion, e.g., (foo : i).executed, and also to identify new points in the partial order, e.g.,
(foo : i).executed and [x : i + 1].available. That is, the partial ordering on instance/at-
tribute pairs is used to indicate a “time” within the execution of a domain specification.
We can also allow the tuning specification to refer to these attributes for better control
of when tuning actions should be performed. The action associated with an affinity col-
lection can take place when the attribute expression associated with the collection holds.
With this mechanism, for an affinity collection instance to be ready to execute, its attribute
expression must hold.

Step instances have an attribute inputs available and cannot execute until this attribute
evaluates to true. Affinity collection instances can also have an attribute inputs available

as part of the mechanism to control when they execute.

30 CHAPTER 1. CONCURRENT COLLECTIONS

Parallel prog. model Declarative Deterministic Efficient
Intel TBB No No Yes
.Net Task Par. Lib. No No Yes
Cilk No No Yes
OpenMP No No Yes
CUDA No No Yes
Java Concurrency No No Yes
Det. Parallel Java No Hybrid Yes
High Perf. Fortran Hybrid No Yes
X10 Hybrid No Yes
Linda Hybrid No Yes
Asynch. Seq. Processes [3] Yes Yes No
StreamIt Yes Yes Yes
LabVIEW [11] Yes Yes Yes
CnC Yes Yes Yes

Table 1.1: Comparison of several parallel programming models.

1.5 Current Status

CnC implementations currently include those with computation languages such as C++
(based on Intel R© Threading Building Blocks), Hababero Java (based on Java Concur-
rency Utilities), and .NET (based on .NET Task Parallel Library). Other existing imple-
mentations have Java, C with OpenMP, Scala, Haskell, Python, Habanero Java, and a sub-
set of MATLAB as the computation language. An implementation of the tuning runtime
described above is under development at Rice University.

1.6 Related Work

Table 1.1 is used to guide the discussion in this section. This table classifies programming
models according to their attributes in three dimensions: Declarative, Deterministic and
Efficient. A few representative examples are included for each distinct set of attributes. The
reader can extrapolate this discussion to other programming models with similar attributes
in these three dimensions.

A number of lower-level programming models in use today—e.g., Intel TBB, .Net Task
Parallel Library [10], Cilk, OpenMP, NVIDIA CUDA, Java Concurrency [9]—are non-
declarative, nondeterministic, and efficient. Here a programming model is considered to
be efficient if there are known implementations that deliver competitive performance for a

1.6. RELATED WORK 31

reasonably broad set of programs. Deterministic Parallel Java [1] is an interesting variant
of Java; it includes a subset that is provably deterministic, as well as constructs that ex-
plicitly indicate when determinism cannot be guaranteed for certain code regions, which is
why it contains a “hybrid” entry in the Deterministic column.

The next three languages in the table—High Performance Fortran (HPF) [7], X10,
Linda [4]—contain hybrid combinations of imperative and declarative programming in
different ways. HPF combines a declarative language for data distribution and data par-
allelism with imperative (procedural) statements, X10 contains a functional subset that
supports declarative parallelism, and Linda is a coordination language in which a thread’s
interactions with the tuple space is declarative.

1.6.1 CnC Domain Language

Linda was a major influence on the CnC domain language design. CnC shares two impor-
tant properties with Linda: both are coordination languages that specify computations and
communications via a tuple/tag namespace, and both create new computations by adding
new tuples/tags to the namespace. However, CnC also differs from Linda in many ways.
For example, an in() operation in Linda atomically removes the tuple from the tuple space,
but a CnC get() operation does not remove the item from the data collection. This is a key
reason why Linda programs can be nondeterministic in general, and why CnC programs
are provably deterministic. Further, there is no separation between tags and values in a
Linda tuple; instead, the choice of tag is implicit in the use of wildcards. In CnC, there is
a separation between tags and values, and control tags are first class constructs like data
items.

The last four programming models in the table are both declarative and deterministic.
Asynchronous Sequential Processes [3] is a recent model with a clean semantics, but with-
out any efficient implementations. In contrast, the remaining three entries are efficient as
well. StreamIt [5, 6] is representative of a modern streaming language, and LabVIEW [11]
is representative of a modern dataflow language. Both streaming and dataflow languages
have had major influence on the CnC design.

The CnC semantic model is based on dataflow in that steps are functional and execution
can proceed whenever data is ready.

However, CnC differs from dataflow in some key ways. The use of control tags elevates
control to a first-class construct in CnC. In addition, data collections allow more general
indexing (as in a tuple space) compared to dataflow arrays (I-structures). CnC is like
streaming in that the internals of a step are not visible from the graph that describes their
connectivity, thereby establishing an isolation among steps. A producer step in a streaming
model need not know its consumers; it just needs to know which buffers (collections) to

32 CHAPTER 1. CONCURRENT COLLECTIONS

perform read and write operations on. However, CnC differs from streaming in that put
and get operations need not be performed in FIFO order, and (as mentioned above) control
is a first-class construct in CnC. Further, CnC’s dynamic put/get operations on data and
control collections serves as a general model that can be used to express many kinds of
applications that would not be considered to be dataflow or streaming applications.

1.6.2 CnC Tuning Language

Most of the existing parallel programming constructs address time. Data parallel con-
structs, both fine-grained vector constructs and the coarser Parallel For constructs such as
found in OpenMP, indicate a set of operations that can occur at the same time. Fork-join
constructs such as a Cilk spawn/sync or Habanaro Java’s async/finish or parallel sections
are all of this flavor. They indicate when the forked work can start and when the join work
can proceed. Task graphs indicate a more general partial ordering.

These approaches indicate when computations take place. Some of these languages
have distinct constructs for indicating where a computation is to take place, for example,
Habanero Java has the Hierarchical Place Tree (HPT) [12]. But the constructs for time and
for space are distinct and unrelated. HPF provides facilities, for coarse-grain and array
language constructs, for defining the decomposition and placement of data for distribution
across processors and address spaces.

Hierarchical affinity collections provide a mechanism that allows the programmer to
specify locality, while allowing but not requiring him to distinguish between spatial and
temporal locality. The programmer can optimize the space-time locality, at times trading
off temporal and spatial locality. Allowing the programmer to specify space-time locality
is a novel contribution.

1.7 Conclusions

Concurrent Collections is a programming model for parallel systems. Instead of providing
facilities for the domain expert to describe the parallelism explicitly, it provides facilities
for describing execution order constraints. Subject to these constraints, computations can
potentially execute in parallel. This depends only on the application. This approach cre-
ates a partial ordering of computations and typically supplies more than ample parallelism.
There is a separate language for writing CnC tuning specifications. The central compo-
nent of the tuning language is hierarchical affinity collections. These provide a mechanism
that allows the programmer to specify locality, while allowing but not requiring him to
distinguish between spatial and temporal locality. This is a novel contribution. The pro-
grammer can optimize the space-time locality, at times trading off temporal and spatial

1.7. CONCLUSIONS 33

locality. The tuning facility enables the tuning expert to remove some of the less efficient
possible mappings of the parallelism provided by the domain specification. Without the
tuning language, CnC has already achieved comparable performance with other parallel
models/tools.

References

[1] Jr. Robert L. Bocchino, Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung,
and Mohsen Vakilian. A type and effect system for Deterministic Parallel Java. In
Proceedings of OOPSLA’09, ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, pages 97–116, 2009.

[2] Z. Budimlic, A. Chandramowlishwaran, K. Knobe, G. Lowney, V. Sarkar, and
L. Treggiari. Declarative aspects of memory management in the concurrent collec-
tions parallel programming model. In Proceedings of DAMP 2009 Workshop (Declar-
ative Aspects of Multicore Programming), 2009.

[3] Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. Asynchronous sequen-
tial processes. Information and Computation, 207(4):459–495, 2009.

[4] David Gelernter. Generative communication in Linda. ACM Trans. Program. Lang.
Syst., 7(1):80–112, 1985.

[5] M. I. Gordon et al. A stream compiler for communication-exposed architectures. In
ASPLOS-X: Proceedings of the 10th international conference on Architectural sup-
port for programming languages and operating systems, pages 291–303, New York,
NY, USA, 2002. ACM.

[6] M. I. Gordon et al. Exploiting coarse-grained task, data, and pipeline parallelism in
stream programs. In ASPLOS-XII: Proceedings of the 12th international conference
on Architectural support for programming languages and operating systems, pages
151–162, New York, NY, USA, 2006. ACM.

[7] Ken Kennedy, Charles Koelbel, and Hans P. Zima. The rise and fall of High Per-
formance Fortran. In Proceedings of HOPL’07, Third ACM SIGPLAN History of
Programming Languages Conference, pages 1–22, 2007.

36 References

[8] Kathleen Knobe and Carl D. Offner. TStreams: A model of parallel computation
(preliminary report). Technical Report HPL-2004-78, HP Labs, 2004.

[9] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David
Holmes. Java Concurrency in Practice. Addison-Wesley Professional, 2005.

[10] Stephen Toub. Parallel programming and the .NET Framework 4.0.
http://blogs.msdn.com/pfxteam/archive/2008/10/10/8994927.aspx, 2008.

[11] Jeffrey Travis and Jim Kring. LabVIEW for Everyone: Graphical Programming
Made Easy and Fun. Prentice Hall, 2006. 3rd Edition.

[12] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. Hierarchical place trees: A portable abstrac-
tion for task parallelism and date movement. In Proceedings of the 22nd Workshop
on Languages and Compilers for Parallel Computing, 2009.

	Contents
	1 Concurrent Collections-K. Knobe, M. Burke, and F. Schlimbach
	Introduction
	Motivation
	Foundational hypotheses

	CnC Domain Language
	Description
	Characteristics
	Example
	Execution Semantics
	Programming in CnC
	Futures

	CnC Tuning Language
	Description
	Characteristics
	Examples
	Execution Model
	Futures

	Current Status
	Related Work
	CnC Domain Language
	CnC Tuning Language

	Conclusions

