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ABSTRACT

High-level languages such as Java increase both productivity and
portability with productive language features such as managed run-
time, type safety, and precise exception semantics. Additionally,
Java 8 provides parallel stream APIs with lambda expressions to
facilitate parallel programming for mainstream users of multi-core
CPUs and many-core GPUs. These high-level APIs avoid the com-
plexity of writing natively running parallel programs with OpenMP
and CUDA/OpenCL through Java Native Interface (JNI). The adop-
tion of such high-level programming models offers opportunities
for enabling compilers to perform parallel-aware optimizations and
code generation.

While many prior approaches have the ability to generate parallel
code for both multi-core CPUs and many-core GPUs from Java and
other high-level languages, selection of the preferred computing re-
source between CPUs and GPUs for individual kernels remains one
of the most important challenges since a variety of factors affecting
performance such as datasets and feature of programs need to be
taken into account.

This paper explores the possibility of using machine learning to
address this challenge. The key idea is to enable a Java runtime
to select a preferable hardware device with performance heuristics
constructed by supervised machine-learning techniques. For this
purpose, if our JIT compiler detects a parallel stream API, 1) our
compiler records features of its computation such as the parallel
loop range and the number of instructions and 2) our Java runtime
generates these features for constructing training data. For the re-
sults reported in this paper, we constructed a prediction model with
support vector machines (SVMs) after obtaining 291 samples by
running 11 applications with different data sets and optimization
levels. Our Java runtime then uses the SVMs to make predictions
for unseen programs.

Our experimental results on an IBM POWERS platform with
NVIDIA Tesla GPUs show that our prediction model predicts a
faster configuration with up to 99.0% accuracy with 5-fold cross
validation. Based on these results, we conclude that supervised
machine-learning is a promising approach for building performance
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heuristics for mapping Java applications onto accelerators.
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1. INTRODUCTION

Parallel computing is one of the most important sources of per-
formance in recent computer systems due to widespread adoption
of multi-core CPUs and many-core Graphic Processing Units (GPUs).
However, it poses challenging problems in software development.
In terms of parallel programming, low-level programming languages
with low-level APIs such as OpenMP and CUDA/OpenCL are ubig-
uitous. These programming models enable expert programmers to
exploit the full capability of the underlying hardware but require a
non-trivial amount of accelerator-specific code to be written. This
approach reduces productivity since these low-level issues are hard
for non-expert programmers to handle, and also reduce portability
since they are tightly-coupled with specific hardware. Therefore,
we believe that high-level languages such as Java can be a gateway
to parallel programming for mainstream programmers that should
not be expected to become hardware/system experts.

Many prior approaches are exploring a good mix of productivity
advantages and performance benefits from parallel computing. It
is also worth noting that many of them can generate parallel code
not only for multi-core CPUs but also for many-core GPUs. In
the context of productivity, automatic parallelization of Java pro-
grams [22] is a holy grail. However, it has been widely recog-
nized that automatic parallelization is limited in effectiveness since
there are many obstacles to be overcome such as object aliasing
and precise exception semantics. Thus, other approaches such as
Lime [6] and Habanero-Java [11, 12] accept user-specified parallel
language constructs and directives for generating parallel code for
both CPUs and GPUs. While these high-level parallel languages
are well-defined and are easy to learn compared to the low-level
parallel programming models, programmers still need to learn a
new programming model with constructs that are not as common
as standard Java constructs.

We believe that the newly introduced Java 8 parallel stream APIs
are suitable for expressing parallelism in a high level and machine-
independent manner in a widely used industry standard program-
ming language. While the focus of our recent work [15] was on
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Figure 1: Correlation between the number of IRs and execution time for two different kernels on a CPU and a GPU platform.

compiling and optimizing Java 8 programs for GPU execution us-
ing extensions to IBM’s Java 8 just-in-time (JIT) compiler [14], the
main focus of this paper is on adding a new functionality to the
JIT compiler and the runtime. Specifically, we are adding a capa-
bility to automatically select a preferred computing resource (CPU
vs. GPU). In contrast, many prior approaches require the program-
mers to make that decision. To construct performance heuristics
that enable a Java runtime to make such a selection, in this paper,
we explore the possibility of supervised machine-learning. More
specifically, we build a binary prediction model with support vec-
tor machines after obtaining 291 samples, each of which contains
28 features of a parallel program generated by our JIT compiler and
runtime, by running 11 applications with different data sets and op-
timization levels.
This paper makes the following contributions:

e Construction of supervised machine-learning based perfor-
mance heuristics for runtime selection of CPU vs. GPU exe-
cution.

¢ Quantitative evaluation of performance heuristics with 5-fold
cross validation.

o Exploration of program features that enhance the accuracy of
performance heuristics.

2. MOTIVATION

Many-core GPUs enable significant performance improvement
for certain classes of applications and are becoming a commodity
hardware behind multi-core CPUs in recent computer systems. One
challenging problem for such a platform is how to select one of
the available hardware devices appropriately for a given parallel
program to exploit the full capability of the platform.

One straightforward approach would be to predict the execu-
tion time of a parallel program on CPUs and GPUs. Figure 1(a)
and Figure 1(b) show the kernel execution time of VecAdd and
BlackScholes written in Java 8 with the parallel stream APIs on
IBM POWERS CPU with 160 worker threads (Figure 1(a)) and on
NVIDIA Tesla K40m GPU with 2880 CUDA cores (Figure 1(b)).
Both benchmarks compute with different data sets that range from
64 to 4M. The X-axis shows the dynamic number of instructions in

Listing 1: An example of a parallel stream.
1 IntStream.range(0, 100).parallel().forEach(i -> a[i] = i);

the Intermediate Representation (IR) of our JIT compiler from its
machine-independent optimization phase, which is generally pro-
portional to input data size, and the Y-axis show the execution time.
Note that the execution time of the GPU does not include the data
transfer time in Figure 1(b). The detailed information on these
benchmarks and the platform are shown in Section 6. As shown
in Figure 1(a) and Figure 1(b), the number of instructions has a
strong relationship with the execution time. More specifically, the
correlation coefficient between these is 0.99 on average, and this
motivates one of prior approaches [22] to build a cost model by
using linear regression to fit these numbers.

However, the number of instructions is too rough approxima-
tion of programs to predict the execution time accurately. Observe
that the gradient of each line is different in both Figure 1(a) and
Figure 1(b). The primary cause of this is due to the fact that differ-
ent IR instructions have different costs. To address this issue, the
Ocelot [20] compiler considers a category of instructions such as
memory and arithmetic operations when building their cost model.
Their cost model can predict the execution time very accurately for
certain classes of applications.

One open question is whether such an accurate cost model is re-
ally required to predict a preferable hardware device in terms of
performance, since considerable effort will be needed to update
performance models for future generations of hardware. This mo-
tivates us to construct a binary prediction model without estimating
the execution time with a precise cost model. The key idea is to
enable a Java runtime to select a preferable hardware device with
performance heuristics generated by supervised machine-learning
techniques, which can be automated.

3. JAVA 8§ PARALLEL STREAM API

Java 8 has introduced a new Stream API. The API generates a se-
quence of elements. Elements can be passed to a lambda expression
to support functional-style operations. This sequence can be also
used to describe a parallelism of a loop at a high level. When a pro-
grammer explicitly specifies parallel () to a stream, a Java run-
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Figure 2: JIT compiler overview.

time can process each element with the lambda expression in this
sequence of the stream in parallel. This is so called DOALL type
execution. Listing 1 is an example of a program using a parallel
stream. In this case, a sequence of integer elements i = 0,1,2,.
.., 99 is generated. This sequence is passed with parallel() to
a lambda parameter i in a lambda expression in forEach(). A
lambda body a[i] = i in the lambda expression can be executed
with each parameter value in parallel. In conventional implemen-
tations, this lambda expression is executed in parallel on multiple
threads on CPUs by using a fork/join framework. The specifica-
tion of the Stream API does not explicitly specify any hardware
device or runtime framework for parallel execution. In general, the
performance of this parallel execution will be accelerated if a Java
runtime can appropriately select one of the available hardware de-
vices.

4. OVERVIEW OF OUR JIT COMPILER

Our JIT compiler for CPU/GPU execution is built on top of the
production version of the IBM Java 8 runtime environment [ 14] that
consists of the J9 Virtual machine and Testarossa JIT compiler [9].
Figure 2 shows an overview of our JIT compiler.

First, the Java runtime environment identifies a method to be
compiled based on runtime profiling information. The JIT com-
piler transforms Java bytecode of the compilation target method to
an intermediate representation (IR), and then applies state-of-the-
art optimizations to the IR. We reuse existing optimization modules
such as dead code elimination, copy propagation, and partial redun-
dancy elimination.

The JIT compiler looks for a call to the java.util.Stream.
IntStream. forEach() method with parallel () in the IR. If it
finds the method call, the IR for a lambda expression in forEach()
with a pair of lower and upper bounds is extracted. After this ex-
traction, our JIT compiler transforms this parallel forEach into a
regular loop in the IR. (We will refer to this parallel forEach as a
parallel loop in the rest of this paper.) Then, our JIT compiler ana-
lyzes the IR and applies optimizations to the parallel loop. One of
our optimizations is a data transfer optimization. Our data transfer
optimization consists of two parts. One is not to generate a data
transfer of a given array from GPU to CPU if the array is not up-
dated in the GPU native code. The other is not to generate a data
transfer of a given array from CPU to GPU if the array is not read
in a GPU native code.

The optimized IR is divided into two parts. One is translated into
an NVVM IR [23], feeds into code generation for GPU execution.
Features are extracted from the corresponding IR from this part.
The other part is translated into a PowerPC binary, which includes
calls to make a decision on selecting a faster device from available
devices and to CUDA Drive APIs. The latter includes memory al-
location on GPUs, data transfer between the host and the GPU, and

a call to GPU binary translator with PTX instructions [24]. When
the former call decides to use the GPU, the PowerPC binary calls
a CUDA Driver API to compile PTX instructions to an NVIDIA
GPU’s binary, then the GPU binary is executed.

Currently, our JIT compiler can generate GPU code from the
following two styles of an innermost parallel stream code to express
data parallelism.

IntStream.range(low, up).parallel().forEach(i -> <lambda>)
IntStream.rangeClosed(low, up).parallel().forEach(i -> <lambda>)

The function rangeClosed(low, up) generates a sequence within

the range of low < i < up, where i is an induction variable, up is up-
per inclusion limit and low is lower inclusion limit. {({ambda) rep-
resents a valid Java lambda body with a lambda parameter i whose
input is a sequence of integer values. In (lambda), the following
constructs are only allowed:

o types: all of the Java primitive types

e variable: local, parameters, one-dimensional array whose
references are a loop invariant, and a field in an instance

e expression: all of the Java expressions for Java primitive
types

o statements: all of the Java statements except all of the fol-
lowing: try-catch-finally and throw, synchronized,
a interface method call, and other aggregate operations of
the stream such as reduce().

e exceptions: ArrayIndexOutOfBoundsException, NullPointer

Exception, and ArithmeticException (only division by
Zero)

S. MACHINE-LEARNING BASED CPU/GPU
SELECTION

In this section, we introduce a construction of the supervised
machine-learning based performance heuristics that improves the
accuracy of CPU/GPU selection at runtime.

5.1 Overview

The structure of our performance heuristics construction is pre-
sented in Figure 3. First, we implement program feature extraction
in our JIT compiler. This extraction is done by inspecting our IR
generated from Java bytecode (see Figure 2). Then, we generate
a set of features, or training data by running multiple applications
with different data sets (Training run with JIT Compiler in Fig-
ure 3). Finally, we perform supervised machine-learning with sup-
port vector machines and obtain a binary prediction model (Offline
Model Construction in Figure 3). It is important that the prediction
model construction happens off-line. After that, we include the pre-
diction model into our Java runtime so that the runtime can make a
decision for unseen programs.
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Figure 3: Supervised machine-learning based performance heuristics construction.

The rest of this Section is organized as follows: Section 5.2 dis-
cusses the details of features that might be important for perfor-
mance. Section 5.3 introduces the steps to build prediction model
with support vector machines (SVMs).

5.2 Dynamic Feature Extraction

Features of a program are passed to off-line supervised learning
and are also used to select a faster device at runtime. We discuss
the following four features that may affect performance.

Feature I : Loop Range of a Parallel Loop

The amount of work has a strong relationship with performance as
we discussed in Section 2. In this context, one important feature
affecting performance is Parallel Loop Range, which is the num-
ber of iterations of a parallel loop. Thus, our JIT compiler obtains
this value by inspecting arguments of the IntStream.range()
method.

Feature 2 : The number of Instructions Per Iteration

The number of instructions per iteration is also an important
feature in addition to the Parallel Loop Range due to the strong re-
lationship between the amount of work and performance. Thereby,
our JIT compiler estimates the dynamic number of IR instructions
by inspecting IRs. In case that a parallel loop has an inner loop, the
compiler generates an expression so that a Java runtime can calcu-
late the number of iterations. If the length of an inner loop cannot
be computed exactly at JIT compilation time (e.g. while loop), a
fixed constant value is used instead to estimate the number of iter-
ations (10 in our current implementation).

Additionally, our current implementation distinguishes the fol-
lowing five kinds of instructions to characterize the behavior of ap-
plications (e.g. memory-bound vs. compute-bound).

e Memory Access Instructions: load/store instructions from/to

memory.

e Arithmetic Operations: ALU instructions such as addition
and multiplication.

o Math Methods: Math methods in java.lang.Math.

e Branch Instructions: conditional branch instructions.

o Other Instructions: other types of instructions than the above.

Feature 3 : The number of Array Accesses

Global memory access in GPUs is done at a granularity of 32 con-
secutive threads called a warp. In a case where 32 consecutive
global memory locations are accessed by a warp and the starting
address is aligned, the memory accesses are coalesced into a single
memory transaction. This improves memory bandwidth in GPUs

o
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Figure 4: Impact of Offset and Stride access on Tesla K40m
GPU.

and leads to higher performance. In the Tesla K40m GPU, a gran-
ularity of a memory access transaction to a global memory is 128
bytes when an L2 miss happens. For example, 32 consecutive 4-
byte accesses are coalesced and achieve 100% bus utilization if the
starting address is aligned. Otherwise, unexpected multiple mem-
ory transactions may overfetch redundant words due to misaligned
accesses.

Figure 4 shows the impact of misaligned accesses. There are two
important access patterns to characterize GPU performance: Offset
access and Stride access with regard to an induction variable of a
parallel loop, which corresponds to thread id in GPUs. Offset ac-
cess is expressed as arrayli + c], where array is an array on GPUs,
i is an induction variable, and c is a loop invariant with regard to
i. Similarly, Stride access is expressed as array[c * i + ...]. Note
that the starting address of array is aligned in this experiment. The
X-axis of Figure 4 corresponds to ¢, and the Y-axis shows mem-
ory bandwidth (GB/s). Note that the peak memory bandwidth of
the Tesla K40m GPU is 288 GB/s. The results show that Stride
access significantly degrades performance as stride size increases
compared to Offset access.



Listing 2: An example of features (Parboil MRIQ).

1 {

2 "title" :"MRIQ.runGPULambda()V",
3 "lineNo" :114,

4 "features" :{

5 "range": 32768,

6 "IRs" :{

7 "Memory": 89128,

8 "Arithmetic": 61447,

9 "Math": 6144,

10 "Branch": 3074,

11 "Other": 58384

12 B

13 "Array Accesses" :{

14 "Coalesced": 9218,

15 "Offset": 0,

16 "Stride": O,

17 "Other": 12288

18 e

19 "H2D Transfer" :[

20 131088,131088,131088,12304,
21 12304,12304,12304,16,16
22 e

23 "D2H Transfer" :[

24 131072,131072,0,0,

25 0,0,0,0,0

26 ]

27 },

28 }

Therefore, we distinguish the following four types of array ac-
cess:

o Coalesced Access: Aligned access, meaning zero Offset.

o Offset Access: Misaligned access with non-zero Offset.

o Stride Access: Misaligned access with Stride.

o Other Access: Other types of array access which is unknown
at JIT-compilation time (e.g. indirect access).

Feature 4 : Data Transfer Size

It is well known that the bandwidth between CPUs and GPUs can
be a performance bottleneck due to the large communication over-
heads over PCI-Express [16]. Thus, we include Host to Device
Transfer (H2D) Size in bytes and Device to Host (D2H) Trans-
fer Size in bytes as part of the program features. In our current
implemententation, we record up to nine H2D transfers and up to
nine D2H transfers, resulting in eighteen features for data transfer
size'.

Summary of Features

In summary, we use 28 program features consisting of one fea-
ture for Parallel Loop Range, five features for The number of
instructions per iteration, four features for The number of Ar-
ray Accesses, and 18 features for Data Transfer Size. Further
explorations of features will be discussed in Section 6.3. From the
implementation viewpoint, our Java runtime generates these fea-
tures in JSON format [18] to improve readability (see Listing 2).
An external tool translates a JSON file to what LIBSVM accepts,
as described in Section 5.3.

'"These numbers are enough to cover all data transfers in applica-
tions that we evaluate in Section 6.

5.3 Supervised machine-learning with Support
Vector Machines

Support vector machines (SVMs) [2, 5, 29] represent a powerful
and widely used supervised machine-learning framework that can
be used for classification and regression analysis. In this paper, we
use LIBSVM [4] to build 2-class classifier with SVMs.

The following steps explain the basic workflow of constructing a
binary prediction model with LIBSVM. More detailed information
can be found in [32].

Step 1: Formatting training data The first step is to format the
training data so that LIBSVM can process it. LIBSVM as-
sumes each line contains the following space separated index-
value pairs:

<label> _<index1>:<valuel>_<indexl>:<value2>....

, where <label> is an integer value which indicates the class
label (e.g. O for multi-core CPU, 1 for GPU), index is an
integer indicating an index of features starting from 1, and
value is an integer indicating a value of a feature (e.g. the
number of instructions).

Step 2: Scaling Since features normally have different units (e.g.
the number of instructions vs. bytes), it is important to ap-
ply scaling to avoid features with larger numeric values out-
weighing other features. In general, numbers in training data
are mapped to the range of [—1, 1] or [0, 1].

Step 3: Training Do supervised machine-learning with scaled train-
ing data and generate a binary prediction model. A radial
basis function-kernel (RBF-Kernel) is normally chosen to
calculate a hyperplane that make a boundary between the
classes.

Step 4: Cross Validation Cross validation is used to evaluate the
accuracy of a prediction model. In n-fold cross-validation,
the training data are divided into n subsets. Then one sub-
set is tested by the classifier trained on the other n - 1 sub-
sets. We iterate this sequence n times for different subsets
and average the accuracies. We use this metric to evaluate
our binary predictor in Section 6.

Step 5: Parameter tuning for RBF-Kernel The RBF-Kernel takes
two parameters: C and y. This step iterates Step 4 by varying
these parameters until we find the optimal value that maxi-
mize the accuracy. This is called grid search.

6. PRELIMINARY RESULTS

This section presents experimental results for our JIT compiler
on IBM POWERS and NVIDIA Tesla platform with Ubuntu 14.10
operating system. The platform has two 10-core IBM POWERS
CPUs at 3.69GHz with 256GB of RAM. Each core is capable of
running eight SMT threads, resulting in 160-threads per platform.
One NVIDIA Tesla K40m GPU at 876MHz with 12GB of global
memory is connected over PCI-Express Gen 3. Error-correcting
code (ECC) feature was turned off at a time to evaluate this work.

The eleven benchmarks shown in Table 1 were used in our ex-
periments. Each benchmark was tested in parallel Java version and
sequential Java version. The parallel Java version employs a paral-
lel stream with a lambda expression to mark parallel loops which
can be run in the Java fork/join framework or on GPU devices. In
the sequential Java version the parallel streams are replaced with
sequential Java for-loops.



| Benchmark | Summary |  Maximum Data Size | Data Type |
Blackscholes | Financial application which calculates the price of European put and call | 4,194,304 virtual options double
options
Crypt Cryptographic application from the Java Grande Benchmarks [17] Size C with N= 50,000,000 byte
SpMM Sparse matrix multiplication from the Java Grande Benchmarks [17] Size C with N = 500,000 double
MRIQ Three-dimensional medical benchmark from Parboil [26], ported to Java large size(64x64x64) float
Gemm Matrix multiplication: C = @.A.B+ B.C from PolyBench [27], ported to Java 2,048x2,048 int
Gesummv Scalar, Vector and Matrix Multiplication from PolyBench [27], ported to 2,048x2,048 int
Java
Doitgen Multiresolution analysis kernel from PolyBench [27], ported to Java 256%x256%256 int
Jacobi-1D 1-D Jacobi stencil computation from Polybench [27], ported to Java N=4,194304T =1 int
MM A standard dense matrix multiplication: C = A.B 2,048x2,048 double
MT A standard dense matrix transpose: B = AT 2,048x2,048 double
VA A standard 1-D vector addition C = A + B 4,194,304 double
Table 1: Details on the benchmarks used to evaluate the proposed JIT compiler.
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Figure 5: Performance improvement over sequential Java with the maximum data size in Table 1.

The parallel Java version was executed on two different configu-
rations:

o 160 worker threads : Executed on Java fork/join framework
in the Java Virtual Machine (JVM) on CPUs, not specifying
the number of thread explicitly, which means that maximum
available worker threads are used by default (160 threads in
this platform).

e GPU : Executed on GPUs using the proposed code genera-
tion and runtime.

Performance is measured by retrieving elapsed nanoseconds from
the start of a parallel stream to the completion of all iterations of
that loop. The Java system call System.nanoTime() was used. This
measurement includes the overhead of fork/join for parallel Java.
For GPU execution, this includes any overhead from CUDA Driver
API calls such as GPU memory allocation and data transfer be-
tween host and GPU. For each configuration, each benchmark is
executed 30 times in a single JVM invocation, and an average exe-
cution time of the last 10 executions is reported to get a steady-state
execution time.

For performance heuristics, let us again clarify that we build a bi-
nary predictor that predicts a faster configuration by using SVMs.
The option is either 160 workers on IBM POWERS or NVIDIA

Tesla K40m GPU. Training data (a.k.a samples) for SVMs are ob-
tained by running the eleven benchmarks with different data sets
and two optimization levels, i.e. whether the data transfer opti-
mization is applied or not (see Section 4), resulting in 291 samples.
Each sample has the class label showing a faster configuration (160
workers threads on CPU vs. GPU) and is passed to LIBSVM to
construct a binary predictor. We construct several binary predictors
by varying program features to see the impact of adding program
features. Optimal parameters for RBF-Kernel that maximizes the
accuracy of each binary predictor are obtained by 5-fold cross val-
idation with grid search. The basic workflow of constructing a
binary prediction was explained in Section 5.3.

The rest of this Section is organized as follows: Section 6.1
shows performance improvement by 160 worker threads and GPU
over sequential Java execution. Section 6.2 quantify the effective-
ness of our binary predictor using several scores.

6.1 Performance improvements over sequen-
tial execution

Figure 5 shows the speedup numbers with 95% interval error

bars on IBM POWERS + NVIDIA Tesla GPU relative to the se-

quential Java version. These numbers are obtained with the maxi-

mum data size shown in Table 1. The result shows speedups of up



to 82.0 x for 160 worker threads (fork/join) for SpMM and 1164.8
x for GPU for MatMult, relative to sequential Java. The results
also show performance improvements of 13.2 X by 160 worker
threads (fork/join) and 18.2 X by GPU on geometric mean over
sequential Java.

6.2 Evaluation of Prediction Model

We firstly define the terms which are used to quantify the effec-
tiveness of the binary predictor using true/false positive (7' P/F P)
and true/false negative (TN/FN). Note that positive is referred to
160 worker threads on IBM POWERS and negative is referred to
the Tesla GPU in our convention. Here is a list of scores that eval-
uvate the predictor in this paper:

e Accuracy is referred to as the percentage of selections pre-
dicted correctly:

TP+TN
TP+FP+FN+TN

e Precisioncpyo is the number of samples correctly predicted
that 160 workers on the CPU is faster divided by the total
number of samples predicted that 160 workers on the CPU is

faster :
TP
TP+ FP
Similarly, Precisiongpy denotes:
TN
TN+ FN

e Recallcpyigo is the number of samples correctly predicted
that 160 worker threads on the CPU is faster divided by the
total number of samples labeled that 160 worker threads on
the CPU is actually faster :

TP
TP+ FN

Similarly, Recallgpy denotes:

TN
TN +FP

e F1 Value : harmonic mean of Precision and Recall :

2 % Recall * Precision

Recall + Precision

In the following section, each score is an average of numbers
obtained by each round of cross validation. For example, 5-fold
cross validation calculates Accuracy five times and then we aver-
age these five numbers.

Figure 6 shows the accuracy of our proposed prediction mod-
els, illustrating the impact of adding program features. In the fol-
lowing, Range denotes Parallel Loop Range (Feature 1). nIRs
and dIRs referred to as The number of instructions per itera-
tion (Feature 2) without/with distinguishing kinds of instruction
respectively. Array means The number of Array Accesses (Fea-
ture 3). DT means Data Transfer Size (Feature 4).

Our prediction models predict a faster configuration with up to
99.0% Accuracy. It is worth noting that 21.0% of the 291 samples
are labeled that GPU is faster and the remaining 79.0% are labeled
that 160 worker threads on CPU is faster. Thus, all predictors ex-
cept Range can select a faster configuration more accurately than a
simple policy that always selects the same device. For Range, the
model always selects 160 worker threads on CPU.

60 80 100
1

40

Accuracy (%), Total number of samples = 291
20

97.6 %) 99 % 99 % 97.2 %)
79 %
o

Range +=nIRs +=dIRs +=Array  ALL (+=DT)

Figure 6: Accuracies of the proposed 5-predictors. The accu-
racy of each predictor is obtained with 5-fold cross validation.

In addition, Figure 6 shows that adding nIRs makes a large con-
tribution to improving the accuracy (79.0% to 97.6%). Further-
more, distinguishing kinds of instruction (dIRs) improve the accu-
racy by 1.4%. In contrast, adding Array does not have an impact
on the accuracy and adding DT degrades the accuracy by 1.8%.

Table 2 shows Precision, Recall, and F1 Value of each predic-
tor in 5-fold cross validation, For example, +=Array shows that
Precisioncpy160 and Precisiongpy are 98.7% and 100% respec-
tively, which means that the predictor rarely makes a wrong de-
cision. Recallcpyi60 and Recallgpy are 100% and 95.0% respec-
tively, which means the predictor rarely misses the opportunity to

use a faster configuration. F1 Value indicates that both Precisioncpy 60

is compatible with Recall-py60. Such is the case with Precisiongpy
and Precisiongpy. For Range, Precisiongpy, Recallgpy, and F1
Valuegpy are 0% because the model always selects 160 worker
threads on CPU.

6.3 Discussion

Accuracy of Prediction Model

While our results in Section 6.2 show that machine-learning-based
performance heuristics attain significant accuracy, there may be an
argument that the prediction models are in fact tailored to the eleven
benchmarks. This is called overfitting in the machine-learning com-
munity. As we discussed Section 5.3, we use 5-fold cross valida-
tion to verify the overfitting problem. Additionally, we choose the
eleven benchmarks from a wide variety of fields including numeri-
cal computing field, cryptography field, financial field and medical
field to cover many kinds of applications. However, the accuracy
could drop down if the characteristics of some unseen program are
different from these of the eleven benchmarks, but such is the case
with a cost model construction with regression analysis and even
with hand-made performance heuristics. In this context, using ALL
would be better to cover such an unseen program even though ALL
is not the best in Figure 6. Also, one advantage of using super-
vised machine-learning is that we can easily improve the predic-
tion model by just reconstructing the prediction model with such



| Predictor | Precisioncpyiso | Recallcpyioo | F1 Valuecpyiso | Precisiongpy | Recallgpy | F1 Valuegpy |

Range 79.0% 100% 88.3% 0% 0% 0%
+=nIRs 97.8% 99.1% 98.4% 96.5% 91.8% 94.1%
+=dIRs 98.7% 100% 99.3% 100% 95.0% 97.4%
+=Array 98.7% 100% 99.3% 100% 95.0% 97.4%
ALL 96.7% 100% 98.3% 100% 86.9% 93.0%

Table 2: Precision, Recall, and F1 Value in 5-fold cross validation.

Work Java JIT How to Write Device
Comp. GPU Kernel Selection
JCUDA [33] Java X CUDA GPU Only
Lime [6] Lime v Override map/reduce operators Static
Firepile [25] Scala v Use reduce method Static
JaBEE [34] Java v Override run method GPU Only
Aparapi [1] Java v Override run method or Lambda Static
Hadoop-CL [10] Java v Override map/reduce method Static
RootBeer[28] Java v Override run method Not Described
HJ-OpenCL [11, 12] | Habanero-Java X forall construct Static
[22] Java v Java for-loop Dynamic with Regression Model
Our work Java v Java 8 parallel stream API Dynamic with Machine Learning

Table 3: Summary of work on GPU code generation from JVM-compatible languages

an unseen program.

Program Features Affecting Decision

To analyze what features affect the prediction, we analyzed scaled
training data’. Based on our analysis, Parallel Loop Range (Fea-
ture 1) is one of the most important feature should be taken into
account, which means a larger loop range is suitable for GPU exe-
cution. Also, since a larger loop range does not always mean com-
putation is large enough to be accelerated on GPUs, the weight of
The number of instructions per iteration (Feature 2) is large rel-
ative to other features. The number of Arithmetic Operations and
Math Methods is particularly important so that a predictor can see
if the body of a parallel loop is computation-bound or not. For array
access, the weight of Coalesced Access has a strong relationship
with selecting GPUs. In contrast, Other Access (see Section 5.2)
have an impact for not selecting GPUs since the performance of
Doitgen, which has many such accesses, is 10x slower than that of
160 worker threads. Feature 4 : Data Transfer Size is arguably
important, but it does not contribute to improving the accuracies in
our experiment. One reason for that is that the data transfer op-
timization (see Section 4) does not make GPU execution faster in
almost all cases. A prediction result may differ if we include an
application that benefits from the data transfer optimizations.

Further Explorations of Program Features

Some of the features that we presented in Section 5.2 employ the
number of X (e.g. the number of instructions). Even though our
JIT compiler considers the length of an inner loop within a paral-
lel loop, this may not capture the behavior of a program execution
finely due to the lack of more fine/dynamic features including con-
trol flow graph and branch probability. In this context, supporting a
new parallel pattern such as reduction may change the accuracies of
our prediction models. However, further explorations of program

2We can not generate the primal variable w, a weight vector, for the
RBK-kernel since the kernel is non-linear.

features are beyond the scope of this paper.

7. RELATED WORK
7.1 GPU Enablement of High-Level Languages

GPU code generation is supported by several JVM-compatible
language compilation systems. Table 3 summarizes previous ap-
proaches on GPU code generation from JVM-compatible languages.

Many previous studies support explicit parallel programming on
GPU by programmers. JCUDA [33] provides a special interface
that allows programmers to write Java codes that call user-written
CUDA kernels. The JCUDA compiler automatically generates the
JNI glue code between the JVM and CUDA runtime by using this
interface. Some other tools like JaBEE [34], RootBeer [28], and
Aparapi [1] perform runtime generation of CUDA or OpenCL code
from a code region within a method declared inside a specific class/in-
terface (e.g. run() method of Kernel class/interface).

Other previous work provides higher-level programming mod-
els for ease of parallel programming. Hadoop-CL [10] is built
on top of Aparapi and integrates OpenCL into Hadoop system.
Lime [6] is a Java compatible language that supports map/reduce
operations on CPU/GPU through OpenCL. Firepile [25] translates
JVM bytecode from Scala programs to OpenCL kernels at runtime.
HJ-OpenCL [11, 12] generates OpenCL from Habanero-Java lan-
guage, which provides high-level language constructs such as par-
allel loop (forall), barrier synchronization (next), and high-level
multi-dimensional array (ArrayView). Some other work (e.g. [8])
has proposed the use of high-level array programming models for
heterogeneous computing, that can also be built on top of the Java
8 parallel stream APL

While these approaches provide impressive support for making
the development of Java programs for GPU execution more produc-
tive, these programming model lack the portability and standardiza-
tion of the Java 8 parallel steam APIs. Additionally, the burden of
selecting the preferred hardware device is left to the programmer in



these approaches.

definitely preserves portability and provides high programmability,
but there are major limitations due to the difficulty of alias and de-
pendence analysis. The compiler builds a cost model for a faster
device selection by attempting to model the execution time on dif-
ferent devices. Unlike this approach, our approach predicts a faster
device without predicting the execution time.

7.2 Machine-Learning for Program Optimiza-
tions

To the best of our knowledge, none of the previous approaches
uses supervised machine-learning techniques for runtime CPU /GPU
selection. However, some of prior approaches borrow ideas from
the machine-learning community to improve program optimiza-
tions.

Many prior approaches utilize supervised machine-learning for
constructing heuristics. Evidence-based static prediction [3] im-
proves branch prediction. An extended version of JikesRVM [7]
used machine learning to mitigate the compiler phase ordering prob-
lem [21]. Similarly, a framework suggests the optimal compilation
flags other than -03 in [19]. Some work also used machine learn-
ing to optimize method inlining heuristics [30]. It is worth noting
that training and model construction happen off-line in these su-
pervised machine-learning techniques. Our approach also utilizes
supervised machine-learning, as we discussed in Section 5.

In the context of unsupervised machine-learning, MetaOptimiza-
tion [31] automatically searches compiler heuristics by using ge-
netic programming (GP). An evolutional search algorithm is used
to tune JIT compilation’s optimization plan in [13].

8. CONCLUSIONS

This paper explores the possibility of supervised machine-learning
techniques to construct performance heuristics that select a prefer-
able hardware device from multi-core CPUs/many-core GPUs. This
work is motivated by the introduction of parallel stream APIs with
lambda expressions in Java 8 that enables programmers to express
parallelism in a high level and machine-independent manner. While
some of the prior approaches try to construct a prediction model
that estimates the execution time, we construct a binary prediction
model with support vector machines, our JIT compiler and runtime
having generated training data from a large number of application
runs.

Preliminary evaluation with 5-fold cross validation with 291 sam-
ples from 11 applications shows that the performance heuristics
predict a preferable hardware device with up to 99.0% accuracy.

Based on these results, we conclude that supervised machine-
learning is a promising approach for building performance heuris-
tics for mapping Java applications on accelerators. This early re-
search has also identified many opportunities for future research,
which include addressing the limitations of our approach identified
in Section 4, Section 5, and Section 6.3, and also using this model
to choose between parallel vs. sequential execution on a CPU.
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