Dynamic Determinacy Race Detection for Task
Parallelism with Futures

Rishi Surendran and Vivek Sarkar

Rice University, Houston, TX
{rishi,vsarkar}@rice.edu

Abstract. Existing dynamic determinacy race detectors for task-parallel
programs are limited to programs with strict computation graphs, where
a task can only wait for its descendant tasks to complete. In this pa-
per, we present the first known determinacy race detector for non-strict
computation graphs, constructed using futures. The space and time com-
plexity of our algorithm are similar to those of the classical SP-bags algo-
rithm, when using only structured parallel constructs such as spawn-sync
and async-finish. In the presence of point-to-point synchronization using
futures, the complexity of the algorithm increases by a factor determined
by the number of future task creation and get operations as well as the
number of non-tree edges in the computation graph. The experimental
results show that the slowdown factor observed for our algorithm relative
to the sequential version is in the range of 1.00x — 9.92x, which is in line
with slowdowns experienced for strict computation graphs in past work.

1 Introduction

Current dynamic determinacy race detection algorithms for task parallelism are
limited to parallel constructs in which a task may wait for a child task [16,4],
a descendant task [26,27] or the immediate left sibling [14]. However, current
parallel programming models include parallel constructs that support more gen-
eral synchronization patterns. For example, the OpenMP depends clause allows
tasks to wait on previously spawned sibling tasks and the future construct in C+#,
C++11, Habanero Java (HJ), X10, and other languages, enables a task to wait
on any previously created task to which the waiter task has a reference. Both
approaches can lead to non-strict computation graphs, in general. Race detec-
tion algorithms based on vector clocks [3,17] are impractical for these constructs
because either the vector clocks have to be allocated with a size proportional to
the maximum number of simultaneously live tasks (which can be unboundedly
large) or precision has to be sacrificed by assigning one clock per processor or
worker thread, thereby missing potential data races when two tasks execute on
the same worker.

The approaches in [16,4,26,27] focus on an imperative structured task-
parallel model, in which tasks communicate through side effects on shared vari-
ables. In contrast, our paper focuses on enabling the use of futures for functional-
style parallelism, while also allowing futures to co-exist with imperative async-
finish parallelism [10]. The addition of point-to-point synchronization with fu-
tures makes the race detection more challenging than for async-finish task par-
allelism since the computation graphs that can be generated using futures are

more general than those that can be generated by fork-join parallel constructs
such as async-finish constructs in X10 [10] and Habanero-Java [8], spawn-sync
constructs in Cilk [5], and task-taskwait constructs in OpenMP [24].

Existing algorithms for detecting determinacy races for dynamic task paral-
lelism, do not support race detection for futures. For instance, data race detectors
for Cilk [16, 4] handle only spawn-sync constructs where the computation graph
is a Series-Parallel (SP) dag. Although the computation graphs for async-finish
parallelism [26, 27] are more general than SP dags, whether two instructions may
logically execute in parallel can still be determined efficiently by a lookup of the
lowest common ancestor of the instructions in the dynamic program structure
tree [26,27]. The computation graphs in the presence of futures may not have
any of the structures discussed above, and therefore, the past approaches are
not directly applicable to parallel programs with futures. However, parallel pro-
grams written with futures enjoy the property that data race freedom implies
determinacy, i.e., if a parallel program is written using only async, finish, and
future constructs, and is known to not exhibit a data race, then it must be de-
terminate [19,12]. Thus, a data race detector for programs with asyne, finish,
and future constructs, can be used as a determinacy checker for these programs.

The main contributions of this paper! are as follows:

1. The first known sound and precise on-the-fly algorithm for detecting races
in programs containing async, finish, and future parallel constructs. Instead
of using brute force approaches such as building the transitive closure of
the happens-before relation, our algorithm relies on a novel data structure
called the dynamic task reachability graph to efficiently detect races in the
input program. We show that the algorithm can detect determinacy races
by effectively analyzing all possible executions for a given input. Relative to
the SP-bags and related algorithms, the complexity of our algorithm only
increases by a factor determined by the number of future task creation and
get operations as well as the number of non-tree edges in the computation
graph.

2. An implementation and evaluation of the algorithm on programs with struc-
tured async-finish parallelism and point-to-point synchronization using fu-
tures. We implemented the algorithm in the Habanero Java compiler and
runtime system, and evaluated it on a suite of benchmarks containing async,
finish and future constructs. The experiments show that the algorithm per-
forms similarly to SP-bags in the presence of structured synchronization and
degrades gracefully in the presence of point-to-point synchronization.

The remainder of the paper is organized as follows. Section 2 discusses our
programming model, and Section 3 defines determinacy races for our program-
ming model. Section 4 presents the algorithm for determinacy race detection for
parallel programs with futures, and Section 5 discusses the implementation and
experimental results for our race detection algorithm. Section 6 discusses related
work, and Section 7 contains our conclusions.

1 A summary abstract of this approach was presented as a brief announcement at
SPAA 2016 [28].

2 Programming Model

Our work addresses parallel programming models that can support combina-
tions of functional-style futures and imperative-style tasks; examples include the
X10 [10], Habanero Java [8], Chapel [9], and C++11 languages. We will use X10
and Habanero Java’s finish and async notation for task parallelism in this paper,
though our algorithms are applicable to other task-parallel constructs as well.
In this notation, the statement “async { S }” causes the parent task to create
a new child task to execute S asynchronously (i.e., before, after, or in parallel)
with the remainder of the parent task. The statement “finish { S }” causes
the parent task to execute S and then wait for the completion of all asynchronous
tasks created within S. Each dynamic instance T4 of an async task has a unique
Immediately Enclosing Finish (IEF) instance F of a finish statement during pro-
gram execution, where F is the innermost dynamic finish containing T'4. There
is an implicit finish scope surrounding the body of main() so program execution
will end only after all async tasks have completed.

A future [18] (or promise [21]) refers to an object that acts as a proxy for
a result that may initially be unknown, because the computation of its value
may still be in progress as a parallel task. In the notation used in this paper,
the statement, “future<T> f = async<T> Expr;” creates a new child task to
evaluate Expr asynchronously, where T is the type of the expression Expr. In
this case, £ contains a handle to the return value (future object) for the newly
created task and the operation f.get() can be performed to obtain the result
of the future task. If the future task has not completed as yet, the task perform-
ing the f.get() operation blocks until the result of Expr becomes available.
Futures are traditionally used for enabling functional-style parallelism and are
guaranteed not to exhibit data races on their return values. However, imperative
programming languages allow future tasks to also contain side effects in the task
bodies. These side effects on shared memory locations may cause determinacy
races if the program has insufficient synchronization.

Comparison with spawn-sync and async-finish In both spawn-sync
and async-finish programming models, a join operation can be performed only
once on a task (by the parent task in spawn-sync and by the ancestor task
containing the immediately enclosing finish in async-finish). The class of compu-
tations generated by spawn-sync constructs is said to be fully strict [6], and the
class of computations generated by async-finish constructs is called terminally
strict [1].

The introduction of future as a parallel construct increases the possible syn-
chronization patterns. Task T, can wait for a previously created task T3 if Th
has a reference to T7 by performing the get () operation. Moreover, this join op-
eration on task 73 can be performed by multiple tasks. As an example, consider
the program in Figure 1, where the main program creates three future tasks T4,
Tpg, and T¢. There are three join operations on task T4 performed by sibling
tasks Ty, Tc, and the parent task. Here Stmt3, Stmt6, and Stmt8 may execute
in parallel with task T4, while Stmt4, Stmt7, and Stmt9 can execute only after
the completion of task T4. Synchronization using get () can lead to transitive
dependences among tasks. For example, although the main task in Figure 1 did
not perform an explicit join on task T, there is a transitive join dependence

from Tp to the main task, because task T performed a get operation on task
Tp due to which Stmt10 can execute only after tasks Ta, T, and T complete
their execution. This example has a non-strict computation graph, because of
the get operations performed by T and T on their siblings.

// Main task

Stmt1l;

future<T> A = async<T> { ... }; // Task Ta

Stmt2;

future<T> B = async<T>{ Stmt3;A.get();Stmt4d;}; // Task Tp
Stmt5;

future<T> C = async<T>{ Stmt6 ; A.get(); Stmt7; B.get();}; // Task Tc¢
Stmt8;

A.get)

Stmt9;

C.get();

Stmt10;

Fig. 1: Example Program with HJ Futures. A,B and C hold references to future
tasks created by the main program

3 Data Races and Determinacy

In this section, we formalize the definition of data races in programs containing
async, finish, and future constructs as a preamble to defining determinacy races.
Our definition extends the notion of a computation graph [6] for a dynamic
execution of a parallel program, in which each node corresponds to a step which
is defined as follows:

Definition 1. A step is a sequence of instruction instances contained in a task
such that no instance in the sequence includes the start or end of an async, finish
or a get operation.

The edges in a computation graph represent different forms of happens-before
relationships. For the constructs covered in this paper (async, finish, future),
there are three different types of edges:

1. Continue Edges capture the sequencing of steps within a task. All steps
in a task are connected by continue edges.

2. Spawn Edges represent the parent-child relationship among tasks. When
task A creates task B, a spawn edge is inserted from the step that ends with
the async in task A to the step that starts task B.

3. Join Edges represent synchronization among tasks. When task A performs
a get on future B, a join edge (also referred to as a “future join edge”)
is inserted from the last step of B to the step in task A that immediately
follows the get () operation. In addition, “finish join edges” are also inserted
from the last step of every task to the step in the ancestor task immediately
following the Immediately Enclosing Finish (IEF). A join edge from task B
to task A is referred to as tree join if A is an ancestor of B; otherwise, it is
referred to as a non-tree join. Note that all finish join edges must be tree
joins, and some future join edges may be tree edges and some may be non
tree edges.

iitt’.lre<T> A = async<T> { TM{A@}

52; B X
future<T> B = async<T> { S3; }; e
S4; B.get(); S5; }; Ta Te TD
S6 ; - & "
future<Ts ¢ = async<T>{ §7; @@ [_,@]
A.get(); S8;} - < <
future<T> D = async<T>{ S10; S T ’
C.get(); S11;%} TB% — Continue

D.get(); ~ . S > Spawn
Fig.2: Example program with futures and its computation graph. S1-512 are
steps in the program.The circles represent the steps in the program. The rect-

angles represents tasks. Ths is the main task and T4, T, Tc and Tp are future
tasks created during the execution of the program.

All three kinds of edges have been studied in past work on computation
graphs for the Cilk [5] and Habanero-Java [26] languages, except for non-tree
join edges.

Definition 2. A step u is said to precede step v, denoted as u < v, if there
exists a path from u to v in the computation graph.

This precedence relation is a partial order, and is also referred to as the
“happens-before” relation in past work [20]. We use the notation Task(u) =T
to indicate that step node u belongs to task T, and u 4 v to denote the fact that
there is no path from step w to step v in the computation graph. Two distinct
steps, u and v may execute in parallel, denoted u || v, iff u A v and v £ w.

Definition 3. A data race may occur between steps w and v, iff u || v and both
u and v include accesses to a common memory location, at least one of which is
a write.

As an example, consider the program in Figure 2 which creates four future
tasks: T4, Tp, Tc, and Tp. S1-512 represent the steps in the program. Here
S2 || S10 because there is no directed path from S2 to S10, or from S10 to S2,
in the computation graph, and S2 < S12 since there is a directed path from S2
to S12. The join edge from S3 to S5 is a tree join since T4 is an ancestor of 1.
The edge from S5 to S8 is a non-tree join since T is not an ancestor T4.

We say that a parallel program is functionally deterministic if it always com-
putes the same answer when given the same inputs. Further, we refer to a pro-
gram as structurally deterministic if it always computes the same computation
graph, when given the same inputs. Finally, following past work [19, 12], we say
that a program is determinate if it is both functionally and structurally deter-
ministic. If a parallel program is written using only async, finish, and future
constructs, and is guaranteed to never exhibit a data race, then it must be de-
terminate, i.e., both functionally and structurally deterministic. Note that all
data-race-free programs written using async, finish and future constructs are
guaranteed to be determinate, but it does not imply that all racy programs are
non-determinate. For instance, a program with parallel writes of the same value
to a common memory location is racy, yet determinate.

4 Determinacy Race Detection Algorithm

In this section, we present our algorithm for detecting determinacy races in
programs with async, finish and future as parallel constructs. A dynamic deter-
minacy race detector needs to provide mechanisms that answers two questions:
for any pair of memory accesses, at least one of which is a write, 1) can the two
accesses logically execute in parallel?, and 2) do they access the same memory
location? To answer the first question, we introduce a program representation
referred to as dynamic task reachability graph which is presented in Section 4.1.
Similar to most race detectors, we use a shadow memory mechanism (presented
in Section 4.2) to answer the second question. Section 4.3 presents our overall
determinacy race detection algorithm.

4.1 Dynamic Task Reachability Graph

Since storing the entire computation graph of the program execution is usually
intractable due to memory limitations (akin to storing a complete dynamic trace
of a program), we introduce a more compact representation that still retains
sufficient information to precisely answer all reachability queries during race
detection. Our program representation, referred to as a dynamic task reachability
graph, represents reachability information at the task-level instead of the step-
level. The representation assumes that the input program is executed serially in
depth-first order, and leverages the following three ideas for encoding reachability
information between steps in the computation graph of the input program:

Disjoint set representation of tree joins The reachability information
between tasks which are connected by tree join edges is represented using a
disjoint set data structure. Two tasks A and B are in the same set if and only
if B is a descendant of A and there is a path in the computation graph from
B to A which includes only tree-join edges and continue edges. Similar to the
SP-bags algorithm, our algorithm uses the fast disjoint-set data structure [11,
Chapter 22], which maintains a dynamic collection of disjoint sets X’ and provides
three operations:

1. MAKESET(x) which creates a new set that contains z and adds it to X
2. UNION(X,Y") which performs a set union of X and Y, adds the resulting set
to X and destroys set X and Y
3. FINDSET(z) which returns the set X € X such that z € X.
Any m of these three operations on n sets takes a total of O(ma(m,n)) time [30].
Here « is functional inverse of Ackermann’s function which, for all practical
purposes is bounded above by 4.

Interval encoding of spawn tree In order to efficiently store and an-
swer reachability information from a task to its descendants, we use a labeling
scheme [13], in which each task is assigned a label according to preorder and
postorder numbering schemes. The values are assigned according to the order
in which the tasks are visited during a depth-first-traversal of the spawn tree,
where the nodes in the spawn tree correspond to tasks and edges represent the
parent-child spawn relationship. Using this scheme, the ancestor-descendant re-
lationship queries between task pairs can be answered by checking if the interval
of one task subsumes the interval of the other task. For example, if [z.pre, z.post]

is the interval associated with task x and [y.pre, y.post] is the interval associ-
ated with task y, then = is an ancestor of y if and only if z.pre < y.pre and
y.post < x.post. When task A performs a join operation on a descendant task B,
the disjoint sets of A and B are merged together and the new set will have the
label originally associated with A. Although, a label is assigned to every task
when it is spawned, the labels are associated with each disjoint set in general.
Compared to past work [13] which used labeling schemes on static trees, the tree
is dynamic in our approach since race detection is performed on-the-fly. This re-
quires a more general labeling scheme, where a temporary label is assigned when
a task is spawned and the label is updated when the task returns to its parent.
Immediate predecessors+significant ancestor representation of non-
tree joins The non-tree joins in the computation graph are represented in the
dynamic task reachability graph as follows:
— immediate predecessors: For each non-tree join from task A to task B, B
stores A in its set of predecessors.
— lowest significant ancestor: We define the significant ancestors of task A as
the set of ancestors of A in the spawn tree that have performed at least one
non-tree join operation. For each task, we store only the lowest significant

ancestor.
"(O=0-0—0)

T, \\‘\ T, L T, // // I'l "', /

’

\ 4 7 ! /
‘\‘ T. ° /l ° e /
AN N ,«" Ts /
\\ N 7 /I /4

Continue

/ /
V4 /
\ ~ S/ --~- Spawn
N { S - Join
\\ Ts @ '/
N

Fig.3: A computation graph with non-tree joins. The join edges (2,9) and (4,6)
are non-tree joins because 17 and Ty are not descendants of T3.

Definition 4. A dynamic task reachability graph of a computation graph G is
a 5-tuple R = (N, D, L, P, A), where
— N is the set of vertices, where each vertex represents a dynamic task instance.

n
— D = {D;}" , is a partitioning of the vertices in N into disjoint sets. U D; =
i=1
N. FEach partition consists of tasks which are connected by tree-join edges.
— L: N = Z>o X Z>q 15 a map from vertices to their labels, where each label
consists of the preorder and postorder value of the vertex in the spawn tree.
A label is also associated with each disjoint set D; € D, where the label for
D; is same as the label of u, where uw € D; and u is the node in D; that is
closest to the root of the spawn tree.

— P : N — 2N represents the set of non-tree edges P(u) = {vy,..,vx} if and
only if there are non-tree join edges from tasks vy..vx to u.

— A: N — N represents the lowest ancestor with at least one incoming non-
tree edge. A(u) = v, if and only if wi,ws..wk..wy, (wWhere T = wy, v = wg
and u = wy,) is the path consisting of spawn edges from the root r of G to u,
and P(w;) = 0,Yj such that k+1 < j <m —1 and P(v) # 0. v is referred
to as the lowest significant ancestor (LSA) of u.

Disjoint|Task L P A Disjoint|Task| L P A
Set (Label) (NT) |(LSA) ‘ Set ‘ (Label)‘ (NT) ‘(LSA)‘
0 To | [0, MAXINT] | () - To | [0, 13]
I T 1,2 @) - Ts | [5,12]
2 T, 3,4 @) . 0 T, | 6,7 |{Ty, To}| -
3 Ts |[5, MAXINT-1] ({11, 12}| - Ts | [8, 11]
1 o 6, 7] O T Ts | [9, 10]
5 T; |[8, MAXINT-2]| () T5 I Ty [[1,2] @) -
6 Te |[9, MAXINT-3]| () T5 2 T | [3,4] @) -
(a) (b)

Table 1: (a) is the dynamic task reachability graph for the computation graph
in Figure 3 after execution of step 11. Task 75 performed join operations on T5
and 7. Therefore P(T3) = {T1,T2}. The least significant ancestor of Ty, T5 and
Tt is T3 because T3 is their lowest ancestor which performed a non-tree join. (b)
is the dynamic task reachability graph for the computation graph in Figure 3
after execution of step 17. Ty, T3, Ty, T5 and Ty are all in the same disjoint set
because they are connected by tree join edges.

Table 1(a) shows the dynamic task reachability graph for the computation
graph in Figure 3 after the execution of step 11. Here the postorder values
assigned to Tp, T3, T5 and T are temporary values (See Section 4.3). All tasks
are in a separate disjoint sets, because no tree joins have been performed yet.
Table 1(b) shows the dynamic task reachability graph for the computation graph
in Figure 3 after the execution of step 17.

4.2 Shadow Memory

As in past work [26, 27], our algorithm maintains a shadow memory M; for every
shared memory location M. M contains the following fields
— w, a reference to a task that wrote to M. M,.w is initialized to null and is
updated at every write to M. It refers to the task that last wrote to M.
— 1, a set of references to tasks that read M. M,.r is initialized to @ and is
updated at reads of M. It contains references to all future tasks that read
M in parallel, since the last write to M. It also contains a reference to one
non-future (async) task which read M since the last write to M.

4.3 Algorithm

The overall determinacy race detection algorithm is given in Algorithms 1-10. As
the input program executes in serial, depth-first order the race detection algo-
rithm performs additional operations whenever one of the following actions oc-
curs: task creation, task return, begin-finish, end-finish, get () operation, shared

Input: Main task M Input: Parent task P, Child task C'
1: dfid <~ 0 1: S¢ + MAKE-SET(C)

2: tmpid < MAXINT 2: Sc.pre < dfid; dfid < dfid + 1
3: Sm < MAKE-SET(M) 3: Sc.post < tmpid; tmpid < tmpid —1
4: Syr.pre « dfid 4: Sc.parent < Sp
5: dfid < dfid + 1 5: if Sp.nt = {} then
6: Snr.post < tmpid 6: Sc.lsa < Sp.lsa
7: tmpid < tmpid — 1 7: else
8: Sn.parent < null 8: Sc.lsa <+ Sp
9: Sa.lsa < null 9: end if
Algorithm 1: Initialization Algorithm 2: Task creation

memory read and shared memory write. The race detector stores the following
information associated with every disjoint set of tasks.

— pre and post together form the interval label assigned to the disjoint set.
— nt is the set of incoming non-tree edges.

— parent refers to the parent task.

— Isa represents the least significant ancestor.

Next, we describe the actions performed by our race detector:

Initialization: Algorithm 1 shows the initialization performed by our race
detector when the main task M is created. The set Sj, is initialized to contain
task M. It assigns [0, MAXINT] as the interval label for the main task. Since
the postorder value of a node is known only after the full tree has unfolded, we
assign a temporary postorder value MAXINT (the largest integer value). The
parent and [sa fields are initialized to null.

Task Creation: Algorithm 2 shows the actions performed by our race detector
during task creation. Whenever a task P spawns a new task C, C is assigned
the preorder value and a temporary postorder value. Our algorithm assigns tem-
porary postorder values starting at the largest integer value (MAXINT) in de-
creasing order. This assignment scheme maintains the interval label property,
where the label of an ancestor subsumes the labels of descendants. The set S¢ is
initialized to contain task C. The least significant ancestor for task C' is initial-
ized at task creation time based on whether task P has performed any non-tree
joins.

Task Termination: When task C' terminates, the postorder value of C is
updated with the final value. This is shown in Algorithm 3.

Get Operation: Algorithm 4 shows the actions performed by the race detector
at a get () operation. When task A performs a get () operation on task B, there
are two possible cases: 1) A is an ancestor of B and there are join edges from
all tasks which are descendants of A and ancestors of B to A. In this case,
the algorithm performs a union of the disjoint sets S4 and S by invoking the
MERGE function given in Algorithm 7, and 2) there is a non-tree join edge from
B to A. In this case, B is added to the sequence of non-tree predecessors of A.
Finish: Algorithm 5 and Algorithm 6 shows the actions performed by the race
detector at the start and end of a finish. At the end of a finish F', the disjoint
sets of all tasks with F' as the immediately enclosing finish is merged with the
disjoint set of the ancestor task executing the finish.

Input: Terminating task C Input: Finish F
1: Sc.post < dfid; dfid < dfid + 1 1: A < F.parent
2: tmpid < tmpid + 1 : for B € F.joins do

2
3: M Sa, S
Algorithm 3: Task termination 4 BRGE(S4,)

: end for
Input: Tasks A, B such that A performs Algorithm 6: End finish
B.get()
1: if FIND-SET(A) = Input: Disjoint sets Sa,SB
2: FIND-SET(B.parent) then 1: procedure MERGE(S4, SB)
3: MERGE(S 4, SB) 2: nt < Sa.ntU Sp.nt
4: else 3 lsa < Sa.lsa
5. Sa.nt « Sa.ntU{B} 4 Sa < Sp < UNION(Sa4, SB)
6: end if 5: Sa.nt < nt
; B 6 Sa.lsa + lsa
Algorithm 4: Get operation 7: end procedure

Input: Start of finish F in task A Algorithm 7: Merge tasks
1: F.parent + A

Algorithm 5: Start finish

Shared Memory Access: Determinacy races are detected when a read or write
to a shared memory location occurs. When a write to a memory location M is
performed by step u, the algorithm checks if the previous writer or the previous
readers in the shadow memory space may execute in parallel with the currently
executing step and reports a race. It updates the writer shadow space of M
with the current task and removes any reader r if » < w. This is shown in
Algorithm 8. When a read to a memory location M is performed by step wu,
the algorithm checks if the previous writer in the shadow memory space may
execute in parallel with the currently executing step and reports a race. It adds
the current task to the set of readers of M and removes any task r if r <
u. Our algorithm differentiates between future tasks and async tasks: async
tasks can be waited upon by only ancestor tasks using the finish construct and
future tasks can be waited upon using the get() operation. Given a task A
as argument, ISFUTURE returns true, if A is a future task. The readers shadow
memory contains a maximum of one async task, but may contain multiple future
tasks. During the read of a shared memory location by step s of an async task
A, the algorithm replaces the previous async reader X by A, if X precedes s.
This is shown in Algorithm 9.

Given tasks A and B, PRECEDE routine shown in Algorithm 10 checks if task
A must precede B by invoking routine VISIT which is also given in Algorithm 10.
Lines 6-11 of VISIT routine returns true if the interval corresponding to the
disjoint set of B is contained in the interval corresponding to the disjoint set of A.
Lines 1214 returns false, if the preorder value of A is greater than the preorder
value of B, since the source of a non-tree join edge must have a lower preorder
value than the sink of the non-tree edge. Lines 15-20 checks if B is reachable
from A along the immediate non-tree predecessors of B. Lines 21-29 traverses
paths which include the non-tree predecessors of the significant ancestors of B
starting with the least significant ancestor of B. The routine returns true when

Input: Memory location M, Task A that | | Input: Tasks A, B
writes to M 1: procedure PRECEDE(A, B)
1: for X € M,.r do 2: return VISIT(A4, B, {})
2 if not PRECEDE(X, A) then 3: end procedure
i a determinacy race evists 1: procedure VISIT(A, B, Visited)
else : . M
5. M.+« My — {X} 2: if B € Visited then
6: end if 3: re.zturn false
4: end if
7: end for : o .
8: if not PRECEDE(M;.w, A) then 5: Visited < Visited U { B}
9: a determinacy race exists . Sa + FIND-SET(A)
10: end if 7 .SB < FIND-SET(B)
11: Mow + A 8: if S4.pre < Sp.pre and
9: Sa.post > Sp.post then
Algorithm 8: Write check 10: return true
11: end if
12: if Sa.pre > Sp.pre then
Input: Memory location M, Task A that | | 13: return false
reads M 14: end if
1: update = false 15: for all z in Sp.nt do
2: for X € M;.r do 16: if VIsIT(A, z, Visited)
3: if PRECEDE(X, A) then 17: then
4: Ms.r + Msr—{X} 18: return true
5: update < true 19: end if
6: else if ISFUTURE(X) or 20: end for
T ISFUTURE(A) then 21: sa < B.lsa
8: update < true 22: while sa # null do
9: end if 23: for all z in sa.nt do
10: end for 24: if VIsIT(A, z,
11: if not PRECEDE(M,.w, A) then Visited) then
12: a determinacy race exists 25: return true
13: end if 26: end if
14: if update then 27: end for
15: M.r + MsrU{A} 28: sa < sa.lsa
16: end if 29: end while
Algorithm 9: Read check 30: return false
’ 31: end procedure

Algorithm 10: Reachability check

a path from A to B is found or returns false when all the non-tree edges whose
source has a preorder value greater than the preorder value of A are visited.

The following two theorems discuss the complexity and correctness of our
race detection algorithm. The proofs for these theorems are given in [29].

Theorem 1. Consider a program with async, finish and future constructs that
executes in time T on one processor, creates a async tasks, f future tasks, per-
forms n mon-tree join edges and references v shared memory locations. Algo-
rithms 1-10 can be implemented to check this program for determinacy races in
OT(f+1)(n+Da(T,a+ f)) time using O(a+ f+n+v*(f+1)) space.

Here « is functional inverse of Ackermann’s function which, for all practical
purposes is bounded above by 4. It is interesting to note that our algorithm

degenerates to past complexity results for async-finish programs [26] in the case
when the program creates no futures (f =n = 0).

Theorem 2. Algorithms 1-10 detect a determinacy race for a given parallel
program and data input if and only if a determinacy race exists.

5 Experimental Results

In this section, we present experimental results for our determinacy race detec-
tion algorithm. The race detector was implemented as a new Java library for
detecting determinacy races in HJ programs containing async, finish and future
constructs. The benchmarks written in HJ were instrumented for race detection
during a bytecode-level transformation pass implemented on HJ’s Parallel In-
termediate Representation (PIR) [23]. The PIR extends Soot’s Jimple IR [31]
with parallel constructs such as async, finish, and future. The instrumentation
pass adds the necessary calls to our race detection library at async, finish and
future boundaries, future get operations, and also on reads and writes to shared
memory locations.

E 7

4 o] n

: 2 2 |3 7 |.7l53

g w 3 o) x e | 88 % g

2 4] & w| & | T2 99

E < 2 < > <2 | 82 |2 ¢

) = z n <| g £ IS S
Series-af 999,999 0 4,000,059 |0.75(483,224|484,746|1.00
Series-future 999,999 0 6,000,059]0.66|487,134|487,985|1.00
Crypt-af 12,500,000 0 {1,150,000,682|0.74| 15,375 {119,504 |7.77
Crypt-future |12,500,000f 0 |1,175,000,682|1.23| 15,517 |128,234|8.26

Jacobi 8,192 |34,944| 641,499,805 [1.70| 3,402 | 27,388 |8.05

Strassen 30,811 |33,612|1,610,522,196(0.94| 6,281 | 33,618 |5.35

Smith-Waterman| 1,608 4,641 |1,652,175,806/1.56| 3,488 | 34,558 |9.92
Table 2: Runtime overhead for determinacy race detection.

Our experiments were conducted on a 16-core Intel Ivybridge 2.6 GHz sys-
tem with 48 GB memory, running Red Hat Enterprise Linux Server release 7.1,
and Sun Hotspot JDK 1.7. To reduce the impact of JIT compilation, garbage
collection and other JVM services, we report the mean execution time of 10
runs repeated in the same JVM instance for each data point. We evaluated the
algorithm on the following benchmarks:

— Series-af: Fourier coefficient analysis from JGF [7] benchmark suite (Size

C), parallelized using async and finish.

— Series-future: Fourier coefficient analysis from JGF benchmark suite (Size

C), parallelized using futures.

— Crypt-af: IDEA encryption algorithm from JGF benchmark suite (Size C),
parallelized using async and finish.
— Crypt-future: IDEA encryption algorithm from JGF benchmark suite (Size

C), parallelized using futures.

— Jacobi: 2 dimensional 5-point stencil computation on a 2048 x 2048 matrix,
where each tasks computes a 64 x 64 submatrix.
— Strassen: Multiplication of 1024 x 1024 matrices using Strassen’s algorithm.

The implementation uses a recursive cutoff of 32 x 32.

— Smith-Waterman: Sequence alignment of two sequences of size 10000. The

alignment matrix computation is done by 40 x 40 future tasks.

The first four benchmarks were derived from the original versions in the JGF
suite. The next two, Jacobi and Strassen were translated by the authors from
OpenMP versions of those programs in the Kastors [32] benchmark suite. The
original versions of these benchmarks used the OpenMP 4.0 depends clause,
in which tasks specify data dependence using in, out and inout clauses. The
translated versions of these benchmarks used future as the main parallel con-
struct, with get() operations used to synchronize with previously data dependent
tasks. In general, this kind of task dependences cannot be represented using only
async-finish constructs without loss of parallelism. The Smith-Waterman bench-
marks uses futures and is based on a programming project in COMP322, an
undergraduate course on parallel computing at Rice University.

The results of our evaluation is given in Table 2. The first column lists the
benchmark name, and the second column shows the dynamic number of tasks
(#Tasks) created for the inputs specified above. The third column shows the
number of non-tree joins (#NTJoins) performed by each of the applications
(the subset of future get() operations that are non-tree-joins). The fourth column
shows the total number of shared memory accesses (#SharedMem) performed
by the applications (all accesses to instance/static fields and array elements).
The fifth column (#AvgReaders) shows the average number of past parallel
readers per location stored in the shadow memory when a read/write access is
performed on that location. (The average is computed across all accesses and all
locations.) For a given access, the number of such stored readers will be either
zero or one for programs containing only async and finish constructs, thereby
ensuring that the average must be in the 0...1 range for async-finish programs.
For programs with futures, the number of stored readers can be greater than one,
if the location being accessed is in the read-shared state and is read by multiple
tasks that can potentially execute in parallel each other. Thus, #AvgReaders
can be any value that is > 0, for programs with futures.

The next column (Seq) reports the average execution time of the sequential
(serial elision) version of the benchmark, and the following column (Racedet)
reports the average execution time of a 1-processor execution of the parallel
benchmark using the determinacy race detection algorithm introduced in this
paper. Finally, the Slowdown column reports the ratio of the Racedet and Seq
values.

We can make a number of observations from the data in Table 2. First, if
we compute the Seq/#Tasks ratio for all the benchmarks, we can see that the
Crypt-af and Crypt-future benchmarks perform = 100x less work per task on
average, relative to all the other benchmarks. This is the primary reason why the
Crypt-af and Crypt-future benchmarks exhibit slowdowns of 7.77x and 8.26x.
With less work per task, the overhead per task during race detection becomes
more significant than in other benchmarks; further, creating data structures for
large numbers of tasks puts an extra burden on garbage collection and memory

management. However, it is important to note that the slowdowns for Series-
af and Crypt-af are comparable to the slowdowns reported for the ESP-Bags
algorithm [25] that only supported async and finish, thereby showing that our
determinacy race detector does not incur additional overhead for async/finish
constructs relative to state-of-the-art implementations.

Next, we see that the number of non-tree joins performed by Series-af and
Crypt-af is zero, since they are async-finish programs for which all join (fin-
ish) operations appear as tree-join edges in the computation graph (Section 3).
Since their corresponding future versions, Series-future and Crypt-future, used
futures to implement async-finish synchronization, their future get() operations
also appear as tree-join edges in the computation graph, thereby resulting in zero
non-tree joins as well. However, the future versions of these two benchmarks have
higher number of shared memory accesses than the async-finish versions, due to
the additional writes and reads of future references which happened to be stored
in shared (heap) locations for both benchmarks. In particular, we know that
the reference to each future task must be subjected to at least one write access
(when the future task is created) and one read access (when a get() operation is
performed on the future), though more accesses are possible. Since Series-future
creates 999,999 future tasks, we see that the difference in the #SharedMem val-
ues for Series-future and Series-af is 2,000,000 which is very close to the lower
bound of 2 x 999,999. Likewise, for Crypt-future and Crypt-sf, the number of
tasks created is 12,500,000 and the difference in the #SharedMem values is
25,000,000 which exactly matches the lower bound of 2 x 12,500, 000. The slow-
down for Crypt-future is higher than that of Crypt-af due to two reasons: 1) the
additional number of memory accesses due to the future references and 2) the
average number of readers stored in the shadow memory is higher, because of
the presence of future tasks.

The slowdowns for Jacobi, Smith-Waterman and Strassen (8.05x, 9.92x, and
5.35x) are positively correlated by the values of #SharedMem, #AvgReaders,
and 1/Seq, and these correlations can help explain the relative slowdowns for
the three benchmarks. A larger value of #SharedMem leads to a larger slow-
down due to the overhead of processing additional shared memory accesses. A
larger value of #AvgReaders leads to a larger slowdown because the number of
reachability queries required per shared memory access is equal to the number
of readers present in the shadow memory for that location. A larger value of
1/Seq indirectly leads to a larger slowdown due to the smaller available time to
amortize the overheads of race detection.

Finally, we observe that the slowdowns are not significantly impacted by the
number of non-tree edges. This is because the producer and consumer tasks of
a future object happen to be closely located to each other in the computation
graph (for these benchmarks), usually only requiring 1-2 hops involving non-tree
edges in the graph traversal.

6 Related Work

Dynamic data race detection techniques target either structured parallelism or
unstructured parallelism. Race detection for unstructured parallelism typically

uses vector clock algorithms, e.g., [3,17]. Atzeni et al. [2] presented a low over-
head, high accuracy vector clock race detector for OpenMP programs via a
combination of static and dynamic analysis. These algorithms are impractical
for task parallelism because either the vector clocks have to be allocated with a
size proportional to the maximum number of simultaneously live tasks (which
can be unboundedly large) or precision has to be sacrificed by assigning one
clock per processor or worker thread, thereby missing potential data races when
two tasks execute on the same worker.

Mellor-Crummey [22] presented the Offset-Span labeling algorithm for nested
fork-join constructs, which is an extension of English-Hebrew labeling scheme [15].
The idea behind their techniques is to attach a label to every thread in the pro-
gram and use these labels to check if two threads can execute concurrently. The
length of the labels associated with each thread is bounded by the maximum
dynamic fork-join nesting depth in the program. Our approach uses a constant
size labeling scheme to store reachability information for ancestor-descendant
tasks. While the Offset-Span labeling algorithm supports only nested fork-join
constructs, our algorithm supports a more general set of computation graphs.

Feng and Leiserson [16] introduced the SP-bags algorithm for Cilk’s fully-
strict parallelism, which uses only a constant factor more memory than does the
program itself. Bender et al. [4] presented the parallel SP-hybrid algorithm which
uses English-Hebrew labels and SP-bags to detect races in Cilk programs. Despite
its good theoretical bounds, the paper did not include an implementation of the
algorithm. Raman et al. [26] extended the SP-bags algorithm to support async-
finish parallelism. They subsequently proposed the parallel SPD3 algorithm [27]
also for async-finish constructs. In contrast to these approaches, our data race
detection algorithm handles async, finish and futures, which can create more
general computation graphs than those that can be generated by async-finish
parallelism.

7 Conclusions

In this paper, we presented the first known determinacy race detector for dy-
namic task parallelism with futures. As with past determinacy race detectors,
our algorithm guarantees that all potential determinacy races will be checked so
that if a race is reported for a given input in one run of our algorithm, it will
always be reported in all runs. Likewise, if no race is reported for a given input,
then all parallel executions with that input are guaranteed to be race-free and
deterministic. Our approach builds on a novel data structure called the dynamic
task reachability graph which models task reachability information for non-strict
computation graphs in an efficient manner. We presented a complexity analysis
of our algorithm, discussed its correctness, and evaluated an implementation of
the algorithm on a range of benchmarks that generate both strict and non-strict
computation graphs. The results indicate that the performance of our approach
is similar to other efficient algorithms for spawn-sync and async-finish programs
and degrades gracefully in the presence of futures. Specifically, the experimental
results show that the slowdown factor observed for our algorithm relative to the
sequential version is in the range of 1.00x — 9.92x, which is very much in line
with slowdowns experienced for fully strict computation graphs.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Shivali Agarwal, Rajkishore Barik, Dan Bonachea, Vivek Sarkar, Rudrapatna K.
Shyamasundar, and Katherine Yelick. Deadlock-free scheduling of x10 computa-
tions with bounded resources. In SPAA 07, pages 229-240, New York, NY, USA,
2007. ACM.

. Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Dong H. Ahn, Gre-

gory L Lee, Ignacio Laguna, Martin Schulz, Joachim Protze, and Matthias Mueller.
Archer: Effectively spotting data races in large openmp applications. In IPDPS’16,
pages 53 — 62, May 2016.

Utpal Banerjee, Brian Bliss, Zhigiang Ma, and Paul Petersen. A theory of data
race detection. In PADTAD 06, pages 69-78, New York, NY, USA, 2006. ACM.
Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson.
On-the-fly maintenance of series-parallel relationships in fork-join multithreaded
programs. In SPAA 04, pages 133-144, New York, NY, USA, 2004. ACM.
Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. In PPoPP ’95, pages 207-216, New York, NY, USA, 1995. ACM.

Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computa-
tions by work stealing. J. ACM, 46(5):720-748, September 1999.

J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey. A
benchmark suite for high performance java. Concurrency: Practice and Experience,
12(6):375-388, 2000.

Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-java: the
new adventures of old x10. In PPPJ ’11, pages 51-61, New York, NY, USA, 2011.
ACM.

B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the
Chapel language. Int. J. High Perform. Comput. Appl., 21(3):291-312, August
2007.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In OOPSLA ’05, pages 519—
538, New York, NY, USA, 2005. ACM.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.
Jack B. Dennis, Guang R. Gao, and Vivek Sarkar. Determinacy and repeatability
of parallel program schemata. In DFM ’12, pages 1-9, Washington, DC, USA,
2012. IEEE Computer Society.

P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In STOC
’87, pages 366—372, New York, NY, USA, 1987. ACM.

Dimitar Dimitrov, Martin Vechev, and Vivek Sarkar. Race detection in two di-
mensions. In SPAA 15, pages 101-110, New York, NY, USA, 2015. ACM.

A. Dinning and E. Schonberg. An empirical comparison of monitoring algorithms
for access anomaly detection. In PPOPP 90, pages 1-10, New York, NY, USA,
1990. ACM.

Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races
in Cilk programs. In SPAA 97, pages 1-11, New York, NY, USA, 1997. ACM.
Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic
race detection. In PLDI ’09, pages 121-133, New York, NY, USA, 2009. ACM.
Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computa-
tion. ACM Trans. Program. Lang. Syst., 7(4):501-538, 1985.

Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput.
Syst. Sci., 3(2):147-195, May 1969.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558-565, July 1978.

B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In PLDI ’88, pages 260-267, New York,
NY, USA, 1988. ACM.

John Mellor-Crummey. On-the-fly detection of data races for programs with nested
fork-join parallelism. In Supercomputing 91, pages 24-33, New York, NY, USA,
1991. ACM.

V. Krishna Nandivada, Jun Shirako, Jisheng Zhao, and Vivek Sarkar. A transfor-
mation framework for optimizing task-parallel programs. ACM Trans. Program.
Lang. Syst., 35(1), April 2013.

OpenMP specifications. http://www.openmp.org/specs.

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
Efficient data race detection for async-finish parallelism. In RV’10, pages 368-383,
Berlin, Heidelberg, 2010. Springer-Verlag.

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
Efficient data race detection for async-finish parallelism. Formal Methods in System
Design, 41(3):321-347, December 2012.

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
Scalable and precise dynamic datarace detection for structured parallelism. In
PLDI 12, pages 531-542, New York, NY, USA, 2012. ACM.

Rishi Surendran and Vivek Sarkar. Brief announcement: Dynamic determinacy
race detection for task parallelism with futures. In SPAA’16, Pacific Grove, CA,
USA, July 2016.

Rishi Surendran and Vivek Sarkar. Dynamic determinacy race detection for task
parallelism with futures. Technical Report TR16-01, Department of Computer
Science, Rice University, Houston, TX, 2016.

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J.
ACM, 22(2):215-225, April 1975.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot - a java bytecode optimization framework. In CASCON
’99. IBM Press, 1999.

Philippe Virouleau, Pierrick Brunet, Franois Broquedis, Nathalie Furmento,
Samuel Thibault, Olivier Aumage, and Thierry Gautier. Evaluation of OpenMP
Dependent Tasks with the KASTORS Benchmark Suite. In ITWOMP 201/, pages
16-29, 2014.

