
A

A Decoupled non-SSA Global Register Allocation using Bipartite
Liveness Graphs

Rajkishore Barik, Intel Labs
Jisheng Zhao, Rice University
Vivek Sarkar, Rice University

Register allocation is an essential optimization for all compilers. A number of sophisticated register allo-
cation algorithms have been developed over the years. The two fundamental classes of register allocation
algorithms used in modern compilers are based on Graph Coloring (GC) and Linear Scan (LS). However,
these two algorithms have fundamental limitations in terms of precision. For example, the key data struc-
ture used in GC-based algorithms, the interference graph, lacks information on the program points at which
two variables may interfere. The LS-based algorithms make local decisions regarding spilling, and there-
by trades off global optimization for reduced compile-time and space overheads. Recently, researchers have
proposed SSA-based decoupled register allocation algorithms that exploits the live-range split-points of the
SSA representation to optimally solve the spilling problem. However, SSA-based register allocation often
requires extra complexity in repairing register assignments during with SSA elimination and in address-
ing architectural constraints such as aliasing and ABI-encoding; this extra overhead can be prohibitively
expensive in dynamic compilation contexts.

This paper proposes a decoupled non-SSA-based global register allocation algorithm for dynamic compi-
lation. It addresses the limitations in current algorithms by introducing a Bipartite Liveness Graph (BLG)
based register allocation algorithm that models the spilling phase as an optimization problem on the BLG
itself and the assignment phase as a separate optimization problem. Advanced register allocation optimiza-
tions such as move coalescing, live-range splitting, and register class handling are also performed along with
the spilling and assignment phases. In the presence of register classes, we propose a bucket-based greedy
heuristic for assignment that strikes a balance between spill-cost and register class constraints. We present
experimental evaluation of our BLG-based register allocation algorithm and compare it with production
quality register allocators in JikesRVM and LLVM.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Decoupled register allocation, Bipartite graph, Coalesce graph, Basic
and compound intervals

ACM Reference Format:
Barik, R., Zhao, J., Sarkar, V. 2013. A Decoupled non-SSA Global Register Allocation using Bipartite Live-
ness Graphs ACM Trans. Embedd. Comput. Syst. V, N, Article A (January YYYY), 5 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Register allocation is an essential compiler optimization that has received much atten-
tion from the research community during the last five decades. Its relevance continues
to increase with current trends towards energy-efficient processors in which some of

Author’s addresses: R. Barik, Intel Labs, 2200 Mission College Blvd. Santa Clara, CA, 95054; J. Zhao and V.
Sarkar, Computer Science Department, Rice University, Houston, TX, 77005.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 R. Barik et al.

the burden of memory hierarchy management is shifting back from hardware to soft-
ware. Two fundamental classes of register allocation algorithms have emerged over
the years, Graph Coloring (GC) and Linear Scan (LS). Register allocation algorithm-
s based on Graph Coloring (GC) [Chaitin et al. 1981; Briggs et al. 1994; George and
Appel 1996; Park and Moon 1998; Smith et al. 2004], including more recent variants
based on Static Single Assignment (SSA) form [Hack and Goos 2006], all use the In-
terference Graph (IG) as a primary data structure. Although the IG captures interfer-
ences among live ranges precisely, its lack of program point specific information can
lead to imprecise result, especially for scenarios where insertion of additional move
and exchange instructions can avoid spilling. On the other hand, register allocation al-
gorithms based on Linear Scan (LS) e.g., [Traub et al. 1998; Poletto and Sarkar 1999;
Wimmer and Mössenböck 2005; Sarkar and Barik 2007; Wimmer and Franz 2010]
overcome the compile-time and compile-space overheads of GC algorithms, but do so
at the expense of achieving poorer execution times than GC. The key reason for this is
due to the lack of global information while making the spilling decisions. The primary
goal of this paper is to address these limitations using a program point specific data
structure called Bipartite Liveness Graphs (BLG).

A secondary goal of this paper is to simplify the implementation of the register al-
locator by decoupling the register spilling and register assignment phases in an opti-
mizing back-end. This will allow the spilling phase to focus on spilling decisions and
the assignment phase to focus on coalescing and physical register assignment deci-
sions. While this form of decoupling has been performed for other register allocation
algorithms in the past including [Appel and George 2001] and SSA-based register allo-
cation algorithms [Hack and Goos 2006; Brisk 2006; Pereira and Palsberg 2009; Colom-
bet et al. 2011], our approach is unique in its use of the Bipartite Liveness Graph (BLG)
for the spilling phase and the Coalesce Graph (CG) for the assignment phase. The CG
consists of both IR move instructions and register-to-register moves that arise from
our BLG based allocation phase. In GC algorithms, the coupling between these phases
is manifest in the integration of coloring and coalescing decisions, which can further
compromise the effectiveness of the final solution and complicate the implementation
of the allocator. These complications arise from non-trivial problems that must be ad-
dressed by the implementer in dealing with coalescing in traditional GC allocators.
Further, register allocation for today’s architectures includes new challenges due to
hardware features such as register classes, register aliases, pre-coloring, and register
pairs. To produce high quality machine code, a register allocator must consider these
hardware features in both the allocation and assignment phases.

Even though recent trends in register allocation is shifting towards decoupled SSA-
based algorithms, there are known complexities in SSA elimination after register al-
location [Brisk 2006; Pereira and Palsberg 2009] and in addressing architecture-level
register aliasing and encoding constraints [Colombet et al. 2011] that suggest that the
decoupled SSA approach will be challenging to use for dynamic compilation.

This paper addresses the register allocation challenges listed above by starting with
a clean separation between the register spilling and register assignment phases. The
spilling phase is modeled as an optimization problem on a new data structure called
the Bipartite Liveness Graph (BLG). As we will see, the BLG is a more precise data
structure than the IG. Assignment is modeled as a separate optimization problem that
incorporates register-to-register moves and exchanges as alternatives to spilling, and
handles move coalescing and register class constraints.

Specifically, we make the following contributions towards the above goals:

(1) We introduce a novel Bipartite Liveness Graph (BLG) representation as an alter-
native to the interference graph (IG) representation.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:3

a) Code fragment with basic and com-
pound intervals:

1 a = ...

2 b = ...

3 c = a

4 d = b

5 if (...) {

6 e = ...

7 ... = c

8 d = ...

9 f = e

10 ... = f

11 c = ...

12 }

13 ... = d

14 ... = c

C(a) (b)C C(c) C C C(d) (e) (f)

b) Interference Graph (dashed
lines show move instructions):
a

b d f

ec

c) Bipartite Liveness Graph
(BLG) (with unconstrained end
points):

a

3
-

4
-

5
-

7
-

9
-

10
-

13
-

14
-

b

c

d

e

f

U

V

Fig. 1. a) Example code fragment with basic and compound intervals; the dotted lines represent end-points
of basic intervals. b) Interference Graph (IG); the solid lines in IG represent interference and the dashed
lines represent move instructions. c) Bipartite Liveness Graph (BLG) with unconstrained interval end-
points; the vertices on the left of the graph represent compound intervals, and the vertices on the right
represent basic interval end-points. With two physical registers, the BLG representing constrained end-
points is empty in this case.

(2) We formulate the spilling problem for BLGs as a simple optimization problem and
present a greedy heuristic to solve it. The spilling phase is performed independent-
ly of coalescing optimizations. We also extend the spilling phase to support partial
spills.

(3) We formulate spill-free register assignment with move coalescing as a combined op-
timization problem that maximizes the benefits of move coalescing while finding
an assignment for every symbolic register. Move coalescing is performed on a Coa-
lesce Graph (CG). A local greedy heuristic is presented to address the assignment
optimization problem.

(4) We extend the register assignment approach from 3. above to handle register class-
es. An optimized version of the assignment problem is presented that minimizes
the additional spilled symbolic registers and, at the same, time maximizes the ben-
efits of move coalescing. A prioritized bucket based greedy heuristic is presented to
address this problem.

2. BIPARTITE LIVENESS GRAPH (BLG)
We start this section with some definitions. A program point can be split into two
program points based on the values read and written at that program point [Sarkar
and Barik 2007]:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 R. Barik et al.

Definition 2.1. Each program point p is split into p� and p+, where p� consists of
the variables that are read at p and p+ consists of the variables that are written at p.2

[x, y] is called a basic interval for variable v (denoted as BI(v), for a basic interval of
v) if and only if for every program point, p, such that p � x and p  y imply v is live at
p. Note that BI(v) does not include any hole. x and y denote the start and end points
of BI(v) respectively. A compound interval for a variable v (denoted as CI(v)) consists
of a set of basic intervals for v. CI(v) can have holes. Let B denote the set of all basic
intervals and C denote the set of all compound intervals in the program. Let L denote
the set of start points and H denote the set of end points of all the basic intervals.

The number of simultaneously live symbolic registers at a program point p is denot-
ed by numlive(p). MAXLIVE represents the maximum number of simultaneously live
symbolic registers in any program point. A program point p is said to be constrained if
numlive(p) > k, where k is the total number of machine registers. In the presence of
register classes, we call a program point p constrained if it violates any of the register
requirements of any of the register classes of the symbolic registers that are live at p.

Now we present a new representation, known as Bipartite Liveness Graph (BLG),
that captures program point specific liveness information as an alternative to the in-
terference graph. Formally,

Definition 2.2. Bipartite Liveness Graph: A bipartite liveness graph (BLG) is a
undirected weighted bipartite1 graph G = hU [V,Ei, where V denotes all the basic
interval end points2 in H, U denotes all the compound intervals in C and an edge
e = (u, v) 2 E indicates that the compound interval u 2 U is live at the interval
end point v 2 V . Each u 2 U has an associated non-negative weight SPILL(u) that
denotes the spill cost of u. Similarly, each v 2 V has an associated non-negative weight
FREQ(v) that denotes the execution frequency of the IR instruction associated with
basic interval end point v.2

It is obviously a waste of space to capture liveness information at every program
point in V of BLG. From a register allocation perspective, it suffices to consider on-
ly constrained program points corresponding to either the basic interval start points
alone or end points alone but not both in V . This is because spilling/assignment deci-
sions only need to be taken at those points. Additional optimizations are also possible,
e.g., if two interval end points have the same liveness information (i.e., same set of vari-
ables live), only one of them (but not both) needs to be added to the BLG for spilling
decisions.

Figure 1 presents an example code fragment with its basic and compound intervals
in Figure 1a) and the interference graph (IG) in Figure 1b). We observe that IG has a
clique of size 3 due to the cycle comprising nodes c, d, and e. Now consider a Graph Col-
oring register allocator that performs coalescing along with register allocation. Both
aggressive [Chaitin et al. 1981] and conservative [Briggs et al. 1994] coalescing will
be able to eliminate the move edges (a, c), (b, d), and (e, f) without increasing the col-
orability of the original interference graph. If we have two physical registers, we have
to spill one of the coalesced nodes ac, bd, and ef . The un-coalescing approach used in
an optimistic coalescing technique [Park and Moon 1998] will be able to just spill one
of the nodes involved in the cycle as it tries all possible combinations of assigning col-
ors to individual nodes of a potentially spilled coalesced node. The points to note here

1A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that each
edge connects a vertex in U to one in V .
2The choice of interval end points is arbitrary. We could have used interval start points instead.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:5

are that we can not color the IG using 2 physical registers and that opportunities for
coalescing can be missed due to the inability to color certain nodes.

A closer look at the code reveals the fact that none of the program points have more
than two variables live simultaneously. If this is the case, two questions come to mind:
1) Can we generate spill-free code with two physical registers that does not give up
any coalescing of symbolic registers? 2) If the answer to the first question is yes, then
why did Graph Coloring generate spill code and also miss the coalescing opportunity?

The answer to the first question is yes. The BLG with unconstrained interval end
points for the example code is shown in Figure 1(c). This captures the fact that every
basic interval end point in V has degree less than or equal to 2 indicating no more than
two compound intervals are simultaneously live. (The BLG with constrained interval
end points is empty in this case.) Let us name the two physical registers as r1 and
r2. The following register assignment is possible: reg([1+, 3�]) = r1, reg([2+, 4�]) =
r2, reg([4+, 5�]) = r2, reg([3+, 7�]) = r1, reg([6+, 9�]) = r2, reg([9+, 10�]) = r2,
reg([8+, 13�]) = r1, and reg([11+, 14�]) = r2. This register assignment requires an
additional register exchange operation since the register assignment for the basic in-
tervals of both CI(c) and CI(d) were exchanged when the code after the if condition
was executed. We need to insert an exchg r1, r2 instruction on the control flow edge
between 4 and 13. As a result none of the coalescing opportunities in lines 3, 4, and 9
were given up during such an assignment.

Now let us try to answer the second question. Looking at the code fragment, we ob-
serve that at the program point 13�, d interferes with two values of c that are assigned
on lines 3 and 11. Similarly, c interferes with two values of d that are assigned on lines
4 and 8. During runtime, if the if branch is taken then assignments on lines 8 and 11
will be visible to the code following the if condition, otherwise assignments on lines
3 and 4 will be visible. This notion can not be precisely captured using the definition
of live-ranges in an interference graph unless we convert the program to SSA form
or perform live-range splitting [Appel and George 2001]. Each of these approaches re-
quire additional complexities, e.g., the SSA-based approach needs to handle out-of-SSA
translation by inserting extra copy statements.

The above example raises a question about the general approach of stating the global
register allocation problem as the graph coloring problem on the IG. Even though the
interference graph using live-ranges provides a global view of the program, it is less
precise than a BLG with intervals.

Similar to GC, a Linear Scan (LS) register allocation algorithm (e.g., the LS algo-
rithm implemented in Jikes RVM) when applied to Figure 1 will first spill one of CI(c),
CI(d), or CI(e) compound intervals decided based on spill cost. If it decides to spill CI(e),
then later on it will force another spill to one of CI(c), CI(d), or CI(f). This scenario is
even worse than GC as it may spill more than one compound intervals. This problem
arises in LS primarily due to the local decisions taken during the combined spilling
and assignment phase.

3. OVERALL APPROACH
The overall register allocator presented in this paper is depicted in Figure . The first
step in the allocator is to build data structures for basic intervals, compound intervals,
and the Bipartite Liveness Graph (BLG). Then, the spilling is performed on the BLG
to determine a set of compound intervals that need to be spilled as shown in the blocks
for potential spill and actual spill. A combined phase of assignment and coalescing
is then performed until all the symbolic registers are assigned physical registers or
spilled. Next, register move and exchange instructions are added to the IR to produce
correct code. Finally, spill code is added to the IR.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 R. Barik et al.

Build

(BI, CI, BLG)
Potential Spill Actual Spill

SelectCoalesce

Moves/

Exchange

Insertion

Spill code

Fig. 2. Register Allocation using BLG

ALGORITHM 1: Greedy heuristic to perform spilling.
function GreedyAlloc()

Input : Weighted Bipartite Liveness Graph G = hU [V,Ei and k uniform physical
registers

Output: Set T ✓ U which needs to be spilled to ensure all interval end points v 2 V be
unconstrained i.e., 8b 2 T, spilled(b) = true

Stack S := �;
//Potential spill selection

n := Choose a constrained node n 2 V with largest FREQ(n);
while n != null do

s := Choose a compound interval s 2 U having an edge to n and has smallest SPILL(s);
Push s on to S; Delete edge (s, n);
n := Choose a constrained node n 2 V having an edge to s and has largest FREQ(n);
if n == null then

n := Choose a constrained node n 2 V with largest FREQ(n);
end
Delete all edges incident on s;
Remove s from G;

end
//Actual spill selection

while S is not empty do
s := pop(S);
if 8n 2 V , n becomes constrained by reverting s and its edges in G then

for each basic interval b, in s do
spilled(b) := true; T := T [{b};

end
end

end
return T

4. SPILLING USING BIPARTITE LIVENESS GRAPHS
In this section, we first describe an all-or-nothing approach for spills, that is, if a sym-
bolic register is selected for spilling, every access of the symbolic register in the pro-
gram will be replaced by a load or store instruction. Extending the BLG to partial
spills is described later in Section .

Definition 4.1.
Spill Optimization Problem: Given a BLG with constrained end-points, G, and k

uniform physical registers, find a spill set S ✓ U and G0 ✓ G induced by S such that: (1)
8v 2 V , v is unconstrained, i.e., DEGREE(v)  k; and (2)

P
s2S SPILL(s) is minimized.

For each compound interval s 2 S and basic interval b 2 s, set spilled(b) := true. 2

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:7

Given a BLG, the spill decision problem now reduces to an optimization problem
whose solution ensures that no more than k physical registers are needed at every
interval end point, and at the same time, spills as few compound intervals as possi-
ble. Algorithm 4 provides a greedy heuristic that solves the spill optimization problem.
Steps 3-11 choose Potential Spill candidates (as shown in Figure) using a max-min
heuristic. Each iteration of the loop alternates between largest frequency interval end
point and smallest spill cost symbolic register. The alternating approach allows the
option of completely unconstraining a high pressure region of program points before
moving onto another. Steps 12-15 unspill some of the potential spill candidates re-
sulting Actual Spill (as shown in Figure) candidates. The unspilling step reverts a
potential spill candidate and its edges back onto the BLG and verifies if the BLG be-
comes constrained after adding the potential spill candidate. If the BLG does not get
constrained, then the symbolic register can be unspilled. Depending on the quality of
potential spill candidate selection, the unspilling of spill candidates provides a way of
rectifying the obvious spilling mistakes (akin to unspilling in Graph Coloring). The
examination order of unspilling can have impact on final spilling decisions – current-
ly we use a stack data structure that orders the potential spill symbolic registers in
non-increasing spill cost.

One of the advantages of Algorithm 4 is that if a spill-free allocation exists, the
algorithm is guaranteed to find an allocation without spills. On the other hand, if one
works with an allocator based on graph coloring, it is an NP-hard problem to determine
if a spill-free allocation exists. This seeming contradiction arises because BLG may
require the insertion of register-copy instructions (described in Section), whereas the
standard graph coloring algorithm does not allow for this possibility. Prior work on
SSA-based register allocation [Hack and Goos 2006; Brisk et al. 2005; Bouchez 2009]
and on Extended Linear Scan [Sarkar and Barik 2007] independently established that
the existence of a spill-free allocation can be determined in polynomial time, provided
that extra register-copy instructions can be inserted. In the case of SSA-based register
allocation, the extra copies arise from �-functions; in the case of Extended Linear Scan,
they arise from the need to map from the register assignment for a symbolic register
to another on a control flow edge. In both cases, the task of optimizing the additional
copy instructions is a non-trivial problem.

THEOREM 4.2.
Algorithm 4 ensures that every program point has k or fewer symbolic registers si-

multaneously live.

Proof: First, we need to prove that Algorithm 4 makes every node v 2 V uncon-
strained. This is trivial as the algorithm continues to execute the while loop in Steps
4-11 until there are constrained nodes v 2 V in the BLG. This is guaranteed by steps
3, 7, and 9 in Algorithm 4. Second, we need to show that if no v 2 V is constrained,
then every program point is unconstrained. We can prove this by contradiction. That
is, if a program point, say p+, is still constrained after all v 2 V are unconstrained,
then we prove that such p+ does not exist. Obviously, p+ can not be an end point. Let
n� represents the immediate next interval end point in the linear order of instructions
from p+. Thus, all program points from [p+, n�] are constrained. This implies that n�

must be constrained. This is a contradiction since n� is an interval end point and is
constrained. Hence proved. 2

THEOREM 4.3. Given the bipartite liveness graph, Algorithm 4 requires
O(|H| ⇤ max(0, (MAXLIVE � k)) ⇤ |C|) time.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 R. Barik et al.

Proof: Every interval end point in H is traversed at most MAXLIVE � k number of
times to make it unconstrained. To make an interval end point unconstrained, we
need to visit all its neighbor and choose a minimum spill cost compound interval. This
requires, at most, |C| edge visits. 2

4.1. Bipartite Liveness Graphs with Partial Spills
We now extend the register allocation problem for the BLG to allow for partial spills
i.e., for splitting a symbolic register so that it can be assigned to registers at some pro-
gram points, and accessed from memory at other program points. Live-range splitting
has also been considered quite extensively in past work, though often with inconclu-
sive results on the benefits of splitting. We consider a special case of partial spills,
namely that of identifying one basic interval of a symbolic register for spilling. More
general splitting of live ranges (as in [Bergner et al. 1997] say) is a subject for future
work.

For partial spills, we define SPILLBI for a basic interval that captures the spill cost
of a basic interval including the cost for additional loads and stores for partial spilling.
The problem statement can be summarized as follows.

Definition 4.4. Bipartite Liveness Graph with Partial Spills: A bipartite live-
ness graph with partial spills (BLGP) is a undirected weighted bipartite graph G =
hU [V,Ei, where V denotes all the basic interval end points in H, U denotes all the
basic intervals in B and an edge e = (u, v) 2 E indicates that the basic interval u 2 U
is live at the interval end point v 2 V . Each u 2 U has an associated non-negative
weight SPILLBI(u) that denotes the spill cost of u. Similarly, each v 2 V has an as-
sociated non-negative weight FREQ(v) that denotes the execution frequency of the IR
instruction associated with basic interval end point v. 2

Definition 4.5. Register Allocation Optimization Problem with Partial Spill-
s: Given a BLG with constrained end-points, G, and k uniform physical registers, find
a spill basic interval set S ✓ U and G0 ✓ G induced by S such that: (1) 8v 2 V , v is
unconstrained, i.e., DEGREE(v)  k; and (2)

P
s2S SPILLBI(s) is minimized. For each

basic interval s 2 S, set spilled(b) := true. 2

Algorithm 4 can be extended easily to support partial spills. That is, steps 3-11 can be
modified to choose potential spill basic intervals instead of compound intervals using
the original max-min heuristic. Similarly, the unspilling in steps 12-15 rectifies the
spilling decisions by resurrecting basic intervals instead of compound intervals.

5. ASSIGNMENT USING REGISTER MOVES AND EXCHANGES
The spilling phase ensures that every program point needs k or fewer physical regis-
ters. In this section, we first describe how assignment for basic intervals can be per-
formed by possibly adding extra register moves/exchanges to the IR without spilling
any symbolic registers.

5.1. Spill-Free Assignment
Definition 5.1.
Spill-free Assignment: Given a set of basic intervals b 2 B with spilled(b) = false,

and k uniform physical registers, find register assignment reg(b) for every basic inter-
val, b 2 B, including any register-to-register copy or exchange instructions that need
to be inserted in the IR.2

The algorithm to perform register assignment for basic intervals is provided in Al-
gorithm . The algorithm sorts the basic intervals in increasing start points. Steps 4-11

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:9

perform assignment to basic intervals using an avail list of physical registers. The
assignment to a basic interval first prefers getting the physical register that was pre-
viously assigned to another basic interval of the same compound interval (as shown
in Step 7). This avoids the need for additional move/exchange instructions. Howev-
er, in cases where the already assigned physical register is unavailable, we assign a
new available physical register (as shown in Step 10). Assigning such a new physical
register may produce incorrect code without additional move/exchange instructions on
certain control flow paths.

Steps 12-20 of Algorithm create a list of move instructions that need to be inserted
on a control flow edge. These move instructions form the nodes of a directed anti-
dependence graph D in Algorithm . The edges in D represent the anti-dependence
between a pair of move instructions. Steps 5-10 of Algorithm add the anti-dependence
edges to D. A strongly connected component (SCC) search is performed on D to gener-
ate efficient code using exchange instructions for SCC’s of size 2 or more (as shown in
steps 11-18). The nodes in a SCC are collapsed to a single node with exchange instruc-
tions. Finally, a topological sort order of D produces the correct code for a control flow
edge e.

ALGORITHM 2: Assignment using register moves and exchange instructions
function RegMoveAssignment()

Input : IR, Set of basic intervals b 2 B with spilled(b) = false and k uniform physical
registers

Output: 8b 2 B, return the register assignment reg(b) and any register moves and
exchange instructions

M := �;
avail := set of physical registers;
for each basic interval b := [x, y], in increasing start points i.e., L do

for each basic interval b0 := [x0
, y

0] such that y0
< x do

avail := avail [reg(b0);
end
r := find a physical register p 2 avail that was assigned to another basic interval of the
same compound interval;
if r == null then

Assert avail is not empty;
r := find a physical register p 2 avail ;

end
reg(b) := r; avail := avail - {r};

end
for each control flow edge, e do

for each compound interval c 2 C that is live at both end points of e do
b1 := basic interval of c at the source of e;
b2 := basic interval of c at the destination of e;
if b1 != null and b2 != null then

r1 := reg(b1); r2 := reg(b2);
if r1 != r2 then

m := generate a new move instruction that moves r1 to r2 i.e., mov r2, r1;
M := M [{m};

end
end

end
GenerateMoves(IR, M ,e);

end
return T and IR

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 R. Barik et al.

ALGORITHM 3: Insertion of move and exchange operations on a control flow edge
function GenerateMoves()

Input : IR, Set of move instructions M and a control flow edge e

Output: Modified IR with register move and exchange instructions added
D := �; //D is the anti-dependence graph

for m1 2 M do
Add a node for m1 in D;

end
for m1 2 D do

for m2 2 D and m2! = m1 do
s1 := source of the move instruction in m1;
d2 := destination of the move instruction in m2;
if s1 == d2 then

Add a a directed edge (m1,m2) to D;
end

end
end
S := Find strongly connected components in D;
for each s 2 S do

Collapse all the nodes in s to a single node n in D;
while number of move instructions in s > 1 do

m1 := Remove first move instruction from s;
m2 := Next move instruction in s;
x := Generate an exchange instruction between the destinations of m1 and m2;
Append x to the instructions of n;

end
end
for each node n in D in topological sort order do

Add the move or exchange instructions of the node n to the IR along the control flow
edge e;

end
return Modified IR

LEMMA 5.2. The assertion on line 9 of Algorithm never fails.

Proof: Follows from the fact that every interval end point has no more than k symbolic
registers simultaneously live.2

THEOREM 5.3.
Spill-free assignment takes O(|E| ⇤ (|C| + |K|2)) space where E represents the control

flow edges in a program and K represents the available physical registers.

Proof: Additional space requirement in assignment phase is due to the anti-
dependence graph D. For every control flow edge e 2 E , in the worst case we need
to insert |C| number of register-to-register move instructions. These are the number of
nodes in D. The number of edges in D are bounded by the square of physical registers
K, i.e., it represents all possible anti-dependences between all possible pairs of physical
registers. Hence the overall space complexity is O(|E| ⇤ (|C| + |K|2)).2

THEOREM 5.4.
Spill-free assignment takes O(|B| + (|E| ⇤ (|C| + |K|2))) time.

Proof: Similar in nature to the proof for Theorem 4.7.2

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:11

5.2. Assignment with Move Coalescing and Register Moves
Move coalescing is an important optimization in register allocation algorithms that
assigns the same physical registers to the source and destination of an IR move in-
struction when possible to do so. The register assignment phase must try to coalesce
as many moves as possible so as to get rid of the move instructions from the IR. As we
saw in the preceding section, additional register moves may be inserted in the assign-
ment phase instead of spilling. Note that move coalescing approaches using aggres-
sive [Chaitin et al. 1981], conservative [Briggs et al. 1994], and optimistic [Park and
Moon 1998] techniques are shown to be NP-complete by [Bouchez et al. 2007]. In this
section, we first present a coalesce graph that models both the IR move instructions
and register-to-register moves. Then, the register assignment phase on the coalesce
graph is formulated as an optimization problem that tries to maximize the number of
move instructions removed after assignment. We provide a greedy heuristic to solve it.

Definition 5.5.
A Coalesce Graph (CG) is an undirected weighted graph G = hV,Em [Eri where V

represents the basic intervals in B and an edge e ✓ V ⇥ V corresponds to the following
two types of move instructions between a pair of basic intervals:

(1) Em: the move instructions already present in the IR. The weight of such an edge
W(e) is the estimated frequency of the corresponding move instruction.

(2) Er: the move instructions that need to be added on control flow edges for which the
two interval end points have different register assignments for the same compound
interval. The weight of such an edge W(e) is the estimated frequency of the control-
flow edge on which the move instruction is added. 2

Definition 5.6.
Assignment Optimization Problem: Given a set of basic intervals b 2 B with

spilled(b) = false, CG = hV,E = {Em [Er}i, IR, and k uniform physical registers, find
register assignment reg(b) for every basic interval b such that the following objective
function is minimized:

X

8e2E, e=(b1,b2) ^ reg(b1)!=reg(b2)

W(e)

The assignment guides which additional register-to-register copy or exchange instruc-
tions need to be inserted in the IR.2

Algorithm presents a greedy heuristic to select a physical register for a basic inter-
val b given the coalesce graph and the available set of physical register avail . avail is
updated as basic intervals expire. Map is a data structure that maps a physical regis-
ter to a cost. Steps 3-7 find the physical registers and their associated costs that are
already assigned to the neighbors of b in the coalesce graph (similar to the idea of bi-
ased coloring [Briggs et al. 1992]). Our approach takes into account the edges in Er due
to register-to-register moves. The greedy heuristics chooses a physical register reg(b)
with maximum cost, i.e., the benefit of assigning the physical register to basic interval
b.

THEOREM 5.7.
Register assignment using Algorithm requires O(|B|+ |IR|+(|C|⇤maxc)) space where

maxc denotes the maximum number of basic intervals in a compound interval.

Proof: The additional space requirement is due to the coalesce graph CG containing
|B| number of nodes. Em in the worst case ends up creating |IR| edges. Er adds edges

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 R. Barik et al.

ALGORITHM 4: Greedy heuristic to choose a physical register that maximizes copy removal
function GetPreferredPhysical ()

Input : A basic interval b 2 B, coalesce graph G = hV,E = {Em [Er}i and a set avail
currently available uniform physical registers

Output: Find the assignment reg(b)
Map := �;
//Maximize the IR moves that can be removed

for each edge e = (b1, b) 2 Em [Er do
if b1 and b do not intersect then

p := reg(b1);
if p != null and p 2 avail then

Map(p) := Map(p) + W(e);
end

end
end
ret := Find p with maximum cost in Map;
if ret == null then

ret := Find any free physical register from R;
end
Remove ret from avail ; reg(b) := ret ; return reg(b);

between basic intervals of the same compound interval and hence needs |C| ⇤ maxc

number of edges.2

THEOREM 5.8.
Register assignment using Algorithm takes O((|B| ⇤maxc) + |IR|+ (|E| ⇤ (|C|+ |K|2)))

time.

Proof: In addition to Theorem 4.8, before deciding a physical register for each basic
interval b it is required to traverse each of the neighbors in CG. For all basic intervals,
this adds over all 2 ⇤ |IR| time complexity for IR move instructions and |B| ⇤maxc time
complexity for Er edges in CG.2

6. SPILLING AND ASSIGNMENT WITH REGISTER CLASSES
In the preceding sections, we have described register spilling and assignment for
k physical registers that are uniform, i.e., they are independent and interchange-
able [Smith et al. 2004]. However, modern systems such as x86, HP RA-RISC, Sun
SPARC, and MIPS come with physical registers which may not necessarily be in-
terchangeable. For example, the Intel 32-bit x86 architecture provides eight integer
physical registers, of which six are typically exposed for register allocation. These six
physical registers are further divided into four high level overlapping register class-
es based on calling conventions and 8-bit operand accesses. Since the register classes
may not necessarily be disjoint, a register allocator must take into account register
classes during spilling and assignment to produce high quality machine code. In this
section, we describe how spilling and assignment can be performed in the presence of
register classes. We assume calling conventions related constraints are also expressed
in additional register classes with infinite spill cost.

6.1. Constrained Spilling using BLG
Allocation in the presence of register classes can be achieved using the following two
approaches:

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:13

(1) Build BLG for each register class and apply the algorithm in Figure 4 to each BLG
in a particular order starting with the most constrained register class that has
fewer physical registers in a class. For example, in the 32-bit x86 architecture, we
need to build four BLGs for four integer register classes and apply the algorithm in
Figure 4 in the order 8 bit non-volatile (EBX), non-volatile (EBX, EBP, and EDI), 8
bit volatile (EAX, EBX, ECX, and EDX), and then for the complete integer register
class. If a compound interval is spilled in a BLG for a register class, that decision
needs to be propagated to the other BLGs of other classes.

(2) An alternative approach is to build a single BLG. During every visit of an interval
end point in Figure 4, we make it unconstrained with respect to all other register
classes before another end point is visited. This approach is space-efficient as it
builds only one BLG but can eagerly generate more spills than (1).

Our experimental results in Section were obtained using Approach (1).

ALGORITHM 5: Bucket-based greedy heuristic to perform assignment in the presence of reg-
ister classes.
function ConstrainedAssignment ()

Input : Set of basic intervals b 2 B, 8b 2 B regclass(b), a set of physical register classes K,
a compile-time constant num bucket

Output: Find the assignment reg(b) and spill decision spilled(b)
//Find total number of elements per regclass
for b 2 B do

cid := getClassId (regclass(b));
perClass[cid] + +;

end
//Decide per bucket number of elements

for i := 0; i < |K|; i++ do
perBucket [i] := bperClass[i]/|K|c + 1;
availBucket [i] := 0;

end
//assignOrder is a 2-d array of basic intervals;

//Determine the bucket for b;

for b 2 B in decreasing order of SPILL(b) do
cid := getClassId (regclass(b));
bucket := availBucket [cid];
Append b to assignOrder [bucket][cid];
if |assignOrder [bucket][cid]| > perBucket [cid] then

availBucket [cid] + +;
end

end
//Assign physical registers

for i := 0; i < |K|; i++ do
for j := 0; j < num bucket ; j ++ do

for b 2 assignOrder [i][j] do
findAssignment (b);

end
end

end

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 R. Barik et al.

6.2. Constrained Assignment and Move Coalescing
Given a coalesce graph (as defined in Section), when we try to find an assignment for
a basic interval b, the register classes of the neighbors of b in the coalesce graph along
with the register class of b, play a key role in selecting a physical register for b. An
IR move instruction can be coalesced if source and destination basic intervals have a
non-null intersection in their register classes.

Another key point in register assignment is that we no longer can rely on the in-
creasing start point order for assignment of basic intervals since an early decision of
physical register assignment of a register class may result in more symbolic regis-
ters being spilled later on or giving up other opportunities for coalescing. We define
the register assignment problem in the presence of register classes as an optimization
problem that may incur additional spills.

Definition 6.1.
Constrained Assignment Optimization Problem: Given a set of basic intervals

b 2 B with spilled(b) = false, regclass(b) indicating physical registers that can be
assigned to each b, CG = hV,E = {Em [Er}i, and IR, find a register assignment
reg(b) for a subset of basic intervals S ✓ B such that the following objective function
is minimized:

X

8b2B�S

SPILL(b) +
X

8e2E, e=(b1,b2) ^ reg(b1)!=reg(b2)

W(e)

Insert additional register-to-register copy or exchange instructions in the IR.2

ALGORITHM 6: Greedy heuristic to choose a physical register that maximizes copy removal
in the presence of register classes
function findAssignment ()

Input : A basic interval b 2 B, 8b 2 B regclass(b), coalesce graph G = hV,E = {Em [Er}i,
a set of available physical registers avail

Output: Find the assignment reg(b)
Compute Map using Steps 3-7 of Algorithm ;
RMap := Map;
for each edge e = (b1, b) 2 Em [Er do

if b1 and b intersect then
for each p in Map do

if p can be assigned to b1, i.e., p 2 regclass(b1) then
RMap(p) := RMap(p) + W(e);

end
end

end
end
ret := Find p with maximum cost in RMap;
Follow Steps 7-11 of Algorithm ;

Algorithm presents a bucket-based approach to register assignment that tries to
strike a balance between register classes and spill cost. The assignOrder data struc-
ture holds sorted basic intervals according to register classes in a two dimensional
array. Each register class is represented as a unique integer id. Steps 2-4 compute the
total number of basic intervals per register class. Steps 5-7 compute the number of
elements per bucket. Steps 8-13 decide the appropriate bucket in assignOrder where

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:15

a basic interval should reside (based on next availability). Steps 14-17 find an assign-
ment for basic intervals by traversing the assignOrder array in a row major order. The
heuristic for assigning a physical register to a basic interval follows a similar approach
described in Section except additional care must be taken to account for register class
constraints. The details are provided in Algorithm .

7. EXPERIMENTAL RESULTS
We present an experimental evaluation of the BLG register spilling and assignment
algorithms presented in this paper. The experimental setup consists of two compiler
infrastructures, a static compiler evaluation using LLVM 2.7 [llv 2009] and a dynamic
compiler evaluation JikesRVM 3.1.1 [jik 2011]. In the static compilation evaluation, we
perform both compile-time and run-time comparisons of our BLG allocator compared
to an existing Graph Coloring implementation [Cooper and Dasgupta 2006] and the
LLVM Linear Scan [llv 2009]. In the dynamic compilation evaluation, we compare our
BLG allocator performance compared to JikesRVM Linear Scan algorithm.

7.1. LLVM 2.7 evaluation
The LLVM evaluations were performed on an Intel Xeon 2.66GHz system with 8GB of
memory and running RedHat Linux (RHEL 5).

Benchmarks: We used ten benchmarks from the SPECCPU 2006 benchmark
suite [Corporation 2006]. The integer benchmarks used are 401.bzip2, 429.mcf,
458.sjeng, 464.h264ref, and 473.astar. The floating-point benchmarks used are
410.bwaves, 434.zeusmp, 435.gromacs, 444.namd, and 470.lbm. All the benchmarks
were executed under the optimization level -O2 of LLVM. Since we invoked LLVM in
static compilation mode, we ran each benchmark five times and reported the best of
the 5 runs as the runtime performance measurement.

Comparison approaches: Experimental results are reported for the following cas-
es:

(1) LLVMLS – Baseline measurement using the default Linear Scan register allocator
in LLVM; This allocator implements aggressive live-range splitting and differs
from the standard linear scan algorithm [Poletto and Sarkar 1999] by introduc-
ing backtracking. These extensions are described in Wimmer et al. [Wimmer and
Mössenböck 2005]. This algorithm also performs aggressive coalescing prior to reg-
ister allocation.

(2) GC – the Chaitin-Briggs [Chaitin et al. 1981; Briggs et al. 1994] register allocator.
This implementation uses the same code base of Chaitin-Briggs allocator with ag-
gressive coalescing that was used in [Cooper and Dasgupta 2006]. Details of the
Chaitin-Briggs allocator can be found in [Briggs et al. 1994].

(3) BLG+LS – the register spilling and assignment algorithm presented in Section with
the spill code generation algorithm from 1) above i.e., after the allocation and as-
signment passes are completed using BLG, the IR is rewritten using the physical
registers for the non-spilled variables and move code is inserted. The IR is then
passed to the Linear Scan register allocator of LLVM to generate spill code3.

(4) BLG+GS – the register spilling and assignment algorithm presented in Section with
the spill code generation algorithm from 2) above i.e., after allocation and assign-
ment are completed using BLG, the IR is rewritten using the physical registers for
the non-spilled variables and move code is inserted. The IR is then passed to the

3We do not devise any new spill code generation technique – our focus is on spilling and assignment, and
thus, we use existing spill code generation techniques such as basic block based spill code generation in
LLVM Linear Scan and global spill code generation in Graph coloring

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 R. Barik et al.

Chaitin-Briggs register allocator to generate spill code). For the BLG allocator, we
set the compile-time constant num bucket to 5. Note that, this approach does not
yet implement partial spills.

Table I. Comparison of compile-time statistics between BLG+LS and GC for SPECCPU 2006 benchmarks.The number of

compound intervals (i.e., variables) for BLG is same as column 4. The Space Usage Ratio in column 8 is the ratio of the

following two quantities: (1) sum of |IR|, IG nodes, and IG edges; (2) |IR|, BLG nodes, and BLG edges. Column 9 and 10

report the BLG nodes and edges after optimizing BLG for space.

Benchmark max |IR| IG IG BLG BLG Space BLG BLG
function #nodes #edges #nodes #edges Usage #nodes #edges

Ratio opt opt
401.bzip2 sendMTFValues 3545 2693 53562 1844 9819 3.9 1721 8823
410.bwaves bi cgstab 2083 1025 5430 134 269 3.4 134 269

block
429.mcf read min 440 279 3376 47 49 7.6 47 49
434.zeusmp setup 5147 3030 33138 387 1750 5.6 79 210
435.gromacs do inputrec 3519 1941 36606 64 142 11.3 39 67
444.namd ZN20Compute- 2244 907 6156 4 3 4.1 4 3

NonbondedUtil-
30calc self-
energy

fullelect fep-
EP9nonbonded

458.sjeng std eval 1316 812 7908 0 0 7.63 0 0
464.h264ref SubPelBlock- 5787 4757 86092 356 921 13.7 53 55

SearchBiPred
470.lbm LBM handleIn- 1162 643 5380 189 270 4.4 189 270

OutFlow
473.astar ZN6wayobj18- 382 295 438 0 0 2.9 0 0

makeobstacle-
bound2EPiiS0

Compile-time Comparison: Table compares the compile-time overheads of BLG
vs. GC. The measurements were obtained for functions with the largest interference
graphs (in term of number of nodes) in the SPECCPU 2006 benchmarks. Column 3
reports the total number of LLVM IR instructions for the max function. Column 4 and
5 report the total number of nodes and edges in the IG respectively. (We only report
these numbers for the first iteration of the Chaitin-Briggs allocator – subsequent iter-
ations require additional smaller interference graphs.) Column 5 and 6 report the total
number of nodes and edges in BLG that only considers constrained interval end points
(i.e., those end points with MAXLIVE > k; unconstrained interval end points are not
necessary, as described in Section 4). We define Space Usage Ratio metric as the ratio
of the following two quantities: (1) sum of columns 3-5 (|IG|); (2) sum of columns 3, 6,
and 7 (|BLG|). This metric varies from 2.9⇥ to 13.7⇥ in our case, indicating the low-
er space usage of BLG compared to GC. While theoretically both IG and BLG can be
quadratic, in practice, we observe BLG to be much smaller than IG.

Runtime comparison: Figure reports the relative performance improvement of
the register allocation algorithm presented in this paper along with Chaitin-Briggs
spill code generator, BLG+GS, compared to the original Chaitin-Briggs allocator, i.e.,
GC on the Intel Xeon system. We observe a performance improvement of up to 7.87%
in 464.h264ref benchmark and we do not observe any degradation in any of the bench-
marks. While comparing our BLG allocator with Linear Scan spill code generator, i.e.,
BLG+LS, with that of LLVM’s default register allocator LLVM+LS (as shown in Ta-
ble), we did not observe any noticeable performance difference. The reason is that the
default LLVM register allocator implements other register allocation techniques such

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:17

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

,
-
./
-
0
12
3
-
"4
5
6
.7
8
-
5
-
0
1"
.-
9:
"1
7
";
<
"

=,><"<,?"$!!("@-0/A52.B"=C41-"

Fig. 3. Percentage Improvement of execution times obtained by BLG+GS, (i.e., BLG+Chaitin-Briggs spiller)
compared to GC in the LLVM static compiler infrastructure for SPECCPU 2006 benchmarks on the Intel
Xeon system.

Table II. Comparison of runtime performance of BLG+LS vs. LLVM Linear

Scan register allocation

Benchmark BLG+LS LLVM+LS
execution time (in sec) execution time (in sec)

401.bzip 9.9 10.0
410.bwaves 2856.4 2853.1
429.mcf 6.7 6.8
434.zeusmp 40.4 40.5
435.gromacs 2079.1 2076.7
444.namd 38.1 38.1
458.sjeng 11.0 11.1
464.h264ref 1806.4 1806.4
470.lbm 1.6 1.6
473.astar 23.5 23.5

Execution Time: Comparison of execution times obtained by
BLG+LS, (i.e., BLG+Linear Scan Spiller) compared to the
default LLVM Linear Scan for SPEC CPU 2006 bench-
marks using LLVM static compiler on the Intel system.
Note that LLVMLS performs additional optimizations, such as
live-range splitting and backtracking compared to BLG+LS.

as aggressive live-range splitting and backtracking in order to help moderate register
pressure during spilling and assignment phases. The adhoc heuristic via backtracking
in LLVM performs unspilling recursively in order to avoid reserved spill registers and,
this pass has a quadratic complexity as described in [Evlogimenos 2004]. Additionally,
our scheme without any sophisticated live-range splitting mechanism is able to match
the performance of state-of-the-art LLVM. In future, we would like to devise live-range
splitting heuristics for BLG that exploit the structure of the program [Lueh et al. 2000;
Appel and George 2001].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 R. Barik et al.

7.2. JikesRVM 3.1.1 evaluation
The JikesRVM evaluations were performed on two systems: (1) Intel Xeon 2.66GHz
system with 8GB of memory and running RedHat Linux (RHEL 5); (2) PowerPC 7
2.66GHz system with 8GB memory, running SUSE Linux.

Benchmarks: We used the serial benchmarks in v2.0 of the Java Grande Forum
(JGF) benchmark suite [jgf 2001] and Dacapo 2006 benchmark suite [Blackburn et al.
2006] to evaluate the performance of our register allocator. We choose the five large
benchmarks from Section 3 (raytracer, moldyn, montecarlo, euler, and search)4. For
Dacapo benchmark suite, we report performance evaluation of ten benchmarks out of
total eleven benchmarks. These include antlr, bloat, fop, hsqldb, jython, luindex,
pmd, xalan, lusearch, and eclipse

5. Further, for PowerPC 7 evaluation, we could not
compile lusearch and luindex benchmarks in Jikes RVM 3.1.1.

Compiler: The boot image for JikesRVM used a production configuration. Since
the JikesRVM release did not support generation of Intel exchange instruction, we
modified its assembler to add this support. JikesRVM uses SSE registers for storing
double/floating point values. However, to the best of our knowledge, there does not exist
a direct exchange instruction to swap values in SSE registers, so we generate three xor

instructions to exchange a pair of float/double values. The exchange instructions are
generated judiciously, i.e., if there is a free physical register available for swapping
the values, an exchange instruction is not generated [Boissinot et al. 2009]. For all
Java runs, the execution times are reported for dynamic compilation (both runtime
and compile-time) and use the methodology described in [Georges et al. 2007], i.e.,
we report the average runtime performance of 30-runs within a single VM invocation
along with the execution variance that uses a 95% confidence interval.

Comparison approaches: Experimental results in JikesRVM evaluation are re-
ported for the following cases: 1) LS – Baseline measurement with Linear Scan reg-
ister allocator in JikesRVM that uses the algorithm from [Poletto and Sarkar 1999]
with extensions for live-range “holes”; 2) ELS – the Extended Linear Scan algorithm
from [Sarkar and Barik 2007]; 3) BLG – the BLG register allocation algorithm present-
ed in Section ; 4) BLG+PARTIAL – the BLG register allocation algorithm with partial
spills presented in Section . The compile-time constant num bucket in Figure is set to
5 for all runs. Increasing this number to a higher value does not impact the runtime
performance obviously.

Runtime comparison: Figure reports the relative performance improvements for
ELS, BLG, and BLG + PARTIAL allocators compared to the default LS allocator of
JikesRVM on the Intel Xeon system. The BLG register allocator resulted in a perfor-
mance improvement in the range of -0.04% to 11.37% (for moldyn). The BLG+PARTIAL
register allocator resulted in a performance improvement in the range of -0.69% to
8.81% (for moldyn). For moldyn benchmark, the most-frequently executed function is
force. MAXLIVE for this function is >7. (Jikes RVM uses 8 SSE registers for storing
double/float values, and one out of them, XMM7, is used for scratch register.) Spilling
decisions for this method impact the performance of the benchmark significantly. BLG
for this method coalesces more moves than LS and is able to spill 14 symbolic register-
s compared to 16 symbolic registers in LS. The BLG + PARTIAL allocator improves
performance for bloat, eclipse, montecarlo, and euler benchmarks when compared
to BLG. The runtime performance benefits for both BLG and BLG + PARTIAL are
not surprising as they perform global spill decisions on a bipartite liveness graph com-
pared to the local spill decisions made by LS and ELS. We observed a slow-down of

4Results for Section 1 and 2 benchmarks have been omitted since they are smaller benchmarks.
5chart is omitted as it requires special AWT library to compile and existing Jike RVM is unable to compile
it.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:19

!3#

!2#

!1#

0#

1#

2#

3#

4#

5#

6#

7#

8#

9#

10#

11#

12#

13#

Pe
rc
en

ta
ge
#Im

pr
ov
em

en
t#
co
m
pa

re
d#
to
#L
S#

Jikes#RVM#3.1.1#x86_64#evaluaIon#

ELS# BLG## BLG+PARTIAL#

Fig. 4. Percentage improvement of ELS, BLG, and BLG+PARTIAL compared to LS in JikesRVM dynamic
compiler on a x86 64 Intel Xeon system.

0.69%, 0.41%, and 0.12% for luindex, pmd, and raytracer for BLG + PARTIAL: our
current heuristic splits live-ranges only at basic interval granularity which may not be
optimal. More sophisticated live-range splitting is left for future work.

On the PowerPC 7 system, we observe performance improvements for BLG allocator
compared to LS in the range of 0.23% to 7.34% (for xalan) as shown in Figure . The
BLG+PARTIAL allocator is able to improve performance for most of the benchmarks.

Compile-time comparison: Table reports compile-time comparison of BLG vs. LS.
As described in previous sections, Linear Scan is best for compile-time efficiency as it
performs both spilling and assignment in just one pass over the basic intervals. BLG
adds extra new passes for spilling and unspilling via bipartite graph 4, move-code gen-
eration , and move coalescing optimization . Thus, BLG is expected to perform slower
than LS. We observe an increase in compile-time from 2.02x to 5.37x for BLG vs. LS.
This increase in compile-time is insignificant compared to the total execution time of
a benchmark since BLG outperforms LS for all benchmarks except euler on the Xeon
system and for all benchmarks on the PowerPC 7 system. Interestingly, in our cur-
rent implementation we observe that the move-code generation component consumes
maximum time. This is because it may require the construction of a move-graph and
performs strongly connected component search in this graph for a control flow edge. In
future, we would like to optimize the compile-time of this phase.

Static Spill-cost savings: Figure reports the percentage improvement in static
spill cost for BLG compare to LS. The static frequency estimates are computed using
standard technique where a spill instruction inside a loop is estimated as 10d,where
d denotes loop depth. We observe reduction in static spill cost for all workloads. For

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 R. Barik et al.

!2#

!1#

0#

1#

2#

3#

4#

5#

6#

7#

8#

9#

10#

Pe
rc
en

ta
ge
#Im

pr
ov
em

en
t#c
om

pa
re
d#
to
#L
S#

Jikes#RVM#3.1.1#PowerPC#7#EvaluaJon##

ELS# BLG# BLG+PARTIAL#

Fig. 5. Percentage improvement of ELS, BLG, and BLG+PARTIAL compared to LS in JikesRVM dynamic
compiler on a PowerPC 7 system.

Table III. JikesRVM: Compile-time comparison of BLG
vs. LS in JikesRVM dynamic optimizing compiler

Benchmark BLG LS Relative
Comp. Comp. increase
time time in Comp.
in ms in ms time (BLG/LS)

antlr 0.35 0.07 5.37
bloat 1.43 0.3 4.76
fop 0.08 0.03 2.44
hsqldb 0.87 0.28 3.08
jython 0.6 0.11 5.27
luindex 1.08 0.22 4.8
pmd 0.78 0.21 3.62
xalan 0.9 0.31 2.89
eclipse 1.58 0.78 2.02
montecarlo 0.09 0.02 3.8
raytracer 0.05 0.02 3.23
moldyn 0.02 0.01 2.83
euler 0.26 0.1 2.5
search 0.05 0.015 3.2

eclipse, we reduce the spill cost by 93% which is significant. Please keep in mind
that these static measures may not directly correlate to runtime performances due to
pipelining and caching effects.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:21

0

10

20

30

40

50

60

70

80

90

100

antlr bloat eclipse fop hsqldb jython luindex lusearch pmd xalan monteCarlo raytracer moldyn euler search

P
er

ce
n

ta
ge

 r
ed

u
ct

io
n

 in
 s

ta
ti

c
sp

ill
 c

o
st

 f
o

r
B

LG
 c

o
m

p
ar

e
d

 t
o

 L
S

Static Spill Cost Comparison: BLG vs. LS

Fig. 6. Percentage reduction in static spill cost for BLG compared to LS in JikesRVM dynamic compiler

8. RELATED WORK
Spill-free register allocation of general programs is NP-complete [Chaitin et al. 1981].
There exist a plethora of past works in using graph coloring-based approaches to spill-
free register allocation [Chaitin et al. 1981; Briggs et al. 1989; Briggs et al. 1994; Park
and Moon 1998; George and Appel 1996; Budimlic et al. 2002; Callahan and Koblenz
1991; Gupta et al. 1994; Smith et al. 2004; Cooper and Dasgupta 2006]. The key da-
ta structures of a Graph Coloring based algorithm are live-ranges and the interfer-
ence graph. Allocation phase is performed on the interference graph by removing the
live-ranges of degree fewer than k. In cases where every live-range has degree more
than or equal to k, a live-range having lowest spill cost is chosen for spilling. The live-
ranges that are removed from the interference graph, are assigned physical registers
based on the reverse order in which the live-ranges were removed from the interfer-
ence graph. One of the key limitations of graph coloring based register allocation is
that the live-ranges introduce imprecision that may lead to making the interference
graph uncolorable (like the one seen in Figure 3). In contrast, our approach builds on
the simple foundations of Linear Scan register allocation like intervals and precise-
ly captures liveness information using a novel BLG data structure, which is used for
spill-free register allocation [Sarkar and Barik 2007].

Recently, the focus in graph coloring-based register allocation has shifted to SSA-
based register allocation [Hack and Goos 2006; Brisk et al. 2005; Brisk 2006; Colom-
bet et al. 2011; Bouchez 2009; Pereira and Palsberg 2005; 2009; Braun et al. 2010].
In SSA representation, the interference graph is chordal and can be colored optimal-
ly in linear time. Like our approach and others in the literature [Appel and George
2001], current approaches to SSA register allocation separate between allocation and
assignment phases in register allocation. However, an SSA register allocation incurs
additional complexity of dealing with parallel-copy statements during out-of-ssa trans-
lation [Hack and Goos 2008; Brisk 2006] and also of dealing with repairing [Colombet
et al. 2011]. Our BLG allocator does not need an interference graph for allocation
and efficiently inserts a few register-to-register moves and exchange operations dur-
ing assignment as opposed to expensive approaches to eliminate a large number of
parallel-copy instructions in SSA-based register allocation.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 R. Barik et al.

Linear Scan [Poletto and Sarkar 1999; Traub et al. 1998; Wimmer and Mössenböck
2005; Thammanur and Pande 2004; Wimmer and Franz 2010; Sarkar and Barik
2007] register allocation algorithms have been preferred for JIT-compilers such as
Jikes [jik 2011], HotSpot [Kotzmann et al. 2008], and LLVM [llv 2009] due to their low
compilation-time and space complexity. Compared to existing linear scan algorithm-
s, our approach separates allocation and assignment phases. This leads to a much
better global spilling decision using a novel bipartite graph. Traditional linear scan
algorithms often combine allocation and assignment for efficiency reasons and hence
end up making local spill decisions that lead to performance lag. The spill-free register
allocation algorithm presented in Extended Linear Scan (ELS) algorithm [Sarkar and
Barik 2007] the spill decisions are taken locally at every program point (i.e., each inter-
val end point is eagerly made completely unconstrained before moving onto another).
This is the reason why they had observed a slowdown in SPEC benchmark 181.mcf.
In contrast, the BLG based allocation algorithm described in this paper makes global
decisions using the BLG data structure that decides the symbolic registers that need
to be spilled to keep the overall spill cost minimized. Additionally, this paper describes
move coalescing optimizations (in Section), register allocation in the presence of reg-
ister classes (in Section), and partial spills (in Section). More recently, a tree-based
register allocation algorithm has been proposed in [Rong 2009] that imposes a partial
ordering among the basic blocks during coloring and assignment phases unlike the
total order imposed in linear scan.

The graph coloring-based register allocation algorithm was first extended to handle
register classes and aliasing by Smith et al [Smith et al. 2004]. The problem of spill-free
register allocation is NP-complete even in the presence of register classes and alias-
ing [Lee et al. 2007]. The approach taken by Smith et al is to handle register classes
and aliasing by exploiting the coloring constraints on each node of the interference
graph. This approach is elegant and can be easily integrated into any graph coloring
register allocation algorithm. More recently, a new Linear Scan register allocation al-
gorithm based on puzzle solving was introduced by Pereira and Palsberg [Pereira and
Palsberg 2008; 2010] to handle precoloring and aliasing issues in register allocation.
Their approach views the register file as a puzzle and the program variables as puzzle
pieces. For many common architectures, the register allocation using puzzles can be
solved in polynomial time. Our BLG register allocator handles these architectural con-
straints without building the interference graph. For allocation phase, we construct
BLG for each register class and propagate spill information across BLG’s of other reg-
ister classes. For assignment phase, we use a bucket-based approach that strikes a
balance between spill cost and move code optimization.

A bipartite graph-based register assignment phase was proposed by Zhang et
al. [Zhang et al. 2004] that is performed on hot paths of an already register allocat-
ed code, i.e., as a post register allocation pass. The spilled variables on the hot path
form one set of vertices of the bipartite graph where as the other set of vertices con-
sists of the set of dead physical registers. An edge is added to their bipartite graph if
both the spilled variable and dead physical register are alive in the same basic block.
The weight of such an edge is the spill cost of the spilled variable in the basic block.
Dead register assignment is then performed using weighted bipartite graph match-
ing. This approach differs from our BLG allocator in many ways: 1) the nodes, edges,
and weights of the bipartite graph are all different; 2) our bipartite liveness graph
represents liveness information and solves the allocation phase of register allocation.

The meeting graph model for loop cyclic register allocation described in [Eisenbeis
et al. 1995] is different from the BLG model. The meeting graph captures information
about non-overlapping intervals i.e., an edge is added when one interval ends and
another starts. This information is useful for obtaining bounds for optimal coloring

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:23

inside loops. In contrast, BLG captures liveness information at high pressure program
points which is used to perform global register allocation.

9. CONCLUSIONS
In this paper, we addressed the problem of developing a register allocation algorithm
that builds on the simplicity of Linear Scan while improving its runtime performance.
It does so by separating the spilling and assignment phases. The spilling phase is
modeled as an optimization problem on Bipartite Liveness Graphs (BLG’s), a new da-
ta structure introduced in this paper. In the spilling and assignment phase, we focus
on reducing the number of spill instructions by using register-to-register move and
exchange instructions wherever possible to maximize the use of registers. We model
register assignment as a second optimization problem that includes move coalescing,
as well as register class constraints, and provide a heuristic solution to this problem as
well. Our implementation of BLG-based register allocation phase combined with the
constrained assignment in JikesRVM demonstrates runtime performances improve-
ments in the range of -0.04% to 11.37% and in the range of 0.23% to 7.34% on Intel
Xeon and PowerPC 7 systems respectively. Additionally, we observe a performance
improvement of up to 7.87% for SPECCPU 2006 benchmarks using our BLG regis-
ter allocator that uses a graph coloring based spill code generator when compared to
Chaitin-Briggs register allocator on the Intel Xeon system.

These results show that BLG register allocation algorithm is a promising alternate
to the large body of register allocators existing today. Possible directions for future
work include support for more aggressive live-range splitting, backtracking, and s-
tudying the impact of move and exchange instructions on code size compared to spill
load/store instructions. Further, we would like to study the combined effect of BLG
with instruction scheduling.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their comments and suggestions on the past submis-
sions related to this article.

REFERENCES
2001. The Java Grande Forum Benchmark Suite. http://www.epcc.ed.ac.uk/javagrande/javag.html. (2001).
2009. The LLVM Compiler Infrastructure. http://llvm.org/. (2009).
2011. Jikes RVM. http://jikesrvm.org/. (2011).
Andrew W. Appel and Lal George. 2001. Optimal spilling for CISC machines with few registers. In Pro-

ceedings of the ACM SIGPLAN 2001 conference on Programming Language Design and Implementation
(PLDI ’01). ACM, New York, NY, USA, 243–253.

Peter Bergner, Peter Dahl, David Engebretsen, and Matthew O’Keefe. 1997. Spill code minimization via
interference region spilling. SIGPLAN Not. 32, 5 (1997), 287–295.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D.
Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java
Benchmarking Development and Analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIG-
PLAN conference on Object-Oriented Programing, Systems, Languages, and Applications. ACM Press,
New York, NY, USA, 169–190.

Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin, and Christophe Guillon. 2009.
Revisiting Out-of-SSA Translation for Correctness, Code Quality and Efficiency. In Proceedings of the
7th annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO ’09).
IEEE Computer Society, Washington, DC, USA, 114–125.

Florent Bouchez. 2009. A Study of Spilling and Coalescing in Register Allocation as Two Separate Phases.
Ph.D. Dissertation.

Florent Bouchez, Alain Darte, and Fabrice Rastello. 2007. On the Complexity of Register Coalescing. In
CGO ’07. IEEE Computer Society, Washington, DC, USA, 102–114.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 R. Barik et al.

Matthias Braun, Christoph Mallon, and Sebastian Hack. 2010. Preference-Guided Register Assignment. In
Compiler Construction 2010 (Lecture Notes In Computer Science), Vol. 6011. Springer, 205–223.

Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. 1989. Coloring Heuristics for Regis-
ter Allocation. Proceedings of the 1989 SIGPLAN Conference on Programming Language Design and
Implementation 24, 7 (July 1989), 275–284.

Preston Briggs, Keith D. Cooper, and Linda Torczon. 1992. Rematerialization, In PLDI ’92. SIGPLAN No-
tices 27, 7 (1992), 311–321.

Preston Briggs, Keith D. Cooper, and Linda Torczon. 1994. Improvements to Graph Coloring Register Allo-
cation. ACM Transactions on Programming Languages and Systems 16, 3 (May 1994), 428–455.

Philip Brisk. 2006. Advances in static single assignment form and register allocation. Ph.D. Dissertation.
Los Angeles, CA, USA.

P. Brisk, Dabiri F., Macbeth J., and Sarrafzadeh M. 2005. Polynomial time graph coloring register allocation.
14th International Workshop on Logic and Synthesis (2005).

Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, Timothy S. Oberg, and Steven W.
Reeves. 2002. Fast copy coalescing and live-range identification. In PLDI ’02. ACM Press, New York,
NY, USA, 25–32.

David Callahan and Brian Koblenz. 1991. Register allocation via hierarchical graph coloring. In PLDI ’91.
ACM Press, New York, NY, USA, 192–203.

G. J. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein. 1981. Register Allocation
via Coloring. Computer Languages 6 (January 1981), 47–57.

Quentin Colombet, Benoit Boissinot, Philip Brisk, Sebastian Hack, and Fabrice Rastello. 2011. Graph-
coloring and treescan register allocation using repairing. In Proceedings of the 14th international con-
ference on Compilers, Architectures and Synthesis for Embedded Systems (CASES ’11). ACM, New York,
NY, USA, 45–54.

Keith D. Cooper and Anshuman Dasgupta. 2006. Tailoring Graph-coloring Register Allocation For
Runtime Compilation. In CGO ’06. IEEE Computer Society, Washington, DC, USA, 39–49.
DOI:http://dx.doi.org/10.1109/CGO.2006.35

The Standard Performance Evaluation Corporation. 2006. SPEC CPU2006 Benchmarks. http://www.spec.
org/cpu2006/. (2006).

Christine Eisenbeis, Sylvain Lelait, and Bruno Marmol. 1995. The meeting graph: a new model for loop cyclic
register allocation. In Proceedings of the IFIP WG10.3 working conference on Parallel Architectures and
Compilation Techniques (PACT ’95). IFIP Working Group on Algol, Manchester, UK, UK, 264–267.

Alkis Evlogimenos. 2004. Improvements to Linear Scan Register Allocation. Technical Report. University of
California at Urbana-Champaign.

Lal George and Andrew W. Appel. 1996. Iterated Register Coalescing. ACM Transactions on Programming
Languages and Systems 18, 3 (May 1996), 300–324.

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous java performance evalu-
ation. In OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN conference on Object oriented
programming systems and applications. ACM, New York, NY, USA, 57–76.

Rajiv Gupta, Mary Lou Soffa, and Denise Ombres. 1994. Efficient register allocation via coloring using clique
separators. ACM Trans. Program. Lang. Syst. 16, 3 (May 1994), 370–386.

Sebastian Hack and Gerhard Goos. 2006. Optimal register allocation for SSA-form programs in polynomial
time. Inf. Process. Lett. 98, 4 (2006), 150–155.

Sebastian Hack and Gerhard Goos. 2008. Copy coalescing by graph recoloring. In PLDI ’08. ACM, New York,
NY, USA, 227–237.

Thomas Kotzmann, Christian Wimmer, Hansp eter Mössenböck, Thomas Rodriguez, Kenneth Russell, and
David Cox. 2008. Design of the Java HotSpotTMclient compiler for Java 6. ACM Trans. Archit. Code
Optim. 5, 1 (2008), 1–32.

Jonathan Lee, K., Jens Palsberg, and Fernando Magno Pereira. 2007. Aliased Register Allocation for
Straight-Line Programs Is NP-Complete. In Automata, Languages and Programming. 680–691.

Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. 2000. Fusion-based register allocation. ACM
Trans. Program. Lang. Syst. 22 (May 2000), 431–470. Issue 3.

Jinpyo Park and Soo-Mook Moon. 1998. Optimistic Register Coalescing. In PACT ’98, Jean-Luc Gaudiot
(Ed.). IFIP,ACM,IEEE, Paris, 196–204.

Fernando Magno Pereira and Jens Palsberg. 2005. Register allocation via coloring of chordal graphs. In
APLAS’05. 315–329.

Fernando Magno Pereira and Jens Palsberg. 2008. Register allocation by puzzle solving. In PLDI ’08. ACM,
New York, NY, USA, 216–226.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Decoupled non-SSA Global Register Allocation using Bipartite Liveness Graphs A:25

Fernando Magno Pereira and Jens Palsberg. 2009. SSA Elimination after Register Allocation. In CC ’09.
Springer-Verlag, Berlin, Heidelberg, 158–173.

Fernando Magno Quintão Pereira and Jens Palsberg. 2010. Punctual coalescing. In Proceedings of the 19th
joint European conference on Theory and Practice of Software, international conference on Compiler
Construction (CC’10/ETAPS’10). Springer-Verlag, Berlin, Heidelberg, 165–184.

Massimiliano Poletto and Vivek Sarkar. 1999. Linear scan register allocation. ACM Transactions on Pro-
gramming Languages and Systems 21, 5 (1999), 895–913.

Hongbo Rong. 2009. Tree register allocation. In MICRO 42: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, New York, NY, USA, 67–77.

Vivek Sarkar and Rajkishore Barik. 2007. Extended Linear Scan: an Alternate Foundation for Global Reg-
ister Allocation. In CC ’07: Proceedings of the 16th International Conference on Compiler Construction.
Braga, Portugal.

Michael D. Smith, Norman Ramsey, and Glenn Holloway. 2004. A generalized algorithm for graph-coloring
register allocation. In PLDI ’04. ACM, New York, NY, 277–288.

Sathyanarayanan Thammanur and Santosh Pande. 2004. A fast, memory-efficient register allocation frame-
work for embedded systems. ACM Trans. Program. Lang. Syst. 26, 6 (2004), 938–974.

Omri Traub, Glenn H. Holloway, and Michael D. Smith. 1998. Quality and Speed in Linear-scan Register
Allocation. In SIGPLAN PLDI’98. 142–151.

Christian Wimmer and Michael Franz. 2010. Linear scan register allocation on SSA form. In CGO ’10. ACM,
New York, NY, USA, 170–179.

Christian Wimmer and Hanspeter Mössenböck. 2005. Optimized interval splitting in a linear scan register
allocator. In VEE ’05. ACM, New York, NY, USA, 132–141.

Kun Zhang, Tao Zhang, and Santosh Pande. 2004. Binary translation to improve energy efficiency through
post-pass register re-allocation. In EMSOFT ’04. ACM, New York, NY, USA, 74–85.

Received June 2013; revised September 2013; accepted November 2013

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

