


ABSTRACT

Memory and Communication Optimizations for Macro-dataflow Programs

by

Dragoş Sbîrlea

It is now widely recognized that increased levels of parallelism are a necessary

condition for improved application performance on multicore computers. However,

the memory-per-core ratio is already low and, as the number of cores increases, it is

expected to further decrease, making per-core memory efficiency of parallel programs

an even more important concern in future systems. Further, the memory requirements

of parallel applications can be significantly larger than for their sequential counter-

parts and their memory utilization also depends critically on the schedule used when

running them.

This thesis proposes techniques that enable awareness and control of the trade-

off between a program’s memory usage and resulting performance. It does so by

taking advantage of the computation structure that is made explicit in macro-dataflow

programs which is one of the benefits of macro-dataflow as a programming model for

modern multicore applications.

To address this challenge, we first introduce folding - a memory management

technique that enables programmers to map multiple data values to the same memory

slot. This reduces the memory requirement of the program while still preserving its

macro-dataflow execution semantics.

We then propose an approach that allows dynamic macro-dataflow programs run-



ning on shared-memory multicore systems to obey a user-desired memory bound.

Using the inspector/executor model, we tailor the set of allowable schedules to ei-

ther guarantee that the program can be executed within the given memory bound,

or throw an error during the inspector phase without running the computation if no

feasible schedule can be found.

Finally, we turn our attention to distributed systems where often the memory

size is not a limiting factor, but communication and load balancing are. For these

systems, we show that data and task distributions can be selected automatically even

for applications expressed as dynamic task graphs, freeing the programmer from the

cumbersome selection process. We show that optimal selection can be achieved for

certain classes of distributions and cost functions that capture the trade-off between

communication and load balance.
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Chapter 1

Introduction

Processors and memory are the two primary architectural components of mod-

ern computing systems, that have a major impact on the behavior of applications.

Year after year, architectural improvements alternate between improving one or the

other so as to achieve a balance that results in reasonable performance for common

applications. Algorithmic techniques such as using lookup tables versus recalculation

(and dynamic programming in general), using compressed versus uncompressed data,

re-rendering versus storing images or in compiler optimization smaller code versus

loop unrolling have enabled software engineers to effectively control this balance for

sequential machines.

With the advent of multi-core processors and the dominant use of dynamic task

parallelism as a model of computation, it has become difficult to control the balance

between processor and memory utilization because different program executions, even

with the same input parameters, may achieve different memory utilizations and dif-

ferent execution times due to differences in their schedules.

Parallel execution is known to increase memory requirements compared to a serial

baseline [Blumofe:99 ]. The community has been aware of this problem since (at

least) the 1990s: “The amount of memory required by a parallel program may be

spectacularly larger than the memory required by an equivalent sequential program

.... parallel memory requirements may vary from run to run, even with the same

data” [Burton:96 ]. Without mitigation techniques, this increased memory con-



2

sumption can lead to an increased occurrence of out-of-memory errors [Dooley:10 ]

or degraded performance due to virtual memory paging. Unfortunately, modern pro-

gramming systems for parallel applications are not aware of and do not control the

peak memory footprint, making it difficult for programmers to ensure their programs

will not run out of memory∗.

Multicore systems, with their increasing levels of parallelism, have arrived at a time

when memory capacity scaling has already slowed [RA01 ]. Currently, the memory

per core is decreasing by 30% every two years [LCM09 ] and projections state that

it will soon drop from gigabytes to hundreds or tens of megabytes in extreme scale

systems [LKT13 ]. As expressed by IBM, this is an important challenge to overcome

for exascale computing, since “our ability to sense, collect, generate and calculate on

data is growing faster than our ability to to access, manage and even store that data.”

[DT05 ]. But this problem is not only an obstacle for future supercomputers; for the

embedded multicore processors, memory is already at a premium today.

This thesis proposes approaches that alleviate the memory problem encountered

by parallel programming models in use today. Since the most popular programming

models are dynamic in their expression of parallelism, we focus on techniques that

work for such models, whether on shared or distributed memory platforms.

The rest of this document is organized as follows. Chapter 2 describes the par-

allel programming model on which we build the approaches presented in this thesis.

Chapters 3 and 4 describe work that applies to shared-memory memory manage-

ment: chapter 3 focuses on folding - a technique for memory management that

help programmers understand the memory footprint of their programs, and Chap-

∗In contrast, embedded applications tend to be memory-aware but usually offer little flexibility
in scheduling and mapping of individual components.
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ter 4 describes a memory management technique that allows programmers control

of the space-performance trade off. Chapter 5describes our approach to extending

the ideas on controlling the space- performance trade-off for shared-memory to dis-

tributed memory, where performance is more dependent on inter-node communication

and load balancing rather than memory footprint. Chapter 6 describes related work

to the techniques employed in this thesis including inspector/executor scheduling,

register allocation and instruction scheduling.

1.1 Thesis Statement

Our thesis is that knowledge of the intrinsic dataflow relations within a computa-

tion is key to controlling resource trade-offs for parallel execution of applications. We

show that this knowledge can be obtained, acted upon and reused in an efficient man-

ner when using dynamic macro-dataflow programming models to explore trade-offs

among parallelism, memory, and communication.
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Chapter 2

Background

2.1 The Concurrent Collections (CnC) programming model

2.1.1 CnC - an implicit parallel model for domain experts

The programming models proposed in my work are extensions of the Concurrent

Collections (CnC) [Budimlic:10 ] model. The CnC model is influenced by stream

processing, tuple spaces and dynamic dataflow languages. It takes dataflow prin-

ciples and applies them at the level of tasks which can run efficiently on modern

architectures.

CnC is designed to appeal to domain experts who are not expert parallel program-

mers. A similar goal can be achieved by using domain specific languages (DSLs) that

hide the details of the parallelism from the programmer - but only when program-

ming withing a particular application domain. Instead, CnC aims to provide an easy

way to add parallelism to any host language, with the programmer writing sequential

code; the premise is that a domain expert (who is not necessarily an expert in parallel

programming) can express the data and control dependences of their applications and

the CnC compiler and runtime, based on this information, can execute the application

in parallel. The data and control dependences expressed by the domain expert are an

implicit way of expressing parallelism and has the advantage of enabling the runtime

to select the granularity of parallelism that is suitable for the particular machine on

which the application runs.



5

By automatically generating the synchronization and communication operations,

the CnC model relieves the programmer from the possibility of two notorious classes

of bugs in parallel programming — data races and deadlocks.

2.1.2 The CnC model

CnC applications consist of tasks (called steps), uniquely identified by a step

collection specifying the code that the task will run, and a tuple called the step tag

identifying a specific instance of a step. Tasks communicate through dynamic single

assignment variables called items. Items are grouped together into item collections

which contain logically related items and are uniquely identified by tuples called keys.

By enforcing the dynamic single assignment rule for items and because items cannot

be modified once they are added to an item collection, CnC avoids the possibility of

data races on items.

Once spawned, steps can read items by calling the item_collection.get(key)

function which returns the item value. Get calls block until some other step produces

the item with that key by calling item_collection .put(key, value).

For example, in a stencil computation, a step with tag (i,j) could read data

items (i, j-1) and (i-1, j) from an item collection and produce item (i,j) in

the same item collection.

Once steps read their input items, they perform computation and then may pro-

duce new items (through put operations) and/or start new steps by calling the

step_collection.spawn function.

CnC has been shown to offer especially good performance for applications with

asynchronous medium-grained tasks [Aparna:10 ], an attractive target for our opti-

mization approaches.
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Since items are accessed using tuples as keys (rather than pointer-based refer-

ences), it is generally not possible to automatically identify which items are dead and

should be collected. Instead, the number of expected read operations (called the get-

count of the item) is specified as an additional parameter to item put calls [Sbirlea:12

].

Some variants of CnC use an additional abstraction, that of control collections.

These are inspired by the factory [GoF ] design pattern: a tag put to a control

collection results in the spawning of task instances from step collections that have

registered with that control collection. Because control collections are orthogonal to

the techniques presented in this thesis, we use a simplified CnC model, where possible,

in which step instances are spawned by calling spawn directly to on the desired step

collection.

2.1.3 Task creation and preconditions

In macro-dataflow models, one available knob for the control of the parallelism

exposed is the precise timing of task creation. Tasks that are not yet expressed

to the model (or “created”) consume no resources. However, manually restricting the

parallelism in this way is highly machine-specific. Over-restricting parallelism leads to

poor performance due to resource under-utilization, and under-restricting parallelism

results in poor performance due to resource contention and other forms of overhead.

The task spawning mechanisms of a given dataflow implementation determine the

costs and trade-offs involved, which affects the design of a dataflow program. The

following subsections describe the two dominant approaches, eager and strict, both of

which are available in CnC. There has also been work down on hybrid combinations

of the eager and strict policies[Sbirlea:13 ].
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2.1.4 Eager task creation

The first option is to use an eager approach, in which tasks are spawned as soon as

possible. The tasks optimistically start executing, but may have to wait after starting,

if their dataflow dependences are unavailable when needed. Good performance is

achieved if most dependences have already been produced. For thread pool based

schedulers (including work sharing and work stealing), eager implementations must

provide a mechanism for worker threads to recover from missing dependences and

continue executing other work. There are three mechanisms that can be used to

address this situation:

continuations A task can be suspended by building its continuation, which is then registered

to wait for the data needed. For this approach, the ability to build continuations

is a requirement [Imam:14 ].

abort-and-restart Tasks abort upon access to data that is not yet available; the task is restarted

later, ideally after the needed data becomes available. This approach involves

additional restrictions, such as tasks not having side effects before abort-

ing [CnC:2013 ].

blocking Tasks block on synchronization primitives such as locks that are aware of the

thread pooling approach and cooperatively allow the thread to execute other

tasks. Tasks do not need to be restarted and become available for rescheduling

when the lock becomes available. This approach is different from continuations

because no data external to the task function body is preserved when blocking.

A common problem with eager task creation is that the task memory and other

resources needed to execute must be allocated as soon as the task is created, and
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are not completely released when the task is deferred. This resource allocation puts

pressure on the memory and runtime systems. A possible advantage is that, if a task

starts with computation that doesn’t require dataflow dependences (or needs only

some of them), that part of the task can execute without waiting for all input data

to be produced.

2.1.5 Strict preconditions

With this task creation strategy, tasks are spawned only when all their dataflow

dependences are satisfied. We call this approach strict preconditions because the

availability of inputs becomes a precondition to running tasks; as such, that input

can be accessed without synchronization. Strict refers to the fact that all input data

must be available before a task starts executing.

For this approach, dependences must be known a priori; this restricts the expres-

siveness of the models and has implications on the programming API exposed to the

user. For example, optional and data-dependent inputs are usually forbidden. These

restrictions can be overcome (for example) by splitting a task with data-dependent

continuation tasks into separate tasks, but doing so can lead to additional perfor-

mance overheads.

To support the identification of when tasks have all their inputs available — which

is needed for preconditions — a synchronization mechanism separate from the one

used for atomically producing dataflow dependences must exist. This support is

usually provided via a set of task-descriptors which describe tasks that need to be

spawned. Each descriptor has an atomic counter whose value decreases when each

dependence is satisfied; when it reaches zero, the task can safely be spawned.

Strict preconditions offer better performance than eager execution if the over-



9

head associated with blocking/closures/restarting in the eager case is larger than the

atomic-counter based synchronization used to implement strict preconditions.

2.1.6 Example CnC program

We will describe our model while going over a simple Fibonacci example, whose

C++ based CnC code∗ for computing the n-th element is shown in Listing 2.1. As

described in the previous section, obtaining an item produced by another task is done

via a blocking get operation. If the item has not been produced yet, the calls to get

(lines 4 and 6) cause the calling task to be delayed, or blocked, until the item is

produced. Producing items is done through put calls with the item key and value as

parameters, such as in line 7.

Each task (called step in CnC) of type fib::execute computes a single element of

the sequence. To obtain the whole sequence up to the n-th element, steps need to

be created with tags corresponding to the element they compute. This is done in

the main function of the program, shown in Listing 2.2. On lines 2 and 3, the initial

Fibonacci elements are added to the item collection. Line 3 adds CnC tags to the

fib_tags control collection. In CnC, control collections are paired with a task type

(in our case, fib::execute) such that a tag put to the control collection leads to a task

spawn with the same tag. On line 6 we wait for all the tasks to finish execution and

on line 8 we access the n-th element computed.

The code for the CnC graph is shown in Listing 2.3. This defines the step collection

m_steps, the item collection m_fibs and the control collection m_tags which is going

to prescribe the execution of steps from the step collection m_steps.

The above code in Listing 2.1 executes eagerly, possibly blocking at every get

∗The syntax used here is for the Qthreads version of CnC [Sbirlea:13 ].
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1 int f i b : : execute ( int tag , f ib_graph g ) {
2 // ge t p rev ious 2 r e s u l t s
3 f ib_type f_1 ;
4 g . f ib_va lues . get ( tag − 1 , f_1 ) ;
5 f ib_type f_2 ;
6 g . f ib_va lues . get ( tag − 2 , f_2 ) ;
7 g . f ib_va lues . put ( tag , f_1 + f_2 ) ;
8 return CnC : : CNC_Success ;
9 }

Listing 2.1: Fibonacci example in CnC

1 fib_graph g ;
2 g . m_tags . put (1 , 1 ) ;
3 g . m_tags . put (0 , 0 ) ;
4 for ( int i = 2 ; i <= n ; ++i )
5 g . f ib_tags . put ( i ) ;
6 g . wait ( ) ;
7 f ib_type r e s2 ;
8 g . m_fibs . get (n , r e s2 ) ;

Listing 2.2: Fibonacci in CnC: snippet of the main function
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1 struct f ib_graph : public CnC : : context< f ib_context >
2 {
3 // s t ep c o l l e c t i o n s
4 CnC : : s t ep_co l l e c t i on< f ib_step > m_steps ;
5 // Item c o l l e c t i o n s
6 CnC : : i t em_co l l e c t i on< int , f ib_type > m_fibs ;
7 // Tag c o l l e c t i o n s
8 CnC : : t ag_co l l e c t i on< int > m_tags ;
9
10 // The con t ex t c l a s s cons t ruc t o r
11 f ib_context ( )
12 : CnC : : context< f ib_context >() ,
13 // I n i t i a l i z e each s t ep c o l l e c t i o n
14 m_steps ( ∗ this ) ,
15 // I n i t i a l i z e each item c o l l e c t i o n
16 m_fibs ( ∗ this ) ,
17 // I n i t i a l i z e each tag c o l l e c t i o n
18 m_tags ( ∗ this )
19 {
20 // Pr e s c r i p t i v e r e l a t i o n s
21 m_tags . p r e s c r i b e s ( m_steps , ∗ this ) ;
22
23 }
24 } ;

Listing 2.3: Fibonacci CnC graph definition
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1 al igned_t ∗∗ f i b : : get_dependences ( int tag ,
2 f ib_graph g , . . . ) {
3 . . .
4 a l igned_t ∗∗ read = mal loc ( . . . ) ;
5 g . f ib_va lues . wait_on ( tag−1, &read [ 0 ] ) ;
6 g . f ib_va lues . wait_on ( tag−2, &read [ 1 ] ) ;
7 return read ;
8 }

Listing 2.4: Fibonacci extra CnC code for strict preconditions

call. To use a preconditions-based approach, in the CnC runtime used for this work,

one needs to specify the preconditions separately, as shown in Listing 2.4.

2.1.7 Memory management for CnC programs

One approach to addressing the drawbacks of shared data structures is to en-

force a dynamic-single-assignment property for shared data accesses, since it in turn

can establish data race freedom and determinism in parallel programs. Thus, the

context for our work is parallel programming models for multicore and manycore

processors in which all shared data accesses are performed through put/get oper-

ations on dynamic-single-assignment data structures indexed using associative tags

(keys). These models include dataflow programs with single assignment semantics

such as VAL [McGraw:82 ], Id [Arvind:78 ] and Sisal [McGraw:85 ] or with I-

structures [Arvind ] as well as functional subsets of parallel programs based on tuple

spaces (notably, Linda [Gelernter ]), and programs written in CnC.

It has been shown in past work that simple reference counting schemes can

suffice for memory management of single-assignment programs with object refer-

ences [Gharachorloo:88 ]. However, since CnC uses tuples to identify data items
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and and, since (unlike object references) tuple keys can be synthesized by arbitrary

program computations, it can be challenging for the runtime to determine when a

piece of data will no longer be accessed in the future. This in turn means references to

items may be stored indefinitely leading to continually increasing memory footprints.

To keep the memory use in check, one approach is to manually de-allocate items

during the execution of steps which are known to run after all consumers of each

item have finished. However, this has a high programmability cost and can lead to

hard-to-debug problems when items are incorrectly freed.

Another alternative technique called get-counts [Sbirlea:12 ] allows the user to

specify a reference count for selected items. This count is decremented on every read

operation for that item and when it reaches zero, the item is freed. This approach

is more easily used than the manual de-allocation because programmers do not need

to identify steps for which de-allocation can be performed, but has the disadvantage

that it cannot be used to de-allocate items when the number of read operations can

vary.

In conclusion, without additional memory management techniques, CnC is unsuit-

able for applications for which the memory footprint can grow unboundedly without

garbage collection/deallocation.. The goal of this thesis is to propose techniques to

take CnC from a model with limited memory efficiency compared to mainstream mod-

els to one in which the time-space balance can be easily controlled by the programmer

and runtime.
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2.1.8 Distributed CnC execution

The Intel Concurrent Collections runtime supports distributed execution that is

almost transparent to the programmers [DistributedCnC:13 ] ∗. By default, the

distributed runtime will do a round-robin distribution of tasks to nodes and data is

delivered to them after they attempt to access it the first time. The reason for this

is that without producer-consumer information, the runtime cannot know where the

data will be consumed.

To solve this problem, the Intel authors propose a separate tuning mechanism

through which the programmers explicitly specify nodes on which data will be con-

sumed and can assign tasks to specific nodes.

While this feature does not simplify the problem of task and data placement

for the programmer, it serves as a base runtime for our distributed programming

optimizations described in Chapter 5.

2.2 Runtime parallelization

Runtime parallelization consists of techniques for enabling parallelization at run-

time of codes that cannot be proved statically to be either parallelizable or non-

parallelizable. For irregular loops, on which runtime parallelization is traditionally

used, runtime parallelization would be used on loops whose iterations cannot unam-

biguously be proven independent or dependent at compile time.

A classical approach, proposed by Salz [Salz:91 ] is called inspector/executor

(I/E) and proposes to handle this kind of loops by compiling two versions of the loop.

The first version is called the inspector and its role is to calculate the values of index

∗The primary additional code needed to support distributed execution is data marshaling code
to allow data transfer between nodes.
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expressions that are not available statically, by simulating whole-loop execution. This

is usually done by executing the loop sequentially, with many expensive calculations

omitted if they do not impact the dependence structure of the loop. This code

implicitly computes a graph of inter-iteration dependences and computes a parallel

schedule which is a wavefront through this iteration dependence graph traversed in

topological order. All iterations in a wavefront are independent and thus can be

executed in parallel and the number of wavefronts gives the critical path length. The

executor simply follows the schedule to execute the loop.

To amortize the inspector overhead, I/E relies on the existence of multiple it-

erations of the loop with different data but the same dependence structure. With

sequential inspector execution, the cost of the inspector may lead to no performance

benefit for the technique. If the inspected loop is not an inner loop and shows no

speedup, researchers have proposed different approaches for parallelizing inspectors,

such as doacross [SM:91 ] or sectioning and bootstrapping [LZ:91 ].

2.3 Integer and linear programming

2.3.1 Linear programming

Linear programming (LP) is a set of algorithmic methods that can obtain optimal

solutions for a mathematical model expressed as linear relationships.

The linear function to be minimized (or maximized) is called the objective function.

It has the form cT × x = c1 × x1 + · · · + cn × xn with c ∈ Rn being a given vector.

The linear inequalities in the model are called constraints. Linear programs have the
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following form:

Maximize the value of cT × x

among all vectors x ∈ Rn with A× x ≤ b

In the above formula, A is an input matrix of n ×m size, where n is the number of

variables and m is the number of constraints (equations), c ∈ Rn and b ∈ Rm.

Any vector x ∈ Rn that satisfies all constraints of the linear program is a feasible

solution, but we are interested in the solution which leads to the maximum possible

value of the objective, which is called optimal solution. Note that, in general, a linear

program may have zero, one or infinitely many optimal solutions.

2.3.2 Linear programming algorithms

The simplex algorithm developed in 1947 by George Dantzig is one of the most

widely used algorithms for linear programming. It starts by first transforming the

input to anequational form which is as follows:

Maximize the value of cT × x

s. t. x ∈ Rn with A× x = b

x ≥ 0.

Note the presence of additional x ≥ 0 constraints called non-negativity constraints.

This conversion to equational form can be done by adding slack variables to elim-

inate “less than” or “greater than” relations. Variables that can take both positive or

negative values can be decomposed into two separate non-negative variables whose
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difference equals the original variable.

The algorithm then arranges the constraints and objective in a simplex tableau in

which each equation is of the form: variable = 〈linear expression of other variables〉.

Each tableau is associated with a basic feasible solution (geometrically, basic solutions

correspond to vertices of the polyhedron of the solution space). After an initial tableau

is completed, the method constructs a sequence of other tableaus by rewriting the

previous tableau through application of a pivoting step. At each pivoting step, the

goal is to select a variable which enters the basis and another one to exit the basis, so

as to increase the value of the current objective. Once it reaches a point where there

is no such transformation that can increase the objective value, the procedure stops

because it has found the optimum.

The choice of the entering and exiting variables is a critical factor in determining

the number of required pivoting operations. A few possible criteria for this are: largest

coefficient (choose an entering variable which has the largest coefficient in the row

of the objective), largest increase, steepest edge (choose an entering variable whose

adoption moves the current solution in a direction closest to c), Bland’s rule (choose

smallest index). Bland’s rule guarantees that the pivoting operations do not end up

in a cycle, but the steepest edge criteria leads to the best performance in practice.

On some examples, the original pivot rule proposed by Dantzig (largest coefficient)

was shown to need exponential number of pivoting operations [Klee:72 ]. Even for the

best possible pivoting rule (a “clarvoyant” rule which leads to the smallest possible

number of pivot operations), the best known bound so far is n1+logn [Kalai:92 ].

This is worse than polynomial, but in practice, the number of pivoting operations is

between 2m and 3m.

The ellipsoid method is of great historical significance because it was the first
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linear programming algorithm which was proven to run in polynomial time, but in

practice it is not competitive with the simplex method. This method consists of

finding successively smaller ellipsoids that, until the last step, encircle the feasible

solutions.

The interior points method relies on moving through points inside the feasibility

boundary carefully avoiding it until the end. The key is avoidance of the boundary

while at the same time increasing the current objective value. Some interior points

methods have been shown to be polynomial in the number of bit required to store

the coefficients required to express the linear programming problem.

It is interesting to note that the first linear programming problem was solved in

1947. It had nine equations and seventy-seven variables and was solved with hand-

operated calculators in 120 man-days [Matousek:06 ]. Today, we can solve problems

with tens of thousands of variables and constraints in a few minutes.

2.3.3 Integer linear programming

There are situations when only LP solutions whose variables are integers are of

practical interest, and we call these problems integer linear programming (ILP) prob-

lems. These problems are as follows, assuming the same variables as described for

LP:

Maximize cT × x

s.t. A× x ≤ b

x ∈ Zn

Unfortunately, solving ILP is considerably more computationally difficult than
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LP: binary ILP is one of Karp’s 21 NP-hard∗ problems [Karp:72 ]. In practice, there

are problems with only tens of variables which are not solvable even with modern

computers [Matousek:06 ].

If in a LP model only some variables have integrality constraint, then that model

is a mixed-integer linear model (MILP).

2.3.4 Integer linear programming algorithms

MILP problems are generally solved with a linear programming variation of the

branch and bound algorithm. Before applying the algorithm itself, a presolve stage

applies a set of transformations to reduce the size of the input MILP problem.

The algorithm starts by solving the original MILP problem with the integrality

constraints dropped. This modified problem is called the linear programming relax-

ation of the MILP problem and it can be solved efficiently with LP techniques. The

resulting optimal solution will be optimal for the LP relaxation, but because it likely

has variables with non-integer values it is not a feasible solution of the MILP problem.

The branch and bound algorithm picks a variable with fractional value called

branching variable (say, x) and then eliminates the fractional value (say, x = 4.7)

from the feasible domain by splitting the problem into two MILP problems, each

with an additional constraint forcing the chosen variable to exclude the current value

without eliminating any integer solutions (x ≤ 4 and respectively x ≥ 5). The optimal

solution for the original MILP problem must be the optimal solution for one of these

two subproblems. By repeating this process with the two subproblems, we obtain a

search tree which expands as the algorithm continues.

∗The NP -hardness of ILP means that we can reduce any problem in NP to the ILP problem. If
there were a polynomial solution to the ILP problem, then we could efficiently solve any NP problem
also, which would mean P = NP .
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If a subproblem has been solved and happens to have a linear programming solu-

tion which also respects the integrality constraints, then the node is called fathomed

and we do not need to branch on it - it remains a leaf of the tree. If the objective

of this subproblem is better than the previously known best objective, then we call

the subproblem incumbent and the subproblem with this property is updated as the

algorithm progresses.

A subproblem can be infeasible in which case it is a leaf of the tree. Alternatively,

if its LP solution may be worse than the incumbent, we do not need to branch since

that subtree cannot possible offer a better MILP solution that the current one, so

again the subproblem remains a perpetual leaf of the tree.

Some constraints (or “cuts”) that reduce the number of undesirable fractional

solutions could be applied during the presolve stage but are are instead applied during

the algorithm itself. This is because there may be a huge number of such constraints

and not only it would be exceedingly expensive to find them all, but they also would

make the LP relaxation harder to solve. The techniques known as cutting planes

consist of judiciously adding these constraints during the solving process only if they

are known to help. Gomory’s original cuts [Gomory:58 ] were cuts that separated

the vertex representing the objective of the LP relaxation on one side and all the

integer feasible points on the other.

If we only use cuts and apply them repeatedly until all the variables in the optimal

solution becomes integers, then the method is a cutting planes method. If we com-

bine the branch and bound techniques with cuts as described above, the combined

approach is called branch and cut.
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2.4 Parametrized distribution functions

Traditionally, in distributed systems, distribution functions map elements from an

input array to a 〈node, offset〉 pair, where node is the processor where the element

would be found during execution and offset is the offset within the node where that

particular element resides. Since the offset only impacts local computations, we will

focus on the node mapping and ignore the offset in the discussion of distribution

functions below.

The data distribution is an essential performance choice in the design of distributed

applications and has received considerable attention from the research community

with many different distributions that have been proposed [Brent:92, Huss:94,

Hendrickson:94 ]. The traditional block, cyclic and block-cyclic distribution pat-

terns shown in Figure 2.1 have proven useful in previous distributed programming

models.
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Figure 2.1 : The cyclic, block and block-cyclic distributions are widely known.

The first distribution shown is the cyclic (also called scattered) distribution, in
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which consecutive array elements are assigned to consecutive nodes (also traditionally

called processors). After reaching the last processor, the process wraps around to the

first one. For example, assuming P nodes and an input array indexed by m with

0 ≤ m < M with M ∈ N, the distribution would be β(m) = m mod P .

The second distribution is called the block distribution because the elements are

grouped into a number of blocks equal to the number of nodes and the block are then

assigned to nodes consecutively. For example, assuming P nodes and an input array

indexed by m with 0 ≤ m < M with M a multiple of P , the block size would be

BS = M
P
. The distribution is β(m) = d m

BS
e.

The third distribution is the block-cyclic distribution in which β(m) = d m
BS
e mod P

with the BS ∈ N. Notice that for BS = M
P
, the block-cyclic distribution equals the

block distribution (when M is a multiple of P ) and for BS = 1 it equals the cyclic

distribution. Because it includes an unknown parameter value (BS ) we consider it to

be a distribution pattern rather than a distribution function.

The distribution functions described above assume an input data indexed by a

single integer value (or ignore other dimensions in the index). For this reason, they

are called 1D distribution functions. Below, we present the n-dimensional defini-

tion of distribution functions as presented by Thomas Rauben and Gudula Run-

gen [Rauben:11 ].

We assume the input data to be a d-dimensional array A with index set IA ⊂ Nd

. The size of the array is n1 × · · · × nd and the array elements are referred to by

using A[i1, . . . , id] with an index i = (i1, . . . , id) ∈ IA. Array elements distributed to

an d-dimensional grid of processors p1 × · · · × pd with p =
d∏

i=1

pi. A data distribution

function γA : IA ⊂ Nd → 2P (2P denotes the power set of processors P ). According to

γA, the i-th element of A, with i = (i1, . . . , id) should be distributed to all processors
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in γA(i) ⊆ P .

The ScaLAPACK [ScaLAPACK ] library proposes the 2D block-cyclic distri-

bution pattern as a scalable distribution for linear algebra kernels [Dongarra:94,

Dongarra:92 ] and is widely used by other libraries, but part of the reason may be

historic [Anderson:91 ]. Some researchers have questioned the use of this distribu-

tion pattern for distributed linear algebra problems [Edwards:95, Sundaresh:07 ],

but it is unclear if better alternatives exists.
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Chapter 3

Folding of Dynamic Single Assignment Values

3.1 Motivation

The multicore revolution has increased the urgency for developing programming

models that deliver scalable parallelism with minimal effort by programmers. The

use of shared data structures by parallel tasks has proved to be a two-edged sword in

pursuing this goal. On the one hand, a shared address space can reduce the semantic

gap between a sequential program and its parallel version. On the other, uncoor-

dinated accesses to shared data structures are a notorious source of bugs that arise

from data races and other sources of nondeterminism leading to the programmability

wall.

One approach to addressing the drawbacks of shared data structures is to enforce

a dynamic-single-assignment property for shared data accesses, since it in turn can

establish data race freedom and determinism in parallel programs. Thus, the context

for our work is parallel programming models for multicore and manycore processors in

which all shared data accesses are performed through put/get operations on dynamic-

single-assignment data structures indexed using associative tags (keys). These models

include dataflow programs with I-structures [Arvind ], functional subsets of parallel

programs based on tuple spaces (notably, Linda [Gelernter ]), and programs written

in the Concurrent Collections (CnC) coordination language [Budimlic:10 ].

However, past experiences with implementations of functional languages have
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shown that memory management can be challenging with the dynamic-single-assign-

ment property. It becomes even more challenging when objects can be accessed

through user-computable tags, since standard reference-based garbage collection can-

not be applied in that case. In this chapter, we propose a new memory management

approach based on user-specified folding functions that map logical dynamic-single-

assignment (DSA) tags into dynamic-multiple-assignment (DMA) tags. We also com-

pare folding with get-counts, an approach in which the user supplies a function that

maps tags to integers indicating the number of gets that will occur on the item. Both

approaches are fail-safe i.e., an exception is thrown if the program performs accesses

that are inconsistent with the folding functions or get-counts.

There has been a lot of past work focused on converting a multiple-assignment

program to dynamic single assignment form so as to simplify program optimization

and transformation. An early paper [feautrier91dataflow ] described several ap-

plications of dynamic single assignment, such as conversion of a program to a set of

recurrence equations, scalar expansion, array expansion [arrayExpansion ], program

verification and parallel program construction. In contrast, folding addresses the dual

problem of converting a dynamic single assignment program to multiple-assignment

form with reduced memory requirements. Based on the well known challenges in

transforming static single assignment form to multiple assignment form [outOfSsa

], it is natural to expect that translating out of dynamic single assignment form will

be a challenging problem too, especially when the original non-DSA program is un-

available. To the best of our knowledge, we are the first to propose a user-specified

“folding” approach to address this problem.

In summary, this section describes the following contributions:

• Basic folding (Section 3.2), a novel memory management technique for ac-
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cesses to associative dynamic-single-assignment data structures (item collec-

tions). This technique relies on user-specified folding functions with fail-safe

checks for correctness at runtime.

• Update-in-place memory reuse (Section 3.3), an extension that allows the user to

specify GetForUpdate operations that allow an input item to be rewritten as an

output. This approach can be used both with folding functions and get-counts,

and includes fail-safe checks as well.

• Extended folding (Section 3.6), an extension to basic folding for items that are

written but never read.

• A design and implementation (Section 3.7) of the above folding and get-count

techniques for the CnC model.

• Empirical results (Section 3.8) that show that folding and get-counts can offer

significant improvements in memory efficiency over the baseline version without

these techniques.

3.2 Basic folding

The intuition behind folding is as follows: if we know that two values have non-

overlapping lifetimes, we can assign them to the same physical storage thereby reduc-

ing the maximum memory requirement for the application. Following the terminology

used in the CnC model, we refer to the associative dynamic-single-assignment (DSA)

data structures assumed in this work as item collections, to keys as tags, values as

items, and computational tasks as steps. The two operations supported by item col-

lections are put(tag, item) and get(tag). The DSA property requires that dynamically
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at most one put() operation be performed for a given tag. Further, each get() opera-

tion is assumed to be blocking i.e., it only returns a value after a put() operation has

been performed with that tag.

Definition 1 (Folding function). A folding function f transforms a logical tag t1 to

a physical tag, f(t1). Thus, the logical put(t1, i1) operation is transformed into a

physical put(t1, f(t1), i1) operation, where f(t1) is the physical location used to store

the item and the original tag t1 is stored as an auxiliary value. Likewise, the logical

get(t1) operation is transformed into a physical get(t1, f(t1)) operation.

Thus, the folding function maps DSA tags to dynamic multiple assignment (DMA)

tags which are associative indices into a physical store. When a new item i2 is

mapped to the same physical store location as a previous item i1 (because f(t1) =

f(t2)), the space of i1 is freed. Example executions of a program that computes

the n-th Fibonacci element are in Figures 3.1a and 3.1b (without and with folding,

respectively). Item n can fold over item n−2. The folding function used is: fold(n) =

(n+ 1)%2 + 1.

This use of a folding function is called basic folding. As discussed later in Sec-

tion 3.4, a runtime error may be thrown if the folding function is specified incorrectly,

but a get() operation will never return an incorrect logical value.

We now identify the conditions under which folding is legal. As an example,

consider the following sequence of logical get() and put() operations: “put(t1, i1);

get(t1); put(t2, i2); get(t1)”. In this case, it would be illegal to fold items i1 and i2

on the same location because they have interfering live ranges [Torczon ]. To ensure

safety for folding two items, they must have disjoint lifetimes in any possible schedule

of the program.
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(b) Item collection content for a folding execution of Fibonacci.

Figure 3.1 : CnC Fibonacci execution.

Definition 2 (Item lifetime). The lifetime of an item in a program execution is the

interval between the execution point at which the item is produced by a put() operation

and the execution point of the last get() operation performed on the item. If there are

no get() operations, the lifetime begins and ends at the put().

Definition 3 (Legal program). A legal program is one that always completes execution

with all get() operations having successfully completed, for all possible schedules.

Definition 4 (Correct folding transformation). A folding transformation for a legal

program P specified by folding function f is correct if, for every input I, an execution
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of P with input I and folding function f is also legal (no blocked gets()) and results

in the same result for each get() operation as the original execution of program P

without folding.

Theorem 1 (Folding correctness requirement). For a folding transformation of a

legal program to be correct, the folding function must not fold together any two items

whose lifetimes may overlap. [Proof omitted due to space limitations.]

3.3 Folding with memory reuse

Basic folding ensures that memory can be reclaimed after the end of a compu-

tational step that performs the last logical get() operation on an item. However,

many steps have the following computational structure: “i1 = get(t1); allocate i2;

i2.set(G(i1)); put(t2, i2);”. With basic folding, both i1 and i2 will be assumed to be

simultaneously live and will contribute to the maximum memory requirement for the

program. However, if function G can be implemented as an update-in-place function,

then i1’s storage can be reused for i2 if get(t1) is the last get operation performed with

logical tag t1. To enable this optimization, we allow the user to use a getForUpdate()

operation instead of get(), as an indication that this is the last get() operation for

the given tag in any schedule, thereby making it possible for item i1 to be updated

in place to obtain item i2. Figure 3.2 is an example. As with the folding function,

the correctness of a getForUpdate() operation will also be checked at runtime so as

to guarantee fail-safe behavior (see Section 3.4).

3.4 Error detection

The folding error detection mechanisms are based on the assumption that the orig-

inal program is legal (Definition 3) without the folding optimization. We define any
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Figure 3.2 : Left: With a get() call, the item memory is copied before being returned
to the step, which can modify it and put() it with some other tag. This leaves
the old item memory to be collected when an item folds over its entry in the store.
Right: With getForUpdate, the copy is not performed and no memory will need to
be collected, as it is reused by the new item.
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behavior of a legal program in the presence of folding that differs from the behavior

of a non-folded execution as an error.

For example, a get() that returns an incorrect value would constitute an error.

This could happen, if the content of the physical store location corresponding to a

particular tag is returned without checking that the logical tag of the item in that

location corresponds to the logical tag of the item we are trying to get. If the item in

the store does not have the same logical tag, we need to wait for it to be produced.

However, if the item was previously produced and some other item was erroneously

folded over it, we will never find the item. Without an error checking mechanism, the

program may finish with blocked steps instead of the correct non-folded behavior.

To enable detection of such errors, we define a debug mode for folding, in which

a boolean flag is stored for each tag that is put() during execution. Using this flag,

we can differentiate between items that are not present in the physical store because

some other item was folded over them and items that have not been produced as

yet. A get() performed on previously overwritten items should throw an exception

reporting an incorrect folding function, but a get() should block until the item is

produced if that is not the case. In debug mode the system also detects dynamic

single assignment violations (on every put, if the boolean flag for that logical tag was

previously put(), we report an exception) with or without the presence of folding.

3.5 Programmability benefits of folding

To illustrate the benefits of folding with error detection, consider a common tech-

nique used by performance-oriented C programmers where storage is reused instead

of calling free() followed by malloc(). This approach can be especially error-prone

for parallel programs, because the overlap in lifetime between the initial and subse-
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quent values may be schedule-dependent. With folding, a similar reuse of memory

could be achieved in a fail-safe manner by folding the two logical items and using the

getForUpdate mechanism for memory reuse.

As a concrete example, consider the classic two-buffer approach used by iterative

algorithms in which one buffer is used as an input and the other as the output,

and their roles are swapped in each sequential iteration. With our folding approach,

the programmer can think in terms of allocating a new DSA output buffer in each

iteration, and a folding function can effectively perform the swap. This approach

was used in our implementation of a Routing simulation application (see Section 3.8)

where the routing tables for one iteration are built using the routing tables of the

previous one, and a folding function was specified as follows:

public final Object fold(point tag) {

int i, j, k; //i: node id, j: iteration id; k: repetition #

i = p.get(0); j = p.get(1); k = p.get(2);

return new point(i, j%2, k);

}

3.6 Extended folding: Folding with ordering

Items with empty lifetimes pose an interesting research challenge for folding. Con-

sider a program that expects to produce and consume items in order as follows:

“Step1:[put(t1, i1)] Step2:[get(t1);put(t2, i2)] Step3:[get(t2); put(t3, i3)] Step4:[get(t3)]

”. In such a case, it might seem reasonable to fold t1, t2, and t3 to the same physical

location. However, if (say) get(t2) is not performed for some reason, there is no way (if

using blocking-get synchronization only) to ensure that put(t2, i2) completes before

put(t3, i3), thereby making the folding incorrect (because get(t3) may never find t3 as
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it has been folded over).

This is an instance of the more general problem caused by optional get() calls but

in this particular case there is a way to solve the problem. We propose an extension

to folding that allows folding of items that may never be consumed. Such items can

appear when control dependent gets are used, for example with short-circuit boolean

operations such as “get(t1) && get(t2)”. We observe that items that are never read

have an empty lifetime and can be optimized away from the physical store. However,

this may not be known at the time of the put() operation, but may be known when

a subsequent put() is performed on the same physical location.

We can express this by allowing the presence of an additional user function that

acts like a “compare age" operation. If an item that is being put maps to a physical

location where another item resides and should be declared dead, the function returns

true (“newer"), and the new item is stored. Otherwise, if the new item is known to

never be read, it returns returns false (“older"), the incoming item is not stored and

the old item is retained.

To perform the age comparison, the function needs two parameters: the tag of

the item being put currently and the tag of the old item that exists in the location

in the physical store where the new item would be inserted. The programmer has to

identify if the tag of the current item in the item collection means that all of the steps

that could access the incoming item have executed and did not access the incoming

item. If this is the case, then the incoming item can safely be discarded. The Rician

Denoising benchmark (see Section 3.8) uses this extension.
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3.7 Implementation

We have implemented folding as an extension to the Habanero Java CnC runtime

[Budimlic:10 ]. The Java key-value data structure used to implement item collec-

tions is now indexed by DMA tags instead of DSA tags. When an item is put() with

DSA tag t1 its corresponding DMA location in the store is determined by identifying

pt1 = f(t1), where f is the folding function. Then, the physical store is accessed to

see if there is any entry at that physical location. If there is none, we create it, and

label it with the logical tag t1. If there is, we need to hold a lock on the physical

store location while the following operations are performed. First, we update the

logical tag of the physical store entry to the logical tag of the item that has just been

put. Then, we go through the list of steps waiting on that particular physical store

location and, for each step that is waiting for the current item mark it as ready for

execution. The marked marked continue their execution by performing a get() that

will succeed because the desired item is already in the physical store.

When a get() on item with DSA tag t1 is performed, its DMA tag is determined

by identifying pt1 = f(t1). If the entry does not exist, it is created, inserted in the

physical store and the step is added to its list of waiting steps. If the entry does not

correspond to the logical tag of the item, it registers itself to wait also. Compared to

a non-folding execution, the only extras step needed for insertion is the application of

the folding function (which does not need synchronization and has minimal overhead).

The bigger overhead is in the put() , where the list of waiting steps has to be checked

linearly to unblock only the steps that are waiting for the new item and this happens

while holding the lock. We chose to have the overhead in the put() and not get() as

the get() is usually performed multiple times on a single item and our approach leads

to less contention.
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Both the get-counts and folding policies only remove items from item collections,

so that there is no object reference pointing to them; the Java garbage collection

subsequently reclaims the memory.

3.8 Results

The following results were obtained on a 16 core Xeon system with 16GB RAM,

running Habanero Java implementation of Concurrent Collections [Budimlic:10 ]

on a 64 bit Java 1.6, using 16 workers for the work-stealing CnC runtime and Java

default garbage collection mechanism. In this section we compare the performance

and memory footprint of the following CnC memory management policies:

1. Baseline: non-collecting CnC (items are never removed from item collections)

leading to memory leaks, but also no folding overhead.

2. Get-counts : memory management in which the user specifies a reference count

for selected items, the count is decremented on every get() operation on a spec-

ified item, and the item is freed when the count becomes zero.

3. Folding : the folding runtime described in Section 3.7. We used the ordering ex-

tension described in Section 3.6 as needed and the tables contain the “Ordered"

specifier where this happened.

For each policy used, we obtained the following measurements:

1. Execution Time - We performed thirty repetitions of the program in the same

JVM instance, and reported the average, as advocated in [javaPerformance

].
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2. Memory at end - the program footprint after the CnC graph finishes execution.

With this metric, get-counts has an advantage because it removes items im-

mediately, where as folding waits for the birth of another item, so at the end

folding usually has more live items. In contrast, folding saves some work by

taking a lazy approach to freeing items.

3. Items at end - similar to the previous metric, but expressed in items.

We evaluated the impact of folding and get-counts on the following applications:

1. Microbenchmark showing the difference in scalability between get-counts and

folding with the number of reads per item.

2. N-body simulation for performance analysis.

3. Routing simulation as an application in which get-counts might lead to leaks

because items have a number of accesses unknown at creation time, but folding

works without needing the Ordered extension.

4. Rician denoising as example of an application in which folding with ordering

can safely be used, but get-counts leads to leaks because some items have data-

dependent accesses whose number is unknown.

5. Cholesky factorization as an example of memory reuse via the getForUpdate

optimization.

Microbenchmark: Scalability with read/write ratio This benchmark varies

the reads to write ratio to analyze the performance of the two collection mechanisms.

Because folding performs most of the synchronization on put() as opposed to get-

counts, which performs most of the synchronization on get(), we checked if the best
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performing policy might be get-counts for low read/write ratio. However, as shown

in Figure 3.3, the folding version runs faster than both get-counts and baseline CnC

even for a ratio of 1. Some applications may have a read/write ratio lower than one;

performance for this case is analysed later using the Rician Denoising application.
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Figure 3.3 : Performance with read/write ratio (16 core Xeon)

N-Body Simulation We implemented the O(N2) algorithm for N-body simula-

tion with both get-counts and folding and the results are shown in Table 3.1. The

folding policy performs well because this benchmark has a small step granularity,

large number of items and thus more contention on the item collections. The fact

that folding has less synchronization of gets (in this application there are 10 gets per

item) leads to a consistent (1.3×) performance improvement compared to get-counts.

The get-counts footprint is smaller because folding can only reduce the footprint to

the maximum footprint of the program during its execution, and in this case, that

footprint is 20 items, which is also the maximum theoretical footprint for get-counts.
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CnC Time Memory at end
policy (s) (bytes) (items)
Baseline 16.9 277.0 MB 1,000,005
Get-Counts 18.1 3.6 KB 10
Folding 13.0 7.0 KB 20

Table 3.1 : Experimental results for NBody (5 bodies, 100000 timesteps)

CnC Time Memory at end
policy (s) (bytes) (items)
Baseline 21 61.0MB 102000

Get-Counts 25 10.7KB 1000
Folding 21 1.3MB 2000

Table 3.2 : Experimental results for Routing, with reliable links.

Routing Simulation The routing simulation benchmark has unknown number of

gets on each item, making it a challenge for the get-counts approach. It simulates the

convergence of min-distance routing protocols such as IS-IS [isis ] and OPSF [opsf

]. As links might go down, when a routing table is being built, we cannot know

how many gets will be performed on that node. In such cases, the get-count will

never reach zero and the item will become a memory leak. To see how the number of

leaked items varies with the chance of links failing we varied the chance of a message

not getting through from 0 to 10%, as shown in Figure 3.4: at only 1% failure rate

half the items are leaked. Even in the absence of link failure, folding shows a 16%

performance improvement over get-counts (Table 3.2).

Rician Denoising Rician (Poisson) denoising is an image processing application.

Its global convergence check is a reduction on the convergence status of all tiles and it

is sped up using a short-circuit evaluation: if a single tile changes significantly we do

not need to wait for the convergence condition of all the other tiles to be evaluated,
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Figure 3.4 : The relation between the link fail rate and memory leaks. At only 10%
link failure rate, a large majority of items are leaked when using GetCounts. Folding
is able to maintain a minimal footprint relative to both baseline and GetCounts.

we immediately know we will need an additional iteration and can start spawning the

corresponding steps.

The results (Table 3.3) show the performance of get-counts and folding: folding

offers the best performance. Furthermore, get-counts leads to leaks of items from the

ConvergenceStatus item collection in which the operands of the short-circuit operators

are stored (the cause of the leaks is the unknown number of gets): 95% of items stored

in that item collection are leaked, totaling 20MB. However, without short-circuit op-

erators, get-counts collects more items because at the end of the program, all the

items stored in the item collections that store intermediate results (Gradient, Image-

TimesGradient, etc) can be collected. This does not affect the actual high water-mark

of the program which is the same in both folding and get-counts executions.
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Short CnC policy Time

Memory at end

circuit (s)

(MB) (number of items in each collection)
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St
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us

Enabled

Baseline 6.5 2888 10800 10400 10400 10400 10400
Get-Counts 2.6 740 800 0 0 0 9897
Folding

(Ordered) 2.6 800 1200 800 800 800 800

Disabled
Baseline 8.1 2888 108006 10400 10400 10400 10400

Get-Counts 3.7 720 800 0 0 0 0
Folding 3.5 830 1200 800 800 800 800

Table 3.3 : Performance comparison for Rician Denoising with shortcircuit reductions
disabled and enabled (image size 2560× 1280, tile size 128× 64).

Cholesky Factorization Cholesky factorization is a numerical application whose

input is a symmetrical positive-definite matrix and output a lower-triangular ma-

trix. One possible CnC implementation was previously described and benchmarked

in [Aparna:10 ] and the results were encouraging.

Table 3.4 shows that the proposed update-in-place optimization, if applied on ei-

ther get-counts or folding, can lead to a large performance increase. Using getForUp-

date leads to a performance improvement between 10% and 20% for both collecting

policies. Baseline CnC cannot safely apply this optimization without additional pro-

grammer input to ensure that whenever GetForUpdate is called, the item accessed

is indeed dead. To work around this, we manually added this call only when such

accesses are safe.

Memory High-watermark comparison Table 3.5 shows the maximum number

of live items during the execution of the benchmarks. This metric shows, in the sched-
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Input CnC Policy Without update-in-place With update-in-place
size Time Items at end Time Items at end

(s) (MB) (items ) (s) (MB) (items)

2000
Baseline 0.9 142.2 952 0.8 33.7 952
Get-Counts 0.9 33.7 272 0.8 33.7 272
Folding 0.9 33.7 272 0.7 33.7 272

4000
Baseline 7.3 1008.5 6512 5.6 133.2 6512
Get-Counts 6.2 133.2 1056 5.6 133.2 1056
Folding 6.2 133.2 1056 5.0 133.2 1056

6000
Baseline 26.6 2680.2 20776 19.5 298.4 20776
Get-Counts 22.3 298.4 2352 19.2 298.4 2352
Folding 21.6 298.4 2352 19.1 298.4 2352

Table 3.4 : Performance comparison for Cholesky factorization (125× 125 tiles).

ules and with the parallelism actually used during execution, what is the maximum

number of items that were live - the memory “high-water mark" of the program. To

obtain these values we used atomic counters that tracked the number of stored items.

The results show that maximum live items number is lower than the bound identified

by folding. However, in the future, as the number of processors grows, more tasks

will run concurrently and the number of live items will increase.

Benchmark Baseline Get-Counts Folding
Nbody 1,000,005 19 20
Routing 102000 1100 2000

RicianDenoising
Image 10800 800 800
Gradient 10400 27 800
Image × Gradient 10400 26 800
ConvergenceStatus 10400 9897 800

Cholesky (6000) 20776 2352 2352

Table 3.5 : The maximum number of items live during execution.
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3.9 Conclusions

In this chapter, we introduced a new memory management approach based on

user-specified folding functions that map logical dynamic-single-assignment (DSA)

tags into dynamic-multiple-assignment (DMA) tags, while preserving semantic guar-

antees of data race freedom and determinism. Our approach is applicable to parallel

programming models in which shared data accesses are coordinated by put/get oper-

ations on tagged DSA data structures. These models include dataflow programs with

I-structures, functional subsets of parallel programs based on tuple spaces (notably,

Linda), and programs written in the Intel Concurrent Collections (CnC) coordination

language. Our conclusion, based on experimental evaluation of five CnC programs,

is that folding can offer significant memory efficiency improvements, and that folding

can handle cases that get-counts (an alternative approach to user-specified memory

management) cannot. An interesting direction for future work is automatic genera-

tion of folding functions. In many of the benchmarks that we studied, it is possible

to use static analysis of get and put function parameters to identify candidates for

folding.
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Chapter 4

Bounded Memory Scheduling of Dynamic Task
Graphs

4.1 The bounded memory scheduling problem

We propose a programming system that targets the bounded memory scheduling

(BMS) problem: Given a parallel program P with input I and a memory bound M ,

can P complete execution in the memory bound M?

We propose an inspector/executor [Salz:91 ] based model that enables dynamic

program analysis, transformation and optimization based on the computation task

graph at runtime, but before running the application. To the best of our knowl-

edge, this work is the first to consider the BMS problem in the context of dynamic

task scheduling. This problem is a more general case of the register sufficiency prob-

lem [Garey:1979 ], which has been well studied due to its importance in compiler

code generation. In the context of task scheduling, additional difficulty arises from

the fact that, in most programming systems, there is insufficient information at the

point when a task is created to decide if it should be deferred or handed to the

scheduler directly in order to maintain the memory usage within the desired bound.

Without an oracle to answer this question, the BMS problem becomes intractable.

We propose a scheduling approach in which the role of the oracle is performed by the

inspector phase of an inspector/executor [Salz:91 ] system. Our parallel program-

ming model (see Section 4.2) enables the inspector to build the computation graph
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of compliant applications without running the internals of computation steps in the

application, thereby revealing both the parent-child relationships for tasks and the

reader-writer relationships for data. With this knowledge, the inspector can identify

scheduling restrictions that lead to bounded-memory execution. These restrictions

are then enforced by the executor stage, when the application runs on a load-balancing

work-stealing scheduler. The result is a hybrid scheduling approach which obeys a

memory bound but retains the advantages of dynamic scheduling.

The main contributions of this work are:

• a heuristic algorithm for BMS based on the inspector/executor model for identi-

fying a set of schedules that fit a desired memory bound. The BMS algorithm is

run in the inspector phase and works by imposing restrictions on the executor

phase.

• an optimal algorithm for bounded memory scheduling based on integer linear

programming; as opposed to the heuristic algorithm, it is optimal in that it

ensures finding a schedule that fits the memory bound if one such schedule

exists. By proposing an efficient ILP formulation and by using the result of

the heuristic BMS to hot-start the optimal algorithm, our formulation works on

graphs that are an order of magnitude larger than those reported in previous

work on ILP-based register scheduling.

• a schedule reuse technique to amortize the cost of the BMS inspector across

multiple executions by matching new runs to previously computed schedules.

This technique works whenever the runs have the same dynamic computation

graph, even if their inputs differ and, to the best of our knowledge, is the first

to reuse inspector-executor results across application runs.
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• experimental evaluation on several benchmarks showing that the range of mem-

ory bounds and parallel performance delivered by BMS gracefully spans the

spectrum from serial to fully parallel execution.

4.2 BMS-CnC: an inspector/executor parallel programming

model

Many analyses of task-parallel programs (such as data race detection) require un-

derstanding the task-parallel structure of the computation, which is usually unknown

at compile time. As a result, many of these analyses build the task graph dynam-

ically, while the application is running. Unfortunately, this is too late for certain

optimizations, such as bounding the memory consumption of the program.

We propose the use of an inspector/executor programming model in which an

analysis (inspector) phase is performed before any tasks start executing. The inspec-

tor uncovers the task creation and data communication patterns of the application

without running the internals of computation steps; the information it uncovers can

be used for program transformations. As soon as the transformation completes, the

executor starts running the transformed program.

Specifically, we introduce BMS-CnC, a CnC variant that adds programmer-written

graph expansion functions, associated with each step collection. These functions en-

able the inspector to query the input and output items and spawned steps of each step,

without performing a complete step execution. The set of keys corresponding to items

read by the step with tag t is returned by the programmer-written get_inputs(t)

function. Similarly, get_outputs(t) and get_spawns(t) return the keys of items
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produced by the step and the tags of steps spawned by it. ∗

An additional expansion function deals with those items that are the output of

the whole CnC computation. Before spawning the first step, programmer needs to

identify items k that are read by the environment after all CnC steps have finished,

through calls to declare_get(k).

BMS-CnC uses a CnC runtime in which tasks do not start executing until all input

items are available (known as strict preconditions [Sbirlea:13 ]), which means that

tasks have only two states before termination: prescribed (expressed to the runtime by

a spawn call) and running. In the prescribed state, tasks consume memory consisting

of a function pointer and the tag tuple; during execution, they also use the stack.

Because they never block, there are only as many task stacks as there are workers.

Since task stacks are fixed-size†, the stack memory consumption is constant during

execution.

4.2.1 Programming model characteristics useful for BMS

Several features make CnC an ideal candidate for BMS:

• CnC makes it easy to separate data and computation, simplifying the implemen-

tation of the inspector-executor approach and reducing the inspector overhead.

• Assuming there are no data-races, CnC programs are deterministic [Budimlic:10

], enabling BMS schedule reuse across multiple runs (Section 4.6).

∗Note that tasks can make conditional puts and gets in BMS-CnC, the only requirement is that
these must also be expressed in the corresponding graph expansion function, so any such condition
has to be a pure function of the step tag. See subsection 4.2.2 for a discussion.

†We allocate fixed-size stacks for each task. If more stack space is needed for activation frames,
the task can create additional child tasks; if it needs more space for stack data, it can create CnC
items instead.
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• The fact that CnC uses the item abstraction for all inter-task communication

makes it easy to evaluate how much memory is used for data in the parallel

program.

• CnC tasks only wait on items, before running [Sbirlea:13 ]. This minimizes

the number of task states, making the memory accounting easier than in other

models.

• CnC steps finish without waiting for their spawned children to finish and do

not use stack variables to communicate with other tasks. This behavior is

different from spawn-sync models where parent stack cannot be reclaimed until

all children have finished. In BMS-CnC, there will only be as many task stacks

as there are worker threads (a constant amount of memory).

• The dynamic single assignment property implies that there are no anti and

output dependences between steps, which increases parallelism and gives BMS

the maximum flexibility in reordering tasks.

• CnC items are usually tiles, and steps are medium-grained (“macro-dataflow”)

keeping the graph of the computation at a manageable size and decreasing the

overhead of the inspector phase.

4.2.2 Independent control and data as a requirement for BMS

Since BMS-CnC relies on the programmer to separate the computation graph

from the internals of the computation through expansion functions, an important

question arises: Is it always possible to separate the computation structure from the

computation itself? In general, the answer is no.
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The problem can be illustrated with step_collection. get_inputs(t) in the

case when the step reads two items. If the key of the second item depends on the

value of the first item (not only on the tag of the step) then it is impossible to obtain

the key of this second item without actually executing the step that produces the first

item. This example is an instance of an application pattern called “data-dependent

gets”. A related pattern is that of “conditional gets’,’ in which the read operation on

an item is conditional on the value of a previously read item and leads to the same

issue. Similar issues happen for puts and can be worked-around by putting empty

items instead of doing conditional puts.

If the keys of items read and written and tags of steps spawned are only a function

of the current step tag, then the application has independent control and data, which

is needed to accurately model an application using BMS. If the keys and tags depend

on the values of items, we say that the application has coupled control and data.

When faced with an application with coupled control and data, one possible so-

lution is to include more of the computation itself in the graph expansion functions.

In the extreme case, by including all the computation in the expansion functions, we

would be able to obtain an accurate dynamic task graph. Unfortunately, in the worst

case, the computation would be performed twice, once for the expansion and once for

the actual execution. However, our experience is that many application contain in-

dependent control and data, thereby supporting the BMS approach. For case studies

and a discussion on the problems and benefits of independent control and data, see

Sbîrlea et al. [Sbirlea:13 ].
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4.3 Building the computation graph

The inspector builds a dynamic computation graph: items and tasks are nodes

and the producer-consumer relationships are edges. Because of the dynamic single

assignment nature of items, item nodes can only have a single producer, but may

have multiple consumer tasks. Tasks can also spawn (prescribe) other tasks and each

task has a unique parent.

The graph construction process starts from the node that models interactions

with the parts of the program that are outside of CnC. The environment-in node

produces initial items and spawns initial steps. After the computation completes, the

environment-out node reads the outputs.

The tasks spawned by the environment-in node are added to a worklist of tasks

that are expanded serially, by calling the graph expansion functions. For a single

task, the process consists of the following steps:

• Call get_inputs(t) and add edges from the node of each consumed item to

the task node.

• Call get_outputs(t) and add edges from the task node to each output item

node.

• Call get_spawns(t) and add edges from the current task to the child tasks.

Add children to the worklist.

The process finishes when all tasks have been expanded∗. The environment-out node

is added and connected to the output items of the computation (declared by using

the function item_collection.declare_get(k)) As an example, the computation

graph obtained for Cholesky factorization, is shown in Figure 4.1.

∗During the expansion process, nodes are created when they are referenced for the first time.
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(env-in)

Lkji(0,0,0)

Lkji(0,1,0)

Lkji(1,1,0)

Lkji(0,1,1)

Lkji(1,1,1)

Lkji(1,1,2)

s1|(0) Lkji(0,0,1)

k|(1)

kj|(0)

kji|(1,0)

s2|(1,0)

(env-out)

kj|(1) s1|(1)

s3|(1,1,0)

Figure 4.1 : The BMS-CnC computation graph for Cholesky factorization tiled 2×2.
Data items are represented as rectangles and Circles represent steps. Nodes are
labeled with the collection name followed by the key or tag. Item colors are assigned
by the BMS algorithm (Section 4.4).

4.4 The heuristic BMS algorithm

After generating the computation graph, the inspector attempts to find bounded

memory schedules using the heuristic BMS algorithm, which takes as input the com-

putation graph and a memory boundM . BMS outputs an augmented partial order of

tasks such that if a schedule respects the partial order, it will use at mostM memory.

Even with substantial simplification, the BMS problem is NP-hard, since the

register sufficiency problem [Garey:1979 ] which is well-known to be NP-Complete

can be reduced to BMS∗. Furthermore, the size of the computation graph is an order

of magnitude larger than the basic block length (which determines the graph size in

local register sufficiency). Thus, trying to find a heuristic solution before attempting

∗The BMS problem has additional constraints not found in the register sufficiency problem that
increase its complexity, such as items of different sizes, tasks that produce multiple items, the fact
that inputs and outputs of a task (instruction in the register sufficiency case) are live at the same
time.
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a more expensive solution is essential. We propose a best effort approach in which,

if a set of schedules that execute in less than M memory is found, the program

is executed following a dynamically chosen schedule from the set. This leads to the

following approximation of the BMS problem: Given a parallel program P with input I

and a computing system with memory size M , find an additional partial task ordering

TO such that any schedule of P that also respects TO uses at most M peak memory.

If no schedule is found, BMS returns false (even though such a schedule may still

exist).

In this initial description items are assumed to be of a fixed size and task memory

is ignored. Section 4.8 extends the algorithm to address these simplifications.

Intuitively, given a serial schedule S (i.e., a total order) of the task graph, the

BMS algorithm can test if it respects the memory bound by dividing the memory

into item-sized slots (called colors) and checking that the number of available colors

is larger than the maximum number of items live in the sequential schedule. The

task graph can then be run in parallel if items assigned to the same color have non-

overlapping lifetimes (to ensure that the memory bound is respected). This is enforced

by adding ordering edges between the consumers of the item previously assigned to

a color and the producer of the next item assigned to that color. To ensure adding

ordering edges does not introduce deadlocks, we only add ordering edges that follow

the same sequence of creation and collection as in the serial schedule S (since S is a

valid topological sort of the graph, this cannot cause cycles).

The pseudocode, shown in Algorithm 1, follows the general list scheduling pattern.

It picks a serial ordering of tasks in the main loop, lines 9 - 30 (by default we use a

breadth-first schedule). In each iteration, it extracts one task from the priority queue

of “ready to run” tasks (line 10), which is initialized with the only task ready to run
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Algorithm 1 The BMS Algorithm.
1: function BMS(G, M, α)
2: . G is the computation graph
3: . M is the desired memory bound
4: . α affects the task priority queue (see Section 4.4.1)
5: noColors←M/G.itemsize
6: freeColors← InitializeSet(noColors)
7: freeTasks← PriorityQueue(α)
8: push(freeTasks,G.env)
9: while freeTasks 6= ∅ do
10: crtTask ← Pop(freeTasks)
11: for all crtItem ∈ ProducedItems(crtTask) do
12: MarkAsProduced(crtItem)
13: color ← Pop(freeColors, crtItem)
14: if color = null then
15: return false . Failed to find BMS schedule
16: else
17: prevItem← GetStoredItem(color)
18: for prev ∈ ConsumersOf(prevItem) do
19: AddEdge(prev, crtTask)

20: for all cTask ∈ ConsumersOf(prevItem) do
21: MarkInputAvailable(cTask, crtItem)
22: if ReadyToRun(cTask) then
23: Push(freeTasks, cTask)

24: SetStoredItem(color, crtItem)

25: for all crtItem ∈ ConsumedItems(crtTask) do
26: if UnexecutedConsumers(crtItem) == 0 then
27: availableColor ← ColorOf(crtItem)
28: freeColors← freeColors ∪ availableColor
29: for all spawn ∈ SpawnedTasks(crtTask) do
30: MarkPrescribed(spawn)
31: return true . Found BMS schedule
32: end function
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at the start: the input environment node (line 8).

We propose two techniques that help the algorithm cope with the different require-

ments of the bounded memory scheduling problem. These techniques are: successive

relaxation of schedules and color assignment for minimum serialization. They are

discussed in the next sections.

Tasks become ready to run when all their input items are available and the task

has been prescribed. The output items of the current task are marked as produced

(line 12) and assigned a color. Then, the consumer tasks of each output item are

tested to see if they just became ready to run and any ready tasks are added to the

priority queue (line 23). This process finishes when all tasks have been scheduled.

To maintain an upper bound on the memory consumption of the schedule, we

use a list scheduling algorithm and apply a register allocation pass on the schedule

as we are building it. We try to color items with C registers (colors), where C ×

ITEM_SIZE = M (line 6). Instead of the widely used graph coloring allocator

[Chaitin:82, Briggs:94 ] with a worst-case space complexity of O(n2), we opted for

the more memory-efficient linear scan register allocator [Poletto:99 ].

When the algorithm visits a task, it assigns each of its output items a color from

a free color pool (line 13), which is only returned to the pool when all consumer

tasks for that item have been scheduled (line 28). Since input and output items are

simultaneously live during task execution, it is important to assign colors to output

items before collecting input items. If an item is produced and the color pool is

empty, then we consider that the schedule cannot be executed in the memory bound

available (line 15).

After finding a serial task order that fits the memory bound, we add ordering edges

between tasks, such that the lifetime of items with the same color cannot overlap. To
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do this, we need to record, for each color, the item currently stored in it, using the

SetStoredItem and GetStoredItem functions. For each color, these edges restrict

parallel schedules to follow the sequence of item allocations and de-allocations as in

the serial order chosen above; to do this ordering edges are added (line 19) starting

from each of the consumers of the item previously allocated to color C to the producer

of the current item assigned to the same color C.

One challenging problem when restricting schedules with serialization edges is

ensuring the absence of cycles in the resulting task graph, because such cycles would

mean deadlock. The edges we insert are directed only towards tasks scheduled later

in the serial schedule, so even with these additional edges, the serial schedule we build

remains a topological sort of the application graph. The existence of this topological

sort mean there are no cycles.

4.4.1 Successive relaxation of schedules

If the desired memory bound is small, it is possible that the serial schedule chosen

by BMS will not fit the memory bound. It is essential to find a heuristic that enables

us to identify a schedule which fits the memory bound and the approach must also

be fast, since the executor cannot start before the inspector finishes. Our approach,

called successive relaxation of schedules, is to sample schedules in a way that trades

parallelism for lower memory requirements. We do this by varying the ranking func-

tion used to prioritize ready to run tasks in the BMS algorithm. The ranking function

varies from the breadth-first (default) to depth first, since we found that breadth-first

schedules usually lead to more parallelism/more memory, while depth-first leads to
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less parallelism/less memory. ∗

Because the default parallel schedule is based on a breadth-first task ordering, one

possible concern is the loss of cache locality this implies. To address this concern,

recall that this ordering only affects the partial order output by the BMS algorithm

and and does not enforce a total order in which the dynamic scheduler of the executor

handles tasks.

This choice of different schedules is done by varying α (line 7) from 1 (breath-

first) to 0 (depth-first) which is then used by the priority queue comparison function

(lines 12-16) in which the available tasks are stored. If the depth first schedule (α = 0)

does not fit the bound, we abort the scheduling operation (line 8).

Algorithm 2 Successive relaxation of schedules.
1: function Schedule(G, M)
2: α← 1
3: while α 6= 0 do
4: success← BMS(G,M,α)
5: if success then
6: return true
7: α← α−∆α

8: return false
9: end function
10:
11: // Used for the task priority queue:
12: function PriorityQueue.Compare( task1, task2)
13: rank1 ← α×RankBF(task1) + (1− α)×RankDF(task1)
14: rank2 ← α×RankBF(task2) + (1− α)×RankDF(task2)
15: return rank1 − rank2
16: end function

∗Depth-first and breath-first ordering of tasks are done on a graph where items are treated as
direct edges from producer to consumer. The breadth-first ranking of a node is one larger than its
lowest ranking predecessor node. For depth-first, a queue of ready tasks is maintained and nodes are
numbered in the order in which they are removed from this queue. Nodes are added to the queue
when their predecessors have been numbered.
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4.4.2 Color assignment

The color assignment is important because it drives the insertion of serialization

edges, which in turn can affect performance: inserting too many edges increases

overhead and bad placement can decrease parallelism. Moreover, a slow coloring

heuristic delays the start of the executor stage slowing down the completion of the

execution.

Since many steps are already ordered by producer-consumer and step spawning

relationships, not all edges inserted by BMS in line 19 of Algorithm 1 actually restrict

parallelism. We call these edges transitive edges, whereas those that restrict the

parallelism are serialization edges and need to be enforced during execution. As

described below, this distinction is also important for color assignment.

How can one quantify the parallelism decrease caused by coloring? Remember

that the resulting schedule runs on a dynamic work stealing scheduler with provable

performance guarantees [Spoonhower:2009 ] as long as the parallel slack assumption

holds. This assumption holds as long as the critical path is not increased too much,

so we attempt to insert serialization edges in such a way as to not increase the critical

path.

Theorem 2. Assuming unit-length tasks and a breadth-first schedule, BMS will in-

crease the critical path length with at most the number of serialization edges it inserts.

Proof. Since tasks are processed in breadth-first order and the tail of serialization

edges is a task that has already been allocated, a serialization edge whose head task

is at level k, must start at level k − i, with i ≥ 0 thereby the edge can increase the

critical path with at most one.

Algorithm 3 shows our greedy minimum-serialization heuristic: for each item, we
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pick the color that leads to the insertion of the fewest serialization edges from steps

with breadth first level smaller than the current task. Only if no such edges exist we

consider serialization edges that start from the current breadth-first level, since that

increases the critical path. If the source of an edge that would be added by BMS is

already a predecessor of the destination, then the edge is transitive and is not counted

as a serialization.

Storing the predecessors set of a task can take up to O(n) memory; we need to

record this information for all consumers of items whose color has not been reassigned

to another item (O(M)), leading to a total of O(n×M × consumers_per_task).

Our experiments show that his approach greatly reduces the number of serial-

ization edges to insert compared to a round-robin approach, but has an associated

memory cost. In our experiments, the inspector overhead is not large enough to jus-

tify replacing the coloring heuristic, but, if needed, it can be replaced by a simple

round robin approach of allocating colors.‘

Algorithm 3 Assigns item colors.
1: function POP(freeColors, crtItem)
2: producer ← GetProducer(crtItem)
3: minColor ← null
4: minEdges← MAX_INT
5: for color ∈ freeColors do
6: prevItem← GetStoredItem(color)
7: edges← 0
8: for consum ∈ ConsumersOf(prevItem) do
9: if !IsPredecessor(consum, producer) then
10: if BFRank(prod) ≥ BFRank(consum) then
11: edges← edges+ ConsumersCount(prevItem)

12: edges← edges+ 1

13: if edges < minEdges then
14: minEdges← edges
15: minColor ← color
16: return minColor
17: end function
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Variable Name Meaning
issue[task_id ] In which cycle is task task issued?
death[item] In which cycle can item item be collected?
color[item] To which color is item item assigned?

indicators Auxiliary binary variables for disjunction support.
At most 5× NO_ITEMS 2 variables.

Table 4.1 : Variables used in the ILP formulation.

Constraint name Maximum number of constraints

1. Define time of item death NO_GETS
2. Data dependence NO_GETS
3. Color assignment 5× NO_ITEMS 2

4. Max_bandwidth NO_ITEMS
5. Earliest start time NO_TASKS
6. Latest start time NO_TASKS

Table 4.2 : Constraints used in the ILP formulation.

4.5 Optimal BMS through

integer linear programming

Heuristic BMS is fast, but offers no guarantees regarding how much memory

reduction it can achieve. If it fails to find a schedule that fits the desired memory

bound, we apply an integer linear programming formulation that guarantees finding

a schedule for any input memory bound if such a schedule exists. The challenge in

using integer linear programming is to formulate the problem in a time and memory-

efficient way, so that it can be used for large computation graphs. The formulation

and optimizations are described in Section 4.5.1. Section 4.5.2 proposes specific lower

bounds used to speed up optimal BMS. An additional performance benefit is obtained

by using the results of heuristic BMS to speed-up the optimal BMS, as shown in

Section 4.5.3.
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We propose a disjunctive formulation with variables and constraints shown in

Tables 4.1 and 4.2.

Constraints 1 to 4 are necessary for correctness, and constraints 5 and 6 are

memory/performance optimizations and may be omitted depending on the size of

the linear system. For example, constraint 5 ensures that only serial schedules are

considered, but this restriction is not needed. Adding these constraint will only

consider serial schedules, decreasing the search space, but at the cost of an increased

footprint of the linear system, so they are disabled for large input graphs.

ILP formulation attempts to find a schedule with the minimum memory bound

by minimizing the number of colors used, but interrupts the search as soon as it finds

a solution that fits the user-specified memory bound. As shown in Section 4.9, we are

able to solve graphs that are an order of magnitude larger than those in previously

published results for the problem of minimum register scheduling.

4.5.1 Optimization of color assignment constraints

We focused our optimization effort on color assignment constraints because they

represent a large majority of the total number of constraints. Color assignment con-

straints enforce that two items assigned to the same color cannot be live at the same

time and could be expressed naively, as the following if-statement:

if color[item1] == color[item2] then

issue[producer[item1]]>death[item2] or

issue[producer[item2]]>death[item1]

The integer linear programming encoding of this if-statement is done by replacing the

if-condition with two disjuncts:
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color[item1] < color[item2] or

color[item1] > color[item2]

We then transform the if statement if A then B into a disjunction Ā or B.

Then, we apply the technique of using boolean indicator variables (named a,b.c,d)

and an additional constraint to represent disjunctions [Williams:2013 ], obtaining

the following equations, in which M and N are big constants:



color [item1 ]− color [item2 ] + M × a ≤ M − 1

color [item2 ]− color [item1 ] + M × b ≤ M − 1

death[item1 ]− issue[producer [item2 ]] + N × c ≤ N − 1

death[item2 ]− issue[producer [item1 ]] + N × d ≤ N − 1

a+ b+ c+ d ≥ 1

This set of constraints is correct, but inefficient, adding 4 variables and 5 constraints

for each pair of items. Decreasing the number of constraints and variables added is

essential for efficient execution. To do this, we analyze the possible relations of the

lifetime of items as shown in Figure 4.2. For items that must-overlap, we can elide the

third and fourth constraints and corresponding variables. For items that may-overlap

we elide either the third or fourth constraints if there is a path as in Figure 4.2c. For

items that cannot overlap, we elide all constraints and associated indicator variables.

Another constraint that can be optimized is the one that defines the time of death

(constraint number 2). These constraints restrict the time of death of each item

to happen after all the consumers of that item have been issued. In some cases,

consumers of the item are ordered by other data dependence edges, so we can omit

the time of death constraints corresponding to all but the last consumer.
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(a) Item lifetimes must overlap. (b) Item lifetimes cannot over-
lap.

(c) Item lifetimes may overlap,
but one item must be created
first.

Figure 4.2 : Several item patterns enable more efficient encoding of the color assign-
ment constraint. The dotted edges are paths in the graph that enforce the must-
overlap, cannot-overlap and may-overlap relations.

4.5.2 Tight lower bounds to speed up ILP BMS

Often, the tightest possible schedule is found by heuristic BMS, but the ILP

solver takes a long time to prove its optimality since it needs to search through many

schedules for a possibly better solution. Adding tight lower bounds on the minimum

memory possible is important, since the search stops if the heuristic BMS solution

equals the lower bound. We propose using two lower bounds, each of which works

best for a different type of graphs.

The first lower bound is the memory requirement of the step with the largest

number of inputs and outputs. In some cases, this step is the environment-out node

and we can improve the bound further by using the following observation: after all

but one of the output items are produced, in order to produce the last item, the inputs

from which this last item is computed must also be live, and included in the lower

bound. For Cholesky factorization, for example, this bound is equal to the minimum

memory footprint of the application.

The second bound we propose is useful for applications where, even though each

step requires a modest amount of memory, the total footprint is large. This pattern
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occurs, for example, in divide-and-conquer applications where the memory pressure

is proportional to the height of the graph. To handle these cases, we build a tree that

is subsumed by the computation graph (the tree identification is done by ignoring all

but one of the edges that connect an item to its consumers), and use the Strahler

number∗ of the tree as a lower bound. For applications such as merge sort, this

happens to be the minimum memory footprint of the application.

4.5.3 Hot start ILP: Using heuristic BMS

to speed up ILP BMS

To decrease the time and memory costs associated with ILP, we combine linear

programming with the heuristic approach presented in Section 4.4. Since the optimal

approach is only used when the heuristic algorithm does not find a schedule that

fits the desired memory bound, this means that the minimum footprint schedule

found by the heuristic can be used as initial solution for the the ILP solver. If the

heuristic already found the minimum footprint possible, but the desired footprint

is smaller, the ILP will need to confirm the lack of better solutions by solving the

linear programming relaxation and checking that the objective value matches the one

provided by the heuristic. In this case, using the initial solution, the solver will finish

early with the optimal solution being the heuristic one.

If the heuristic does not find the minimum footprint possible, its resulting schedule

is still used by the ILP solver in the branch and cut stage, since the existence of a

close-to-optimal solution helps to avoid the exploration of areas of the search space

that can only offer solutions with worse memory bounds.

∗The Strahler number [Flajolet:1979 ] is the minimum number of registers required to evaluate
an expression tree and can be computed in linear time.
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4.6 Schedule reuse

Traditional inspector/executor systems amortize the inspection cost by reusing

the inspector results, for example by executing multiple times a loop that has been

inspected once. Since the BMS executor runs only once, we amortize the inspector

cost across multiple executions of the application by caching the inspector results. To

the best of our knowledge, our approach is the first to reuse inspector-executor results

across different runs of an application. The proposed approach can be applied for even

if the input parameters differ between runs with the same desired memory bound,

as long as the computation graph structure remains unchanged. This requirement is

mitigated our model’s ability to express applications as serial sequences of parallel

kernels that are modeled independently as separate BMS problems. Because schedule

reuse is performed at the kernel granularity instead of the application granularity, as

long as any kernel has the same computation graph, then that kernel’s schedule can

be reused.

Note that having a compact representation of the computation graph and of the

inspector output is critical for efficiency of schedule reuse. A fast matching operation

of the current computation graph to the graph of past executions is also key to making

the schedule reuse efficient, so we focused our efforts on improving these three aspects.

To determine if the BMS schedule of a previous run fits the current one, one

option is to generate the computation graph and compare it with the graph of the

previous executions; this can be costly in both time and memory. Instead, we use

only a small root set of graph edges and vertices that uniquely identifies the graph∗.

This root set contains two types of edges. First, it contains the edges whose tail

∗This assumes the determinacy of the control flow (step tags) in the program, since BMS-CnC
can only express this kind of programs.
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vertex is the environment-in node. These edges lead to item keys produced by the

environment and the tags of the tasks spawned by the environment which uniquely

characterize all the items and tasks that will be spawned during the computation.

Second, the root set also includes edges whose tail is the environment-out node. The

tail of these edges are the keys of items read after the computation completes (i.e.

the application result); they affect the minimum footprint of the execution because,

for the same computation graph, more output items lead to larger minimum memory

requirements.

The schedule reuse works as follows. First, we identify the root set. If it does not

match with the root set of a previous execution, we expand the whole computation

graph, run the BMS algorithm and save the resulting (serialization edges , root set)

pair on disk, in a schedule library, along with a MD5 hash of the root set. For

subsequent runs of the application, the inspector will compare the MD5 hashes of the

current root set with the root sets from the schedule library. If it finds a matching

root set, the inspector loads the serialization edges, avoiding the graph expansion and

BMS computation. If there is no match, the only additional work performed is the

hashing, since the root set expansion is done anyway during the graph expansion.

Because the root set consists of keys and tags only (no data), matching the root

set to the root set of a previous program is fast. The schedule loading consists of

reading the set of serialization edges from the schedule library.

As an example, take Cholesky factorization, whose 2× 2 tiling is shown in Figure

4.1. The root set consists of seven edges (four starting from the env-in node and

three ending in the env-out node). In general, for Cholesky factorization tiled k × k,

the root set will have an order of k2/2 edges. Since each vertex is identified by 3

integers, the whole root set will have 3× k2 integers. This is much smaller than the
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input matrix which is also read from disk. Since the computation graph depends on

the matrix size and tile size only and the tile size is usually tuned for the machine the

serialization edges can be reused for any input matrix of the same size. Similarly, for

image processing applications, the input is usually the same size and the schedules

should be reusable all the time.

In applications with irregular graphs, such as the sparse Cholesky factorization as

implemented in HSL [HSL:2013 ], the root set consists of the keys of non-zero tiles,

which is still smaller than the sparse input matrix. The schedule cache consists of

the corresponding serialization edges, whose number is inversely proportional to the

memory bound.

To conclude, the schedule reuse approach relies on the combination of root sets,

hashing and the intrinsic compactness of serialization edges to amortize the inspector

overhead across multiple runs of an application.

4.7 Other features

4.7.1 Automatic garbage collection

Our graph exploration enables automatic memory collection for items that would

otherwise need manual collection techniques. Such items are also challenging to collect

in traditional programming models because they are pointed to by other objects∗,

so a classic garbage collector would not be able to collect them. The mechanism

regularly used to collect items is get-counts [Sbirlea:12 ], a parameter provided by

the programmer that specifies the number times the item will be read. Identifying the

∗We want to collect when objects will not be used in the future, as opposed to when objects are
not referenced anymore.
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get-count requires global knowledge about the application, which inhibits modularity,

is error-prone and difficult.

The computation graph contains all information required to automatically com-

pute get-counts for items, making item collection a completely automatic task. The

same technique can be applied to programs written in traditional programming lan-

guages (and follow the restrictions described in Section 4.2) to collect objects which

are still referenced, but will never be used (cleaning up the memory leaks).

4.7.2 Fast debugging of concurrency bugs

Our inspector/executor system accurately identifies all cases of the following prob-

lems that arise because of programmer error. We include in parenthesis the name used

for these problems in traditional programming models:

• dynamic single assignment violations (data-race)

• cyclic dependence between steps (deadlock)

• waiting for an item that is never produced (blocked thread)

• producing an item that is never read (unused variable)

• tasks that do not produce items (dead tasks) ∗

Finding concurrency bugs traditionally involves being able to reproduce the par-

allel control flow that lead to them happening, which in itself is a time consuming

step. Traditional tools that identify these problems commonly serialize the applica-

tion [Feng:97 ] and add space overhead linear in the size of the application footprint

∗Out tool helped discover an instance of this bug that had existed for two years in the Intel CnC
implementation of Cholesky.
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and in the number of parallel threads [Flanagan:09 ]. Our approach separates the

testing phase from the execution phase and outputs the results before the application

reaches the executor stage. Each of the bugs, with the exception of deadlock freedom,

are identified during a linear pass through the application graph. For deadlocks, we

simply test for any tasks not scheduled after the BMS algorithm that have not been

reported as other types of bugs. A cycle detection algorithm for directed graphs can

identify the complete deadlock cycle.

4.8 BMS Extensions

In this section we describe two extensions to the BMS algorithm: the first one

adds support for different item sizes and the second one accounts for memory used

by waiting and executing tasks.

4.8.1 Supporting multiple item sizes

To support items of different sizes, one can use the approach of allowing items

to be allocated at any memory location. This results in memory fragmentation that

requires a global compaction phase to reclaim the free space. The compaction can

introduce a barrier during execution of the parallel program, thereby increasing the

computation’s critical path.

Instead, we observe that applications often have only a few classes of items, where

all items in a class have the same size (for example the size of the input matrix, the

size of a tile)∗. Memory is initially divided into slots the size of the largest items,

each of which can be split into multiple sub-slots suitable for smaller items. When all

∗A similar approach is used by memory allocators of operating systems which have pools of
memory objects of different sizes.
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sub-slots become unused, they are merged into a larger slot. We refer to the colors

used for items of the largest size as root colors.

Algorithm 4 shows how colors are assigned to items of different sizes. The Pop

(freeColors) function from the BMS algorithm is replaced by a PopFromClass(

freeColors, crtItem) function which takes the item that needs space as an ad-

ditional parameter. The freeColors parameter now contains only free root colors.

The PopFromClass first identifies the class (size) of the item (line 3) and looks for

an available color in the list of free colors that is specific to that item class (line 5).

If a color is available, we return it (line 21); otherwise, we have to split a root color

freeColors into sub-colors of size that matches the current item. The number of

new colors is determined in line 12 and they are added to the list of free colors for

that class (line 12). Note that, for each new color, we need to find (line 11) and

propagate (line 16) the correct consumers for the item which was last stored in it —

this information is needed when inserting ordering edges.

To prevent fragmentation, BMS reassembles sub-colors into root colors. This

happens when all sub-colors that are splinters of a root color become available again;

we use the function AddFreeColorToClass (line 24), which replaces the union

operation on line 28 in the BMS algorithm. When allocating a new item to a reclaimed

root color, we need to ensure that the lifetimes of the items previously stored in the

sub-colors do not overlap with the item later assigned to the root color. This is done

by adding ordering edges, but the previously stored items must be recorded by the

SetStoredItem and GetStoredItem functions which work with sets of items

instead of single items.
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Algorithm 4 BMS Extension for items of different sizes.
1: // This function assigns a (sub)color for item crtItem
2: function PopFromClass(freeColors, crtItem)
3: crtClass← GetClass(crtItem)
4: freeSubcolors← GetFreeColors(crtClass)
5: color ← Pop(freeSubcolors, crtItem)
6: if color = null then
7: // Call Pop function from the BMS algorithm
8: pageColor ← Pop(freeColors, crtItem)
9: if pageColor 6= null then
10: prevIt← GetStoredItem(pageColor)
11: prevConsumers← ConsumersOf(prevItem)
12: noSubcolors← rootSize/class.itemSize
13: for i = 1→ noSubcolors do
14: newColor ← newcolor()
15: PushToClass(freeSubcolors, newColor)
16: SetStoredItem(newColor, crtItem)

17: color ← Pop(G, freeColorsInClass, crtItem)

18: if color 6= null then
19: rootColor ← GetRootColor(color)
20: rootColor.uses← rootColor.uses+ 1

21: return color
22: end function
23: // This function reclaims a (sub)color
24: function AddFreeColorToClass(

freeColors, itemColor)
25: crtClass← GetClass(itemColor)
26: rootColor ← GetRootColor(color)
27: rootColor.uses← rootColor.uses− 1
28: if rootColor.uses = 0 then
29: AddFreeColor(freeColors, rootColor)
30: itemsSet← SubColorsOf(rootColor)
31: SetStoredItem(rootColor, itemsSet)

32: end function
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4.8.2 Bounding task memory

In BMS-CnC, tasks have two states: prescribed or executing. This section looks at

the memory taken up by tasks. Executing tasks use the stacks of the worker threads

executing them, so they do not consume additional memory beyond the worker stack

space allocated at the start of program execution. BMS can consider worker thread

memory starting with a memory bound parameter M1 that is lower than the total

memory M in the system: M1 = M − no_workers ∗ worker_stack_size. Note

that since BMS-CnC tasks have fixed-size stacks, large levels of recursion can only be

performed by spawning new tasks.

Prescribed tasks are the tasks that have been spawned but have not yet started

running. In our implementation, these waiting tasks consist only of the task tag

and the task function pointer, so their size can be computed by the BMS scheduler.

This memory is needed from the moment tasks are created by a spawn operation

to the moment the task finishes so they are similar to items whose lifetime extends

between the moment they are put up to the moment their last consumer task finishes

execution. The same mechanism used to handle items of different sizes (described in

Section 4.8.1) also handles prescribed tasks.

4.9 Evaluation

4.9.1 Implementation and experimental setup

The BMS-CnC system was implemented on top of Qt-CnC [Sbirlea:13 ], an open-

source CnC implementation∗ based on the Qthreads task library [Wheeler:08 ]. The

evaluation was performed on an Intel Xeon E7330 system with 32GB RAM and 16

∗https://code.google.com/p/qthreads/wiki/qtCnC

https://code.google.com/p/qthreads/wiki/qtCnC
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Figure 4.3 : BMS-CnC executor run-time (the red line) as a function of memory
bound for each of the benchmarks. BMS-CnC is able to enforce memory bounds
down to the serial execution and even lower for Gauss-Jordan and STG 59. OpenMP
results included where available.

cores. We instrumented the runtime to keep track of the item memory allocations

and item deallocations performed. Because CnC is implicitly parallel and there is

no separate CnC serial implementation, we obtain serial execution times by using

Qt-CnC (not BMS-CnC) with a single worker thread.

For each application, we present the BMS executor time as a function of the

memory bound (see Figure 4.3). To evaluate the performance of BMS, we note that

the minimum memory bound for which BMS finds a schedule should at least match

the serial execution memory. When the bound is large enough to fit a normal (CnC)

parallel execution, BMS should not lead to performance degradation.

One possible concern related to the bounded memory scheduling algorithm is if
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accurately enforced a desired memory bound, unnecessarily decreasing the memory

footprint may lead to a corresponding decrease in parallelism. To address this concern,

we present Figure 4.4 which shows the actual peak memory encountered as a function

of the memory bound. On this graph, the peak memory for single-threaded CnC and

parallel CnC are horizontal lines, since they are are constant. Because both axes

have the same scale and origin points, the performance of the BMS algorithm can be

assessed visually by checking that the peak BMS memory varies between the peak

memory corresponding to serial and parallel executions - this ensures the range of

bounds imposed by BMS is good. To estimate how accurate is the BMS bound, one

can check that the peak memory series follows the graph diagonal (x=y) between the

serial and parallel execution series. Having a peak memory smaller than the memory

bound is not necessarily a weakness of the algorithm; as long as the execution time

for that memory bound does not suffer. A good BMS algorithm should enable us

to get a reduction in memory footprint and only showing a slowdown if the memory

bound is tight; this criteria can be analyzed by looking at the execution time graph

and at the memory footprint graph for the same value of the memory bound.

4.9.2 Benchmarks

Applications are usually implemented as sequences of parallel computation kernels

invoked with different parameters. To maximize the benefits of schedule reuse for such

applications, it makes sense to model each parallel kernel independently as a BMS

problem, since this enables schedule reuse at the kernel granularity instead of the

application granularity. For this reason the evaluation includes several computational

kernels instead of fewer large applications. By themselves, the kernels reach footprints

which can be satisfied without BMS on today’s machines; they will require BMS when
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Figure 4.4 : BMS-CnC actual peak memory as a function of memory bound for each
of the benchmarks.
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Benchmark Type Graph
vertices

Input
parameters

Schedule
reuse
conditions

Smith
Water-
man

biomedical 5002

2 sequences of
70000 length
and tile size
(2000× 2000)

same tile sizes
&
same sequence
sizes

Blackscholes financial 6730
number of options
(25.6M)
and option data

same number of
options

Cholesky dense algebra 41558

input matrix
(12000× 12000)
and tile size
(125× 125)

same tile sizes
& same matrix
sizes

Gauss-Jordan dense algebra 8450

input matrix
(4096× 4096)
and tile size
(256× 256)

same tile sizes
&
same matrix
sizes

Merge Sort recursive 3582 (225 integers) same input ar-
ray sizes

STG
sparse task graph 198 graph shape same graph

shape
fpppp task graph 647 graph shape same graph

shape
58, 59 task graph 5402 graph shape same graph

shape

Table 4.3 : Benchmarks, their inputs, computation graph sizes and the schedule reuse
conditions. The corresponding results are shown in Figure 4.3.
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used in the context of larger applications containing multiple kernels as well as on

future many-core systems with smaller amounts of available memory per core. Table

4.3 contains a short summary of the benchmarks, their input parameters, computation

graph size and conditions for schedule reuse.

Smith-Waterman is a dense linear algebra kernel from the Intel CnC distribu-

tion. The results in Figure 4.3a show that BMS gracefully spans the range between

large memory-high performance to low memory with lower performance.

The results for Blackscholes (in Figure 4.3b) show that BMS-CnC is able to con-

trol the peak memory from the largest values obtained with CnC parallel execution,

to the smallest (serial execution).

The Cholesky factorization (Figure 4.3c) shows BMS enables a trade-off sim-

ilar to the one in Smith-Waterman, between large memory consumption and high

performance.

For Gauss-Jordan elimination (see Figure 4.3d), BMS-CnC is able to enforce a

footprint 18% lower than the serial footprint of CnC, with minimal loss of parallelism.

This is the result of the abundant parallelism, as well as good coloring heuristics.

For MergeSort (Figure 4.3e) we notice an unusual trend when the desired mem-

ory bound is larger than 15MB - the execution time of BMS-CnC in these cases

becomes smaller than the CnC parallel execution, even though the actual program

footprint is the same. We believe that the performance benefit comes from improved

cache locality in the BMS schedules.

The Standard Task Graph (STG) Set [Takao:02 ] provides a set of random

task graphs from which we picked the largest (STG 59), shown in Figure 4.3f. Since

STG graphs do not contain any work, we used a fixed amount of computation for

each task and a fixed size for each item. In both cases, there is sufficient parallelism
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Benchmark
BMS-CnC memory (%)

when Speedup is
90% 50% 10%

Smith-Waterman 48.8 10.6 0.0
Blackscholes 93.2 10.8 1.4
Cholesky 84.6 46.2 0.0
Gauss-Jordan 0.0 0.0 0.0
Merge Sort 12.0 0.9 0.0
STG 58 12.0 0.0 0.0
STG 59 22.2 0.0 0.0

Table 4.4 : Memory consumption for BMS-CnC when it has 90%, 50% and 10% of
the parallel CnC speedup. Values are percentages of the additional memory required
by parallel execution - 0% means no increase in footprint, 100 % means maximum
increase (same footprint as parallel execution).

to hide the BMS constraints up to the boundary condition where BMS cannot find

a valid schedule. There is no loss of performance from using BMS with the tightest

memory bound, which is lower than serial execution memory. For these graphs, BMS

is able to offer the best of both worlds - the footprint of serial execution with the

performance of parallel execution.

In summary, BMS shows the ability to control the trade-off between parallelism

and memory usage. Furthermore, this trade-off is not linear — there is a ”sweet

spot” in the memory bound space where BMS enables most of the performance of

the unbounded memory parallel execution with only a small increase in memory

relative to the serial execution. To further illustrate this, Table 4.4, shows the memory

requirements of BMS-CnC when its speedup is 90%, 50% and 10% of the parallel CnC

speedup. The values are percentages of the memory difference between parallel and

serial executions. For example, 0% means the BMS-CnC program does not require

more memory than serial execution, while 100% would mean that the memory use

matches the memory utilization of parallel execution (maximum memory increase).
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4.9.3 OpenMP comparison

OpenMP results have been included in Figure 4.3 where external implementations

of the same benchmarks were available. One interesting pattern is that the OpenMP

memory footprint does not vary between the serial and parallel executions because

OpenMP encourages programmers to parallelize computation loops while the mem-

ory allocation and de-allocation are usually performed outside parallel regions. In

BMS-CnC, item lifetime is minimized by allocating items only when needed and by

automatically collecting them after their last use.For Smith-Waterman and Blacksc-

holes, BMS-CnC offers similar performance with OpenMP while enabling considerable

memory savings. For Blackscholes, for example, OpenMP has a performance advan-

tage of under 10%, but requires twice the memory of CnC, since it pre-allocates all

the memory to reduce overhead.

Because the OpenMP implementation of Cholesky exploits less parallelism (barrier

style versus dataflow) so so it has a lower memory footprint and lower performance

than CnC.

4.9.4 Minimum memory evaluation

To identify how close the BMS heuristic approach can be to the absolute minimum

memory footprint possible, we fed the ILP formulation of the problem to the com-

mercial Gurobi solver which finds find the minimum possible footprint. The results

are shown in Table 4.5. For small and medium problem sizes, both the ILP and BMS

approaches can enforce the minimum memory footprint possible, but there are some

examples, such as Gauss Jordan, where ILP can obtain a better bound that heuristic

BMS.

On larger graphs, the ILP solver may run out of memory or not finish before the
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Benchmark Input Graph
Nodes

Min. mem. Bounds
(MB) (MB)

B
M
S

IL
P

S
tr
ah

le
r

L
oc
al

Smith
Waterman

small 52 26.6 26.6 15.2 15.2
med 100 34.2 *34.2 19.0 15.2
large 2452 141.0 *141.0 22.8 15.2

Cholesky small 315 0.6 0.6 0.1 0.6
med 1907 8.2 8.2 0.2 8.2
large 4555 403.8 NA 1.4 403.8

Blackscholes
small 402 63.2 63.2 1.1 63.2
med 802 125.6 125.6 1.2 125.6
large 1602 250.4 250.4 1.2 250.4

Gauss Jordan
small 22 62.5 62.5 25.0 62.5
med 65 150.0 125.0 37.5 125.0
large 146 250.0 *225.0 50.0 212.5

Merge Sort
small 222 0.9 0.9 0.9 0.4
med 7166 1.5 1.5 1.5 0.4
large 14334 1.6 1.6 1.6 0.4

STG
sparse 198 17.6 14.9 1.2 14.9
fpppp 647 57.4 *57.4 1.2 24.9

59 5406 468.0 NA 1.8 83.8

Table 4.5 : The minimum memory with heuristic BMS and with ILP and the lower
bounds fed to ILP. Cells are marked with * when ILP timeouts.

5 hour cutoff. This happens in cases where the two lower bounds are much smaller

than the actual feasible minimum memory. We analytically discovered that in 3 out

of 4 cases when this happened, the ILP had already found the minimum memory

schedule, but had not proved its optimality before running out of time. BMS is

capable of finding a schedule with minimum bound in all but 4 out of the 18 cases.
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Benchmark Input Graph Time (s)
nodes BMS ILP hot ILP

Smith
Waterman

small 52 0.2 1.0 3.6
med 100 0.7 148 189.51
large 2452 3.59 NA NA

Cholesky small 315 0.0 0.7 0.4
med 1907 0.1 7920 281
large 4555 3.6 NA NA

Blackscholes
small 402 0.1 5403 5
med 802 0.1 NA 16
large 1602 250.4 NA 1189

Gauss
Jordan

small 22 0.0 0.0 0.0
med 65 0.1 155 44
large 146 0.1 NA NA

Merge Sort
small 222 0.1 40 10
med 7166 4.1 336 18.61
large 14334 8.7 NA 28.22

STG
sparse 198 1.1 200 37
fppp 647 2.5 NA NA
59 5406 69.4 NA NA

Table 4.6 : Performance evaluation of heuristic BMS and ILP with and without hot
start. Even with hot start, the ILP approach cannot handle large graphs.
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4.9.5 Runtime comparison of ILP and heuristic BMS

Table 4.6 shows the run time of the BMS inspector. The ILP approach can handle

graphs of up to tens of thousands of vertices, but there are some examples where it

either runs out of memory or reaches the 5 hour timeout. However, the hot start

optimization in which we provide the heuristic BMS schedule as initial solution for

the ILP solver along with the ILP formulation, leads to a considerable speedup and in

some cases, such as Blackscholes for medium and large inputs, this avoids a timeout.

Heuristic BMS is fast for all graph sizes, but for tight bounds may need to be followed

by the hot ILP execution if it cannot find a suitable schedule.

The most closely related previously published results are for finding the minimum

numbers of registers needed to execute instruction graphs whose size is in general

much smaller than the computation graph sizes. The only public graph and ILP

solving time we could find is from the work of Chang et al. [Chang:97 ] and has only

12 vertices. On this graph, their ILP formulation takes one minute (on their 1997

machine), while both the heuristic BMS and ILP BMS finish in under a second (on

our system).

4.9.6 Inspector phase time evaluation

The inspector phase consists of building the computation graph and running the

BMS algorithm. Schedule caching removes the overhead associated with both these

stages and adds some overhead of its own (for hashing the schedules and loading

them from disk). Table 4.7 shows the execution time of the inspector relative to

the serial execution. For the BMS runtime we include the smallest and largest time

encountered. The reason for this variation is that BMS may take more time for tighter

bounds, since the first schedules attempted will fail to observe the memory bound.
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Benchmark Graph
creation(%)

BMS Algorithm
Min(%) Max(%)

Smith-Waterman 0.5 17.8 98.1
Blackscholes 3.3 2.1 29.0
Cholesky 2.9 3.8 99.4
Gauss Jordan 20.3 6.6 94.0
Merge Sort 19.8 20.0 310.2
STG 58 0.5 1.0 109.2
STG 59 0.1 0.7 42.5

Table 4.7 : Timing results for the inspector (graph creation and BMS scheduling), as
percentages of the serial execution time.

From the table, we see that graph construction can take up to 20% of execution time

and the maximum time needed to run the BMS algorithm can be 3× larger than

the serial execution time. Schedule caching is therefore valuable in amortizing the

potentially large overhead of the inspector.

4.9.7 Large memory experiment

For systems without support for paging to disk, BMS enables the execution of pro-

grams that would otherwise crash attempting to use more than the available memory,

but how does the paging mechanism affect the BMS results?

We analyze application behavior on workloads that require disk paging by using

a larger input size for the Smith Waterman application. The results in Figure 4.5

include the BMS performance for 270, 280 and 310 tiles of the same size, and the

graphs show interesting changes relative to Figure 4.3a. For very tight memory

bounds, the BMS-CnC performance is close to serial, because sequential execution is

needed to reach the desired memory bounds. As the bound gets larger, performance

increases due to more parallelism, until it reaches a performance sweet-spot. This

sweet-spot is generally close to the physical memory size (32GB), but its exact location
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depends on how close the enforced maximum memory bound matches the actual

memory used at run-time.

Increasing the memory bound even more leads to a performance degradation be-

cause disk swapping starts being used. The last part of the graph shows constant

time because the program has already reached its parallel footprint and giving a larger

bound does not affect the schedule any more. The sweet-spot enabled by BMS leads

to 39% faster execution compared to parallel CnC, showing that BMS can increase

performance and lower the memory footprint of applications with large memory re-

quirements.

Comparing the results for the three runs which use inputs of increasingly large

sizes (270, 280 and 310 input tiles), we notice that all three have similar curves.

Interestingly, the fraction of memory saved by using the BMS sweet-spot instead of

parallel execution increases with the input size. The memory savings reach 34% for

310 tiles.

4.10 Conclusion

This chapter proposes a new scheduling technique to find memory-efficient paral-

lel schedules for programs expressed as dynamic task graphs. Our technique, called

bounded memory scheduling, enforces user-specified memory bounds by restricting

schedules and trading off parallelism when necessary. The evaluation on several

benchmarks illustrates its ability to accurately control the memory footprint while

exploiting the parallelism allowed by the memory bound.

To make use of an inspector/executor approach in the context of dynamic task

scheduling, we presented an efficient schedule reuse mechanism. This technique amor-

tizes the inspector overhead by reusing schedules across executions of the application
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Figure 4.5 : Smith-Waterman results on large inputs (270, 280 and 310 tiles). BMS
enables the use of a sweet-spot with good performance and low footprint at the
same time because it avoids swapping. The physical memory size is 32 GB and the
computation graph for 310 input tiles has 192,202 nodes.
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that exhibit the same computation graph — even when the input parameters change.
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Chapter 5

Automatic Selection of Data and Task Distributions
for Tagged Dynamic Task Graphs

5.1 Introduction

Distributed systems are increasingly common, but writing programs for them is

still notoriously challenging [Sookoor:09, Conway:14, Murphy:06 ]. Much of this

difficulty arises because programmers are required to manually manage the data parti-

tioning and communication which are known to the community as critical performance

factors: “for distributed-memory multicomputers, the quality of data partitioning is

crucial to obtaining high performance” [Palermo:01 ].

Automating data and computation distribution is important for several reasons.

First, it considerably eases programming, by abstracting away these low level details

which developers are rarely required to consider when programming the more common

shared-memory systems. Second, it improves code maintainability because otherwise,

changes to program code may require corresponding changes to the data distribution.

Third, code modularity makes it difficult to identify the best distribution, since it

depends on how the module is used in other applications. Finally, portability is

difficult to achieve with hand-written data distribution because different hardware

platforms require the use of different data distributions.

Mainstream parallel programming environments provide little or no help with se-

lection of data distribution functions. While many projects have proposed automatic
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partitioning and data distribution, these approaches have not yet reached mainstream

programming. One possible reason for this is that compiler-based approaches are not a

good fit for the dynamic nature in which many applications are written [Wholey:92,

Reddy:14 ]. In this chapter, we propose an automated approach for run-time data

and task distribution. Compared to traditional approaches, our system targets task-

based applications which lack the regularity of traditional distributed-memory algo-

rithms and instead supports dynamic task-based applications. Instead of using heuris-

tics to determine a possibly suboptimal data distributions, we investigate methods

to determine optimal distributions (under certain constraints) through integer linear

programming; this approach is particularly attractive because the performance of in-

teger solvers has increased by an order of magnitude in just the last decade [Bixby:13

].

Our work described in Chapter 4 on the use of inspector/executor (I/E) for dy-

namic task graphs opens up new possibilities for program optimization in the shared-

memory context. On the other hand, distributed systems will be increasingly impor-

tant in the future, since they allow scaling to much larger input sizes. Extending the

techniques presented to support distributed execution is attractive because it could

have profound effects on what input sizes are solvable or are not solvable. This chapter

focuses on enabling the application of I/E in a distributed memory context through

flexible reuse of the results and shows that I/E-based auto-generation of distribution

functions leads to results that are on par with or better than hand-coded distribution

functions.

Our technique automatically identifies optimal data distribution and task place-

ment for distributed programs based on the data access patterns obtained from the

dynamic computation graph of the application. The problem is formulated as an in-
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teger linear programming model and fed to a state-of-the-art solver. The optimality

of the distribution is relative to the computational model described in Section 5.2 and

to the parametrized distribution function presented in Section 5.3.

In distributed execution, the dynamic computation graph can grow to sizes for

which the inspection cost becomes unreasonable. Traditionally, this overhead would

be amortized by only inspecting code in loops, so amortization happens by running

multiple iterations, but this is not a frequent case when applying I/E for inspecting

task graphs rather than loops. A major contribution of this work is an approach to

enable amortization of the inspector cost which we accomplish through two technique.

First, we limit the inspection overhead by only inspecting runs with small to

medium scale inputs. Even on small inputs, the problem of finding optimal distri-

bution functions with linear programming has an exceedingly large cost, so we show

an formulation of this problem that is polynomial in the number of processors used,

rather than in the size of the dynamic computation graph of the application. This has

the advantage that the upper bound is constant rather than growing with program

input size, as described in Section 5.4.

Second, we amortize the inspection cost by reusing the resulting distribution func-

tions on graphs of large scale. Section 5.5 discusses our strategy for distribution

function reuse.

Experimental results discussed in Section 5.6 show that the runtime performance

loss incurred by not generating the placement on the same dynamic graph used when

executing the application is small.
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5.1.1 Using dataflow for automatic task and data distribution

The execution model used in this work is based on macro-dataflow. It is an exten-

sion of Concurrent Collections [Budimlic:10 ] which uses a work stealing [Blumofe:99

] task scheduler inside each node of a distributed system, but tasks are assigned to

individual nodes and cannot migrate or be stolen across nodes.

Our programming model’s use of implicit data communication offers a critical

advantage in writing distributed software because it enables the separation between

the distribution function that governs task and data placement on one hand and the

application code on the other. As a result, each algorithm does not need to have

hard-coded support for a number of specified distribution patterns, but can instead

focus only on the computation to be performed and leaves the choice of distribu-

tion to the runtime. This desirable feature of the model is known as decomposition

independence [Dongarra:92 ].

Our dataflow model (as described in Section 4.2) is an especially good match for

distributed execution because it enables transparent overlapping of computation and

communication. As soon as each new data item is created, the runtime start copying

it to the nodes on which it will be consumed. The dataflow nature of the model is

key because it enables us to inspect the computation and find the consumers of each

item without performing the computation of the tasks themselves. It is these data

transfers that enable communication-computation overlap because copying happens

in parallel with the execution of other tasks. They start eagerly, so that consumer

tasks become ready to run ∗ as soon as their inputs are available. This eager approach

minimizes the number of tasks delayed because their input data needs to be requested

and fetched from another node. Compared to lazy transfers in which tasks have to

∗The moment they start running is controlled by the work-stealing algorithm.
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explicitly request their data to be brought in, this approach also avoids sending request

messages and the associated latency.

While eager data transfers have performance advantages, their use may increase

the memory pressure - a problem for which we already developed a solution through

BMS (see Chapter 4). However, we did not find this to be a problem in practice.

5.1.2 The need for automatic selection of data and task distributions

Leaving the problem of finding good distributions in the hands of the programmers

is not a general solution because of the large search space involved. An even bigger

problem is that there may not exist a single distribution that performs well across

all runtime parameters. Figure 5.1 shows results∗ on how the relative performance of

various distributions changes when using two different inputs for the same application

(Cholesky factorization†): the best distribution on one input performs the worst on

the other. Similarly, Figure 5.2 illustrates how the performance of a distribution

depends critically on the number of nodes on which the program is executed.

These figures show how the best distribution changes drastically with the input

size and the number of nodes. Unless we expect the programmer to experimentally

evaluate a large combination of these parameters, the use of hand–picked distribu-

tions is unfeasible. Instead, we propose a system that automatically finds the best

distribution function for task-based programs, taking into account the dynamic graph

of the application and the number of nodes on which it runs.

The CnC model allows the mapping of tasks and data to nodes to be done at

runtime through arbitrary programmer-written distribution functions. Its ability to

∗These results were obtained by us, using Intel CnC as described in Section 5.6.
†The implementation of Cholesky factorization is the task-based one which is included the Intel

CnC distribution.
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(a) Execution time with an input of 5k × 5k.
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(b) Execution time with an input of 12k×12k.

Figure 5.1 : Execution time of hand-picked distribution functions on Cholesky fac-
torization on 8 nodes. The distribution that performs best for the small inputs is the
worst for the larger one.
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(a) Execution time with 8 nodes.
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(b) Execution time with 2 nodes.

Figure 5.2 : Execution time of hand-picked distributions on Cholesky factorization
with an input size of 5k× 5k. The distribution that performs the worst on 8 nodes is
the best performing when using only 2 nodes.

decide the data and task distribution at runtime instead of compile-time allows for

more flexibility, but it does not ease the programmer’s burden, since they are still

required to find good distributions which remains a challenge.

Because we use a dynamic-single-assignment model, it is useful to understand

how the distribution section problem for such a model compares to the distribu-

tion problem for programming models with multiple assignment. Having dynamic-
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single-assignment leads to better precision than traditional task distributions based

on owner-computes∗ because the data and task placement is now made for a value,

rather than for a variable which can be written to multiple times. The result is that

the distribution problem for dynamic single assignment languages also is equivalent to

the distribution with re-distributon at arbitrary points for traditional programming

models.

5.2 An efficient performance model for choosing data distri-

butions

Software that guarantees optimality is only useful if the guarantees correspond to

the improvements in observed characteristics of the program such as execution time.

To ensure this, such systems use models of the program which need to match pro-

gram behavior as close as possible, but at the same time should be easy to compute.

Modeling parallel programs to get accurate performance prediction is challenging,

but a large amount of research on the topic already exists [Al-Tawil:01, Grove:04,

Adhianto:06, Hoefler:10 ]. Good modeling of task-based programs requires identi-

fying the characteristics of the task DAG that lead to good performance. While some

of these characteristics can be drawn from previous work on static and dynamic sched-

uling (such as the critical path length, load balancing) the choice of these parameters

is difficult because some of them are not clearly defined for distributed execution.

For example, the notion of critical path is usually understood as the longest chain

of tasks from the start task to the end task, where length is defined as the sum of

execution time of tasks (vertices).

∗The owner-computes rule for task distribution is widely used and postulates that the processor
that owns the left-hand side of an assignment will perform the computation on the right hand size.
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In our case, selecting parameters for the model is even more challenging for two

reasons. First, many of the program characteristics useful in modeling are unavailable

during the inspection because the tasks are not fully executed during inspection.

These parameters are those related to the execution time of individual tasks which

are essential in computing many characteristics of the dynamic computation DAG,

such as the critical path length. Second, because we find the optimal distribution

function though integer linear programming (ILP), whose runtime increases with the

number of variables and inequalities, any program characteristics we choose must be

expressible in ILP with few variables and inequalities.

With these two constraints in mind, we settled on using two parameters whose

importance in performance modeling is agreed-upon [Lee:97 ]: the total inter-node

communication and the load imbalance of the nodes. Assuming a linear contribu-

tion of the two parameters, the objective function that we minimize to obtain the

distribution functions has the following form:

minimize(α×WorkImbalanceCost+ (1− α)× CommunicationCost)

where α ∈ [0, 1] is a programmer-defined value expressing the relative importance of

the two parameters/costs.

The two costs involved deserve more explanation regarding their meaning and

how they are computed. An important factor in controlling the relative importance

of the two parameters is finding a baseline to normalize against. The baseline we

use is the communication and computation of the average task in the program, so

normalize the cost of communication to the average size of items. Ideally, tasks could

be normalized based on their relative execution times, but since this information is not
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Figure 5.3 : The load imbalance cost is defined as the difference in the number of
normalized tasks between the node with highest load and the lowest load.

available during inspection, we instead assume a linear relation between the amount

of data touched by a task and its execution time.

The definition of work imbalance cost is chosen by taking into consideration that

the ILP formulation needs to be reasonably efficient, while still allowing for an accu-

rate model of the program performance. It is computed as the difference in number

of normalized tasks between the node with most work and the node with the least

amount of work, as shown in Figure 5.3. This cost can thus take values between zero

and the number of tasks spawned.

For similar reasons, the communication cost is computed as the number of nor-

malized∗ items that are only needed on more than one node. With this in mind, and

assuming items are the same size, the communication cost can take values between

zero and the number of items.

One may wonder why the two costs have seemingly different ranges, but because

of the dynamic single assignment, each task creates at least one item and in practice,

∗As mentioned above, this number is normalized to the average size of an item, so items that
are double the size of an average item are considered as two items.
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usually exactly one item, in which case the two ranges are identical.

5.3 Choosing the parametrized distribution function

The parametrized distribution function is the family of distribution functions from

which we select the one which minimizes the total cost. Our system can select in-

stances of a generic type of checkered distribution pattern, as follows:

NodeOf (〈i, j, . . . 〉) = (d i

blki
+

j

blkj
+ ce) mod P .

Here, P is the number of processors(nodes) on which the computation runs. The

blki and blkj are parameters are called block sizes and the c parameter is the constant

factor. The problem of selecting the optimal distribution consists of finding the values

of blki, blkj and c to minimize the value of the objective described in Section 5.2.

The importance of the constant term is revealed when input programs have mul-

tiple item collections because each one gets its own distribution function and the

constant enables us to obtain lower costs by “rotating” the allocation of different item

collection. For example, the node with the most tasks from one item collection can be

assigned a minimum amount of tasks from another, so that the overall load balancing

cost is lower, as shown in Figure 5.4. For the simple case where there is a single item

collection, the constant factor makes no difference.

An important question arises: What are the possible values from which the block

size parameters should be selected? Traditionally, block sizes larger than one are used

to exploit locality between “consecutive” tasks (consecutive tasks are those whose tags

differ by one on exactly one dimension). This makes sense when working with fine

grained data because the cost of communication dominates the execution time. How-
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Figure 5.4 : The importance of the constant term of the distribution function: it allows
us to “rotate” the arrangement of tasks on nodes, to minimize the load imbalance or
communication costs. The example above illustrates this for the case of two task
collections for which the block sizes used in the distribution functions are fixed.

ever, since CnC applications are tiled, the block sizes that offer the best performance

are between 0 and 1. Such values create a “separation” effect by allowing elements of

each item collection to be assigned to only a subset of the processor nodes rather than

being distributed on all of them, leading to lower levels of communication compared

to block-cyclic distributions. This can be done without decreasing the load balancing

if another item collection is assigned to the complementary subset of nodes, as shown

in Figure 5.5.

Initially, we allowed block sizes to span freely the 0-1 interval, but this led to

extremely long ILP solution time. Because of this, we decided to only allow block sizes

of the form 1
n
where n ∈ N. This key decision that enabled profound simplification

of the ILP formulation, as discussed in Section 5.4. Even with this restriction, the

parametrized distribution function remains general enough to select the hand-coded
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Figure 5.5 : Distributions with block sizes smaller than one can be used to achieve a
“separation effect” in which items from the each item collection are assigned to a subset
of nodes to improve communication in the case when much of the communication is
between items of the same item collection. Load balancing is then achieved by using
different item collections, such as the red (dotted) and blue (lines) item collections in
the figure.

distributions included in the Intel CnC distribution. This version of the checkered

distribution is as follows:

NodeOf (〈i, j, . . . 〉) = (RB i × i+ RB j × j + c) mod P

where RB i,RB j ∈ N are the reverse of the block parameters and P is the number of

nodes.

Our distributed execution system obtains, by inspecting the program, the dynamic

computation graph and the number of nodes used and the user specified the value of

the α factor characterizes the ratio of computation to communication of the program

(see section 5.2). With these two pieces of information, the system expresses the

problem of task distribution on nodes for the dynamic graph as an ILP problem and

selects the distribution function parameters that minimize the ILP objective. The

function with these parameters is then used to run the application.

The main reason for choosing this pattern for distribution function was that it
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allows us to generate many of the distribution functions hand-picked by Intel for our

test applications, enabling us to compare the auto-generated functions against the

Intel distribution. However, it is important to know how our pattern compares to the

traditional functions, such as block cyclic.

As described in Section 2.4, the 2D block cyclic distribution usually views the

nodes as a grid and the distribution on each dimension of the grid is controlled by a

single dimension of the input data. The checkered distribution function takes a linear

view of the nodes, but makes node choice a function of both dimensions of the input

data. We make this choice because solving an ILP model that corresponds to the 2D

block-cyclic distribution is computationally intensive since we would need to express

two modulo operations (which are expensive to express as ILP inequalities).

Note that, because the CnC model is already tiled, so instead of block-cyclic the

distribution function that mirrors block-cyclic for fine-grained distribution is simply

the cyclic one.

Definition 5. Two distribution functions f : Nd � Pf and g : Nd � Pg where

|Pf | = |Pg| are equivalent if and only if there is a bijective function t : Pf � Pg such

that t ◦ f = g.

Theorem 3. There is no checkered distribution with integer parameters such that it

and the 2D cyclic distribution with square grid are equivalent.

Proof. The 2D cyclic distribution with square grid and the parametrized checkered

distribution are expressed formally as:

Cyclic distribution: f(〈i, j〉) = (Bi × i+Bj × j) mod P 2

Checkered distribution: g(〈i, j〉) = 〈i mod P, j mod P 〉
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In the above expressions, P is the number of processors on one dimension of the

square grid with to a total of P 2 processors.

From the definition of the modulo operation and the definition of g, we notice that

g([i, j]) = g([i, j + P ]),∀i, j ∈ N. If there is a bijective function b such that b ◦ f = g,

then:

b(f(〈i, j〉)) = g(〈i, j〉)

= g(〈i, j + P 〉)

= b(f(〈i, j + P 〉))

which in turn implies f(〈i, j〉) = f(〈i, j+P 〉),∀i, j ∈ N because of the bijective nature

of b. But this means that

f(〈i, j + P 〉] = (Bi × i+Bj × (j + P )) mod P 2

= (Bi × i+Bj × j +Bj × P ) mod P 2

for ∀i, j ∈ N.

This means ∃k1 ∈ N s.t. Bj = k × P .

A similar process for the j axis leads to ∃kj ∈ N s.t. Bj = kj×P . But this means

that f can be rewritten as:

f(〈i, j〉) = (Bi × i+Bj × j) mod P 2

= (P × (ki × i+ kj × j)) mod P 2

= (ki × i+ kj × j) mod P
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Then, the codomain of f must have a cardinality of P rather than P 2 which contra-

dicts the assumption that b is bijective since the cardinality of its domain is P 2.

5.4 Efficient ILP formulation of the model

The time it takes to solve an ILP problem instance depends critically on the num-

ber of variables and equations in that instance. For this reason, the straightforward

formulation of the task and data distribution problem cannot be used; in practice,

the unoptimized formulation uses more memory than reasonable (32 GB) and hits

the timeout of 24 hours of computation. To solve this issue, we propose an approach

in which the problem is transformed by the inspector into an equivalent one which

is optimized for efficient solving by the ILP solver. The key principle is that we are

trading off a little extra computation time during the inspector for a large reduction

in ILP solution time.

The straightforward ILP formulation consists of assigning one ILP variable per

task to represent the node on which that task runs. Then, we find the workload of each

node by counting how many of these variables equal each node id. The communication

cost can be computed similarly based on the number of communication edges that

connect tasks assigned to different nodes.

The key to building a more efficient ILP formulation is that instead of using the

formulation described above which is proportional to the size of the input graph,

we can reduce it to one proportional to the number of nodes (processors) by using.

Instead of assuming that each task can be assigned to an arbitrary node, we can

observe that a task with tag 〈i, j, . . . 〉 must be assigned to the same node as 〈i +

n×NO_NODES , j +m×NO_NODES , . . . 〉 no matter what integer parameters to

the checkered distribution function are used (in accordance with Section 5.3). This
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observation allows us to group together these tasks and use of a single ILP variable for

the node they are assigned to. When computing the load balancing cost, this change

significantly reduces the number of variables, and adds only a constant coefficient

equal to the number of original tasks associated with each compacted task. The

number of variables becomes O(NO_NODES 2) instead of being proportional to the

size of the computation graph.

To compute the communication cost, the naive formulation would count, for all

items, the number of producer-consumer pairs whose assigned nodes are different -

meaning that the data needs to be communicated to a different node. We can apply

a similar compaction as described above by aggregating the number of edges whose

end-points must be assigned to the same pair of nodes. This reduces the number

of variables used for recording the local or remote status of each communication to

O(NO_NODES 4).

Since the ILP objective is a sum of the load imbalance and communication costs

and their ILP encoding was described above, this means we have just reduced the size

of the problem to a value whose upper bound is independent of the computation graph

and of the program input size. This reduction is essential since computation graphs

used in distributed executions are large and ILPs are computationally expensive to

solve.

5.5 Distribution function reuse

Because ILP solving is part of the inspector stage, the inspector time is a large

fraction of the total application execution time. Traditionally, I/E systems would only

inspect code located inside a loop, so they could amortize the inspection cost across

multiple loop iterations, but this is not possible in our case. Previous work showed
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that, for shared-memory execution of task graphs, the inspector cost can be amortized

by reusing the inspector results across application runs, when the computation graph

is identical, even when most data is different. This is only part of the solution

for the reuse of distribution functions in a distributed execution scenario, because

running the inspector on large input sizes becomes impossible because of the high

cost of generating the computation graph. In this work, we propose and evaluate

the reuse of inspector-selected distribution functions across different inputs without

requiring that they have the same dynamic computation graph. The main advantage

of this approach is that it allows us to inspect small to medium inputs — doable in

reasonable time — and then to reuse the results for larger inputs commonly used in

distributed systems. The question that arises is: Will distribution functions generated

on an execution lead to good performance when applied on a different one? To answer

this we need to look at what data is used as an input parameter to the distribution

function and differs between the medium and large inputs.

The first such parameter is the input data of the application since the minimiza-

tion of the objective is based on the specific computation graph of that input. The

reuse of distributions across different inputs is based on the concept of computation-

to-communication ratio which is a modeling notion traditionally used for performance

evaluation of shared-memory and distributed applications. The computation-to-

communication ratio is known to scale sub-linearly with the input size in a majority

of applications [Culler:97 ]. We take advantage of this fact to reuse the distribution

functions obtained on medium-sized inputs when running large-sized inputs.

The second parameter that affects the distribution functions is the number of

nodes: it is used in the modulo operation of the parametrized distribution function.

To ensure that the function works correctly when running on fewer processors, our
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strategy is to compute distribution functions assuming the largest number of proces-

sors, and then reuse them on the number of processors that is desired ∗, with the

restriction that both the maximum and actual number of processors are powers of 2.

To obtain a quantitative guarantee on the effects of reuse using a different num-

ber of processors, let us analyze what are the consequences of having a distribution

function computed for 2n processors and reusing it on sp processors, with n > p.

Remember that the first part of the total cost is the load imbalance cost, which

is the difference in normalized task load between the busiest and lightest nodes. The

cost can increase, the worst-case (biggest) increase happens when the reuse folds

together the nodes with the highest load onto one and the nodes with the lowest load

onto another, leading to a worst-case 2n−p increase in the load imbalance cost. In the

best case is cost can decrease if using the lower number of nodes leads to a better

load balance.

If we analyze the effect of such reuse on the communication part of the cost,

in practice we can expect a reduction because some data that previously required

communication may become shared-memory data accesses because of the increased

number of tasks assigned to each node. There can also be cases where the cost

increases because of the particular communication pattern of the application.

Figure 5.6 shows how distribution function reuse works in our system both re-

garding the input size and the number of processors.

With the approach for reuse described above, we can detail the inspection process

which is as shown in Figure 5.7.

Recall from Section 4.3 that the inspector can build the dynamic computation

∗The reused distribution function uses the correct number of processors, but its parameter values
are those identified on the original run.
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Figure 5.6 : Distributions computed on a particular input size and number of nodes
are reused on fewer nodes (lower values on the X axis) and on larger input sizes
(higher values on the Y axis).

graph without performing the actual computation of the tasks. In Chapter 4 we

defined the root set as the set of items consumed or produced by the environment

and the set of steps prescribed by the environment. Because of the deterministic

nature of CnC, two computation graphs with the same root set must be identical.

During the inspector we use the root set to identify if an execution with the same

computation graph has been previously encountered ∗ and if so, we just apply the

stored distribution function associated with it. If this is the first time that root set

has been seen, we must expand the full computation graph to identify its size. Once

the graph size is known, we can decide if the graph size is sufficiently close to that of

∗Note that we do not expand the full computation graph, so for this common case the algorithm
is fast.



104

a smaller graph encountered earlier to warrant the reuse of that graphs distribution

function. We use a simple policy that reuses the distribution of the smaller graph if

the size difference is less than an order of magnitude. If reuse cannot be applied, we

need to express the distribution function generation as an ILP problem and solve it.

Finally, we execute with the newly computed distribution function.

The most costly parts of this process (the ILP solving) is only done if the two

optimization criteria are not met: no graph of the same order of magnitude has ever

been executed.

Compute root set

Is there a 
saved 

distribution for 
this root set?

Execute with the 
distribution function.

Inspect the complete 
computation graph.

Is there a 
saved distribution

 for a graph that is either 
larger or at most 

10X smaller?

Formulate the ILP model 
for the computation graph.

Run ILP solver.

Save the tuple:
<root set, graph size, 
distribution function>

 No

 No  

Yes                                                    

                           Yes

Figure 5.7 : The operation diagram of the inspector phase.



105

5.6 Case study: Cholesky factorization

To evaluate the system we need to answer the following questions: How do the

best automatically selected distribution compare to the best hand picked ones? and

How do the selected distributions perform when reused on larger inputs? The next

two subsections answer these questions.

The results shown in this section have been obtained on the Davinci cluster at Rice

University, which contains Westmere processors with 12 cores per processor which are

clocked at 2.83 GHz. Each node has 48 GB of RAM and the nodes are connected

with QDR InfiniBand (40 Gb/s ). The results have been obtained using the Intel

Concurrent Collections runtime.

5.6.1 Distribution function performance

Figure 5.8 shows how the performance of the automatically selected distributions

compares with that of those hand-picked by Intel CnC. Since the hand-selected dis-

tribution functions were tuned by Intel manually, we expected that matching the

performance of these to be a success. The auto-generated function is able to not only

match, but outperform by up to 5% the best hand-coded distribution function, the

reason being that it is specific to that particular input graph shape.
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Figure 5.8 : The performance of various distribution functions on Cholesky factor-
ization with an input of size 12k. The auto-generated distribution functions (shown
in red) were obtained on inputs of 2k, 5k and 12k respectively with the α value that
leads to the best performance. The 2k and 5k show good performance when applied
on the larger input size when compared with hand-picked distribution from Intel CnC
and with the automatically selected distribution for that input size (12k). The hand-
coded functions perform worse, whether they are expressible with our parametrized
distribution function (blue bars) or outside of it (gray bars). There is a small differ-
ence that shows that generating the distribution function on larger inputs leads to a
small performance improvement.

Figure 5.9b shows how the speedup of the auto-selected distribution functions

compares with that of the hand-selected ones for different number of nodes. Auto-

selected functions perform better than the best hand-picked one on any number of

nodes, even though it was generated specifically for 8 nodes.

5.6.2 Distribution function reuse

Since in practice distribution functions will be selected on small to medium inputs

but reused on large ones, we are particularly interested in how the performance varies

when using reuse instead of selecting new functions. Figure 5.8 shows that, even
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by Intel.

Figure 5.9 : The speedup of the auto-generated distribution function relative to the
best hand-picked distribution function on Cholesky (12k input size).

when used on larger inputs (with much larger computation graphs) these functions

perform well. The figure shows how the two functions - one obtained on an input

matrix of 2k × 2k (a graph with 1750) tasks and one obtained on an input matrix of

5k× 5000 (a graph with 23,375 tasks) - perform when used on graphs of a larger size

(12k × 12k, a graph with 302,500 tasks).

5.6.3 The effect of alpha coefficient

The only parameter whose value is controlled by the programmer is α, which

controls the relative importance of load imbalance cost and communication cost in

the overall objective that needs to be minimized. Figure 5.10 shows how the perfor-

mance of generated distribution functions change with the value of alpha and how

the generated functions compare with the hand-coded ones. For α values close to 1

(meaning communication cost is very important) the performance of the generated

distribution functions drops visibly. This is because extremely low communication
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cost can only be achieved by co-locating tasks on fewer and fewer nodes - leading to

sequential execution. On the other hand, when α values are between 0 and 0.5, the

performance of generated functions is competitive with the hand-coded ones. Note

that this is a large range of good values, meaning the programmer does not have to

put a lot of effort into tweaking this parameter to get good performance.

To get a better understanding of what happens in the 0-0.5 range for α, Figure 5.11

shows a zoomed-in view of the previous graph. We notice that, while using an α value

of zero leads to competitive performance, it is not the best value. This is because the

communication cost also plays an important role in finding distribution functions that

perform well. Functions that are generated on the small (2k) and medium (5k) input

are both able to outperform hand-coded functions when using α values of 0.1-0.2 and

they match the performance of the distribution obtained on the native (large) input

size.

One issues that arises with the objective function is that performance can be

dependent of the finding values of α that perform well. Both figures show that

there is a wide range of α values where performance is competitive with the hand-

picked distribution functions. When reusing distributions obtained on small inputs

(2k), it becomes more difficult to have the auto-generated functions outperform the

hand-picked, but for medium-sized inputs (5k) or when using the native size (12k),

auto-generated functions outperform all hand-picked ones. This holds true for 80%

the possible range of α, meaning that choosing an appropriate value for α is not

expected to be a difficult task and is a candidate for successful automation.

Note that the 2k, 5k and 12k inputs are separated by an increase of an order

of magnitude in the size of the dynamic computation graph. The fact that 5k is

enough to match the performance of hand-picked functions means that, in practice,
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generating the functions on inputs 10 times smaller than real inputs is sufficient.
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Figure 5.10 : Performance results on Cholesky with input of size 12k and distribution
functions obtained on 2k, 5k and 12k inputs, as a function of α. For large values of α
( α →1), communication cost plays a big role in the function objective, so tasks are
aggregated on a few nodes leaving others underutilized and performance suffers.
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Figure 5.11 : A zoomed-in view of figure 5.10. The performance sweet-spot of the
generated functions is achieved for α values in the 0.1-0.2 range. For lower values,
the additional load balance improvement is offset by increased communication. The
generated functions outperform all hand-coded functions by up to 5%.

5.7 Summary

In this chapter, we proposed techniques for enabling automatic selection of dis-

tribution functions which apply to distributed programs expressed as dynamic task

graphs, replacing a manual process traditionally performed by programmers in a

time-consuming process.

The distribution functions we generate are optimal relative to our cost model which

is simple enough to be computationally solvable with integer linear programming,

but complex enough to accurately model performance. Our experimental results

show that the auto-generated distribution functions perform on par with or up to 5%

better than the hand-picked functions included in the Intel CnC distribution, while

requiring minimal intervention from the programmer.
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To reduce the inspector cost, we propose an efficient formulation of the distribution

selection problem whose number of constraints and variables is polynomial in the

number of nodes used to execute the program rather than in the size of the problem.

To amortize the inspector cost in the context of distributed execution of dynamic

task graphs, we propose and evaluate the reuse of distributions across different input

sizes and different number of processors.
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Chapter 6

Related work

6.1 Dataflow scheduling with bounded space

Because CnC is a macro-dataflow programming model, it makes sense to compare

our CnC scheduling approach with those developed for traditional dataflow languages.

While dataflow scheduling has a wide variety of approaches, the most widely

known are the static ones. Working in the Ptolemy project, Lee and Messer-

schmitt [Lee:1987 ] looked at scheduling synchronous dataflow, which differs from

traditional dataflow in that the amount of data produced and consumed by a node

is specified a priori. Their approach finds space bounds for buffer sizes, based on

the existence of cyclic schedules which are in turn computed based on the balance

equations of the graph topology matrix. Govindarajan at al. [Govindarajan:2002

] improve on this work by minimizing buffer storage requirement in constructing

rate-optimal compile-time (MBRO) schedules for multi-rate dataflow graphs. They

enable overlapping iterations (“rate optimal”) though something similar to software

pipelining, so the obtained rate is improved. Integer linear programming is used for

their optimality claim.

Cyclo-static dataflow is a superset of synchronous dataflow for which close-to-

minimal buffer sizes can be identified without converting the graph to single-rate

first, as shown by Wiggers [Wiggers:2007 ]. Similar bounds were obtained by Buck

and Lee [BuckLee:1997 ] for the boolean dataflow model which is an extension of
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dataflow in which conditional token consumption and production are allowed.

Streaming systems are modern twists on dataflow systems and share similar sche-

duling techniques. StreamIt allows the user to control the balance between space

consumed by data and code through phased scheduling [Karczmarek:2003 ] which

provides a flexible trade-off between code size and buffer size.

6.2 Task scheduling with asymptotic bounds

To the best of our knowledge, this work is the first to tackle the problem of

scheduling with a fixed memory bound in the context of dynamic task scheduling,

but there is related work on amortized analysis of memory consumption for parallel

programs. Burton [Burton:96 ] was the first to propose bounds on the memory

complexity of dynamically scheduled parallel computations.

Simpson and Warren [Simpson:99 ] present a survey of work in this area.

Blelloch et al. [Blelloch:97 ], Narlikar and Blelloch [Narlikar:99 ], Blelloch et

al. [Blelloch:99 ] and Fatourou [Fatourou:01 ] identified increasingly better bounds.

The best memory bounds obtained are directly proportional to the memory con-

sumption of a particular serial schedule and include at least an additive factor pro-

portional to the critical path of the computation. In contrast to these approaches in

which bounds are dependent on the memory consumption of the particular serial order

of tasks and on the number of processors available, BMS-CnC considers the maxi-

mum footprint a hard upper bound for execution. Compared to on-the-fly schedulers

with asymptotic memory bounds, we can impose fixed memory bounds and work

around the on-the-fly restriction by using the inspector-executor model. This enables

us to use the whole computation graph in scheduling, effectively turning the sched-

uling “offline”. Because of this, BMS can handle even the worst case (adversary picks
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worst task spawn ordering in the input program), that could lead these schedulers to

unnecessarily large footprints. Also, the performance of BMS is independent of the

order of task spawning in the programmer-written schedule. On the other hand, they

can offer performance guarantees and have wider applicability because of their less

restrictive programming model, on-the-fly approach and no inspector overhead.

In its view of performance, BMS-CnC relates to work-stealing schedulers such as in

Cilk [Frigo:98 ] through its philosophy of starting with an application-defined parallel

slack and decreasing it to levels that guarantee bounded-memory execution. Even

with this restriction, on systems with good processor-memory balance, the assumption

of parallel slack should not be affected by BMS. Once the BMS transformation is

done, the application is sent to a work stealing scheduler which ensures provable

performance bounds for the modified computation graph.

In traditional work-stealing, once one a task has been executed, it cannot be

undone. This may lead to cases where, once a partial schedule has been executed, no

remaining scheduling option can fit the memory bound. Fixing this issue while still

using work stealing would require backtracking, but BMS achieves the same result,

more efficiently, by exploiting the computation graph.

Other projects [Hofmann:03, Braberman:08 ] analyze the memory consump-

tion of serial programs. Other projects [Hofmann:03,Braberman:08,Hofmann:09,

Campbell:09 ] analyze the memory consumption of serial programs, but this is a

difficult problem to solve accurately with only static information. The techniques

are expensive, based on linear programming, but only need to be computed once

per application, compared to the inspector/executor based approach where the valid

schedules to be computed once for each computation graph encountered.



115

6.3 Inspector/executor

BMS is a novel application of the inspector/executor system proposed by Salz [Salz:91

] who used it to efficiently parallelize irregular computations.

Salz, along with most other inspector/executor works amortize the cost of the

inspection across multiple executions of a loop. We use schedule caching instead, as

in out case there usually are no iterations.

Based on inspector/executor, Fu and Yang propose the RAPID system for dis-

tributed computation [Fu:96 ] which bounds the memory assigned to copies of mem-

ory on each node, but does not bound the footprint of the program.

RAPID is similar to BMS-CnC in that it enables inspection of task based pro-

grams, but BMS-CnC can take advantage of more scheduling freedom because it lacks

anti and output dependences. In a follow-up work [Fu:97 ] inspector/executor is used

to bound the memory assigned to copies of data in the distributed environment, but

not the total footprint of a parallel program. In their static scheduling approach, each

data object is assigned a home node on which the object is persistent, but objects

also may be sent on remote nodes where they are volatile. The work proposes algo-

rithms to reduce the footprint of volatile objects on each individual node - a problem

specific to the distributed computation model. They separates the computation into

slices that access the same data; slices have the characteristic that on each processor

only volatile data from the currently executing slice is needed. By scheduling slices

to nodes sequentially, they obtain the main result that, for a subset of applications

such as sparse LU factorization, only one volatile variable needs to be stored per

processor, for a total footprint of O(S1/p+ 1) per processor. The S1 factor is consid-

ered the serial footprint for permanent data that is never collected — the problem of

deallocating objects from their home is not considered, which simplifies matters, as
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is the order of execution of tasks inside a slice which also affects the total memory

footprint. Because it is meant for use in cases where the graph size is limited, they

do not consider approaches that limit the memory footprint of the inspector.

6.4 Register allocation and instruction scheduling

The BMS problem is related to the widely-studied problems of register suffi-

ciency and combined instruction scheduling and register allocation. Barany and

Krall [Barany:13 ] propose a type of code motion to decrease spills by using in-

teger programming to identify the schedules that reduce overlapping lifetimes. Pin-

ter [Pinter:93 ] identified the fact that some variables in the program must have

overlapping lifetimes while some don’t need to which is an observation that we used

in our ILP optimizations; he builds a parallelizable interference graph including “may

overlap” edges to ensure that his register allocation does not restrict schedules. In

the same context of register allocation and instruction scheduling, Norris and Pol-

loc [Norris:93 ] use the parallelizable interference graph and add data-dependence

graph edges (similar to our serialization edges) to remove possible interference. loops.

The CRISP project [Motwani:95 ] introduced an analytical cost model for balancing

register pressure and instruction parallelism goals in a list scheduler which influenced

the schedule relaxation technique we propose.

Ambrosch et al. [Ambrosch:94 ] propose starting from the minimal interference

graph which only includes edges between live ranges that must overlap. dependence

edges corresponding to ranges assigned the same color, which is the same condition

we use when inserting serialization edges. They need to recompute the interference

graph when adding such edges, but BMS-CnC does not suffer from this disadvantage.

Govindarajan et al. [Govindarajan:03 ] perform scheduling to minimize the
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number of registers used by a register DDG, an approach called minimum register

instruction sequence (MRIS). BMS and MRIS have considerable differences:

• different scalability requirements: MRIS has been targeted to basic block DDGs

consisting of tens of nodes, whereas BMS must support tens of thousands of

nodes, so the BMS heuristics trade accuracy for performance.

• different reuse models: Because BMS works on memory instead of registers,

the input and output data of a task cannot share the same memory slot, so

lineages cannot be formed. Without lineages, coloring the interference graph of

the computation graph of common applications would take more memory than

the original footprint of the program.

• different objectives: While MRIS simply minimizes the number of registers,

BMS the best schedule for a given memory bound. The MRIS minimization

objective leads to sacrifices of parallelism that are unnecessary for BMS. For

example, value chains are created by inserting sequencing edges that force a

particular consumer to execute last; BMS avoids this restriction of parallelism

by using multiple serialization edges.

The URSA project [Berson:98 ] compares various approaches for combined reg-

ister allocation. Touati [Touati:01 ] proposes the use of serialization arcs to decrease

the number of required registers.There are multiple related projects that apply op-

timal techniques [Wilken:00, Bednarski:00, Lozano:12, Beek:01, Malik:08 ])

for scheduling or register allocation, but a direct comparison is difficult since the

objective and constraints differ.
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6.5 Schedule memoization

BMS-CnC is the first system that enables the reuse of inspector/executor results

across application runs, but there is related work in the idea of schedule memoiza-

tion [Cui:2010 ].

Schedule memoization is a technique based on symbolic execution to find the

set of constraints that, applied to the input, are sufficient to match the input to

a valid schedule and follow that exact schedule for all subsequent runs in order to

make the schedule deterministic. On the other hand, schedule reuse does not limit

execution to a single schedule, because our schedules are sets of constraints and not

total ordering of synchronization operations. Schedule memoization can enforce either

a total ordering of synchronization events or a total ordering of both synchronization

and data accesses, but enforcing memory access order is expensive; BMS-CnC can

cheaply enforce both, since data and synchronization are coupled, but at a coarser

granularity which ensures overhead is low.

6.6 Reference counting

Get-counts are similar to a memory management technique called reference count-

ing used in systems such as Microsoft’s COM. COM ( Common Object Model) is a

standard designed to support the notion of distributed object on systems running

different operating systems, programming languages or with different hardware. To

enable programs written in different languages running on different systems to work

together seamlessly, COM opts for automatic memory management which consists of

a counter which could be attached to an object itself or to its factory which tracks the

number of connections to the object. By inspecting the counter the system can know
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if the object is or is not in use. Reference counting is error prone because it relies

on the programmer to increment or decrement the counter and to free the object

memory when the count reaches zero. If a program terminates abruptly, it may leave

orphan objects so objects ping their clients periodically, leading to increased network

traffic. Certain languages offer automatic reference counters to ease the burden on

the programmer.

In garbage collection systems, reference counting is also used to store the number

of references to the object that are stored in other objects. The advantage of reference

counting over tracing garbage collection is the fact that it is incremental, making it

useful in real-time systems. The biggest disadvantages is that it requires additional

techniques (such as weak references or a mark and sweep collector) to handle circular

references.

6.7 Data distribution for distributed programs

Today, the most widely used programming approach for distributed systems is

the combination of sequential C or Fortran with MPI [MPI ]. MPI represents the

message passing paradigm for managing communication which is a relatively low level

approach which relies on calls to send and receive functions. It gains the freedom to

express any data distribution, but requires the programmer to manage the intricate

details of computation and communication and makes it difficult to overlap the two.

Global shared address space languages such as High Performance Fortran [Fortran:93

] (HPF), Co-Array Fortran [Coarrays ], Unified Parallel C [El-Ghazawi:03 ], and

Titanium [Titanium ] take a compiler-driven approach for controlling this aspect of

execution. The programmer controlled the data distribution, while the task distribu-

tion was fixed, computed according to the owner-computes rule.
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The HPF compiler targets an single program multiple data (SPMD) programming

model in which each processor executes the same program, but operates on different

data. Each processor allocates and operates on its own local portion of distributed

arrays, according to the distributions, array sizes and number of processors as deter-

mined at runtime.

HPF data distributions can be specified through two different directives: ALIGN

which maps from arrays to templates and DISTRIBUTE which maps from templates

to processors, as shown below. The directive !HPF$ PROCESSORS proc-name(dim1,

..., dimN)) declares an abstract processor array, with proc-name being the name of

the abstract processors array and dim1, ..., dimN the size and shape of the array.

Aligning such an array with a target array is done through the ALIGN directive

!HPF$ ALIGN array WITH target. A few examples of this directive are given below:

1 !HPF$ ALIGN A(I) WITH B(I)

2 !HPF$ ALIGN A(:) WITH B(I+2)

3 !HPF$ ALIGN A(:) WITH B(2*I)

4 !HPF$ ALIGN A(I,J) WITH B(J,I)

5 !HPF$ ALIGN A(:,*) WITH B(:)

The distribution of arrays onto a processor array is performed though DISTRIBUTE

directives, where list-of-arrays are the arrays to be distributed and proc-name is

the processor array: !HPT$ DISTRIBUTE list-of-arrays ONTO proc-name.

The separation of the two phases serves the purpose of simplifying the change of

data distributions which may be needed during the performance tuning phase.

Co-array Fortran (CAF) [Coarrays ] relies on co-arrays, a data structure that

adds a dimension (codimension) to traditional arrays, each of the nodes used for

distributed execution getting the array allocation. The codimension is used to access
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the memory space of remote nodes and enables easy performance modeling since it

is the only parameter that identifies local versus remote accesses.

Unified Parallel C (UPC) [UPC ] proposes a more general approach in which

array declarations are assumed to be in a memory space partitioned among nodes if

they are declared as shared. They are distributed cyclically by default and can be

distributed block-cyclic by specifying a block size.

Titanium [Titanium ] is an object-oriented language based on Java which sup-

ports an approach similar to UPC. Its support for distributed arrays is limited to

allocating an array object in code which results in having an array per processor,

which is similar to CAF.

Researchers have recognized the source of the difficulty of programming dis-

tributed models as coming from the manual management of data partitioning and

communication and have proposed systems which attempt to automatically partition

the data. The PARADIGM compiler [Banerjee:95 ] proposed a compiler-based ap-

proach. Anderson and Lam [Anderson:93 ] propose an iterative approach which

decreases the communication requirements at each iteration. Wholey [Wholey:92

] shows the importance of performance estimation in selecting a good distribution

function. Garcia, Ayguade and Labarta [Garcia:95 ] propose the use of 0-1 integer

programming to optimally solve the data distribution problem.

Our approach solves the data partitioning problem, but supports dynamic appli-

cations which means the approach is based on new runtime techniques and the per-

formance models are quite different since accurate producer-consumer and controller-

controllee relations are available.

Since the best distribution function for a data array may change depending on

the phase of the computation, Palermo, Hodges and Banerjee [Palermo:01 ] extend
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the PARADIGM compiler with support for automatic data partitioning including

support for data redistribution. Bixby, Kennedy and Kremer [Bixby:94 ] show that

integer linear programming can be fast enough for compiler-based data partitioning

with redistribution support.

In our approach, data redistribution does not need to be handled separately be-

cause of the dynamic single assignment rule - redistribution of each value can be

implicitly performed with fine granularity (at each write operation).

Some parallel programming models offer control of data distribution at runtime

rather than being compiler-driven.

The X10 [Charles:05 ] language proposes the notion of places as high-productivity

locality abstraction to which tasks can be assigned. Mapping of places to processors

is done by the runtime, but accesses to remote data must be explicit.

Languages based on actors [Hewitt:73 ] such as Charm++ [Kale:93 ] are es-

pecially adept to distributed execution because they can handle systems with long

latencies very well because of their message queue approach to concurrency. Messages

are sent to the actor(‘called ‘chare” in Charm++) that handles them wherever that

actor may live and actors are created using a dynamic load balancing strategy, so

the programmer does not need to explicitly handle data distribution. Chares can mi-

grate across processors [Acun:14 ] which is similar to the redistribution capabilities

of compiler-driven approaches to data distribution.

The RAPID project proposes the use of I/E as an approach for automatic par-

allelization, included data distribution and computation partitioning for distributed

systems. Since this work was published, the size of the distributed systems and of the

application graphs executed on them has increased dramatically. We show that even

with this increase, better amortization strategies keep I/E execution a valid approach
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for programming distributed systems. They show that I/E can be used for irregular

applications; we add optimal approaches to solve combined data and task distribu-

tion problem. RAPID is based on a model that allows anti and output dependences,

while we avoid them by using a dynamic single assignment model; RAPID users must

specify estimate for task duration while we build automatic estimates through the

normalization approach.
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Chapter 7

Conclusions

In this dissertation we address challenges in writing parallel software that performs

well on modern systems which are often programmed by expressing dynamic task

graphs. The dynamic nature of these programs can prevent us from taking advantage

of traditional compile-time techniques for program optimization, so we turn to run-

time methods, such as inspector/executor, coupled with a programming model based

on dataflow that enables our proposed optimizations.

We first target shared-memory machines where we propose folding - an efficient

memory management approach for dataflow models. We then focus on the challenge

of controlling the balance between the memory consumption of parallel programs

and their runtime. Our bounded memory scheduling approach shows that the trade-

off between these two essential resources - memory and processing power - can be

efficiently controlled. We achieve this balance by combining an inspector/executor

runtime with a dataflow programming model which enables separation of the input

data from the computation structure. Our approach results in an improved method

for reuse of inspector-executor results which enables the use of the technique for

programs expressed as dynamic task graphs.

To control the trade-off of memory requirements on one hand and execution time

on the other, we developed heuristic algorithms which are shown to allow excellent

control of the trade-off at a very low computational cost. They are essential to

making our technique work in real-life scenarios because without them, we fall back
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to an optimal, but slower integer linear programming approach.

Future work in the direction of bounded memory scheduling would be to extend the

applicability of the technique towards supporting two common scheduling approaches:

process time sharing systems and batch scheduling with multiple jobs assigned to

nodes on the fly. To enable the use of our technique in these two scenarios, we need

to explore how multiple such graphs can be overlapped in such a way as to maintain

a bound on the total memory even if the starting of another graph is unknown at the

time the first one starts.

Second, we target distributed systems, where the main challenge is scaling to

the increased parallelism required for distributed execution. The key element for

good scaling on these systems is data and task distribution, which is traditionally

controlled by the programmer who identifies good distribution functions through the-

oretical analysis or empirical evaluation. We show that it is possible to automatically

select distribution functions while getting performance that matches or surpasses that

of hand-picked distributions. To achieve this, we turn to inspector/executor and the

same programming model used for bounded memory scheduling, but because of the

stronger performance constraints we had to develop more efficient techniques for amor-

tizing the inspector cost. We showed that we can inspect execution on small inputs,

but reuse the results on medium or large inputs and still obtain good performance.

Another avenue for amortizing the inspector cost is optimizing the inspector exe-

cution itself, especially since integer linear programming is an expensive approach to

perform during inspection. We showed that the problem of finding the distribution

cost which minimizes the execution cost can be formulated in a way that is polyno-

mial in the number of nodes used for execution rather than with the input size, which

is key to keeping inspection time in check.
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In the future, an interesting extension would be to generate 2D block-cyclic dis-

tributions instead of checkered distributions. The advantage of using a checkered

distribution is that, because of only using a single modulo operation instead of two,

it has the advantage that it is more efficiently expressed in integer linear program-

ming. However, the checkered and block-cyclic functions have different expressive

power: both can express distributions that the other one cannot, so the experimental

results included in this thesis are difficult to compare with those of state-of-the-art

block-cyclic distributions. Another important improvement for the evaluation would

be to compare against the most flexible distribution function possible - the one which

has the freedom to place each individual item on any possible node. This function is

not computationally feasible to compute optimally for large input sizes, but it would

be useful to know how much performance is lost by choosing to restrict distribution

functions to piecewise linear functions such as block-cyclic or checkered. Compared

to the inspector time for bounded memory scheduling, the inspector time for distri-

bution selection is higher because we do not include heuristics that could be applied

instead of the optimal algorithms. It would be interesting to see if heuristics could

achieve results similar to the optimal approaches proposed here.

To conclude, I want to highlight the essential role the programming model plays

in enabling our optimizations. Much of the work presented here would not be possible

by using any of the programming models that are commonly used to write parallel

programs today and several key features of the model are essential to perform our

optimizations. First, the dataflow nature of the model enables us to query implicit

producer consumer and controller-controllee relations. Second, the separation be-

tween control data and input-output data allows for efficient inspection of programs

which is essential to make the optimizations fast. Fourth, the dynamic single assign-
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ment rule for data improves the scheduling flexibility which leads to better results for

the scheduling algorithms proposed. Finally, the tagged nature of the model enables

the ILP model to recognize data balance and communication patterns and apply the

distribution function to newly created task instances. While dataflow models have

been proposed a long time ago and are accepted in the community for their advan-

tages in parallel programming, they have not reached mainstream use on modern

systems; this work shows that the use of dataflow models is essential for modern

parallel programming in both the shared-memory and distributed memory usecases.
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