
RICE UNIVERSITY

Asynchronous Checkpoint/Restart
for the Concurrent Collections Model

by

Nick Vrvilo

A Thesis Submitted
in Partial Fulfillment of the
Requirements for the Degree

Master of Science

Approved, Thesis Committee:

Vivek Sarkar, Chair
Professor of Computer Science
E.D. Butcher Chair in Engineering

John Mellor-Crummey
Professor of Computer Science
Professor of Electrical and Computer
Engineering

Swarat Chaudhuri
Assistant Professor of Computer Science

Houston, Texas

August, 2014

ABSTRACT

Asynchronous Checkpoint/Restart

for the Concurrent Collections Model

by

Nick Vrvilo

It has been claimed that what simplifies parallelism can also simplify resilience. In

this thesis we describe an asynchronous checkpoint/restart framework for the Concur-

rent Collections programming model (CnC)—a dataflow-based programming model—

and demonstrate that CnC is an exemplar target for a simple yet powerful resilience

system for parallel computations. We claim that the same attributes that simplify

reasoning about parallel applications written in CnC similarly simplify the imple-

mentation of a checkpoint/restart system within the CnC runtime. We define the

properties of CnC in the context of a formal executable model built in K. To demon-

strate how these simplifying properties of CnC help to simplify resilience, we have

implemented a simple checkpoint/restart system within Rice’s Habanero-C imple-

mentation of the CnC runtime. We show how the CnC runtime can fully encapsulate

checkpointing and restarting processes, enabling application programmers to gain all

the benefits of resilience without any added effort beyond implementing an application

in CnC. Furthermore, our approach is asynchronous and thus avoids synchronization

overheads present in traditional techniques.

Acknowledgments

I would like to thank my advisor, Vivek, for his help and guidance in writing this

thesis, along with John and Swarat for their contributions as members of my thesis

committee. I also thank our collaborators from the Intel CnC team—Kath Knobe

and Frank Schlimbach—for all of their input and support in moving this research

forward. Finally, I thank my family—especially my wife, Siang-Wei—for all of their

love and encouragement in getting to where I am today.

This work was supported in part by the DOE-funded Traleika Glacier X-Stack

project (Intel CS1924113), and by the Data Analysis and Visualization Cyberinfras-

tructure funded by NSF grant OCI-0959097.

Contents

Abstract ii

Acknowledgments iii

1 Introduction 1
1.1 Motivation for CnC C/R . 1

1.2 Thesis Statement . 2

1.3 Contributions . 2

1.4 Organization . 2

2 Background 4
2.1 Concurrent Collections (CnC) . 4

2.1.1 Key Properties of CnC . 5

2.1.2 Pascal’s Triangle: A Sample CnC Application 8

2.1.3 The CnC Continuum . 15

2.2 Current Approaches to Resilience . 16

2.2.1 Kernel-Level Checkpointing 16

2.2.2 User-Level Checkpointing . 17

2.2.3 Non-Checkpoint-Based Resilience 18

2.2.4 Previous C/R Work for CnC 19

2.3 Habanero-C CnC . 19

2.4 Rewrite Rules and the K Framework 20

3 A Thin Wrapper for the CnC Runtime 22
3.1 CnC Flavor . 22

v

3.1.1 Asynchronous Communication 22

3.1.2 Input and Output of Steps . 23

3.1.3 Data Representation Restrictions 23

3.1.4 Dynamic Graph Restrictions 24

3.2 The API . 24

3.2.1 Example: Pascal’s Triangle 25

3.2.2 Example: Matrix Multiplication 28

3.3 Summary . 32

4 A Formal Model of the CnC Runtime 33
4.1 Building Executable Models . 33

4.2 The Runtime Model . 33

4.2.1 Configuration . 35

4.2.2 Syntax . 36

4.2.3 Rewrite Rules . 39

4.2.4 Handling I/O in the Executable Model 44

4.3 Key Properties of CnC . 44

4.4 Summary . 48

5 A Formal Model for Checkpoint/Restart in an

Unoptimized CnC Runtime 49
5.1 The Checkpoint Model . 49

5.1.1 Configuration . 49

5.1.2 Syntax . 50

5.1.3 Rewrite Rules . 50

5.2 The Restart Algorithm . 55

5.2.1 Observations . 57

5.3 Example: Restart with Matrix Multiplication 57

vi

5.4 Example: Restart with Pascal’s Triangle 60

5.5 Summary . 62

6 Execution Frontiers in CnC 63
6.1 The CnC Execution Frontier . 63

6.1.1 The Leading Edge . 65

6.1.2 The Trailing Edge . 65

6.1.3 Observations . 67

6.2 Model . 68

6.2.1 Configuration . 68

6.2.2 Syntax . 68

6.2.3 Rewrite Rules . 68

6.3 Changes in Key Properties . 71

6.4 Summary . 72

7 Extended Model of CnC Checkpointing 74
7.1 The Modified Checkpoint Model . 74

7.1.1 Configuration . 74

7.1.2 Syntax . 76

7.1.3 Rewrite Rules . 76

7.2 Restarting . 81

7.3 Example: Restart with Pascal’s Triangle 83

7.4 Summary . 87

8 Checkpoint/Restart with CnC in Habanero-C 88
8.1 Adding C/R Support to CnC-HC . 88

8.1.1 C/R Hooks . 89

8.1.2 Checkpoint Message Handlers 91

8.1.3 Checkpoint Processing and Restarting 91

vii

8.2 Checkpoint Migration . 94

8.3 Initial Overhead Measurements . 94

8.4 Summary . 100

9 Conclusions and Future Work 101
9.1 Conclusions . 101

9.2 Future Work . 101

Bibliography 103

A CnC Sans Control Collections 107

B Details of the Executable Model’s I/O 109

C A Sample CnC-HC Application 111

viii

List of Figures

2.1 Abstract CnC graph for a simple data-filtering application 6

2.2 First nine rows of Pascal’s Triangle 9

2.3 Abstract CnC graph for the Pascal’s Triangle application 12

2.4 The prescribe, put and get relationships among the step and item

collections in the Pascal’s Triangle CnC application. 12

2.5 Dynamic CnC graph for the computation of 2C1. 15

2.6 Example of a K rewrite rule. 20

3.1 Abstract CnC graph for the matrix multiplication application 28

4.1 K configuration for an unoptimized CnC runtime. 34

4.2 Syntax of our unoptimized CnC model’s rewrite rules. 38

5.1 K configuration for unoptimized CnC checkpointing. 51

5.2 Syntax changes for the checkpoint model. 51

5.3 Base of matrix multiplication checkpoint 58

5.4 Pascal’s Triangle unoptimized checkpoint 61

6.1 Snapshot of item liveness in a 3-point stencil on a matrix 64

6.2 K configuration for a CnC runtime with a trailing edge. 69

6.3 Summary of syntax changes for accommodating a trailing edge. . . . 69

7.1 K configuration for CnC checkpointing with the XF trailing edge. . . 75

7.2 Pascal’s Triangle checkpoint with trailing edge 85

8.1 Cholesky performance with and without C/R 98

ix

8.2 Cholesky C/R overhead for varying tile sizes 99

A.1 CnC graph representation of a simple data filtering application, with

control collections . 108

x

List of Listings

3.1 Clojure code for the Pascal’s Triangle CnC application. 27

3.2 Clojure code for the matrix multiplication CnC application. 30

6.1 Get count function for Pascal’s Triangle entries. 66

6.2 Get count functions for the matrix multiply application. 66

8.1 Macros defining the CnC functions in HC 90

8.2 Helper functions for adding data to the checkpoint. 92

8.3 Main function for the checkpointing thread. 93

8.4 Clojure code for processing CnC-HC checkpoint output. 96

C.1 CnC-HC step code for edge entries of Pascal’s Triangle 112

C.2 CnC-HC step code for inner entries of Pascal’s Triangle 112

C.3 CnC-HC graph initialization code for Pascal’s Triangle 113

xi

List of Rewrite Rules

4.1 Rewrite rules for initializing all collections in the graph, and reading

commands once the initialization is complete. 39

4.2 Rewrite rules for prescribing new steps, specifying their inputs, and

signaling when a step’s execution has completed. 41

4.3 Rewrite rules for adding to and getting from item collections. 42

4.4 Rewrite rules for step dependencies and execution 43

5.1 Rewrite rules for initializing the checkpoint and reading in commands. 52

5.2 Rewrite rules for adding item and step information to the checkpoint. 53

5.3 Rewrite rules to account for a step’s outputs, and then mark it as done. 54

6.1 Updated put and get commands, tracking an item’s get-count. 70

6.2 New rewrite rules for realizing the trailing edge. 71

7.1 Rewrite rules for initializing the checkpoint and reading in commands. 76

7.2 Rewrite rules for adding item and step information to the checkpoint. 78

7.3 Rewrite rules tracking step outputs. 79

7.4 Rewrite rules for satisfying step input dependencies. 80

7.5 Rewrite rules for XF leading and trailing edges. 82

B.1 Rewrite rules for decoding the integer-stream representations of CnC

data items (integers) and tags (integer tuples) read from stdin. 110

1

Chapter 1

Introduction

This thesis defines the semantics and runtime properties of a checkpoint/restart

(C/R)-based resilience system targeting the Habanero Concurrent Collections (CnC)

runtime platform. We investigate the claim that “what is good for parallelization

is good for resilience” [1] and demonstrate that the properties that make CnC well

suited for parallelization indeed simplify the implementation of C/R. We present a

formal model to demonstrate the correctness of our resilience technique, as well as an

implementation of C/R in the Habanero-C CnC runtime (CnC-HC).

1.1 Motivation for CnC C/R

While supercomputers today may lose a node due to a hard error about once a week,

exascale supercomputers expected by 2020 will have a mean time between failures on

the order of minutes, making checkpointing “both more critical and less practical” on

these systems [2]. Restoring a distributed application with a large memory footprint

from disk can take several minutes in practice [3]; therefore, it is not far-fetched that

the overhead incurred by current C/R techniques would consume nearly 100% of

the computation time on future exascale systems. Reducing synchronization without

sacrificing correctness is an important goal of all modern resilience systems, and will

continue to be as supercomputing clusters continue to grow. Since several aspects of

the CnC programming model make it a good fit for extreme scale computing [4], we

2

should also explore the possibilities CnC or a similar programming model brings to

the realm of resilience. As the first step in this endeavor, this thesis demonstrates

how to design a C/R system for CnC in a shared memory environment.

1.2 Thesis Statement

Since the Concurrent Collections programming model has many properties that sim-

plify the process of expressing parallel programs, it is also an ideal target for a simple

and efficient checkpoint/restart-based resilience system.

1.3 Contributions

This thesis makes the following contributions. We define the semantics of a basic

CnC runtime in a formal model, and use that model to prove key properties of the

CnC runtime. We define the semantics of a CnC checkpoint as it receives updates

from a running graph execution, and demonstrate that the checkpoint can be used

to correctly restart computation. We define the concept of an execution frontier, and

update the runtime and checkpoint models to incorporate concepts from execution

frontiers. Finally, we demonstrate an implementation of CnC C/R in the CnC-HC

runtime.

1.4 Organization

Chapter 2 provides background on the concepts used throughout the rest of the

thesis and gives context with related work. Chapter 3 defines a small API that we

use to write sample applications that can run against our executable models of CnC.

Chapter 4 introduces our model for the basic CnC runtime, and proves that some

3

key properties of the runtime in the context of that model. Chapter 5 defines the

model for a CnC checkpoint, and outlines the method for restarting a CnC execution

graph from a valid checkpoint. Chapter 6 introduces the concept of an execution

frontier and modifies the runtime model from chapter 4 to incorporate execution

frontiers. Chapter 7 updates the checkpoint model from chapter 5 to work with the

new runtime model from chapter 6. Chapter 8 explores how to add checkpoint/restart

support to the existing Habanero-C implementation of CnC based off the models from

chapters 6 and 7. Chapter 9 presents our conclusions and directions for future work.

4

Chapter 2

Background

This chapter provides background information about the programming models and

frameworks discussed in this thesis. In section 2.1 we explain the Concurrent Col-

lections (CnC) programming model, for which we design and implement a check-

point/restart system in this thesis. In section 2.2 we discuss current approaches to

checkpoint/restart, comparing them to our checkpoint/restart strategy for CnC. Sec-

tion 2.3 gives a brief description of the Habanero-C framework, which is the basis

for the CnC implementation used in chapter 8. Finally, section 2.4 describes the K

framework; K is a rewrite-based executable semantic framework that we use to model

the CnC runtime and checkpoint/restart behavior.

2.1 Concurrent Collections (CnC)

CnC is a system for describing the structure of parallel computation, or coordinating

the data- and control-flow between the individual steps of a computation [5, 6]. A

CnC application specifies a set of discrete step functions, and the data collections used

as input to and output from those step functions.1 The CnC coordination language

describes the relationship between a specific invocation of a step function, its input

1 This model varies slightly from the traditional CnC model in that it lacks control collections;
however, this elision in our model reflects the absence of control collections in the Habanero variants
of CnC developed at Rice University, on which this work is based. For a brief overview of control
collections, and a discussion of the equivalence of this simplified CnC model with the traditional
model, please see appendix A.

5

and output data, as well as parent/child relationships between to other step function

invocations. The remainder of this section provides a general overview of the CnC

programming model, outlining the key properties of CnC, and how these properties

are particularly useful when implementing checkpoint/restart (C/R) for CnC.

2.1.1 Key Properties of CnC

In this thesis, we leverage several distinctive characteristics of the CnC programming

model, which give our C/R solution a number of interesting and unique properties.

These are the characteristics that make the CnC programming model well suited

for expressing large-scale parallel computations. In this section, we outline five key

characteristics of CnC: graph representation, single-assignment data, monotonically

growing state, discrete computation steps, and side-effect-free computation steps. We

leverage these five characteristics for C/R.

Graph Representation of the Application

A fundamental characteristic of a CnC application is that the entire computation flow

is represented as a graph. An application is partitioned into collections of computation

steps and data items, each of which describe a class of step (computation) or item

(data) instances. These collections serve as the nodes of the graph. The prescribe (step

creation), put (item creation) and get (item read) relationships among the collections

are represented as edges in the graph. Figure 2.1 shows a graph representation for a

simple CnC application. By default, we mean a static program graph, when referring

to a CnC graph. When necessary, we will differentiate between a static CnC graph,

which defines a CnC program, and a dynamic CnC graph, which defines a CnC

program execution.

6

Filter 1 Filter 2

Item A Item B Item C

Figure 2.1 : The abstract graph representation of a simple data-filtering CnC appli-
cation. The two ellipses represent step collections for two separate levels of filtering.
The three rectangles represent item collections for holding all of the input data (Item
A), the results of the first filter pass (Item B), and the final output from the second
filter pass (Item C). Solid edges represent puts to and gets from item collections.
Dashed edges represent prescriptions (creation) of new step instances. Jagged edges
represent the interactions with the application environment that encloses the CnC
graph.

By providing a high-level graphical representation of the application, the user

provides the CnC runtime with all the necessary information to automatically track

the incremental progress of the application. In the case of a failure, the runtime can

restart the computation by simply restarting all of the computation steps that were

running at the time of the failure, and providing the input data for those steps to run

to completion.

Since all of the information needed to perform a restart is encapsulated within the

CnC computation graph, we are also able to limit the data stored in checkpoints to

only the data represented by the graph, rather than saving a full memory dump as

done in many other solutions.

Single-Assignment Data and Monotonically Growing State

In a traditional imperative computation model, an application calculates incremen-

tal solutions to a problem by updating (or mutating) its in-memory data, eventually

7

resulting in the final output. In such a system, it is possible to checkpoint an in-

consistent state if some data is updated during the process of saving the checkpoint,

such that part of the checkpoint reflects the update and part does not. In contrast,

CnC takes a functional rather than imperative approach to modeling state. All data

available at the level of the CnC computation graph is single-assignment, meaning

that once a data item is created it is never updated. An individual computation

step is free to mutate data local to that step, but all such mutations must be fully

encapsulated within the step.

A property that follows from the single-assignment property is the monotonicity

property. Since data cannot be updated after appearing in the graph, the overall state

of a CnC application appears to only add new data, never removing or mutating

previous data. A CnC implementation can optionally free data that is no longer

required, though this process can, in general, be more complicated than garbage

collection in functional languages [7].

This combination of the single-assignment and monotonicity properties allows us

to safely create checkpoints asynchronous of all step computations. Once a data item

is created it cannot change in the midst of saving a checkpoint and potentially corrupt

the consistency of the checkpoint. Additionally, since updates to a checkpoint only

add new information, it is impossible to accidentally remove information that may

be necessary to successfully restart. However, some implementations of CnC include

mechanisms for removing data after its last use [8, 7], which must be adapted carefully

in the presence of checkpointing.

8

Discrete and Side-Effect-Free Computation Steps

A traditional application may be implicitly divided into several logical computations,

but the CnC programming model makes these divisions explicit. The CnC runtime

takes advantage of discrete computation steps to run computation steps in parallel

on multicore hardware. The fact that CnC applications have discrete computation

steps with explicit inputs allows us to restart any given computation at the CnC

step granularity. In addition, computation steps in CnC are side-effect-free because

the only observable outputs of CnC steps are their items put and steps prescribed.

This means that if a computation failed mid-step, there is no possibility that some

incremental updates made by the step will corrupt the global CnC graphs state.

These properties allow us to safely restart an application that failed at any point in

the computation.

Summary

CnC applications have the unique properties of being specified as computation graphs,

having single-assignment, a monotonically growing state, and computation steps that

are both discrete and side-effect-free. The combination of all these properties gives our

C/R solution several unique properties. We can limit the data saved to the informa-

tion encapsulated within the CnC runtime, checkpointing that data asynchronously

and continuously. Finally, we can safely restart a CnC application that failed at any

point during the computation.

2.1.2 Pascal’s Triangle: A Sample CnC Application

To better describe the CnC programming model, we now introduce a simple CnC

application as an example. This sample application computes binomial coefficients—

9

Figure 2.2 : The first nine rows of Pascal’s Triangle. The entries of Pascal’s Triangle
correspond to the binomial coefficients, such that the entry at row n, column k is
equal to nCk.

i.e., the values of nCk (n choose k)—via Pascal’s Triangle.

Review of Pascal’s Triangle

Figure 2.2 shows the first nine rows of Pascal’s Triangle. If P (n, k) is the value at

row n, column k of Pascal’s Triangle (where both the row and column numbers are

zero-based), then for all n ≥ k ≥ 0:

P (n, 0) = P (n, n) = 1 (2.1a)

P (n, k) = P (n− 1, k − 1) + P (n− 1, k) (2.1b)

Equations (2.1a) and (2.1b) exactly match the recursive definition for the binomial

10

coefficients [9]; hence, the entry of Pascal’s Triangle at row n, column k corresponds

to the binomial coefficient nCk [10].

Structure of the CnC Graph

As explained earlier in this section, every CnC application must specify a set of step

collections, corresponding to the functions used in computation, and a set of item

collections, corresponding to the data on which the steps operate. To compute the

value of nCk, we must compute n rows and k columns of Pascal’s Triangle. Since the

only type of data we use in this computation (both for building the triangle and in the

result) is the set of values in the triangle, we only need a single item collection to hold

that data, which we can call pascal-entries. Since we have two different equations for

computing the entries of the triangle, we have one step collection for computing values

based on equation (2.1a), and another based on equation (2.1b). We call the first step

collection edge-step since it computes the values along the left and right edges of the

triangle, and the second inner-step since it computes the remaining values inside the

triangle. A high-level sketch of the CnC graph for this application is illustrated in

figure 2.3.

In CnC, instances of step and item collections are differentiated by a unique tag,

often represented by an integer tuple; however, to differentiate step and item collec-

tions, we typically refer to the tag of an item instance as a key. We identify instances

of both the item and step collections by the row and column of the corresponding

entry in Pascal’s Triangle; therefore, the tags and keys for instances in all three col-

lections are integer pairs of the form ⟨row, col⟩. For simplicity, we use the notation

L S: T M to denote an instance of step collection S with the tag T , where the round

brackets correspond to the round nodes used for steps in the graphical representation

11

(as shown in figure 2.3). Similarly, we use the notation J I: K K to denote an instance

of item collection I with the key K, or J I: K→V K to denote that the item instance

has the value V , where the square brackets correspond to the rectangular nodes used

for items in the graphical representation.

To give our application a more dynamic feel, each step instance with tag ⟨row, col⟩

prescribes the step instance with tag ⟨row+1, col⟩. Since each row of Pascal’s Triangle

has one more column than the previous row, steps with tags where row = col also

need to prescribe the step with tag ⟨row+ 1, col+ 1⟩. Each step instance also puts a

single data item to the pascal-entries collection, with a key matching the step’s tag,

and the value rowCcol. Figure 2.4 illustrates these relationships among the step and

item collections, with the mapping between step tags and item keys shown explicitly.

It is often useful in a CnC application to parameterize some aspects of the graph

structure. For example, one might want to parameterize the dimensions of the input

matrices to a matrix kernel in order to make the code more generic. In our application,

we want to parameterize the values n and k, which allows us to stop computation at

row n of Pascal’s triangle. We do this by setting values for n and k in the CnC graph’s

context, which is available to all CnC functions. These parameters are considered

constant throughout the graph execution. The step functions in our application use

these parameter values to compute whether or not to prescribe a new step instance

corresponding to the next row of the triangle.

Executing CnC Steps

Before a CnC step instance is executed, that step must be prescribed (created) and

all of its input data items must be available. The CnC runtime tracks the status

of step and item instances via attributes attached to the instances. When some step

12

edge-step inner-step

pascal-entries

Figure 2.3 : The abstract graph representation of the Pascal’s Triangle CnC appli-
cation. Ellipses represent step collections (computation), and rectangles represent
item collections (data). Dashed edges represent step prescriptions (creation), and
solid edges represent puts to or gets from item collections. Jagged edges represent
interactions with the application environment that encloses this CnC graph.

edge-step

〈row, col〉
pascal-entries

〈row, col〉

edge-step

〈row + 1, col〉

(a) Left-edge instances: col = 0

edge-step

row, col

pascal-entries

row, col

inner-step

row + 1, col

edge-step

row + 1, col + 1

(b) Right-edge instances: row = col

pascal-entries

〈row − 1, col − 1〉

pascal-entries

〈row − 1, col〉

inner-step

〈row, col〉
pascal-entries

〈row, col〉

inner-step

〈row + 1, col〉

(c) Inner instances: 0 < col < row

Figure 2.4 : The prescribe, put and get relationships among the step and item col-
lections in the Pascal’s Triangle CnC application. Note that the topmost entry of
the triangle, where row = col = 0, is actually a special case that does the edge-step
prescription from the left edge and the edge-step prescription from the right edge
without an inner-step prescription.

13

instance (or the environment) prescribed a step in collection S with tag T , step L S: T M
is created with the control ready attribute. If a step has a single input dependence

on J I: K K, the step gains the data ready attribute when an item with key K has

been put to item collection I. If a step has two or more such dependencies, the

step is data ready only when all of the input items have been put. If a step has

zero input dependencies then it is always considered data ready. Once a step is both

control ready and data ready, it gains the ready attribute, and is only then eligible to

execute.

In our Pascal’s Triangle application, an instance of edge-step is ready as soon as

it is prescribed because it has no input dependencies on the item collection. Since

instances of inner-step depend on two item instances from pascal-entries, an inner-

step instance is only ready to execute after it has been prescribed and both of the

corresponding item instances have been put.

Interaction with the Environment

A CnC graph is typically embedded within a driver application, and we refer to the

portions of the application that interact with the CnC graph as the environment.

When CnC program execution is completed, the environment must put all data,

prescribe all steps, and set any parameters necessary to properly initialize the CnC

graph. The environment may also get values from item collections, which acts as an

output mechanism for the graph.

In our Pascal’s Triangle application, the environment initializes the graph’s n and

k parameters, then prescribes an L edge-step: 0,0 M, which corresponds to the topmost

entry of the triangle. From that point, the CnC runtime has all the information it

needs to compute the value for nCk. When the CnC graph has completed its execution,

14

the environment gets J pascal-entries: n,k K, which holds the computed value of nCk.

Example Execution

We will now outline an example of an execution trace for our Pascal’s Triangle ap-

plication. For simplicity in tracing the execution, we assume that the runtime has

only a single worker thread, meaning that only one step can run at a time. This

assumption eliminates any possible concurrency among steps in the computation and

simplifies reasoning about program execution and execution trace creation.

We pick 2C1 as the target value for this execution, therefore the environment ini-

tializes an instance of our CnC graph with the parameters n = 2 and k = 1. The

environment also prescribes L edge-step: 0,0 M to start the graph’s execution. Since

L edge-step: 0,0 M has been prescribed and has no input dependencies, it is ready to

execute. The graph execution is described textually below, and graphically in fig-

ure 2.5.

L edge-step: 0,0 M
puts J pascal-entries: 0,0→1 K;
prescribes L edge-step: 1,0 M and L edge-step: 1,1 M.

All steps in row 0 have now run to completion.

L edge-step: 1,0 M
puts J pascal-entries: 1,0→1 K;
prescribes L edge-step: 2,0 M.

L edge-step: 1,1 M
puts J pascal-entries: 1,1→1 K;
prescribes L inner-step: 2,1 M and L edge-step: 2,2 M.

All steps in row 1 have now run to completion.

L edge-step: 2,0 M
puts J pascal-entries: 2,0→1 K;
prescribes no steps since row = n = 2.

15

edge-step

〈0,0〉

pascal-entries

〈0,0〉 → 1

edge-step

〈1,0〉
pascal-entries

〈1,0〉 → 1

edge-step

〈1,1〉
pascal-entries

〈1,1〉 → 1

edge-step

〈2,0〉
pascal-entries

〈2,0〉 → 1

inner-step

〈2,1〉
pascal-entries

〈2,1〉 → 2

edge-step

〈2,2〉
pascal-entries

〈2,2〉 → 1

Figure 2.5 : Dynamic CnC graph for the computation of 2C1.

L inner-step: 2,1 M depends on J pascal-entries: 1,0 K and J pascal-entries: 1,1 K, but since

both items were already put, it is ready to execute.

L inner-step: 2,1 M
gets J pascal-entries: 1,0→1 K and J pascal-entries: 1,1→1 K;
puts J pascal-entries: 2,1→2 K;
prescribes no steps since row = n = 2.

L edge-step: 2,2 M
puts J pascal-entries: 2,2→1 K;
prescribes no steps since row = n = 2.

All steps in row 2 have now run to completion. Since all prescribed steps have

run to completion, the CnC graph execution is finished. The environment gets item

instance J pascal-entries: 2,1→2 K and correctly yields the answer 2C1 = 2.

2.1.3 The CnC Continuum

CnC describes a programming paradigm rather than a specific runtime implementa-

tion. As a result, there is quite a bit of flexibility in how a particular CnC runtime

may behave, and what requirements it might impose. One example of this is the

static or dynamic nature of the CnC graph. CnC has no restrictions about how much

16

of a application’s graph structure must be computable statically versus computed

dynamically at runtime. This results in a variety of requirements in the existing CnC

implementations pertaining to the specification of inputs and outputs of CnC step

functions. Some implementations require that some or all of step tags and item keys

to be computed statically, whereas others allow all the inputs and outputs of a step

instance to be computed dynamically. The specifics of the particular flavor of CnC

used in this thesis are described in section 3.1.

2.2 Current Approaches to Resilience

Current approaches to resilience fit into three major categories: kernel-level check-

pointing, user-level checkpointing, and non-checkpoint-based resilience. We discuss

the trade-offs of these three approaches to resilience throughout the rest of this sec-

tion.

2.2.1 Kernel-Level Checkpointing

Kernel-level checkpointing involves modifying the operating system kernel to save

snapshots of memory over time for use as checkpoints in case of a failure. An ex-

ample of a kernel-level checkpointing system is Berkeley Lab Checkpoint Restart

(BLCR) [11]. BLCR makes system-wide checkpoints, saving the state of all processes

running on the current machine in order to restore the entire system’s state in the

event of a failure. This approach is advantageous in multiprogramming environments

because all users’ applications running on a given compute node are checkpointed

together, rather than each incurring an individual overhead for C/R. This process is

also generic enough that it will work for any running application, and BLCR even

has support for cooperating with common messaging libraries for coordinating (syn-

17

chronizing) inter-node checkpoints. However, this generality comes at the cost of an

increased memory footprint since the lack of application-specific details necessitates

saving the entire process image of each running application for the checkpoint. Ad-

ditionally, kernel-level checkpoints require modification to the underlying operating

system kernel in order to operate, meaning that only system administrators can install

kernel-level C/R systems like BLCR.

2.2.2 User-Level Checkpointing

The user-level approach works within an application to provide C/R capabilities to

that individual application. Applying C/R at the application level is more popular

than system-level C/R because application-specific knowledge can be leveraged to

decrease the overall I/O overhead and memory footprint [11].

The Chandy-Lamport algorithm [12] is a seminal work for checkpointing dis-

tributed systems. The algorithm provides a method to capture a consistent snapshot

of the global state of a system without requiring global synchronization. Instead, each

process asynchronously saves its own state, and then logs messages received in order

to create the globally consistent snapshot. The Chandy-Lamport algorithm assumes

a set of processes connected by a set of unidirectional message channels. The CnC

model has no concept of communication channels; rather, all data is shared through

the contents of the item collections. In this thesis we take advantage of the monoton-

ically increasing state of CnC applications to create a more specialized checkpointing

solution.

Charm++ is a variant of the popular C++ programming language that provides

transparent C/R as part of the programming model [3]. Charm++ leverages ad-

ditional information gained from runtime integration in order to reduce checkpoint

18

memory footprints. We take a similar approach in reducing the memory footprint of

checkpoints by saving only live application data encapsulated within the CnC run-

time; however, we are also able to leverage CnC’s semantics to avoid synchronization

when saving and restoring checkpoints.

Distributed MultiThreaded CheckPointing (DMTCP) is a user-level checkpointing

solution that works transparently (meaning that the application writer does not need

to modify the application to accommodate C/R) for a large variety of applications [13].

DMTCP provides an interesting feature: it enables a user to migrate a checkpoint

from a supercomputer to a desktop machine, and then restart from the checkpoint on

the desktop machine to provide a better debugging experience. However, DMTCP

uses global synchronization (a series of barriers) to coordinate checkpoints, which

will not scale to provide acceptable performance on exascale systems. We provide

migratable checkpoints while eliminating global synchronization.

2.2.3 Non-Checkpoint-Based Resilience

Although C/R tends to dominate resilience in the high-performance computing do-

main, there are other possible approaches. One example is the data-driven fault

tolerance system designed by Ma and Krishnamoorthy [14]. Their system mirrors

the computation state in an idempotent data store as data is updated, rather than

periodically taking a snapshot of computation state as done traditionally in C/R. We

also take a continuous-update approach in our solution, thus also varying from the

traditional C/R model.

19

2.2.4 Previous C/R Work for CnC

HP labs implemented a prototype of C/R in CnC (known as TStreams at that

time) [15], principally designed by Alex Nelson. Aside from a demonstration at the

HP booth at Supercomputing, the details of this work were never published or oth-

erwise made public, nor was the prototype made available outside HP in any other

form. The C/R prototype was demonstrated with a single application—a graphical

Mandelbrot set code. This thesis lays a theoretical foundation for C/R in CnC and

aims to be more general and complete then the previous work done at HP Labs—

although any comparison of generality or completeness is impossible since the original

prototype is not available.

2.3 Habanero-C CnC

Habanero-C (HC) is an extension to the C language that adds constructs for par-

allel programming with async/finish-based parallelism [16, 17]. In CnC-HC, steps

are scheduled using data-driven tasks [18]. We discuss the process of adding check-

point/restart to the existing CnC-HC runtime in chapter 8.

The CnC-HC programming system includes a graph translator that takes in a

textual representation of a CnC graph, then generates skeleton code for the applica-

tion environment and all of the CnC step functions described by the graph, as well

as generating scaffolding code to automatically get the inputs of all steps from the

item collections based on the relationships described in the graph. The textual graph

representation describes the relationships among the step and item collections using

parameterized tag expressions, much like those shown in figure 2.4.

20

RULE
•
K

Some Text

inner-cell

outer-cell

Figure 2.6 : Example of the graphical representation for a K rewrite rule. This rule
adds “Some Text” to an empty ‹inner-cell› contained inside some ‹outer-cell›. The
torn edge on the ‹outer-cell› implies that it might contain other values as well, but
this rule is only concerned with the portion shown.

2.4 Rewrite Rules and the K Framework

The K framework [19] is a system for building rewrite-rule based models. In this

thesis we use the K-framework to model the behavior of the CnC runtime and the

checkpointing process. A model specified in K consists of three pieces: a configuration,

syntax, and rewrite rules. The state of a K model is represented by a string, which

is divided up into a nested structure of cells. Since the K syntax uses an XML-like

format for specifying the contents of cells, we use the notation ‹foo› to indicate a

K cell with the name foo. Cells can also contain other text. The types of strings

allowed as values in cells are determined by the syntax.

K allows for organizing syntax productions into groups called sorts—an abstrac-

tion similar to data types. K comes with some pre-declared sorts, such as Ints, Bools,

Lists and Bags. The K sort is the top-sort that encompasses all strings. The • symbol

is used to specify an empty string, and it can be annotated with a sort. Finally, the

rewrite rules match cells and strings within the cells, and rewrite some portion of the

match to a new value. A rule can match all or part of the contents of a given cell

when doing a rewrite. When only a portion of a cell is matched in a rule, this is

represented graphically by showing a torn edge on one side of the cell. When a new

21

cell is being created and uses this partial match representation, it indicates that all

contents not explicitly shown default to the values given in the configuration. Cell

names in the configuration can end with the symbol * to indicate that zero or more

copies might exist (defaulting to zero). Figure 2.6 is an example of a simple rewrite

rule in K.

Models written in K are executable. They can read a static program as input, as

well as dynamically interact with I/O through stdin and stdout.

22

Chapter 3

A Thin Wrapper for the CnC Runtime

In this chapter we introduce a thin wrapper over the CnC runtime, which constitutes

a simple API that we can use to write CnC applications. This is a simple implemen-

tation in Clojure [20] (an implementation of Lisp that interoperates with standard

Java libraries and runs on the JVM). We use promises to asynchronously communi-

cate with the CnC runtime model, similar to how the Habanero flavors of CnC use

data-driven futures [18] to maintain data dependencies. We introduce the underlying

runtime model in chapter 4.

3.1 CnC Flavor

As described in section 2.1.3, there are a wide variety of flavors of CnC. In this section,

we detail the assumptions about the flavor of CnC we assume both for this wrapper

and for our models.

3.1.1 Asynchronous Communication

We assume that the calls between the CnC runtime and user code are asynchronous.

We assume that all messages will eventually be delivered, but we make no assumptions

about message order.

23

3.1.2 Input and Output of Steps

In our CnC model, we assume that inputs are static, but outputs are dynamic. Requir-

ing static inputs means that the set of data items needed to run a given computation

step must be statically computable from an explicit tag function. In other words, the

programmer must provide a function for each step collection that, given only the tag

corresponding to a specific step instance, can statically compute the set of item keys

(each associated with a specific item collection) enumerating the inputs for that step.

Having an explicit tag function simplifies the process of determining when a step

becomes data-ready, and also matches the explicit tag functions used in the graph

specifications of the Habanero CnC implementations [21].

Allowing dynamic outputs means that the outputs of a given step (including both

item puts and step prescriptions) may be data-dependent. In other words, the quan-

tity and identities of the items put and steps prescribed by a step can be a function

of the run-time values of that step’s inputs.

3.1.3 Data Representation Restrictions

Due to limitations in parsing arbitrary input to the K framework [22], we restrict data

in our model to integers. This restriction is purely a product of the lack of support

for defining parse rules on runtime input to the model. Similarly, step tags and item

keys are restricted to non-empty integer tuples. This restriction places a major limit

on the variety of applications that we can directly run against our model. However,

these restrictions do not limit our ability to reason about CnC. The encoding details

of keys, tags and data are inconsequential as long as they can be read, written and

compared for equality. As supporting more complex data types would add significant

complexity to the already complicated mechanisms, we feel that this is an acceptable

24

compromise.

3.1.4 Dynamic Graph Restrictions

A valid CnC application must have an acyclic dynamic structure. We do not assume

that the CnC runtime checks for duplicate step prescriptions. If the CnC runtime

neither checks for duplicate step prescriptions nor prevents duplicate steps from be-

coming enabled and executing, then the application diverges in the event of a cycle

(i.e., when the same step instance is prescribed twice). Restricting the application to

generate an acyclic graph structure guarantees that the graph execution will eventu-

ally terminate, assuming that no individual step diverges and that the steps have a

finite tag-space.

3.2 The API

We now define the user API for writing CnC applications that can be executed with

our runtime. Sections 3.2.1 and 3.2.2 contain two full examples of using this API to

write a CnC application. The API consists of the following macros and functions:

(defstepfn name context-binding tag-binding input-bindings & body)

Macro for defining a step function for the CnC graph. The input-bindings

is a vector of triplets. Each triplet has form (binding-sym collection-id

tag-exp). The tag-exp may return either an individual tag, or a collection of

tags. When the step function is run, each binding-sym will be bound to the

result of getting the specified item(s) from the item collection with the given

collection-id. Similarly, the current graph context is bound to context-binding,

and the step’s tag to tag-binding.

25

(cnc-run graph-spec init-fn result-fn)

Function for creating and executing a CnC graph. The graph-spec is a map

defining the step collections, item collections and any static data in the graph.

The :stepcolls key specifies a mapping of collection-id/step-function pairs.

The :itemcolls key specifies a mapping of collection-id/get-function pairs (get

functions will be introduced in section 6.1.2). The optional :static key spec-

ifies a mapping of keywords to static values. The init-fn and result-fn are,

respectively, functions for initializing the graph and returning a result from the

graph data. Each takes a single parameter corresponding to the current graph

context.

(put-item context collection-id key value)

Creates an instance in the specified item collection with the given key and value.

(prescribe-step context collection-id tag)

Creates an instance of a step from the specified collection with the given tag.

(get-static context key)

Retrieves the static value from the graph context associated with the given key.

(get-item context collection-id key)

Retrieves the value of the item in the specified collection with the given key.

This is used implicitly to create the input bindings for step functions, but may

also be used explicitly in the cnc-run function’s result-fn.

3.2.1 Example: Pascal’s Triangle

Listing 3.1 contains the full source code of a CnC application for computing bino-

mial coefficients. The value nCk is found by computing the nth row and kth column

26

1 ;; Namespace for Pascal’s Triangle application
2 (ns cnc.examples.pascal
3 ; Import CnC API
4 (:use cnc.runtime.core))
5

6 ;; Unique IDs for each CnC collection
7 (def pascal-entries 0)
8 (def edge-step-id 1)
9 (def inner-step-id 2)

10

11 ;; Step producing edge entries of the triangle
12 ;; ctx : current CnC context
13 ;; [row col] : tag specifying a row and column in the triangle
14 ;; [] : no data items are required as input
15 (defstepfn edge-step ctx [row col]
16 []
17 (assert (or (== col 0) (== col row)) ”Must be an edge entry”)
18 ; Put the value 1 for the entry at (row, col)
19 (put-item ctx pascal-entries [row col] 1)
20 ; All but last row will prescribe a step in the next row
21 (when (< row (get-static ctx :n))
22 (let [step-id (if (zero? col) edge-step-id inner-step-id)]
23 (prescribe-step ctx step-id [(inc row) col]))
24 ; Right-edge entries also prescribe last entry in the next row
25 (when (== row col)
26 (prescribe-step ctx edge-step-id [(inc row) (inc col)]))))
27

28 ;; Step producing inner entries of the triangle
29 ;; ctx : current CnC context
30 ;; [row col] : tag specifying a row and column in the triangle
31 ;; [x y] : values of entries at (row-1, col) and (row-1, col-1)
32 (defstepfn inner-step ctx [row col]
33 [(x pascal-entries [(dec row) (dec col)])
34 (y pascal-entries [(dec row) col])]
35 (assert (< 0 col row) ”Must be an inner entry”)
36 ; Put the value for the entry at (row, col) by
37 ; adding the values x and y from the previous row
38 (put-item ctx pascal-entries [row col] (+ x y))
39 ; All but last row will prescribe a step in the next row
40 (when (< row (get-static ctx :n))
41 (prescribe-step ctx inner-step-id [(inc row) col])))
42

Listing continued on next page.

27

Listing continued from previous page.

43 ;; Get count function for the pascal-entries collection
44 (defn entry-get-count [ctx [row col]]
45 (let [n (get-static ctx :n)
46 k (get-static ctx :k)]
47 (cond
48 ; All entries in the last row are never read,
49 ; except the kth entry, which is read once as output
50 (== row n) (if (== col k) 1 0)
51 ; Row 0 is not read
52 (== row 0) 0
53 ; Edge entries are only read once
54 (or (== k 0) (== k n)) 1
55 ; Other entries are read twice
56 :else 2)))
57

58 ;; Compute n choose k by computing n rows of Pascal’s Triangle.
59 ;; This function provides the environment for the CnC graph.
60 (defn n-choose-k [n k]
61 (cnc-run
62 ; CnC graph specification: maps step collection IDs
63 ; to step functions, item collection IDs to get-count
64 ; functions, and setting values for static parameters.
65 {:stepcolls {edge-step-id edge-step
66 inner-step-id inner-step}
67 :itemcolls {pascal-entries entry-get-count}
68 :static {:n n, :k k}}
69 ; CnC graph initialization function
70 ; Start a step for the entry at the top of the triangle
71 (fn [ctx]
72 (prescribe-step ctx edge-step-id [0 0]))
73 ; CnC graph result-processing function
74 ; Return the entry from row n, column k of the triangle
75 (fn [ctx]
76 (get-item ctx pascal-entries [n k]))))

Listing 3.1: Clojure code for the Pascal’s Triangle CnC application.

28

coll-a

coll-b mult-step coll-products

sum-step coll-c

Figure 3.1 : The abstract graph representation of the matrix multiplication CnC ap-
plication. Ellipses represent step collections (computation), and rectangles represent
item collections (data). Dashed edges represent step prescriptions, and solid edges
represent puts to or gets from item collections. Jagged edges represent interactions
with the application environment that encloses this CnC graph.

of Pascal’s Triangle. Section 2.1.2 contains a discussion of the structure and behavior

of this application, and its graph structure is illustrated in figure 2.3. The function

entry-get-count on line 43 is explained in section 6.1.2. The following is a sample

call and result for the application’s n-choose-k function:

(n-choose-k 4 2) ; result: 6

3.2.2 Example: Matrix Multiplication

Listing 3.2 contains the full source code of a CnC application for computing the

product of two matrices. The structure of the application is illustrated in figure 3.1.

We now give a brief outline of the structure and behavior of this application. The

following is a sample call and result of the application’s matrix-mult function:

(matrix-mult [[1] [2]] [[3 4]]) ; result: [[3 4] [6 8]]

Since we specify a matrix as a nested vector in this application, the function call

and result in the code fragment above is equivalent to the following equality:

29

1 ;; Namespace for Matrix Multipy application
2 (ns cnc.examples.matrix-multiply
3 ; Import CnC API
4 (:use cnc.runtime.core))
5

6 ;; Unique IDs for each CnC collection
7 (def coll-a 0) ; items for input matrix a
8 (def coll-b 1) ; items for input matrix b
9 (def coll-c 2) ; items for output matrix c

10 (def coll-products 3) ; items for intermediate products
11 (def mult-id 4) ; steps to multiply entries
12 (def sum-id 5) ; steps to sum intermediate products
13

14 ;; Step producing the intermediate products of the entry in
15 ;; a-row, column i of matrix a and row i, b-col of matrix b.
16 ;; ctx : current CnC context
17 ;; [a-row b-col i] : tag specifying pair of entries to multiply
18 ;; [a-entry b-entry] : pair of entries from matrix a and b
19 (defstepfn mult-step ctx [a-row b-col i]
20 [(a-entry coll-a [a-row i])
21 (b-entry coll-b [i b-col])]
22 ; Multiply the entries from matrices a and b and put the result
23 (let [product (* a-entry b-entry)]
24 (put-item ctx coll-products [a-row b-col i] product)))
25

26 ;; Step summing the intermediate products from a-row of
27 ;; matrix a and b-col of matrix b, producing the entry
28 ;; at a-row, b-col of matrix c.
29 ;; ctx : current CnC context
30 ;; [a-row b-col] : tag specifying sequence of entries to multiply
31 ;; [ps] : sequence of products to sum, completing a dot product
32 (defstepfn sum-step ctx [a-row b-col]
33 [(ps coll-products
34 ; Get a sequence of products as input
35 (let [indices (range (get-static ctx :a-cols))]
36 (for [i indices] [a-row b-col i])))]
37 ; Sum all of the input products
38 (let [sum (reduce + ps)]
39 ; Put the result to (a-row, b-col) in output matrix collection
40 (put-item ctx coll-c [a-row b-col] sum)))
41

Listing continued on next page.

30

Listing continued from previous page.

42 ;; Multiply a * b and return the resulting matrix c.
43 ;; Matricies are input as vectors of vectors of integers.
44 ;; This function provides the environment for the CnC graph.
45 (defn matrix-mult [a b]
46 ; Calculate the dimensions of the input matrices
47 (let [a-rows (count a)
48 a-cols (count (a 0))
49 b-rows a-cols
50 b-cols (count (b 0))]
51 (cnc-run
52 ; CnC graph specification: maps step collection IDs
53 ; to step functions, item collection IDs to get-count
54 ; functions, and setting values for static parameters.
55 {:stepcolls {mult-id mult-step
56 sum-id sum-step}
57 :itemcolls {coll-a (constantly b-cols)
58 coll-b (constantly a-rows)
59 coll-c (constantly 1)
60 coll-products (constantly 1)}
61 :static {:a-rows a-rows, :a-cols a-cols,
62 :b-rows b-rows, :b-cols b-cols}}
63 ; CnC graph initialization function
64 (fn [ctx]
65 ; Put all entry values for matrix a into coll-a,
66 ; and for matrix b into coll-b.
67 (doseq [[id m] {coll-a a, coll-b b}
68 r (range (count m))
69 :let [row (m r)]
70 c (range (count row))
71 :let [entry (row c)]]
72 (put-item ctx id [r c] entry))
73 ; Prescribe all steps for multiplying corresponding
74 ; entries in matrices a and b, then summing the products
75 ; to compute the values of the output matrix c.
76 (doseq [r (range a-rows)
77 c (range b-cols)]
78 (doseq [i (range a-cols)]
79 (prescribe-step ctx mult-id [r c i]))
80 (prescribe-step ctx sum-id [r c])))
81 ; CnC graph result-processing function
82 ; Collect and return entries of the output
83 ; matrix c as a vector of vectors of integers.
84 (fn [ctx]
85 (vec (for [r (range a-rows)]
86 (vec (for [c (range b-cols)]
87 (get-item ctx coll-c [r c])))))))))

Listing 3.2: Clojure code for the matrix multiplication CnC application.

31

1
2

×
[
3 4

]
=

3 4

6 8


The function matrix-mult, which acts as the environment for the CnC graph,

takes two input matrices, a and b, and computes their matrix product using CnC. The

CnC graph takes the dimensions of the two input matrices as parameters, although

a-cols (the number of columns in matrix a) is the only parameter actually used in

the step code. The other dimensions of the matrices are used by the environment to

set up the graph, and by the get count functions. The get count functions (shown in

the CnC graph specification on lines 57–60) are explained in section 6.1.2.

The graph has three item collections corresponding to the three matrices: coll-a

and coll-b for the input matrices a and b, and coll-c for the output matrix c. Each

matrix item collection has a tag consisting of two integers, representing the row and

column of an entry in the matrix. For example, we would expect to have an instance

J coll-c: 1,0→6 K by the end of the computation. At the beginning of the computation

the environment puts each entry from both input matrices into the corresponding

item collection (see lines 67–72).

There is one additional item collection, coll-products, for holding the inter-

mediate products during the computation. For example, J coll-products: 0,1,0 K will

hold the product J coll-a: 0,0 K × J coll-b: 0,1 K, and J coll-products: 1,1,0 K will hold the

product J coll-a: 1,0 K × J coll-b: 0,1 K. These products are created by mult-step, and

sequences of products J coll-products: row,col,i K are summed by sum-step.

The sum-step specifies a sequence of items as input (see lines 33–36). It gets as

input the sequence of item instances of the form J coll-products: row,col,i K, for 0 ≤ i <

a-cols. The sum of that sequence of products is then put as J coll-c: row,col K.

32

In this application, the environment prescribes all of the step instances at the

beginning of the computation, based off the input matrix dimensions (see lines 76–

80). Once all step instances have run to completion, the environment gets all of the

item instances from coll-c to build and return the output matrix c (see lines 81–87).

3.3 Summary

In this chapter we introduced the API used to interface programs written in Clojure

with our CnC model. We outlined our assumptions about the flavor of CnC used

in our model. We also introduced two sample CnC applications, written against our

API, which we will reference throughout the remainder of this thesis. The full source

code for the wrapper API and the two example applications introduced in this chapter

are available at http://habanero.rice.edu/vrvilo-ms.

http://habanero.rice.edu/vrvilo-ms

33

Chapter 4

A Formal Model of the CnC Runtime

In this chapter, we introduce our formal model of a runtime for the CnC programming

paradigm. This runtime model serves as the basis for our checkpoint/restart system

described in chapter 5. This initial runtime model takes into account no optimizations,

focusing only on the basic semantics of CnC. We later expand on this model in

chapter 6.

4.1 Building Executable Models

Models built within the K framework are executable. You can pass an input program

to the model at startup, and continue to interact with it dynamically through stdin

and stdout as it runs. This is a useful property because it allows us to perform a

sanity check on the correctness of our model. While running test applications against

the model does not prove its correctness, it does give us a certain level of confidence

when the model gives the expected results on a small set of test runs.

Since our model is executable, we can use it as the back-end for the thin CnC

wrapper API introduced in chapter 3.

4.2 The Runtime Model

In this section, we introduce the details of our K-based CnC model. (See section 2.4

for background information on the K framework.)

34

CONFIGURATION:

•K

error

$PGM

init

•Program

k

•List

in

•List

out

•K

id

•K

key

•K

value

item*

itemcoll*

•K

id

•K

tag

•Set

attributes

•DataDeps

dependencies

step*

stepcoll*

T

Figure 4.1 : K configuration for an unoptimized CnC runtime.

35

4.2.1 Configuration

Figure 4.1 illustrates the K configuration of our unoptimized CnC runtime model.

The configuration encapsulates the complete state of the model. We describe the

functions of the individual cells in this section.

‹error› Holds an error message in the case that the runtime crashes. The
default value is •K (empty) because the model starts in an non-error state.

‹init› Holds the graph initialization commands. The special $PGM variable
must contain an item-coll or step-coll command to initialize each item
collection and step collection in the graph.

‹k› The computation cell. Holds the commands for manipulating the model
state. Empty by default, but the contents of ‹init› and ‹in› will be used to add
new commands to this cell.

‹in› New commands are read through this cell during model execution. Initial-
ized to an empty list by default; however, the contents of stdin are automatically
added to the list during model execution.

‹out› Output is given through this cell during execution. Items added to the
cell are written to stdout during model execution. Defaults to the empty list
since the model starts with no output.

‹itemcoll*› Each represents one item collection in this graph.

‹id› Holds the unique ID of this item collection.
‹item*› Each represents one item in this collection.

‹key› Holds the unique key identifying this item.
‹value› Holds this item’s value.

‹stepcoll*› Each represents one step collection in this graph.

‹id› Holds the unique ID of this step collection.
‹step*› Each represents one step in this collection.

‹tag› Holds the unique tag identifying this step.
‹attributes› Holds the set of CnC attributes describing this step.
‹dependencies› Holds a list of unique identifiers (item collection ID
+ item key) corresponding to all input data dependencies of this step.

36

It is interesting to note that almost the entire CnC runtime state is encapsulated

in ‹itemcoll*› (the item collections) and ‹stepcoll*› (the step collections). If the ‹init›

cell is non-empty, then the graph is not yet fully initialized, and the entire state is

invalid. Likewise, if the ‹error› cell is non-empty, then the entire state is invalid,

including the step and item collections. The rest of the cells in our configuration

only exist to facilitate commands updating or querying ‹itemcoll*› and ‹stepcoll*›,

implying that ‹k›, ‹in› and ‹out› can always be ignored when considering the current

state of the CnC graph.

4.2.2 Syntax

Figure 4.2 outlines the syntax used in the rewrite rules of our model. Figure 4.2a

defines the syntax of the input program used to initialize the model (denoted by

$PGM in figure 4.1). It is simply a non-delimited list of (item-coll ID) and

(step-coll ID) commands, where ID is some integer. Figure 4.2b enumerates the

sorts of data that are acceptable as results in the ‹k› cell. This basically tells the

rewrite engine which expressions cannot be further reduced.

Figure 4.2c defines the basic data types used in our model. As explained in

section 3.1.3, we limit data to integers, and tags (which encompass both step tags

and item keys) are limited to non-empty integer tuples. The distinction between a

DataItem and a DataExp is that our I/O module extends DataExp to include com-

mands for reading data from input. The same holds for the other *-Exp variants of

our syntactic sorts. Figure 4.2d defines dependency sorts, which combine a collection

ID with a tag/key to uniquely identify a step/item instance in a particular collection.

At the bottom of 4.2d is the list of possible attributes that can be associated with a

step in our model. These attributes correspond to those described in section 2.1.2.

37

SYNTAX CollID ::= Int

SYNTAX InitCommand ::= (item-coll CollID)
| (step-coll CollID)

SYNTAX InitSeq ::= List{InitCommand, “”}

(a) Graph initialization

SYNTAX KResult ::= Halt

| Int

| Tag

| DataDeps

| DepPair

(b) Computation result sorts

SYNTAX IDExp ::= CollID

SYNTAX DataItem ::= Int

SYNTAX DataExp ::= DataItem

SYNTAX DataItems ::= DataItems DataItem

| DataItem

SYNTAX Tag ::= (DataItems)

SYNTAX TagExp ::= Tag

(c) Data and tags

SYNTAX DepPair ::= IDExp TagExp [seqstrict]

SYNTAX DepPairExp ::= DepPair

SYNTAX DataDeps ::= List{DepPairExp, “”} [seqstrict]

SYNTAX DepsExp ::= DataDeps

SYNTAX Attribute ::= control-ready

| data-ready

| enabled

| done

(d) Dependency lists and step attributes

38

SYNTAX Program ::= List{InCommand, “”}

SYNTAX InCommand ::= (put IDExp TagExp DataExp) [seqstrict]

| (prescribe IDExp TagExp) [seqstrict]

| (add-data-deps IDExp TagExp DepsExp) [seqstrict]

| (get IDExp TagExp) [seqstrict]

| (step-done IDExp TagExp) [seqstrict]

| Halt

SYNTAX OutCommand ::= (query-data-deps CollID Tag)
| (run-step CollID Tag)
| (give CollID Tag DataItem)
| (finished)
| (error-thrown)

SYNTAX Halt ::= halt

| error-halt

SYNTAX ReadCmd ::= (read-cmd)

(e) CnC API commands

Figure 4.2 : Syntax of our unoptimized CnC model’s rewrite rules.

Figure 4.2e outlines the set of commands use to interact with the CnC model. The

InCommand sort describes all the commands that a user can send to the model, and

the OutCommand sort enumerates the messages that the user can receive from the

runtime. The (finished) code is output by the runtime model when all prescribed

steps have run to completion. Once the environment is done getting any needed

output data from the graph state, it sends the halt to the runtime model, signaling

that the CnC graph is no longer needed and the runtime can shut down. Finally,

(read-cmd) is a special command used to get a new InCommand from the input.

Several of the productions in figure 4.2 are annotated with seqstrict. Those pro-

ductions are all compounds of multiple expressions, and this annotation specifies that

the expressions must be evaluated sequentially, left-to-right. Without this annota-

tion, the rewrite framework might choose to evaluate the expressions out-of-order,

39

RULE

(item-coll ID)

•K

init

•Bag

ID

id

itemcoll

(a) Create item collections

RULE

(step-coll ID)

•K

init

•Bag

ID

id

stepcoll

(b) Create step collections

RULE
•InitSeq

init

•K

(read-cmd)

k

(c) Read commands from input after initialization finishes

Rule Set 4.1: Rewrite rules for initializing all collections in the graph, and reading
commands once the initialization is complete.

which would fail since the order of the expressions corresponds to the order they

must appear in the input and output.

4.2.3 Rewrite Rules

In this section, we describe the rewrite rules of our unoptimized CnC runtime model.

These rules in turn define the exact behavior of our model.

Initialization

Rules 4.1a and 4.1b describe how item collections and step collections are created,

respectively. In each case, an initialization command is read from the ‹init› cell,

providing a unique ID. When the rule executes, the matched initialization command

is deleted, while its ID is copied into the ‹id› cell of a newly created, empty ‹itemcoll›

or ‹stepcoll›. Rule 4.1c describes the constraint that a new rule is only read into the

‹k› cell for computation when initialization has finished (i.e., ‹init› is empty) and

40

there is no other command currently executing (i.e., ‹k› is empty). The details

of how (read-cmd) is rewritten into a new command from the input is covered in

appendix B.

Input Commands

Rule sets 4.2 and 4.3 show the commands for updating and querying the item and

step collections. The get (rule 4.3b) and prescribe (rule 4.2a) rules do not update

the runtime state. Instead, get responds with the value of the requested item, and

prescribe runs the tag function for the specified step to find its dependencies. The

tag function should respond with a add-data-deps command (rule 4.2b), containing

the list of input data dependencies for the step, which then creates a new step in the

matching step collection using the provided data, and marks it as control-ready.

The put command (rule 4.3a) similarly creates a new item. Once a step has run to

completion, it can signal that with a step-done command (rule 4.2c), which adds

the done attribute to the matching step.

Rule 4.3c enforces dynamic single assignment of items in CnC. If an item with a

duplicate key is put in a collection, this should be an error when the two items’ values

do not match. If the two values match, then the two items are indistinguishable and

it is equivalent to having only the original item in the collection.

Note that we do not include a rewrite rule for Halt despite the fact that it falls

under the productions for InCommand. This is because Halt is a result term (as

described in section 4.2.2 and shown in figure 4.2b); therefore, when the halt com-

mand is encountered in the ‹k› cell, it means the computation is finished and no more

rewrites are necessary.

41

RULE (prescribe ID T)

(query-data-deps ID T)

k

(a) Prescribe a step

RULE

(add-data-deps ID T DS)

•K

k

ID

id

•Bag

T

tag

DS

dependencies

control-ready

attributes

step

stepcoll

(b) Specify a step’s data dependencies

RULE

(step-done ID T)

•
K

k

ID

id

T

tag

•
Set

done

attributes

step

stepcoll

(c) Signal that a step has finished

Rule Set 4.2: Rewrite rules for prescribing new steps, specifying their inputs, and
signaling when a step’s execution has completed.

42

RULE

(put ID T D)

•K

k

ID

id

•Bag

T

key

D

value

item

itemcoll

(a) Put an item

RULE

(get ID T)

(give ID T D)

k

ID

id

T

key

D

value

item

itemcoll

(b) Get an item

RULE























































T

key

V1

value

item

T

key

V2

value

item

itemcoll

•
K

"dynamic single assignment violation"

error

•
K

error-halt

k























































when V1 =/=Int V2

(c) Enforcing dynamic single assignment

Rule Set 4.3: Rewrite rules for adding to and getting from item collections.

43

RULE

ID

id

T

key

item

itemcoll

ID T DS

DS

dependencies

step

(a) Satisfy a data dependence

RULE control-ready •Set

data-ready

attributes

•DataDeps

dependencies

step

(b) Step is data ready

RULE

•
K

(run-step ID T)

k

ID

id

T

tag

control-ready data-ready •
Set

enabled

attributes

step

stepcoll

(c) Step is enabled

Rule Set 4.4: Rewrite rules for satisfying a step’s data dependencies and running that
step.

44

Steps and Dependencies

Rule set 4.4 shows the rules for satisfying a step’s data dependencies and running

that step. When the first dependence—represented as an item collection ID + item

key pair—in a step’s ‹dependencies› cell matches an existing item, that dependence

is deleted, as shown in rule 4.4a. When ‹dependencies› is empty, the step is up-

dated with the data-ready attribute, as shown in rule 4.4b. Now the step is both

control-ready and data-ready, which means it is ready to be run. The step is then

updated with the enabled attribute, and the run-step command is added to the ‹k›

cell to run the corresponding step code, as shown in rule 4.4c. Note that while these

last two rules could be combined into a single rule, we chose to keep them separate as

we believe that the two smaller updates are easier to comprehend than a larger more

complex update.

4.2.4 Handling I/O in the Executable Model

Our executable model supports dynamic I/O for interaction with a driver application

via stdin and stdout. However, the details of this I/O process are beyond the scope of

this thesis. The additional syntax and rewrite rules used to support I/O are presented

in appendix B.

4.3 Key Properties of CnC

Now that we have a clear and concise definition of the CnC runtime, we can define five

key properties of CnC and prove that they hold in the context of our model. These

properties closely parallel those introduced in section 2.1.1, where we described how

they simplify the C/R process for CnC applications. We will leverage these five key

45

properties to implement C/R in chapter 5.

Theorem 4.1

CnC steps are idempotent.

Proof 4.1 Due to the single-assignment property of CnC items, a step’s inputs remain

constant throughout any given graph execution. Since all data produced by a step

is a pure function of its input data, and that data is constant, re-running a given

step can only result in identical output. Therefore, the set of key/value pairs for all

items in all data collections is the same once all steps have finished regardless of the

number of times any set of steps is re-run, or when they are re-run. Additionally, a

partial run of a step will only produce some subset of the outputs of a complete run

of a step; therefore, the result of any number of partial runs of a step with at least

one complete run of that step is also idempotent. ■

Theorem 4.2

CnC graph state is monotonic.

Proof 4.2 Since there is no rewrite rule to add data to the ‹init› cell, its contents

can only monotonically decrease via rules 4.1a and 4.1b. Once it becomes empty the

graph state becomes valid, and the graph state cannot thereafter be invalidated by

a non-empty ‹init›. In other words, once the graph is initialized it stays initialized.

Somewhat symmetrically, the ‹error› cell is only referenced by rule 4.3c, which adds

an error string to the cell. Once this rules has been applied, execution cannot continue

because ‹k› contains the error-halt value; therefore, ‹error› can be updated at most

once and thus it increases monotonically. It also follows that once a graph is in an

error state, it stays in that error state.

46

As noted in section 4.2.1, given that ‹error› and ‹init› are both empty, only the

contents of the ‹itemcoll*› and ‹stepcoll*› cells are relevant to the CnC graph state.

All rewrite rules monotonically increase the data in these cells, with the exception of

rule 4.4a, which only updates the ‹dependencies› cell. The ‹dependencies› cell is the

only cell in ‹itemcoll*› or ‹stepcoll*› from which data is deleted. However, as the only

other rewrite rule that updates this cell is 4.2b, which initializes ‹dependencies› to a

DataDeps list with zero or more entries, the data in this cell can only monotonically

decrease.

Since all cells relevant to the state of the CnC graph are updated monotonically, we

can therefore conclude that the entire state of the CnC graph is monotonic throughout

execution. Furthermore, since the DataDeps list in ‹dependencies› and the InitSeq

list in ‹init› are not exposed through any CnC command, we can therefore conclude

that the observable state of the CnC graph can only increase monotonically. Fur-

thermore, since this argument is based entirely on the rewrite rules and the structure

of the configuration cells, we need not make any special assumptions about repeated

step executions. ■

Theorem 4.3

The CnC graph encapsulates all data necessary to complete its execution.

Proof 4.3 From the definition of the CnC programming paradigm, a tag function can

only read static data, and steps may only obtain dynamic input from the graph’s

item collections. The CnC graph’s item collections are seeded with initial data by

the graph initialization function (provided by the environment); all other data items

are generated by step code during the graph execution. Therefore, once the graph

initialization function has completed, the CnC graph contains all the data necessary

47

to complete its execution. Since the graph’s items increase monotonically, the graph

always encapsulates all of its necessary data to complete execution from any control

state observed from the time it was initialized to the current state. ■

Theorem 4.4

The CnC graph encapsulates all control-flow information necessary to complete its

execution.

Proof 4.4 The CnC graph’s step collections are seeded with initial steps by the graph

initialization function (provided by the environment); all other steps are prescribed

by step code during the graph execution. Therefore, once the graph initialization

function has completed, the CnC graph contains all control flow information necessary

to complete its execution. Since the graph’s items increase monotonically, the graph

always encapsulates all of its necessary data to complete execution from the current

and all previous control states. ■

Theorem 4.5

CnC graphs are deterministic, i.e., a graph given the same inputs will always produce

the same outputs.

Proof 4.5 All CnC steps are idempotent pure functions. For a given input to the

graph, the output of the initial steps is fixed. This applies transitively to all steps

that work on the output of the initial steps, etc. This applies to all data produced

by the graph, implying that the final graph state is a deterministic function of the

initial input. Therefore, the CnC graph is deterministic. ■

48

4.4 Summary

We have defined the semantics of CnC in 12 rewrite rules. We also proved that five

key properties of CnC (theorems 4.1 to 4.5) hold for our model. We will use these

five properties in chapter 5 to construct a formal model for checkpoint/restart of CnC

applications.

49

Chapter 5

A Formal Model for Checkpoint/Restart in an
Unoptimized CnC Runtime

In this chapter, we introduce our formal model of the our CnC checkpointing system.

This initial model is based on our model of the unoptimized CnC runtime, as defined

in chapter 4. After adding various optimizations to the CnC runtime in chapter 6,

we expand on this model in chapter 7.

5.1 The Checkpoint Model

5.1.1 Configuration

Figure 5.1 illustrates the K configuration of our unoptimized CnC checkpoint model.

The configuration encapsulates the complete state of the model. The functions of

the individual cells are the same as the cells with identical names described in sec-

tion 4.2.1, with a few additions as follow:

‹x-key› Holds an extended key for the given item (item collection ID + item
key pair).

‹x-tag› Holds an extended tag for the given step (step collection ID + step tag
pair).

‹putter› Holds an extended tag corresponding to the step that put this item.

‹prescriber› Holds an extended tag corresponding to the step that prescribed
this step.

‹step-log*› Each represents the log of the put and prescribe activity of a given
step.

50

‹puts-count› Holds an integer count representing the number of unsat-
isfied put operations done by the given step.
‹prescribes-count› Holds an integer count representing the number of
unsatisfied prescribe operations done by the given step.

5.1.2 Syntax

The syntax for the checkpoint model’s rewrite rules is almost identical to that of

the general CnC runtime, as defined in section 4.2.2. The differences introduced for

checkpointing are shown in figure 5.2. First, we add a unique extended tag value,

cnc-env, which we use to identify the environment’s input. This new extended tag

is also added as a valid production of the DepPair sort. The put and prescribe

commands now each read an additional extended tag, corresponding to the source of

the put/prescribe request. The step-done command now includes two counts, repre-

senting the number of puts and prescribes performed by the given step, respectively.

Finally, the only attribute of a step that’s relevant in the checkpoint is if the step is

done, therefore we restrict the Attributes sort to only that value.

It should be noted that the checkpoint model does not include an OutCommand

sort. This is because the checkpoint should only react to changes in the graph state,

not influence it. Furthermore, we assume that restarting is a separate process that

reads the entire state of a checkpoint rather than interacting with it.

5.1.3 Rewrite Rules

In this section, we describe the rewrite rules for the CnC checkpoint model.

51

CONFIGURATION:

(init)

k

•
List

in

•
List

out

•
K

x-key

•
K

value

•
K

putter

item*

•
K

x-tag

•
Set

attributes

•
K

prescriber

step*

•
K

x-tag

•
K

puts-count

•
K

prescribes-count

step-log*

T

Figure 5.1 : K configuration for unoptimized CnC checkpointing.

SYNTAX EnvXTag ::= cnc-env

SYNTAX DepPair ::= EnvXTag

| IDExp TagExp [seqstrict]

SYNTAX InCommand ::= (init)
| (put DepExp DepExp DataExp) [seqstrict]

| (prescribe DepExp DepExp) [seqstrict]

| (step-done DepExp DataExp DataExp) [seqstrict]

| Halt

SYNTAX Attributes ::= done

Figure 5.2 : Syntax changes for the checkpoint model.

52

RULE

(init)

•K

k

•Bag

cnc-env

x-tag

step

(a) Initialize the environment tracker

RULE
•
K

(read-cmd)

k

(b) Read a new command from input

Rule Set 5.1: Rewrite rules for initializing the checkpoint and reading in commands.

Initialization

Since the ‹k› cell is initialized to the value (init) (see figure 5.1), rule 5.1a is the

first rule to be applied in any checkpoint model execution. This rule simply adds the

cnc-env step to the checkpoint. If this step does not have the done attribute, then

the environment may not have finished initializing the CnC graph. In that case we

must assume the checkpoint is invalid, as described in section 4.3. Rule 5.1b reads a

new command from stdin whenever the computation cell becomes empty.

Input Commands

Rule set 5.2 includes all of the commands used to add new information to the check-

point state. The put and prescribe commands—shown in rules 5.2a and 5.2b—each

include the value PXT , which is the putter’s or prescriber’s extended tag. These val-

ues are used to verify that all of the puts and prescriptions made by a given step have

been recorded in the checkpoint before marking a step with the done attribute. The

step-done command in rule 5.2c contains the total number of puts and prescribes

for a given step, which allows us to verify that all are present by a simply counting.

Note that a get command is not included in this model. Since item-gets are

summarized by the ‹get-count› included in each ‹step-log›, no other command is

53

RULE

(put PXT XK V)

•K

k

•Bag

XK

x-key

V

value

PXT

putter

item

(a) Put an item

RULE

(prescribe PXT XT)

•K

k

•Bag

XT

x-tag

PXT

prescriber

step

(b) Prescribe a step

RULE

(step-done XT IC SC)

•K

k

•Bag

XT

x-tag

IC

puts-count

SC

prescribes-count

step-log

(c) Provide a summary of a step’s execution

Rule Set 5.2: Rewrite rules for adding item and step information to the checkpoint.

54

RULE XT

•
K

putter

item

XT

x-tag

IC

IC −Int 1

puts-count

step-log

(a) Accounting for a put

RULE XT

•
K

prescriber

step

XT

x-tag

SC

SC −Int 1

prescribes-count

step-log

(b) Accounting for a prescription

RULE

XT

x-tag

•Set

done

attributes

step

XT

x-tag

0

puts-count

0

prescribes-count

step-log

•Bag

(c) Step is done

Rule Set 5.3: Rewrite rules to account for a step’s outputs, and then mark it as done.

needed to track them.

Step Accounting

As alluded to in section 5.1.3, the checkpoint must derive the fact that a step is

done independently of the running graph. Since we assume all messages between

the running CnC application and the checkpointing process are asynchronous (see

section 3.1.1), we cannot infer that all of the outputs of a given step are reflected in the

checkpoint simply based on the presence of a step-done command. Instead, we use

55

‹step-log› cells to make an independent accounting of each step before we can assume

that it is done and therefore would not need to be rerun in the event of a restart. We

account for all the outputs of a given step by decrementing the ‹puts-count› for each

‹putter› matching the extended tag of the corresponding ‹step-log› (rule 5.3a), and

do the same for the ‹prescribes-count› and each matching ‹prescriber›. Only when

both the ‹puts-count› and ‹prescribes-count› of a ‹step-log› have reached zero can

we add the done attribute to the corresponding ‹step›.

Note that we could also guarantee that all output is present before a step is marked

as done by moving all the information included in the put and prescribe commands

into ‹step-done›. We chose not take this approach for two reasons. First, it would

potentially delay when information is available in the checkpoint, limiting the amount

of information that can be immediately restored upon a restart. Second, waiting to

send all the outputs of a step at once would result in bursty rather than continuous

I/O for the checkpoint, which may be very undesirable in some cases. For example, if

a step produces hundreds of data items—each containing several megabytes of data—

over a relatively long period of time, sending all of that data in one large burst would

result in a much higher latency than would sending each item as it is produced.

5.2 The Restart Algorithm

Algorithm 5.1 outlines the process for performing a restart with a CnC checkpoint

as input. As explained in theorems 4.3 and 4.4, we have no guarantee that the

checkpoint has enough information to successfully restart the graph computation

until the environment has finished its initial puts and prescribes. This is signaled in

the checkpoint by a step-done command with cnc-env as the x-tag. Therefore, if

the cnc-env step in the checkpoint is not marked with the done attribute, then we

56

Data: contents of a CnC checkpoint, including the cncEnvStep entry
Result: CnC graph state restored from checkpoint

1 if done /∈ cncEnvStep.attributes then
2 throw error: cannot restart from incomplete checkpoint
3 else
4 foreach entry in checkpoint do
5 if entry is an item then
6 put given item with key and value to collection
7 else if entry is a step ∧ done /∈ step.attributes then
8 prescribe given step with tag in collection
9 else

10 discard entry

Algorithm 5.1: CnC restart algorithm

cannot restart from the checkpoint. This is reflected in the condition on line 1 and

the error on line 2.

If the environment completed initialization, then the process continues by handling

each entry in the checkpoint in the loop on line 4. All item entries are restored (lines 5

and 6), as are all non-done steps (lines 7 and 8). Any other entry—i.e., a done step

or a step-log—is ignored (lines 9 and 10).

Given that a step is never marked with the done attribute until all of its outputs

are present in the checkpoint (see section 5.1.3), we can infer that all steps that

were running will be re-run, either directly via restoration or indirectly by a restored

ancestor. Furthermore, steps that are not restored need not be run since their outputs

will be restored (excluding output steps which were also done). Finally, any step that

ran partially or completely but was restored during restart cannot corrupt the graph

state since the steps are idempotent (theorem 4.1).

It follows from the logic above that all needed data items are also restored. All

outputs of a step must be present in the checkpoint before it is considered done, and

57

all non-done steps will be re-run in the restored graph; therefore, any item missing

from the checkpoint must be reproduced by its parent step.

The restored graph is equivalent to the original graph, and CnC graphs are de-

terministic (theorem 4.5); therefore, the final result of the restored graph must be

identical a complete run of the original graph.

5.2.1 Observations

An interesting property of this algorithm is that computation can begin while the

restart is still in progress. The restart process is just a series of puts and prescribes,

which is the same as the environment initializing the graph state in any CnC ap-

plication. The only distinction is that, in the case of a restart, the initial graph

data is being read from a checkpoint rather than being generated by the application

environment.

5.3 Example: Restart with Matrix Multiplication

Here we run through a very simple example of the checkpoint/restart process for the

sample application described in section 3.2.2.

As we can see by reading the graph initialization function (lines 63–80 of list-

ing 3.2), the environment puts all the entries for coll-a and coll-b (the input

matrices). In addition, the environment statically prescribes all the steps for the en-

tire computation (notice that the prescribe-step function does not appear in either

of the step function declarations). Therefore, if any of those step or item instances

are not present in the checkpoint, then the cnc-env step will not be done, and the

checkpoint must be discarded. However, as long as those instances are present, then

cnc-env is done and the checkpoint is a valid source for a restart.

58

CONFIGURATION:

0 (0 0)

x-key

1

value

cnc-env

putter

item

0 (1 0)

x-key

2

value

cnc-env

putter

item

1 (0 0)

x-key

3

value

cnc-env

putter

item

1 (0 1)

x-key

4

value

cnc-env

putter

item

4 (0 0 0)

x-tag

•
Set

attributes

cnc-env

prescriber

step

4 (0 1 0)

x-tag

•
Set

attributes

cnc-env

prescriber

step

4 (1 0 0)

x-tag

•
Set

attributes

cnc-env

prescriber

step

4 (1 1 0)

x-tag

•
Set

attributes

cnc-env

prescriber

step

5 (0 0)

x-tag

•
Set

attributes

cnc-env

prescriber

step

5 (0 1)

x-tag

•
Set

attributes

cnc-env

prescriber

step

5 (1 0)

x-tag

•
Set

attributes

cnc-env

prescriber

step

5 (1 1)

x-tag

•
Set

attributes

cnc-env

prescriber

step

cnc-env

x-tag

done

attributes

•
K

prescriber

step

T

Figure 5.3 : State of the CnC checkpoint for the matrix multiplication application
after the environment completes its puts and prescribes. Recall from listing 3.2 that
the integers 0, 1, 4 and 5 are the unique IDs for the collections coll-a, coll-b, mult-step
and sum-step, respectively.

59

mult-step sum-step coll-a coll-b
⟨0, 0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ → 1 ⟨0, 0⟩ → 3
⟨0, 1, 0⟩ ⟨0, 1⟩ ⟨1, 0⟩ → 2 ⟨0, 1⟩ → 4
⟨1, 0, 0⟩ ⟨1, 0⟩
⟨1, 1, 0⟩ ⟨1, 1⟩

Table 5.1 : Step and item instances added to the graph state by the environment
in the matrix multiplication example from section 3.2.2. Each column represent a
separate collection. Step instances are represented by their tags, and item instances
are represented by their key-value pairs.

Let us use the simple multiplication example from section 3.2.2:

1
2

×
[
3 4

]

In this case, the graph initialization function will create the step and item instances

outlined in table 5.1. For this example we assume that all of these item and step

instances were successfully put or prescribed by the environment, and that all of this

information is reflected in the current checkpoint state, as illustrated in figure 5.3.

Assume that L mult-step: 0,0,0 M completes, multiplying J coll-a: 0,0→1 K by J coll-

b: 0,0→3 K and producing J coll-products: 0,0,0→3 K. This would result in two update

messages to the checkpoint: a step-done and a put.

If only the step-done message arrives, then L mult-step: 0,0,0 M is not yet considered

done because it still has outstanding outputs, and the restorable checkpoint remains

unchanged. If only the put arrives, then J coll-products: 0,0,0→3 K is added to the

checkpoint. In the case of a restart, J coll-products: 0,0,0→3 K would be restored to the

graph during initialization; however, L mult-step: 0,0,0 M was not marked as done in the

checkpoint, meaning that it will be re-run along with all of the other step instances

listed in table 5.1, resulting in a duplicate put of J coll-products: 0,0,0 K.

60

If both the step-done and put arrive, then J coll-products: 0,0,0→3 K is added to

the checkpoint, and L mult-step: 0,0,0 M will be marked done since all of its outputs are

present in the checkpoint. In the case of a restart, J coll-products: 0,0,0→3 K would be

restored; however, in this case L mult-step: 0,0,0 M was marked done, and therefore that

step instance not re-run, and it does not produce a duplicate item instance.

5.4 Example: Restart with Pascal’s Triangle

Now we run through a simple example of the checkpoint/restart process for the sample

application described in figure 2.3 and section 3.2.1. The source code for this example

is shown in listing 3.1. For this example we will use the computation of 2C1, as

described in section 2.1.2 and illustrated in figure 2.5.

Assume that all put, prescribe and step-done updates from L edge-step: 0,0 M and

L edge-step: 1,1 M arrived in the checkpoint. However, after L edge-step: 1,0 M finishes

producing its outputs the step crashes, causing that step’s put and prescribe updates

to arrive in the checkpoint, but not the step-done update. None of the step instances

from row 2 have produced any outputs. In this case, L edge-step: 0,0 M and L edge-

step: 1,1 M are both done since all their outputs are accounted for. However, since the

step-done message never arrived for L edge-step: 1,0 M, the checkpoint cannot account

for its outputs; therefore, it is not considered done even though both of its outputs

are actually present in the checkpoint, as shown in figure 5.4.

If we did a restart from this checkpoint, we would restore the step and item

instances listed in table 5.2. Since L edge-step: 1,0 M was restored along with both of its

outputs, all descendants of that step (i.e., any node reachable from the corresponding

node via the directed edges in figure 2.5) will be duplicated in the restarted execution.

In other words, there will be two copies of every instance L edge-step: i,0 M and J pascal-

61

CONFIGURATION:

cnc-env

x-tag

done

attributes

•
K

prescriber

step

1 (0 0)

x-tag

done

attributes

cnc-env

prescriber

step

0 (0 0)

x-key

1

value

1 (0 0)

putter

item

1 (1 0)

x-tag

•
Set

attributes

1 (0 0)

prescriber

step

0 (1 0)

x-key

1

value

1 (1 0)

putter

item

1 (1 1)

x-tag

done

attributes

1 (0 0)

prescriber

step

0 (1 1)

x-key

1

value

1 (1 1)

putter

item

1 (2 0)

x-tag

•
Set

attributes

1 (1 0)

prescriber

step

2 (2 1)

x-tag

•
Set

attributes

1 (1 1)

prescriber

step

1 (2 2)

x-tag

•
Set

attributes

1 (1 1)

prescriber

step

T

Figure 5.4 : State of the CnC checkpoint for the Pascal’s Triangle application execu-
tion scenario described in section 5.4. Recall from listing 3.1 that the integers 0, 1,
and 2 are the unique IDs for the collections pascal-entries, edge-step and inner-step,
respectively.

62

edge-step inner-step pascal-entries
⟨1, 0⟩ ⟨2, 1⟩ ⟨0, 0⟩ → 1
⟨2, 0⟩ ⟨0, 1⟩ → 1
⟨2, 2⟩ ⟨1, 1⟩ → 1

Table 5.2 : Step and item instances added to the graph state by the environment
during a sample restart of the 2C1 calculation described in this section.

entries: i,0 K for 1 ≤ i ≤ n. In this case, L edge-step: 1,0 M only has two descendants—

L edge-step: 2,0 M and J pascal-entries: 2,0 K—because n = 2. However, performing the

same restart for a computation with a larger value of n would result in n−1 repeated

step computations and n− 1 repeated puts of the corresponding item instances.

5.5 Summary

We have described a model for computing checkpoints for a CnC graph execution

based on asynchronous update messages from the CnC runtime. We have shown that,

based on the properties from section 4.3, these checkpoints always produce a valid

checkpoint for use with the restart algorithm described in algorithm 5.1. Although the

result of a restart is guaranteed to produce the correct result, we saw by our example

in section 5.4 that naively applying this algorithm can result in large amounts of

duplicate computation. In chapters 6 and 7 we modify our existing models to address

this and other inefficiencies.

63

Chapter 6

Execution Frontiers in CnC

In theorem 4.2 we proved that the state of a CnC graph grows monotonically. How-

ever, this also implies that the memory requirements of a CnC application must grow

monotonically throughout the execution, which is not practical in general. In this

chapter we introduce the concept of a CnC execution frontier (XF), which will allow

us to optimize the memory footprint of a CnC application by removing unneeded data.

We show that this optimized version of the CnC runtime is functionally equivalent

to the unoptimized version defined in chapter 4.

6.1 The CnC Execution Frontier

The execution frontier of a CnC execution graph is defined as the set of all live step

and item instances in the graph; furthermore, an instance is live if and only if the

attribute set is neither empty nor contains an end-of-life attribute [23]. For CnC

steps, the done attributes indicates end-of-life. To indicate end-of-life for CnC items,

we introduce a new attribute: dead. An item is considered alive as long as a step or

the environment will still get the item’s value at some point in the future. After the

item’s value is read for the last time, it is then marked with the dead attribute.

The execution frontier—or set of live instances—can be thought of as flowing

through the set of all possible step and item instances in a CnC graph. Figure 6.1

illustrates an example of the execution frontier in a simple 3-point stencil application

64

Figure 6.1 : A possible snapshot of the state of the data items for a 3-point (Γ-
shaped) stencil computation on a matrix. Each item is represented by a 3-tuple:
⟨iteration, row, column⟩. Dark blue cells represent the live data. Light gray cells in
iteration i are dead, whereas the gray cells in iteration i + 1 have not yet been put.
Note that the pattern in the two iterations is not symmetric.

as it flows through an item collection. The two grids represent the matrices for two

consecutive iterations of the stencil computation. The dark blue cells in the grids

represent the items (corresponding to individual matrix entries) that are live at the

time of the snapshot. Note that the set of light gray (dead) cells with coordinates in

the grid for iteration i corresponds exactly to the following equation:

dead(i, x, y) ⇔ live(i+ 1, x, y) ∧ live(i+ 1, x+ 1, y) ∧ live(i+ 1, x, y + 1) (6.1)

In other words, an entry E in iteration i becomes dead once all three items from

iteration i + 1 that depend on E in the Γ-shaped stencil are live. This follows from

our rule for marking an item with the dead attribute, since the entry E will not be

read again after all its dependent entries in the next iteration have been computed.

65

6.1.1 The Leading Edge

As the execution frontier flows through the graph state-space, we say that new step

and item instances enter through its leading edge. This leading edge is realized in every

CnC implementation—including our models from chapters 4 and 5—by the prescribe

and put operations, which add new instances to the step and item collections. An

implementation of CnC that did not support a leading edge could only represent the

identity function since it could neither run any step computations nor produce any

new data items.

6.1.2 The Trailing Edge

As the execution frontier flows through the graph state-space, we say that step and

item instances that have reached end-of-life exit through its trailing edge. The trailing

edge of the step collections is fairly trivial to track in the model from chapter 4. A step

instance leaves through the trailing edge once it acquires the done attribute. However,

tracking the trailing edge through the item collections is not quite as straightforward

due to the difficulties of determining when the last use of an item instance takes

place [8]. Consequently, not all CnC implementations realize the trailing edge of the

execution frontier.

Several methods have been proposed for calculating the liveness of item instances.

One option is to provide a get count (or reference count) function. This can be a

function explicitly declared by the user, or might be generated indirectly as described

by Budimlić et al. with slicing annotations [8]. Another possibility is to carefully

reuse memory via a relationship described by folding function [7].

In this work we choose the get-count function as our method for tracking the trail-

ing edge through item collections. We made this choice both based on the simplicity

66

43 ;; Get count function for the pascal-entries collection
44 (defn entry-get-count [ctx [row col]]
45 (let [n (get-static ctx :n)
46 k (get-static ctx :k)]
47 (cond
48 ; All entries in the last row are never read,
49 ; except the kth entry, which is read once as output
50 (== row n) (if (== col k) 1 0)
51 ; Row 0 is not read
52 (== row 0) 0
53 ; Edge entries are only read once
54 (or (== k 0) (== k n)) 1
55 ; Other entries are read twice
56 :else 2)))

Listing 6.1: The get count function for the pascal-entries item collection for the
Pascal’s Triangle CnC application. This is a snippet from the full program code in
listing 3.1, beginning at line 43.

57 :itemcolls {coll-a (constantly b-cols)
58 coll-b (constantly a-rows)
59 coll-c (constantly 1)
60 coll-products (constantly 1)}

Listing 6.2: Get count functions for the matrix multiply application, given within its
CnC graph specification. This is a snippet from the full program code in listing 3.2,
beginning at line 57.

67

of using counters, and on the fact that get counts (also known as use counts) are the

only trailing-edge strategy incorporated in a production implementation of CnC [5].

An example of an explicit get-count function is provided on line 43 of listing 3.1,

which is replicated in listing 6.1 for the reader’s convenience. While building n rows

of Pascal’s Triangle, most entries in the triangle are used twice: once to calculate the

item directly below, and again to calculate the item below and one column to the

right. This is why entry-get-count returns 2 in the default case. Entries on the left

and right edges of the triangle are used once. In the last row of the triangle, the kth

column is used once by the environment to get the result of nCk, while none of the

other columns’ entries are used at all; hence, entry-get-count returns 1 for column

k of row n, and 0 for the other entries in that row.

Since the matrix multiplication example from listing 3.2 includes four item col-

lections, it also needs four get count functions. These functions are given inline with

the CnC graph specification on lines 57–60, which is replicated in listing 6.2 for the

reader’s convenience. Clojure’s constantly function returns a new constant function

that ignores any arguments and always returns the same value. Each element in ma-

trix a is used once for each column in b, and each element in b is used once for each

row in a. Hence, the get functions for coll-a and coll-b are (constantly b-cols)

and (constantly a-rows), respectively. Since the intermediate products and the en-

tries in the output matrix are each only used once, both coll-c and coll-products

have the get function (constantly 1).

6.1.3 Observations

Checkpoints are a type of execution frontier, in that they capture a snapshot of the live

state (and possibly additional data) of the executing graph. The execution frontier

68

embodies the concepts of data- and control-encapsulation as covered in theorems 4.3

and 4.4.

6.2 Model

We now introduce an update to the model from chapter 4, realizing the trailing edge

of the execution frontier in both item and step collections.

6.2.1 Configuration

Figure 6.2 shows the updated configuration for a CnC runtime with a trailing edge.

The only changes made to the configuration compared to the configuration described

in section 4.2.1 are the additions of ‹get-count› and ‹attributes› within ‹item*›.

6.2.2 Syntax

The changes to the syntax are also minor, and are outlined in figure 6.3. An ad-

ditional argument was added to the put corresponding to the item’s get count. All

other InCommand productions remain unchanged. We also inserted a production to

declare the newly added dead attribute for items.

6.2.3 Rewrite Rules

Rule sets 6.1 and 6.2 summarize the changes to the rewrite rules from section 4.2.3.

Rule set 6.1 are modifications to the existing put and get commands to handle the

new ‹get-count› cell. When an item is put, the total get-count is included with the

new item instance. Each time the user gets an item’s ‹value›, the corresponding ‹get-

count› is decremented. Rule set 6.2 are the new additions for allowing instances to

flow out the trailing edge of the execution frontier. First, when an item’s ‹get-count›

69

CONFIGURATION:

•K

error

$PGM

init

•Program

k

•List

in

•List

out

•K

id

•K

key

•K

value

•K

get-count

•Set

attributes

item*

itemcoll*

•K

id

•K

tag

•Set

attributes

•DataDeps

dependencies

step*

stepcoll*

T

Figure 6.2 : K configuration for a CnC runtime with a trailing edge.

SYNTAX InCommand ::= (put IDExp TagExp DataExp DataExp) [seqstrict]

SYNTAX ItemAttr ::= dead

Figure 6.3 : Summary of syntax changes for accommodating a trailing edge.

70

RULE

(put ID T D GC)

•K

k

ID

id

•Bag

T

key

D

value

GC

get-count

item

itemcoll

(a) Item put

RULE

(get ID T)

(give ID T D)

k

ID

id

T

key

D

value

GC

GC −Int 1

get-count

item

itemcoll

(b) Item get

Rule Set 6.1: Updated put and get commands, tracking an item’s get-count.

71

RULE 0

get-count

•
Set

dead

attributes

item

(a) Item is dead

RULE dead

attributes

item

•Bag

(b) Remove dead item

RULE done

attributes

step

•Bag

(c) Remove done step

Rule Set 6.2: New rewrite rules for realizing the trailing edge.

reaches zero, the dead attribute is added, as shown in rule 6.2a. Next, as shown in

rules 6.2b and 6.2c, an instance is deleted when it acquires a dead or done attribute.

6.3 Changes in Key Properties

Maintaining a get count and removing items based on that get count affects some

of the key properties of CnC that we defined in section 4.3. Specifically, we can no

longer consider steps to be idempotent since re-running a step would cause an extra

decrement on the get count of each step input. This is a direct result of our definition

of an item’s end-of-life; we could never decide when an item becomes dead if a step

that accessed that item could be re-run at an arbitrary point in the future. However,

given the added assumption that no steps are ever re-run, the other properties still

hold. Therefore, in the updated model it is considered a programmer error if a single

step instance is ever prescribed twice in the same graph execution.

72

Theorem 6.1

Given that no step is ever re-run, the updated model is equivalent to the original

model for all error-free programs.

Proof 6.1 An item is given the dead attribute only when all get operations for that

item have been processed. If there are no more get operations for the item, then its

presence or absence in the item collection cannot be observed. Therefore, a dead item

can be safely removed from an item collection without influencing the behavior of the

graph. In other words, since it is not possible to observe the absence of the removed

items, the two models are functionally equivalent. ■

Theorem 6.1 proves the functional equivalence of our updated model and the

original model from chapter 4 at the cost of the idempotent step property from

theorem 4.1. Since the restart algorithm described in section 5.2 hinges upon the

ability to re-run any previously partially-run or fully-run step instance, algorithm 5.1

is not valid under our updated model.

6.4 Summary

We have realized the full execution frontier—including both the leading and trailing

edges—in a model built on that introduced in chapter 4. We did this with minimal

changes to the syntax and configuration, while only modifying two rewrite rules and

only adding three new rewrite rules. We then proved the functional equivalence of

this updated model with the original model, obviating the requirement that the CnC

runtime’s memory footprint must grow monotonically throughout graph execution;

however, by considering it an error to prescribe a single step instance twice in the

same graph execution, we have removed one of the key properties of our original CnC

73

model. Without the idempotent step property our naive checkpoint/restart system

from chapter 5 cannot function correctly. We redefine our checkpoint/restart method

to deal with this new restriction in chapter 7.

74

Chapter 7

Extended Model of CnC Checkpointing

In this chapter, we modify our model for tracking CnC checkpoints in order to avoid

re-running previously completed steps. We add this restriction based on the effects

of using get-counts on items to realize the trailing edge of the execution frontier in

our item collections, as discussed in chapter 6. This requires us to carefully derive

the current state of the execution frontier for our checkpoint based on the internal

state of the checkpoint. The checkpointing process runs asynchronously of the graph

execution, and therefore it must independently derive both the leading and trailing

edges of the execution frontier in order to maintain a consistent state for a possible

future restart.

7.1 The Modified Checkpoint Model

7.1.1 Configuration

Figure 7.1 illustrates the modified K configuration of our CnC checkpoint model. The

configuration encapsulates the complete state of the model. Most of the cells should

be familiar from the previously introduced configurations. We outline the functions

of the newly added cells below.

‹staged› Holds all the data that has not yet entered the XF.

‹pre-item*› Each represents an item that has not yet entered the XF.

‹pre-step*› Each represents a step that has not yet entered the XF.

75

CONFIGURATION:

$PGM

k

•List

in

•List

out

•K

x-key

•K

value

•K

get-count

•DataDeps

producer

pre-item*

•K

x-tag

•DataDeps

producer

pre-step*

•K

x-tag

•K

puts-count

•K

prescribes-count

•Bag

commits

•DataDeps

consumes

•DataDeps

consumed

step-log*

staged

•K

x-key

•K

value

•K

get-count

item*

•K

x-tag

•Set

attributes

step*

checkpointed

T

Figure 7.1 : K configuration for CnC checkpointing with the XF trailing edge.

76

RULE

(init)

•K

k

•Bag

cnc-env

x-tag

step

checkpointed

(a) Initialize the environment tracker

RULE
•
K

(read-cmd)

k

(b) Read a new command from input

Rule Set 7.1: Rewrite rules for initializing the checkpoint and reading in commands.

‹checkpointed› Holds the current XF. A restart will only consider items and
steps contained in this cell.

‹commits› Holds the ‹item› and ‹step› instances produced by this step, all of
which will be added to ‹checkpointed› when this step is done.

‹consumes› Holds the set of items that the step consumes as inputs.

‹consumed› Holds entries from ‹consumes› that have been satisfied.

7.1.2 Syntax

All of the syntax necessary for the updated checkpointing model has been introduced

in previous sections; therefore, we do not introduce any new syntax for this variant

on the model.

7.1.3 Rewrite Rules

In this section, we describe the rewrite rules for the updated CnC checkpoint model.

These rewrite rules are much more complex than those we specified for the previous

models. This added complexity is a result of our requirement to independently derive

the current flow of the execution frontier through the graph state.

77

Initialization

Rule set 7.1 describe the rewrite rules for initializing the updated checkpoint model.

The initialization commands are mostly identical to those described in section 5.1.3.

The only difference here is the presence of the ‹checkpointed› cell. The cnc-env step

is put directly into the ‹checkpointed› cell because in the event of a restart we would

always want to re-run the environment’s graph initialization function if it was not yet

done.

Input Commands

Rule set 7.2 shows the new handling of inputs to the checkpoint. Rather than di-

rectly committing step and item instances into the checkpoint, the instances are first

staged by storing them in the ‹staged› cell. Although these instances were live in the

graph execution, we cannot yet assume they have entered through the leading edge of

the execution frontier in the checkpoint due to the lack of ordering guarantees with

asynchronous communication between the two processes. The ‹step-log› cells are also

stored in the ‹staged› cell since they are not collection instances and thus do not live

in the execution frontier.

Step Accounting

Rule set 7.3 shows how we track the outputs of a step in the checkpoint. As shown

in Rule 7.3a, each ‹pre-item› is matched with the ‹step-log› of its producer. The

contents of the ‹pre-item› are copied into the ‹commits› as an ‹item› so that when

this step is complete all its outputs can be committed to ‹checkpointed›. Rule 7.3b

similarly handles step prescriptions. In each case the step-log’s corresponding count

is decremented to track the number of remaining dependencies.

78

RULE

(put PXK XK V GC)

•K

k

•Bag

XK

x-key

V

value

PXK

producer

GC

get-count

pre-item

staged

(a) Put an item

RULE

(prescribe PXT XT)

•K

k

•Bag

XT

x-tag

PXT

producer

pre-step

staged

(b) Prescribe a step

RULE

(step-done XT IC SC XKS)

•K

k

•Bag

XT

x-tag

IC

puts-count

SC

prescribes-count

XKS

consumes

step-log

staged

(c) Provide a summary of a step’s execution

Rule Set 7.2: Rewrite rules for adding item and step information to the checkpoint.

79

RULE

XK

x-key

V

value

PXT

producer

GC

get-count

pre-item

•Bag

PXT

x-tag

C

C −Int 1

puts-count

•Bag

XK

x-key

V

value

GC

get-count

item

commits

step-log

staged

(a) Account for items put by a given step

RULE

XT

x-tag

PXT

producer

pre-step

•Bag

PXT

x-tag

C

C −Int 1

prescribes-count

•Bag

XT

x-tag

•Set

attributes

step

commits

step-log

staged

(b) Account for steps prescribed by a given step

Rule Set 7.3: Rewrite rules tracking step outputs.

80

RULE

XK XKS

XKS

consumes

CS

XK CS

consumed

step-log

staged

XK

x-key

item

checkpointed

(a) Satisfy a step’s input dependence

RULE



















































































XT

x-tag

•DataDeps

consumes

XK XKS

XKS

consumed

0

puts-count

0

prescribes-count

step-log

staged

XT

x-tag

step

XK

x-key

GC

GC −Int 1

get-count

item

checkpointed

structural



















































































(b) Decrement step input’s get count

Rule Set 7.4: Rewrite rules for satisfying step input dependencies.

81

The inputs to a step must also be tracked, as shown in rule set 7.4. Before a step

can run, all its inputs must first be live in the execution frontier. This means that

each dependence listed in ‹consumes› must match with an ‹item› in ‹checkpointed›

before the dependence can be moved to ‹consumed› (rule 7.4a). Rule 7.4b decrements

the get count for each item indicated in ‹consumed› once all the step’s dependencies

have been satisfied. Rule 7.4b is marked as structural because these updates should

all happen atomically at the step’s completion.

Leading and Trailing Edge Flows

Rule set 7.5 accounts for all updates to the execution frontier in the checkpoint via

the leading edge. When all of a step’s input and output dependencies have been

satisfied, the step is done, and all the instances in its ‹commits› cell are moved

into ‹checkpointed›. Aside from the cnc-env step (rule 7.1a), all step and item

instances come into are added into the execution frontier by this rule. Rules 7.5b

and 7.5c account for the trailing edge of the execution frontier, removing item and

step instances once they have reached end-of-life.

7.2 Restarting

The careful accounting in this checkpoint model’s rewrite rules guarantee that step

and item instances are included in the execution frontier (the ‹checked› cell) if and

only if they are live based on the current state of the checkpoint. Steps and items

enter the execution frontier only when their producer step is done, and they exit

the execution frontier only when they have reached end-of-life. These two properties

allow us to guarantee that a CnC graph restored from the execution frontier in our

checkpoint will never re-run steps (since a step is only included if all its ancestors are

82

RULE















































































XT

x-tag

MS

commits

0

puts-count

0

prescribes-count

•DataDeps

consumes

•DataDeps

consumed

step-log

•Bag

staged

XT

x-tag

•Set

done

attributes

step

•Bag

MS

checkpointed















































































(a) Commit all outputs of step when the step is done

RULE

0

get-count

item

•Bag

checkpointed

(b) Remove dead item

RULE

done

attributes

step

•Bag

checkpointed

(c) Remove done step

Rule Set 7.5: Rewrite rules for XF leading and trailing edges.

83

done), nor will it ever restore a copy of an item instance that will be re-put (because

the item is not entered into the XF until its producer step and all ancestors are done).

All state derivations are done completely asynchronously of the running compu-

tation graph, updating whenever new information arrives to the checkpoint process

(without imposing any ordering constraints). The restart process for checkpoints gen-

erated by this modified model is identical to that described in algorithm 5.1 (with

the assumption that all data not contained in the ‹checkpointed› cell is discarded).

These two observations demonstrate that we have preserved the asynchronous nature

of our checkpoint/restart system even with the addition of execution frontiers. It

also follows that the modified CnC runtime maintains the ability to begin executing

step instances while other step and item instances are still being restored from the

checkpoint, as described in section 5.2.1.

7.3 Example: Restart with Pascal’s Triangle

For this example we will again use the application for computing nCk. This applica-

tion was described in section 3.2.1, and the source code is shown in listing 3.1. We

consider an execution computing the value of 2C1, and assume the same failure sce-

nario described at the end of section 5.4. To review, L edge-step: 0,0 M, L edge-step: 1,0 M
and L edge-step: 1,1 M have run and produced their outputs, but none of the step in-

stances from row 2 have produced any outputs. L edge-step: 0,0 M and L edge-step: 1,1 M
finished successfully, but L edge-step: 1,0 M failed after producing its outputs.

Assume that all put and prescribe updates arrived from L edge-step: 0,0 M, L edge-

step: 1,0 M and L edge-step: 1,1 M. Also assume that the step-done update arrived for

L edge-step: 0,0 M and L edge-step: 1,1 M instances, but not for L edge-step: 1,0 M since it

failed. In this case, as illustrated in figure 7.2, L edge-step: 0,0 M and L edge-step: 1,1 M

84

CONFIGURATION:

0 (1 1)

x-key

1

value

1

get-count

1 (1 1)

producer

pre-item

2 (2 1)

x-tag

1 (1 1)

producer

pre-step

1 (2 2)

x-tag

1 (1 1)

producer

pre-step

staged

1 (0 0)

x-tag

done

attributes

step

1 (1 0)

x-tag

done

attributes

step

1 (1 1)

x-tag

•
Set

attributes

step

1 (2 0)

x-tag

•
Set

attributes

step

0 (0 0)

x-key

1

value

0

get-count

item

0 (1 1)

x-key

1

value

1

get-count

item

checkpointed

T

(a) Checkpoint state before advancing the trailing edge.

85

CONFIGURATION:

0 (1 1)

x-key

1

value

1

get-count

1 (1 1)

producer

pre-item

2 (2 1)

x-tag

1 (1 1)

producer

pre-step

1 (2 2)

x-tag

1 (1 1)

producer

pre-step

staged

1 (1 1)

x-tag

•
Set

attributes

step

1 (2 0)

x-tag

•
Set

attributes

step

0 (1 1)

x-key

1

value

1

get-count

item

checkpointed

T

(b) Checkpoint state after advancing the trailing edge.

Figure 7.2 : State of the CnC checkpoint for the Pascal’s Triangle application exe-
cution scenario described in section 7.3. The state of the checkpoint is shown both
before the trailing edge is applied to the checkpoint, as well as after the trailing edge
removes from the checkpoint as many entries as possible. Recall from listing 3.1 that
the integers 0, 1, and 2 are the unique IDs for the collections pascal-entries, edge-step
and inner-step, respectively.

86

edge-step inner-step pascal-entries
⟨1, 0⟩ ⟨1, 1⟩ → 1
⟨2, 0⟩

Table 7.1 : Step and item instances added to the graph state by the environment dur-
ing a sample restart of the 2C1 calculation described in this section. Note that the step
and item instances in this table correspond with the instances in the ‹checkpointed›
cell in figure 7.2b, or the instances that have entered the checkpoint through the
leading edge but have not yet been deleted by the advancement of the trailing edge.

are both done since all their outputs are accounted for. However, since the step-

done message never arrived for L edge-step: 1,1 M, the checkpoint cannot account for

its outputs, and thus it is not considered done even though both of its outputs are

actually present in the checkpoint.

Unlike the case described in section 5.4 using the simple checkpoint model, our

updated model does not allow a step or item instance to enter the checkpoint until its

producing step is done. This means that the J pascal-entries: 1,0 K and J edge-step: 2,0 K
produced by J edge-step: 1,0 K remain in the ‹staged› cell, and are not considered part

of the live execution frontier.

If we did a restart from this checkpoint, we would restore the step and item

instances as outlined in table 7.1. In this case, the instance L edge-step: 1,0 M was

restored, but neither of its outputs were restored. This restores the graph to a “clean”

state with no duplicate data, thus satisfying the new restrictions for our model that

were introduced in section 6.3. Since no outputs of partially-completed steps were

included in the restored state, and all incomplete steps were restored, the execution

will run to completion without creating any duplicate step or item instances.

87

7.4 Summary

We have described a model for computing checkpoints for a CnC graph execution

based on asynchronous update messages from the CnC runtime while also tracking

the state of the current execution frontier. By carefully tracking the liveness of step

and item instances in the checkpoint state, we are able to ensure that no duplicate

steps are run and no duplicate items are put after restoring a graph from a checkpoint.

This conforms to the new restrictions on correctness of graph executions introduced

in section 6.3.

88

Chapter 8

Checkpoint/Restart with CnC in Habanero-C

In this chapter, we introduce our implementation of checkpoint/restart within the

existing Habanero-C CnC runtime (CnC-HC). We implement this checkpoint/restart

system based on the model presented in chapter 7. We explain some of the changes

necessary to the existing CnC-HC runtime to support C/R. We also give an example

of using checkpoints to migrate a task between machines, and show some initial

measurements of the overhead added by C/R.

8.1 Adding C/R Support to CnC-HC

As discussed in chapter 3, we can add support for C/R to an existing CnC runtime

simply by adding hooks into the functions in the API layer between the user’s CnC

application and the CnC runtime. This is because all information necessary to create

a checkpoint and restart from that checkpoint is encapsulated within the CnC graph

state.

To allow multiple workers to send updates to the current checkpoint, we added a

non-blocking queue (using liblfds [24]) for storing update messages. Data is encoded

in Base64 (using libb64 [25]) before being written to disk. This adds some extra

overhead, but having the data in ASCII form rather than binary form simplified the

checkpoint processing. Currently a single thread dequeues entries and relays them to

the checkpoint by writing them to a file on disk. In the future we would like to add

89

support for multiple output threads, and communicate with a live checkpoint process

rather than running the checkpoint processing algorithm only before a manual restart.

It is important to use the help-first policy [26] in HC when running CnC appli-

cations with C/R. This tells the runtime to prefer continuing the current task as

opposed to executing new tasks immediately upon creation. If instead the work-first

policy is used, then the runtime will eagerly execute newly-prescribed steps, possibly

causing the environment to delay signaling that it has completed the graph initializa-

tion until the entire computation is complete. Parent steps that prescribe child steps

would also be similarly delayed in signaling their completion.

8.1.1 C/R Hooks

Our checkpoint model needed input via the put, prescribe, and step-done commands,

and our HC implementation needs to communicate information about those same

things to the checkpointing process. Listing 8.1 outlines the hooks placed within the

CnC-HC API functions. These represent the majority of calls to update checkpoint

information. The CNC_RUN macro handles the logic of choosing whether to do a restart

or run the user-provided graph initialization code. After running the initialization

code, the macro adds a call to cnc_cr_seed_done to signal that the cnc-env step

in the checkpoint is done by delivering its summary. The hooks in CNC_PUT and

CNC_PRESCRIBE handle updates for item puts and step prescriptions. We had to add

an additional hook at the end of the CnC-HC dispatcher’s generated code for each

step to send the step summary, corresponding to the step-done command. Finally, we

included hooks to start and stop CnC checkpointing in initGraph and deleteGraph.

Appendix C includes a sample application that demonstrates the functions con-

stituting the API layer containing our C/R hooks.

90

1 #ifdef CNC_CHECKPOINT
2
3 #define DO_MACRO_CONCAT(s1, s2) s1##s2
4 #define MACRO_CONCAT(s1, s2) DO_MACRO_CONCAT(s1, s2)
5 #define CNC_DUMMY_VAR MACRO_CONCAT(cnc_run_dummy_var_, __LINE__)
6
7 // NOTE: the for loop used here is just a hack to run cnc_cr_seed_done()
8 // after the user’s code completes. Simple constant propagation eliminates
9 // the entire loop in gcc if compiled with -O1 or higher.

10 #define CNC_RUN \
11 int CNC_DUMMY_VAR; \
12 finish { CNC_DUMMY_VAR = cnc_cr_restart(); } \
13 if (!CNC_DUMMY_VAR) \
14 finish for (CNC_DUMMY_VAR=1; CNC_DUMMY_VAR--; cnc_cr_seed_done())
15
16 #define CNC_PUT(item, tag, coll, ctx) {\
17 Put(item, tag, (ctx)->coll);\
18 cnc_cr_put((CRStepCtx*)ctx, item, tag, #coll);\
19 }
20
21 #define CNC_PRESCRIBE(stepName, tag, ctx) {\
22 prescribeStep(stepName, tag, ctx);\
23 cnc_cr_prescribe((CRStepCtx*)ctx, stepName, tag);\
24 }
25
26 #else
27
28 #define CNC_RUN finish
29 #define CNC_PUT(item, tag, coll, ctx) Put(item, tag, (ctx)->coll)
30 #define CNC_PRESCRIBE(stepName, tag, ctx) prescribeStep(stepName, tag, ctx)
31
32 #endif /* CNC_CHECKPOINT */

Listing 8.1: Macros defining the CnC functions in HC. Two versions are declared:
the first includes hooks for checkpoint/restart, whereas the second is the CnC-HC
runtime without checkpoint/restart.

91

8.1.2 Checkpoint Message Handlers

Listing 8.2 shows some of the helper functions used to handle creating update mes-

sages that will be relayed to the checkpoint. These functions gather the necessary data

and pack it all in a work item for the checkpoint-handler thread to process. Notice

that most of these functions were used as our hooks in listing 8.1 from section 8.1.1.

Listing 8.3 shows the main function for the checkpoint-handler thread. This thread

simply dequeues work items, encodes the enclosed data in ASCII format, and then

writes it out to the checkpoint file. This continues until the CnC runtime signals that

execution is complete. If the graph execution completes before all checkpoint updates

are handled, the thread still terminates since there is no longer a need to update the

checkpoint in case of a restart.

8.1.3 Checkpoint Processing and Restarting

To process the messages written by the checkpoint-handler thread in the CnC-HC

runtime, we re-implemented the process described by checkpoint the model in chap-

ter 7 for asynchronously tracking the current execution frontier in the graph state.

This implementation was done in Clojure, and is shown in listing 8.4. The result

of running the checkpoint-processing code is an ASCII output representing the exe-

cution frontier that should be used for restart. This output can be passed as a file

through the CNC_RESTART environment variable to the CnC-HC runtime, in which

case the hooks placed within the CNC_RUN macro will cause a restart to take place

rather than running the graph initialization code. We have tested this code with

two CnC-HC applications: Cholesky factorization and Pascal’s Triangle (calculating

nCk). We were able to successfully restart a failed application. We were also able

to simulate various failures by deleting portions of the checkpoint, and successfully

92

1 void cnc_cr_put_gc(CRStepCtx *ctx, void *item, const char *key,
2 const char *coll, int gc) {
3 if (gc > 0) { // No need to checkpoint unused data
4 work_item *i = cnc_malloc(sizeof(work_item));
5 work_item t = {
6 .type = CNC_ITEM_T,
7 .data = { .item={ .coll=coll, .key=key, .value=item, .get_count=gc } },
8 .src_name=ctx->name, .src_tag=ctx->tag };
9 *i = t;

10 CNC_CR_PUSH_TAIL(work_queue, (void*)i);
11 ++ctx->put_count;
12 }
13 }
14
15 void cnc_cr_put(CRStepCtx *ctx, void *item,
16 const char *key, const char *coll) {
17 int gc = find_get_count(coll, key, (struct Context *) ctx);
18 cnc_cr_put_gc(ctx, item, key, coll, gc);
19 }
20
21 void cnc_cr_prescribe(CRStepCtx *ctx, const char *step, const char *tag) {
22 work_item *i = cnc_malloc(sizeof(work_item));
23 work_item t = {
24 .type = CNC_STEP_T,
25 .data = { .step={ .tag=tag, .name=step } },
26 .src_name=ctx->name, .src_tag=ctx->tag };
27 *i = t;
28 CNC_CR_PUSH_TAIL(work_queue, (void*)i);
29 ++ctx->prescribe_count;
30 }
31
32 void cnc_cr_step_summary(CRStepCtx *ctx) {
33 work_item *i = cnc_malloc(sizeof(work_item));
34 work_item t = {
35 .type = CNC_STEP_SUMMARY_T,
36 .data = { .step_summary={
37 .gets = ctx->gets, .put_count = ctx->put_count,
38 .prescribe_count = ctx->prescribe_count
39 } },
40 .src_name=ctx->name, .src_tag=ctx->tag };
41 *i = t;
42 CNC_CR_PUSH_TAIL(work_queue, (void*)i);
43 }
44
45 void cnc_cr_seed_done() {
46 cnc_cr_step_summary((CRStepCtx*)CNC_CR_GLOBAL_CONTEXT_PTR);
47 }

Listing 8.2: Helper functions for adding data to the checkpoint.

93

1 void *cnc_cr_main(void *unused) {
2 work_item *i;
3 const char **c;
4 while (!STOP_WORK) {
5 CNC_CR_POP_HEAD(work_queue, (void**)&i);
6 if (i == END_SIGNAL) break;
7 switch (i->type) {
8 case CNC_ITEM_T:
9 fprintf(cr_file, ”%s{:type :item, :key [%s], :val \””,

10 cr_startline(), i->data.item.key
11);
12 output_base_64(i->data.item.coll, i->data.item.value);
13 fprintf(cr_file,
14 ”\”, :coll %s, :get-count %d,\n :src {:name %s, :tag [%s]}}”,
15 i->data.item.coll, i->data.item.get_count,
16 i->src_name, i->src_tag
17);
18 break;
19 case CNC_STEP_T:
20 fprintf(cr_file,
21 ”%s{:type :step, :tag [%s], :name %s,\n”
22 ” :src {:name %s :tag [%s]}}”,
23 cr_startline(), i->data.step.tag, i->data.step.name,
24 i->src_name, i->src_tag
25);
26 break;
27 case CNC_STEP_SUMMARY_T:
28 fprintf(cr_file,
29 ”%s{:type :step-summary, :tag [%s], :name %s,\n :put-count %d,”
30 ” :prescribe-count %d,\n :gets (”,
31 cr_startline(), i->src_tag, i->src_name,
32 i->data.step_summary.put_count,
33 i->data.step_summary.prescribe_count
34);
35 if ((c = i->data.step_summary.gets)) {
36 while (*c) {
37 fprintf(cr_file, ”{:coll %s, :key [%s]} ”, c[0], c[1]);
38 c += 2;
39 }
40 }
41 fprintf(cr_file, ”)}”);
42 break;
43 }
44 cnc_free(i);
45 }
46 fprintf(cr_file, (started ? ”)\n” : ”()\n”));
47 fflush(cr_file);
48 fclose(cr_file);
49 return 0;
50 }

Listing 8.3: Main function for the checkpointing thread.

94

restart from those modified checkpoints. The full source code for these applications

is available at http://habanero.rice.edu/vrvilo-ms.

8.2 Checkpoint Migration

The checkpoint format used in our implementation is simply a representation of the

CnC graph state rather than a snapshot of some execution image state. This means a

checkpoint can be migrated to a different machine and restarted on different hardware

configuration and potentially a different operating system. The only requirement is

that the target system must be able to restore the encoded data for each of the data

item instances in the checkpoint. For example, we tested taking checkpoints of a CnC

application on Rice’s Davinci cluster (a 64-bit Linux system), a MacBook Pro running

64-bit OS X, and a 32-bit Linux desktop. On all three machines the application was

restarted from all three checkpoints and produced the correct final result.

8.3 Initial Overhead Measurements

We measured the overhead that the C/R support code adds to a CnC application

in the event that there is no failure. We did this measurement with the Cholesky

factorization application, which is a tiled computation on a large n × n matrix. We

ran these tests on a dedicated node of the Davinci cluster at Rice University. Each

node has 12 Westmere processor cores at 2.83GHz, 4GB of RAM per core. We

launched the CnC runtime with 8 worker threads, and when checkpointing support

is enabled the runtime spawns an additional thread to handle checkpoint messages.

These tests all ran the full set of checkpoint updates rather than terminating the

process as soon as the calculation is complete. Figure 8.1 and table 8.1 summarize

the test results.

http://habanero.rice.edu/vrvilo-ms

95

1 ;; Namespace for checkpoint processing utility
2 (ns process-checkpoint
3 (:require [clojure.java.io :as jio])
4 (:import [java.io PushbackReader]))
5
6 (defn read-file [file-path]
7 (with-open [r (PushbackReader. (jio/reader file-path))]
8 (binding [*read-eval* false] (read r))))
9

10 (defn sub-map [m & ks]
11 (select-keys m ks))
12
13 ;; Helper for ”sanitize”
14 (defn sanitize-steps [staged checked]
15 (for [[step-key step-val] staged
16 :let [step (merge step-key step-val)]
17 :when (and (= (-> step :puts count) (:put-count step))
18 (= (-> step :prescribes count) (:prescribe-count step))
19 (every? checked (:gets step))
20 (checked step-key))]
21 (let [; remove step from ”checked”
22 checked (dissoc checked step-key)
23 ; migrate puts and prescribes to ”checked”
24 checked (into checked
25 (concat
26 (for [p (:puts step)]
27 [(sub-map p :key :coll)
28 (sub-map p :val :get-count)])
29 (for [p (:prescribes step)]
30 [(sub-map p :name :tag) {}])))
31 ; remove step from ”staged”
32 staged (dissoc staged step-key)
33 ; update get counts
34 up-get (fn [chk i]
35 (if (= 1 (get-in chk [i :get-count]))
36 (dissoc chk i)
37 (update-in chk [i :get-count] dec)))
38 checked (reduce up-get checked (:gets step))]
39 [staged checked])))
40

Listing continued on next page.

96

Listing continued from previous page.

41 ;; This is the function that actually keeps the checkpoint state sane.
42 ;; It goes through and migrates things from staged to checked, and
43 ;; deletes things as they become dead.
44 (defn sanitize [staged checked]
45 (loop [staged staged, checked checked]
46 (if-let [res (seq (sanitize-steps staged checked))]
47 (let [[[staged checked]] res]
48 (recur staged checked))
49 [staged checked])))
50
51 (def initial-checked {{:name :cnc-env :tag []} {}})
52
53 ;; Main loop for processing messages from the runtime. You could think
54 ;; of this as running real-time, being fed a stream of these messages.
55 (defn process-msgs [msgs]
56 (loop [[m & msgs] msgs, [staged checked] [{} initial-checked]]
57 (if (nil? m) {:staged staged :checked checked}
58 (case (:type m)
59 :step
60 (let [step (sub-map m :name :tag)
61 staged (update-in staged [(:src m) :prescribes] conj step)]
62 (recur msgs (sanitize staged checked)))
63 :item
64 (let [item (sub-map m :key :val :coll :get-count)
65 staged (update-in staged [(:src m) :puts] conj item)]
66 (recur msgs (sanitize staged checked)))
67 :step-summary
68 (let [step (sub-map m :name :tag)
69 summary (sub-map m :put-count :prescribe-count :gets)
70 staged (update-in staged [step] merge summary)]
71 (recur msgs (sanitize staged checked)))))))
72
73 (defn output-for-restart [{checked :checked}]
74 (when (not= checked initial-checked)
75 (doseq [x checked :let [x (apply merge x)]]
76 (condp deliver x
77 :key (do (apply println ”I” (:coll x)
78 (count (:val x)) (:get-count x) (:key x))
79 (println (:val x)))
80 :tag (apply println ”S” (:name x) (:tag x))))))
81
82 ;; Read in the checkpoint file (path in command-line-args) and process it
83 (let [[chkpt-file-path] *command-line-args*
84 res (process-msgs (read-file chkpt-file-path))]
85 (output-for-restart res))

Listing 8.4: Clojure code for processing CnC-HC checkpoint output.

97

For input matrices of up to 4 million entries the completion time for the base

case (without C/R support) and the case with Base64-encoded C/R data are almost

identical. However, as we continue to increase the amount of data involved in the

calculation, the C/R configuration with encoded data takes increasingly longer to

complete. The gap between these two configurations grows, and as seen in the Ratio

column of table 8.1, the gap seems to be increasing super-linearly. We theorized that

the Base64 encoding of the CnC item data during the checkpointing process, and

thus we included test results for checkpointing the raw binary data of the CnC item

values. The only difference with this implementation is that rather than encoding the

item values in Base64 before writing them to the checkpoint file, we write the raw

bytes directly. When the Base64 conversion was removed, we see that the run times

with and without checkpointing are almost identical.

As seen in the last column of table 8.1, writing the raw binary values to the check-

point file only added an overhead of about 1% on average to the total running time.

Although our implementation still uses the Base64 encoding for simplicity in pro-

cessing the checkpoint files, we believe these results show that this technique can be

optimized such that the checkpointing overhead is very minimal. However, an imbal-

ance between the amount of data produced by a step and the amount of computation

done within that step can lead to a noticeable overhead due to checkpointing. This is

illustrated in figure 8.2 in the cases with 25×25 and 50×50 tiles, which are too small

to produce a sufficient amount of computation within the steps. These results imply

that the additional I/O overhead incurred for checkpointing should be minimal so

long as the application does not produce data in excess of the system’s maximum I/O

rates. In the case when the application is producing data faster than the hardware

supports writing it, the overhead will increase along with the I/O backlog.

98

Entries Base C/R Encoded Ratio C/R Raw Ratio
1M 0.06s 0.06s 1.01 0.07s 1.03
4M 0.38s 0.38s 1.00 0.39s 1.01
9M 1.24s 1.74s 1.40 1.25s 1.01
16M 2.90s 9.07s 3.13 2.93s 1.01
25M 5.62s 21.19s 3.77 5.68s 1.01

Table 8.1 : Time data corresponding to the means plotted in figure 8.1. The Ratio
columns are the ratios of the checkpoint/restart running times to the base running
times. Each time measurement is the average of five separate runs for each given
configuration.

Figure 8.1 : Total running time for CnC-HC Cholesky, with increasing input matrix
sizes. The three bars at each point correspond to (from left to right) running without
checkpointing enabled (Base), with checkpointing enabled plus Base64 encoding (C/R
Encoded), and with checkpointing of raw binary data (C/R Raw). Each bar shows the
average time for five runs, with the error bars denoting the maximum and minimum
observed run times. Table 8.1 shows an alternate analysis of this data.

99

Figure 8.2 : Total running time for CnC-HC Cholesky, varying the tile size used on a
3000×3000 matrix (9 million elements). Each bar shows the average of 10 runs with
the given configuration, with the error bars denoting the minimum and maximum
observed run times. The C/R-enabled runs are using raw binary for the checkpoint
data encoding rather than Base64. The first two tile sizes shown are too small to
produce a sufficient amount of work per step to hide the checkpoint I/O overheads,
and therefore the C/R-enabled times are significantly higher than the C/R-disabled
times at these points. In the case of a 25×25 tile, the work per step is not even
sufficient to hide the runtime overhead for managing steps, and therefore the C/R
disabled time is also higher at this point than at the next three points, which are
more optimal tile sizes for this input matrix size. The last two tile sizes are too large,
resulting in insufficient parallelism and leading to longer running times.

100

8.4 Summary

We added C/R support to the existing CnC-HC implementation. The additions

were fully encapsulated within the CnC-HC runtime so as to not effect the user’s

application code. We discussed the ability to migrate checkpoints between machines

with different hardware and OS configurations. Finally, we analyzed some initial

performance results to measure the overhead incurred by supporting C/R when no

error occurs.

101

Chapter 9

Conclusions and Future Work

9.1 Conclusions

Checkpointing requires no synchronization between execution graph and checkpoint

process. The CnC checkpoint always contains a valid state regardless of the order in

which updates arrive. All of our C/R hooks are within the CnC runtime, allowing

us to make the C/R support completely transparent to the CnC application writer.

In other words, an application developer can simply enable C/R and run the same

program (reusing the same step code and environment). We demonstrated these

properties with two implementations of C/R in CnC. The first was built with an

executable model written in K, while the applications used a thin API written in

Clojure. The second was an implementation of C/R within the existing CnC-HC

runtime. With the CnC-HC runtime, we also demonstrated the ability to migrate

checkpoints between systems with different hardware configurations and operating

systems. We also identified some possible targets for optimization to decrease the

overhead added by the C/R support code.

9.2 Future Work

Although the model from chapter 7 maintains a sane execution frontier at all times,

it potentially throws away useful information from the staging area in the event of

a restart. By tracking unique step tags of get operations on each item—and only

102

decrementing the get count for unique gets—we could maintain the idempotent and

monotonic properties of the runtime. This would also allow us to relax some of the

restrictions in the chapter 7 checkpoint model, and potentially allow us to include

within the live portion of the checkpoint a larger set of the data received by the

checkpoint.

As discussed in section 8.3, the high rates of data production in a CnC application

could limit the usefulness of our C/R technique, as it could result in an I/O backlog.

However, in some applications it may be possible to partition a graph in such a

way that only some fraction of the step and item instances need to be included in

the checkpoint. This would enable us to exclude intermediate instances from the

checkpointing process, and thus reduce the total required I/O footprint. This would

require the ability to create partitions within the CnC graph, such that a group of

step instances is considered as a single step instance to the checkpoint. We would

like to further explore the possibilities and implications of such graph partitions.

In section 2.1.1 we noted that memory management mechanisms must be carefully

adapted to maintain correctness in the presence of checkpointing. The CnC-HC

runtime used in this thesis does not include any mechanisms memory management.

We would like to implement the C/R technique described in this paper within a CnC

runtime that handles memory management of data item instances.

Finally, this work was limited in application to a shared-memory environment.

However, we believe that many of the concepts in this thesis could be applied to a

more general distributed CnC runtime. We would like to explore what additional

requirements would need to be enforced to maintain distributed checkpoints that

could be recombined and restarted in the event of a failure.

103

Bibliography

[1] J. Daly, B. Harrod, T. Hoang, et al., “Inter-Agency Workshop on HPC

Resilience at Extreme Scale,” National Security Agency Advanced Computing

Systems, Februrary, 2012.

[2] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, “Design,

modeling, and evaluation of a scalable multi-level checkpointing system,” in

International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), pp. 1–11, IEEE, 2010.

[3] G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++: an in-memory

checkpoint-based fault tolerant runtime for Charm++ and MPI,” in IEEE

International Conference on Cluster Computing, pp. 93–103, IEEE, 2004.

[4] M. Hall, R. Lethin, K. Pingali, et al., “ASCR Programming Challenges for

Exascale Computing,” tech. rep., U.S. DOE Office of Science (SC), July 2011.

[5] M. Burke, K. Knobe, R. Newton, and V. Sarkar, “Concurrent collections

programming model,” in Encyclopedia of Parallel Computing (D. Padua, ed.),

pp. 364–371, Springer US, 2011. http://goo.gl/UF4L0I.

[6] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton,

J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach, et al., “Concurrent

collections,” Scientific Programming, vol. 18, no. 3, pp. 203–217, 2010.

http://goo.gl/UF4L0I

104

[7] D. Sbîrlea, K. Knobe, and V. Sarkar, “Folding of tagged single assignment

values for memory-efficient parallelism,” in Euro-Par 2012 Parallel Processing,

pp. 601–613, Springer, 2012.

[8] Z. Budimlic, A. M. Chandramowlishwaran, K. Knobe, G. N. Lowney,

V. Sarkar, and L. Treggiari, “Declarative aspects of memory management in

the concurrent collections parallel programming model,” in Proceedings of the

4th workshop on Declarative aspects of multicore programming, pp. 47–58,

ACM, 2009.

[9] E. W. Weisstein, “Binomial Coefficient. From MathWorld–A Wolfram Web

Resource.” http://mathworld.wolfram.com/PascalsTriangle.html. Accessed:

2014-03-15.

[10] E. W. Weisstein, “Pascal’s Triangle. From MathWorld–A Wolfram Web

Resource.” http://mathworld.wolfram.com/BinomialCoefficient.html. Accessed:

2014-03-15.

[11] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (BLCR) for

Linux clusters,” in Journal of Physics: Conference Series, vol. 46, p. 494, IOP

Publishing, 2006.

[12] K. M. Chandy and L. Lamport, “Distributed snapshots: determining global

states of distributed systems,” ACM Transactions on Computer Systems

(TOCS), vol. 3, no. 1, pp. 63–75, 1985.

[13] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent checkpointing

for cluster computations and the desktop,” in IEEE International Symposium

on Parallel & Distributed Processing (IPDPS), pp. 1–12, IEEE, 2009.

http://mathworld.wolfram.com/PascalsTriangle.html
http://mathworld.wolfram.com/BinomialCoefficient.html

105

[14] W. Ma and S. Krishnamoorthy, “Data-driven fault tolerance for work stealing

computations,” in Proceedings of the 26th ACM international conference on

Supercomputing, pp. 79–90, ACM, 2012.

[15] K. Knobe and C. D. Offner, “TStreams: How to write a parallel program,”

Tech. Rep. HPL-2004-193, HP Labs, 2004.

http://www.hpl.hp.com/techreports/2004/HPL-2004-193.pdf.

[16] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cavé, M. Chabbi, M. Grossman,

V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism with MPI,”

in IEEE 27th International Symposium on Parallel & Distributed Processing

(IPDPS), pp. 712–725, IEEE, 2013.

[17] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-C.”

http://habanero.rice.edu/hc.

[18] S. Tasirlar and V. Sarkar, “Data-driven tasks and their implementation,” in

International Conference on Parallel Processing, pp. 652–661, IEEE, 2011.

[19] G. Roşu and T. F. Şerbănuţă, “An overview of the K semantic framework,”

Journal of Logic and Algebraic Programming, vol. 79, no. 6, pp. 397–434, 2010.

http://www.kframework.org/.

[20] R. Hickey, “The Clojure programming language,” in Proceedings of the 2008

symposium on Dynamic languages, p. 1, ACM, 2008.

[21] “Habanero CnC.” http://habanero.rice.edu/cnc.

[22] Traian Florin Şerbănuţă, “Reading tuples in K.” K-user mailing list, November

2012. http://lists.cs.uiuc.edu/pipermail/k-user/2012-November/000262.html.

http://www.hpl.hp.com/techreports/2004/HPL-2004-193.pdf
http://habanero.rice.edu/hc
http://www.kframework.org/
http://habanero.rice.edu/cnc
http://lists.cs.uiuc.edu/pipermail/k-user/2012-November/000262.html

106

[23] K. Knobe, “Ease of Use with Concurrent Collections (CnC),” in Proceedings of

the First USENIX Conference on Hot Topics in Parallelism, HotPar’09,

(Berkeley, CA, USA), pp. 17–17, USENIX Association, 2009.

[24] T. Douglass, “liblfds: A portable lock-free data structure library, written in C.”

http://www.liblfds.org/.

[25] C. Venter, “libb64: ANSI C Base64 Encoding/Decoding Routines.”

http://libb64.sourceforge.net/.

[26] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first

scheduling policies for async-finish task parallelism,” in IEEE International

Symposium on Parallel & Distributed Processing (IPDPS), pp. 1–12, IEEE,

2009.

http://www.liblfds.org/
http://libb64.sourceforge.net/

107

Appendix A

CnC Sans Control Collections

Control collections are traditionally used in CnC to help abstract away the creation

of new step instances. In the traditional model, a CnC step can only create a new

step instance indirectly by putting a control tag into a control collection, which in

turn causes a new step instance to be prescribed in each step collection driven by

that control collection [6]. Figure A.1 illustrates the graph structure of a simple

application implementing a two-level filter (originally shown in figure 2.1) in the CnC

model with control collections. Although this is a useful abstraction for reasoning

about some programs, in practice we have found that the concept of control collections

tends to confuse new users. Furthermore, we have found that in the majority of our

CnC applications there is always a single step collection associated with each control

collection. These observations are reflected by the absence of control collections in

the Habanero variants of CnC, developed at Rice University [21]. For these reasons,

we choose to model a simplified CnC that uses only item and step collections.

We now demonstrate that this simplified model can still be applied to general

CnC applications. In the case that the control-collection/step-collection relationship

is a bijection, we can safely substitute each control-tag put with the equivalent step

prescribe while maintaining identical program behavior. In the rare case that a control

collection drives multiple step collections, each put must be replaced by one prescribe

per associated step collection. These two transformations enable us to transform

any general CnC application to one without control collections; therefore, we know

108

Filter 1 Filter 2

Tag 1

Item A Item B Item C

Control 1 Control 2

Figure A.1 : The CnC graph representation of a simple data filtering application
(originally shown in figure 2.1), with the addition of control collections. The two con-
trol collections, which drive the two step collections, are represented by the hexagonal
nodes. Solid edges ending at a control collection represent a put of a tag to that con-
trol collection. In this version of the CnC model, only control collections can prescribe
step instances.

that modeling only the step and item collections of CnC is sufficient to describe CnC

applications in general.

Our model of CnC has no explicit control collections. Instead, we model only

the step and item collections, as described above. This choice reflects the design of

existing CnC implementations designed at Rice University [21].

109

Appendix B

Details of the Executable Model’s I/O

The full details of I/O between the Clojure wrapper and the K model are complicated

by the fact that K cannot fully parse data coming from stdin1; therefore, we chose to

encode our input as a stream of integers, and decode the integers into more a more

readable representation via rewrite rules.

Rule set B.1 contains the rewrite rules for reading data (integers) and tags (tuples)

from stdin as an example of this decoding process. The read-data command is

relatively straightforward and can be implemented using a single rewrite rule that

copies an integer from stdin. However, the read-tag command requires a set of 4

rewrite rules working together to incrementally read the tag components one by one

from stdin.

The full source for all four K models presented in this thesis—along with the

corresponding graphical representations—are available at http://habanero.rice.edu/

vrvilo-ms.

1 See Reading tuples in K on the K-user mailing list:
http://lists.cs.uiuc.edu/pipermail/k-user/2012-November/000262.html.

http://habanero.rice.edu/vrvilo-ms
http://habanero.rice.edu/vrvilo-ms
http://lists.cs.uiuc.edu/pipermail/k-user/2012-November/000262.html

110

RULE

(read-data)

P

k

P

•
List

in

read

(a) Reading data.

RULE

(read-tag)

(read-n N)

k

N

•
List

in

read

RULE (read-n 0 T)

T

k

RULE

(read-n N)

(read-n N −Int 1 (P))

k

P

•
List

in

read

when N >Int 0

RULE

(read-n N (PS))

(read-n N −Int 1 (PS P))

k

P

•
List

in

read

when N >Int 0

(b) Reading tags.

Rule Set B.1: Rewrite rules for decoding the integer-stream representations of CnC
data items (integers) and tags (integer tuples) read from stdin.

111

Appendix C

A Sample CnC-HC Application

Listings C.1 to C.3 contain the graph initialization and step code for a sample CnC-HC

application. This application computes binomial coefficients using Pascal’s Triangle,

as described in section 2.1.2. The CnC-HC source code included here corresponds

closely with the Clojure code from listing 3.1.

The full source code for both the Pascal’s Triangle and the Cholesky factorization

examples are available online at http://habanero.rice.edu/vrvilo-ms.

http://habanero.rice.edu/vrvilo-ms

112

1 #include ”Common.h”
2
3 static int ONE_CELL = 1;
4
5 void edgeEntryStep(int row, int col, Context *cnc_ctx) {
6 // Put the value 1 for the entry at <row, col>
7 char *tagEntry1 = CREATE_TAG(row, col);
8 CNC_PUT(&ONE_CELL, tagEntry1, entry, cnc_ctx);
9

10 // All but the last row will prescribe a step in the next row
11 if (row < cnc_ctx->n) {
12 char *tagEdgeEntry2 = CREATE_TAG(row+1, col);
13 char *stepName = col ? ”innerEntryStep” : ”edgeEntryStep”;
14 CNC_PRESCRIBE(stepName, tagEdgeEntry2, cnc_ctx);
15 // Right-edge entries also prescribe the last entry in the next row
16 if (col == row) { // Left edge
17 char *tagEdgeEntry3 = CREATE_TAG(row+1, col+1);
18 CNC_PRESCRIBE(”edgeEntryStep”, tagEdgeEntry3, cnc_ctx);
19 }
20 }
21 }

Listing C.1: CnC-HC step code for computing the entries along the left and right
edges of Pascal’s Triangle, which always contain the value 1.

1 #include ”Common.h”
2
3 void innerEntryStep(int row, int col, int entry0, int entry1, Context *cnc_ctx) {
4 // Sum the two elements above the entry <row, col>
5 int *entry2;
6 entry2 = malloc(sizeof(int));
7 *entry2 = entry0 + entry1;
8
9 // Put the sum of the parent elements as the entry at <row, col>

10 char *tagEntry2 = CREATE_TAG(row, col);
11 CNC_PUT(entry2, tagEntry2, entry, cnc_ctx);
12
13 // All but the last row will prescribe a step in the next row
14 if (row < cnc_ctx->n) {
15 char *tagInnerEntry3 = CREATE_TAG(row+1, col);
16 CNC_PRESCRIBE(”innerEntryStep”, tagInnerEntry3, cnc_ctx);
17 }
18 }

Listing C.2: CnC-HC step code for computing the inner entries of Pascal’s Triangle.

113

1 #include ”Dispatch.h”
2 #include <string.h>
3 #include <stdlib.h>
4 #include <stdio.h>
5
6 int main(int argc, char **argv) {
7 int *n = (int*) malloc(sizeof(int)*3);
8 int *k = n+1;
9 int **result = malloc(sizeof(int*));

10 *result = n+2;
11 // Read arguments
12 sscanf(argv[1], ”%d”, n);
13 sscanf(argv[2], ”%d”, k);
14 // Init graph
15 Context *cncGraph = initGraph();
16 cncGraph->n = *n;
17 cncGraph->k = *k;
18 // Run
19 CNC_RUN {
20 tag = CREATE_TAG(0, 0);
21 CNC_PRESCRIBE(”edgeEntryStep”, tag, cncGraph);
22 }
23 // Get result
24 tag = CREATE_TAG(*n, *k);
25 CNC_GET((void**)result, tag, cncGraph->triangle, NULL);
26 printf(”%d choose %d = %d\n”, *n, *k, **result);
27 // Cleanup
28 deleteGraph(cncGraph);
29 return 0;
30 }

Listing C.3: Graph initialization code for the Pascal’s Triangle application (computing
nCk via the triangle entries) in CnC-HC.

	Abstract
	Acknowledgments
	Introduction
	Motivation for CnC C/R
	Thesis Statement
	Contributions
	Organization

	Background
	Concurrent Collections (CnC)
	Key Properties of CnC
	Pascal's Triangle: A Sample CnC Application
	The CnC Continuum

	Current Approaches to Resilience
	Kernel-Level Checkpointing
	User-Level Checkpointing
	Non-Checkpoint-Based Resilience
	Previous C/R Work for CnC

	Habanero-C CnC
	Rewrite Rules and the K Framework

	A Thin Wrapper for the CnC Runtime
	CnC Flavor
	Asynchronous Communication
	Input and Output of Steps
	Data Representation Restrictions
	Dynamic Graph Restrictions

	The API
	Example: Pascal's Triangle
	Example: Matrix Multiplication

	Summary

	A Formal Model of the CnC Runtime
	Building Executable Models
	The Runtime Model
	Configuration
	Syntax
	Rewrite Rules
	Handling I/O in the Executable Model

	Key Properties of CnC
	Summary

	A Formal Model for Checkpoint/Restart in an Unoptimized CnC Runtime
	The Checkpoint Model
	Configuration
	Syntax
	Rewrite Rules

	The Restart Algorithm
	Observations

	Example: Restart with Matrix Multiplication
	Example: Restart with Pascal's Triangle
	Summary

	Execution Frontiers in CnC
	The CnC Execution Frontier
	The Leading Edge
	The Trailing Edge
	Observations

	Model
	Configuration
	Syntax
	Rewrite Rules

	Changes in Key Properties
	Summary

	Extended Model of CnC Checkpointing
	The Modified Checkpoint Model
	Configuration
	Syntax
	Rewrite Rules

	Restarting
	Example: Restart with Pascal's Triangle
	Summary

	Checkpoint/Restart with CnC in Habanero-C
	Adding C/R Support to CnC-HC
	C/R Hooks
	Checkpoint Message Handlers
	Checkpoint Processing and Restarting

	Checkpoint Migration
	Initial Overhead Measurements
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	CnC Sans Control Collections
	Details of the Executable Model's I/O
	A Sample CnC-HC Application

