
Enhanced Data and Task
Abstractions for Extreme-scale

Runtime Systems

Thesis by
Nick Vrvilo

Thesis for the Degree of Doctor of Philosophy
Department of Computer Science
Rice University (Houston, Texas) July, 2017

RICE UNIVERSITY

Enhanced Data and Task Abstractions for
Extreme-scale Runtime Systems

by

Nick Vrvilo

A Thesis Submitted
in Partial Fulfillment of the
Reqirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Vivek Sarkar, Chair
E.D. Butcher Chair in Engineering
Professor of Computer Science
Professor of Electrical and
Computer Engineering

Robert Cartwright
Professor of Computer Science

Lin Zhong
Associate Professor of Electrical and
Computer Engineering

Houston, Texas

July, 2017

ABSTRACT

Enhanced Data and Task Abstractions for Extreme-scale Runtime Systems

by

Nick Vrvilo

Recently, we’ve seen a variety of emerging programming models targeting the next

generation of HPC hardware, known as extreme-scale computing systems. Extreme-scale

runtime systems need to address not only the problems presented by supporting new

hardware, but also issues of scalability—whether in small-scale embedded environments

or large-scale supercomputing clusters. While a runtime may present all of the necessary

functionality to write software for an extreme-scale system, the runtime APIs are rarely

a productive interface for application programmers. In this thesis, we present a set of

abstractions, which are designed to be implemented on top of an extreme-scale runtime,

that will increase programmability and productivity for software developers. These ab-

stractions include support for blocking calls in a �ne-grained task-based runtime, a data

structure representation for relocatable data chunks, and a hierarchical model for design

and analysis of macro-data�ow applications. We discuss and demonstrate the tradeo�s

among implementation choices for these abstractions, since the speci�c hardware and soft-

ware details of an application deployment may dictate the ideal method of implementing a

given abstraction.

Acknowledgments

I thank the members of Habanero Extreme-scale Software team (both past and present)

for all of their input and support. I thank the CnC community for their feedback on the

CnC-OCR toolchain—and more recently on our CnC hierarchy work. I thank the members

of the Extreme-scale Technology Group at Intel for their collaboration on the X-Stack

Traleika Glacier project, which motivated the majority of the contents of this thesis.

I thank Gabriele Jost from Intel for her collaboration on Tempest for OCR, and for her

feedback as a user of the CnC-OCR toolchain. I thank Ellen Porter from Paci�c Northwest

National Labs for her work on porting LULESH and HPGMG to CnC-OCR, and all the

invaluable feedback she provided about the toolchain during that process.

I thank my committee for their time and input to improve the content of this thesis. I

would especially like to thank my advisor, Vivek Sarkar, for all of his invaluable support,

feedback, and insights during my PhD studies.

This work was supported in part by the Traleika Glacier X-Stack project (Department of

Energy, O�ce of Science, under Award Number DE-SC0008717), and by the Data Analysis

and Visualization Cyberinfrastructure funded by NSF grant OCI-0959097.

Contents

1 Introduction 1

2 E�cient Encoding for Pointers in Relocatable Data Blocks 3
2.1 Motivation . 3

2.2 Background . 4

2.2.1 One-sided Communication . 4

2.2.2 Data Block Migration . 5

2.2.3 Serialization . 7

2.3 Overview of Our Approach . 8

2.4 Pointer Usage in Tasks and Datablocks . 10

2.4.1 Intra-datablock Pointers . 11

2.4.2 Inter-datablock Pointers . 12

2.5 Additional C++ API Support . 14

2.6 Pointer Conversion Algorithm . 16

2.6.1 Description of the Algorithm . 19

2.6.2 Example of Program Transformation 20

2.6.3 Limitations of the Algorithm . 24

2.7 Position-independent Encoding Optimization 25

2.8 Position-independent Pointer Sanity Checks 26

2.9 Experimental Evaluation and Analysis . 27

2.9.1 Benchmarks . 27

2.9.2 Experimental Setup . 29

2.9.3 Results and Analysis . 30

v

2.10 Related Work . 34

2.11 Future Research Directions . 36

2.12 Summary . 36

3 Practical Support for Tasks with Blocking Constructs 38
3.1 Background . 38

3.1.1 Continuations Support in Mainstream Languages 38

3.1.2 The Habanero-C Programming Model 39

3.1.3 Deadlock . 40

3.2 Overview of Our Approach . 41

3.3 Deadlock Scenarios in the Habanero-C Runtime 42

3.3.1 Simple Task Scheduling for Async/Finish Programs 42

3.3.2 Issues Combining Global Helping with Blocking Constructs 47

3.3.3 Program Compatibility with Global Helping 50

3.4 Alternative Strategies for Scheduling Blocking Tasks 51

3.4.1 Requirements for an Alternative Strategy 51

3.4.2 Our Selected Strategies . 53

3.5 Evaluation of Selected Strategies . 55

3.5.1 Benchmarks . 55

3.5.2 Experimental Setup . 57

3.5.3 Results and Analysis . 59

3.5.4 Implications for Resilience . 73

3.5.5 Strategy Tradeo�s . 74

3.5.6 Recommendations for Strategy Selection 82

3.6 Related Work . 84

3.7 Summary . 85

4 CnC-OCR: A Productivity Environment for OCR 87
4.1 Background . 87

vi

4.1.1 The Open Community Runtime (OCR) 87

4.1.2 The CnC Programming Model . 87

4.1.3 Separation of Concerns in CnC vs. OCR 89

4.1.4 CnC Graph Notation . 90

4.2 Overview of Our Approach . 90

4.3 Design and Implementation of CnC on OCR 91

4.3.1 Mapping CnC onto the OCR Programming Model 91

4.3.2 Software Architecture . 93

4.3.3 Development Work�ow . 95

4.3.4 Uni�ed CnC . 96

4.3.5 Code Generation Support . 100

4.4 CnC Programming Example: Fibonacci Numbers 102

4.4.1 Writing the CnC Graph Speci�cation 102

4.4.2 Generating the CnC Project Skeleton 104

4.4.3 Fleshing Out the Project Skeleton 105

4.5 CnC Program Hierarchy . 108

4.5.1 CnC Collection Granularities . 108

4.5.2 CnC Hierarchy De�ntions . 109

4.5.3 Algorithmically Building Hierarchies 113

4.6 CnC Application Tuning . 126

4.6.1 Tuning Evaluation . 128

4.7 Productivity in CnC-OCR . 130

4.8 Related Work . 132

4.9 Future Directions . 133

4.10 Summary . 134

5 Conclusions and Future Work 135
5.1 General Conclusions . 136

vii

5.2 Future Work . 138

5.3 Possible Applications in Other Runtime Systems 139

A Global Helping Deadlocks in OCR 141

B Introduction to CnC 146
B.1 Key Properties of CnC . 146

B.1.1 Graph Representation of the Application 146

B.1.2 Single-Assignment Data . 147

B.1.3 Monotonically Growing State . 148

B.1.4 Discrete and Side-E�ect-Free Computation Steps 148

B.2 A Sample CnC Application . 149

B.2.1 Review of Pascal’s Triangle . 149

B.2.2 Structure of the CnC Graph . 150

B.2.3 Executing CnC Steps . 151

B.2.4 Interaction with the Environment 153

B.2.5 Example Execution . 153

B.3 The CnC Continuum . 155

C CnC Sans Control Collections 156

D CnC Graph Domain Speci�c Languages 158
D.1 The Graph Spec Language . 158

D.1.1 Structure . 158

D.1.2 Syntax . 159

D.2 The CnC Tuning Language . 163

D.2.1 Structure . 163

D.2.2 Syntax . 164

D.2.3 Currently supported tunings . 164

viii

D.2.4 Using a tuning speci�cation . 164

E CnC Uni�ed C API 166

References 171

ix

List of Algorithms

2.1 Top-level routine for whole-program persisting-pointer rewriting. 17

2.2 Class-level routine of the persisting-pointer rewriting algorithm. 18

4.1 Hierarchy space derivation from a CnC graph. 117

4.2 Hierarchy slice derivation. 119

4.3 Derivation of full hierarchies . 121

4.4 Counting full hierarchies . 123

4.5 Hierarchy derivation from full CnC hierarchies 124

x

List of Figures

2.1 Example of pointer invalidation after migration of a datablock. 6

2.2 Execution times for ocxxr pointer object benchmarks. 31

2.3 Density of ocxxr pointer object operations in benchmarks. 31

2.4 Pointer object variant BinaryTree benchmark execution times. 32

3.1 Blocking worker strategy overheads . 63

3.2 HClib Fibonacci benchmark overheads for �bers and non-blocking 69

3.3 Tasking runtime comparison . 72

4.1 CnC graph with no corresponding loop nest 88

4.2 Software architecture of a CnC-OCR application 93

4.3 Whiteboard sketch of the LULESH proxy application. 97

4.4 CnC graph structure of the LULESH proxy application 97

4.5 Graphical samples of a CnC hierarchy space 111

4.6 CnC Cholesky decomposition hierarchy space 113

4.7 All full hierarchies for Cholesky . 122

4.8 Smith-Waterman distributed tuning performance 129

4.9 Single-node scaling with Cholesky . 131

B.1 Abstract CnC graph for a simple data-�ltering application 147

B.2 First nine rows of Pascal’s Triangle . 149

B.3 Abstract CnC graph for the Pascal’s Triangle application 152

xi

B.4 Pascal’s Triangle CnC graph prescribe, put and get relations 152

B.5 Dynamic CnC graph for the computation of 2C1. 155

C.1 Simple CnC graph with control collections 157

xii

List of Listings

2.1 A simple tree data structure using native pointers. 9

2.2 C++ de�nition of the RelPtr class. 13

2.3 C++ de�nition of the BasedPtr class. 15

2.4 Simple tree data structure in ocxxr using native pointers. 21

2.5 Transformed tree data structure code, using BasedPtr objects. 23

3.1 Naïve parallel Fibonacci recursive function. 43

3.2 HClib deadlock sample code using futures. 49

3.3 HClib deadlock sample code using data-driven tasks. 49

4.1 CnC graph speci�cation �le for computing Fibonacci numbers. 103

4.2 Source code for Main.c. 106

4.3 Source code for Fibonacci_compute_�b.c. 107

4.4 Source code for Fibonacci.c. 107

4.5 CnC graph speci�cation for a Cholesky decomposition kernel. 114

4.6 Domain speci�cation for the Smith-Waterman kernel. 129

4.7 Distributed tuning speci�cation for the Smith-Waterman kernel. 129

A.1 Sample program for global-helping deadlock in OCR 145

xiii

List of Tables

3.1 Summary blocked-worker strategy rankings. 82

4.1 Mapping of software concepts between CnC and OCR. 92

4.2 Line counts of template �les for CnC framework runtime backends. 101

4.3 Summary of sizes of the several classes of Cholesky hierarchies. 126

4.4 Performance results Cholesky hierarchy slices 126

4.5 Line-count comparison between OCR and CnC-OCR code. 130

5.1 Runtime Feature Comparison . 135

1

Chapter 1

Introduction

Much of the current research focus in the �eld of High-performance Computing (HPC)

is focused on achieving extreme-scale computing. The current prediction is that next-

generation extreme-scale hardware will provide orders of magnitude more parallelism

while requiring orders of magnitude less energy than current technology at a similar scale.

One major target for extreme-scale computing is to provide datacenter scale machines

that provide exa-FLOPS1 of compute power. However, having the technology for exascale

datacenters implies that we could also have petascale machines that �t in a single cabinet,

or terascale machines that run with the same energy footprint as a current high-end

desktop computer [2].

There are many di�cult problems associated with extreme-scale computing, including

energy consumption, operating system overhead, scalable algorithms, and resilience [3]. All

of these issues will in�uence the programming model presented to application programmers

on extreme-scale systems. We believe that the programmability of extreme-scale systems

will play a critical role in the perceived utility and eventual adoption of next-generation

hardware.

For example, due to cost and energy constraints, it is projected that extreme-scale

systems may have a compute:memory ratio as small as 0.0036 bytes per FLOP [3]. Simi-

lar degradations in the compute:memory-bandwidth ratios are also expected. Based on

these trends, we expect the need for a signi�cantly di�erent data model in extreme-scale

programming models compared compared to the data models used in current runtime

systems.

1 Exa- is the SI pre�x for 1018, so an exa-FLOP is on the order of a billion billion �oating-point operations
per second. For comparison, the current largest supercomputer peaks at 0.093 exa-FLOPS [1].

2

Similarly, due to the orders-of-magnitude increase of available parallelism in extreme-

scale systems, we anticipate that the overheads of blocking synchronization will become a

serious problem. This will necessitate e�cient support for blocking constructs in extreme-

scale software runtimes in order to enable programmability without critically a�ecting

performance.

In summary, all of the challenges associated with extreme-scale systems will have an

e�ect on the programming model presented to the application programmers for these

systems. New programming models such as Legion [4] and the Open Community Runtime

(OCR) [5] have been speci�cally designed from the ground up to address the new issues

associated with extreme-scale systems. However, if the runtimes for these systems do not

provide su�cient software abstractions for programmability and productivity, then that

will create a serious obstacle for the adoption and utilization of extreme-scale hardware.

Thesis Statement

We assert that runtime challenges tied to extreme-scale computing can be addressed with

marginal overhead, while also limiting the burden placed on the application programmer.

3

Chapter 2

E�cient Encoding for Pointers in
Relocatable Data Blocks

One of the fundamental concepts in the Open Community Runtime (OCR) is the relocatable

datablock [5]. In this chapter, we propose an e�cient approach for encoding C++ objects

in OCR datablocks, and present a C++ library and other tools to simplify the work of the

application programmer when using relocatable data blocks.

The key contributions presented in this chapter include the following.1 We introduce a

marshalled encoding for relocatable data blocks, and describe an algorithm for rewriting

C++ class de�nitions to use our proposed encoding. We present a C++ library and other

tools to simplify the work of the application programmer developing new applications or

porting existing applications to emerging programming models, with our work speci�cally

focusing on the OCR programming model [5]. Finally, we provide an experimental analysis

of the overheads associated with our marshalled data encoding.

2.1 Motivation

In the past, much of the HPC software infrastructure has been focused on C or Fortran;

however, there is currently an obvious shift towards the use of C++ in new programming

models. With several U.S. national labs heavily investing resources in new C++-based

programming models (RAJA at Lawrence Livermore [7], Kokkos at Sandia [8], and Legion at

Los Alamos [4]), and the European Union investment in AllScale [9] (a C++ project built on

HPX), it seems inevitable that C++ will become the de facto language for high-performance

computing projects.

1 Much of the work in this chapter was published at ISMM’17 [6].

4

At the same time, we are seeing a shift in programming models and runtime design

as new challenges in scaling arise for resource-limited extreme-scale computing environ-

ments, ranging from exascale systems to low-energy embedded devices. Many of these

challenges center around synchronization, resilience, and complex memory hierarchies [3].

One-sided communication is quickly gaining popularity as a way to decrease synchroniza-

tion overheads and increased asynchrony in distributed systems [10]. We are also seeing

restrictions in computation and data models, which are leveraged to provide stronger

resilience guarantees [11] (e.g., allowing transparent migration of data previously located

on a failed node to its neighbors). As heterogeneous hardware with dedicated accelerators

become more common, runtimes also need to be able to relocate data to di�erent memory

subsystems to accommodate accelerator hardware restrictions or take advantage of local-

ity [3]. However, the ability to transparently migrate data (whether as a form of one-sided

communication, or to support resilience, locality, and other goals) can be hindered by

embedded pointers bound to an object’s current location in memory, which are common

in object-oriented C++ software systems that make heavy use of aggregate objects.

2.2 Background

As previously discussed, we expect concepts like one-sided communication and transparent

data relocation to become more important in future HPC software systems. We now

discuss these ideas and their interactions with aggregate C++ objects. We also discuss why

traditional serialization techniques do not apply well in this context.

2.2.1 One-sided Communication

One-sided communication is the default method of sharing data in PGAS languages like

UPC [12] and models like OpenSHMEM [13]. Rather than using paired send/receive

operations to transmit data between processes, data in remote memory is accessed directly

via put and get operations. One-sided communication is becoming more common in popular

distributed-computing paradigms, and as we move towards exascale systems (where the

5

overhead of traditional point-to-point communication is aggravated by the scale of the

machine), we anticipate that this trend to continue. Even the MPI standard, which is

typically associated with two-sided send/receive-style communication, is bolstering its

support for one-sided communication (originally introduced in MPI-2, but rarely used). In

fact, it is now possible to implement a PGAS programming model like OpenSHMEM entirely

in terms of the one-sided communication API extensions in the MPI-3 standard [14].

Currently, both one-sided and two-sided communication are only compatible with

contiguous objects that do not contain internal pointers.2 While the MPI and SHMEM

APIs have support for sending non-contiguous bytes from an array or struct, there is still

the underlying assumption that these bytes are read from a contiguous object in memory;

however, that assumption is typically invalid when dealing with general C++ aggregate

objects. To the best of our knowledge, no industry-standard HPC communication frame-

work directly supports transfer of aggregate objects3 through one-sided communication or

transparently-managed data blocks.

2.2.2 Data Block Migration

Emerging parallel-computing runtimes, such as Realm [15] and OCR [11] also transparently

manage data to improve scheduling and locality, e.g., when gathering inputs from remote

nodes before starting a computation. Transparently supporting recovery by migrating

tasks and data after a component failure, or redistributing workloads to adapt to a dynamic

energy budget are other reasons the runtime might need to migrate data. Thus, the runtime

needs the ability to transparently relocate objects.

In OCR, the application programmer cannot assume that a datablock will have the

same base address when it is accessed by two separate tasks. For example, the runtime may

move a datablock to a remote node and then move it back again, but at a new base address.

2 We use the term pointer to refer to both C-style explicit pointers (e.g., int *p), as well as references in
C++ (e.g., int &r).

3 We use the term aggregate objects to refer to objects containing pointers to aggregated data. The
aggregated data may also include aggregate objects, with nested pointers to more data.

6

Datablock X @ 0x38a8a90!
· · ·!
int i @ 0x38a8aa0!
· · ·!
int * p = 0x892e660!
· · ·!

Datablock X @ 0x892e650!
· · ·!
int i @ 0x892e660!
· · ·!
int * p = 0x892e660!
· · ·!

Node !
A !

Node !
B!

???!
Figure 2.1: Example of pointer invalidation after migration of a datablock. The datablock X
is initialized on node A, containing an integer i and pointer p that is set to the address of i.
After the datablock X is migrated to node B, the base address of the datablock has changed,
causing the absolute address stored in p to no longer correspond with the address of i.

The runtime may also choose to migrate a datablock to a di�erent portion of the address

space within a single shared-memory domain. For example, the machine might have a

high-performance scratchpad, and through online pro�ling, the runtime may decide to

migrate a heavily used datablock into the scratchpad memory. Since the base address of a

datablock can only be assumed constant for the duration of the currently executing task,

any pointers stored within a datablock should be considered invalid as soon as the task

�nishes executing.4 Figure 2.1 illustrates an example where an error is introduced when a

datablock is migrated to a remote node. When the datablock is moved, its base address

changes, causing the value stored in the intra-datablock pointer to no longer correspond

with the address of the target integer; instead, it now points o� to an arbitrary memory

position.

4 In OCR, since all data that persists between tasks must be stored in a datablock, all valid pointers must
point into datablocks. One possible exception is for function pointers, which point at code rather than data.

7

The requirement for transparently-migratable data is not limited to distributed systems,

or even to runtimes with online pro�ling. Many hardware accelerators, such as GPUs and

FPGAs, have their own dedicated memory and discrete address spaces. Naïvely copying

blocks of data that contain pointers between main memory and dedicated accelerator

memory may also lead to program errors.

2.2.3 Serialization

When copying aggregate C++ objects across memories, the current best-practice is to

employ serialization. This involves packing the objects into a contiguous bu�er at the

source, and then unpacking (i.e., reconstructing) the objects at the destination. Note that

for objects containing pointers, this typically means transitively applying serialization to

all pointed-to objects. This can be problematic if an object X contains multiple references

to some other object Y, as it may result in multiple copies of Y at the destination unless care

is taken to track unique object pointers. Some popular serialization frameworks, such as

Boost.Serialization [16], do the necessary bookkeeping to automatically handle duplicate

pointers; in contrast, libraries like Cereal [17] eschew this additional bookkeeping in favor

of higher throughput.

Serialization puts a burden on both the programmer (providing functions to pack and

unpack5) and on the runtime (invoking the pack/unpack functions every time an object is

relocated); nevertheless, the need to support migrating an object to another memory (e.g.,

a remote node or a hard disk) often makes serialization an essential feature, making the

extra e�ort and overhead unavoidable.

However, there is a fundamental problem with using serialization in combination

with one-sided communication: Due to the lack of explicit coordination with the remote

5 Note that the burden of providing explicit implementations of serialization functions for user-de�ned
types only exists in “classic” languages (e.g., C, C++ and Fortran) because they support neither run-time
nor compile-time re�ection. Languages supporting re�ection can (and do) provide generic or automatically-
generated serialization code. Even the modern “lower-level” languages (e.g., Rust) have support to auto-
generate serialization code for most user-de�ned data types. However, custom serialization allows the
programmer to inject semantic-aware optimizations, e.g., compression.

8

process, there is no straightforward way to trigger invocation of the deserialization code

for an object at the destination. A similar problem presents in runtimes like OCR, which

lack callback hooks for object pre/post migration processing, again precluding the use of

traditional serialization. The purpose of this work is to enable support for C++ programs

using aggregate objects within a distributed-memory OCR application.

2.3 Overview of Our Approach

In the case that traditional serialization is impractical or unavailable, we propose using a

marshalled6 data format—which is directly usable by the application code—as the primary

representation for objects. (As discussed in section 2.2, two such motivating cases are

one-sided communication and the OCR data model.) The application data is partitioned

into discrete, �xed-sized datablocks. Intra-block pointers are encoded as relative o�sets.

Inter-block pointers are encoded with both a global handle for the target datablock, as

well as the relative o�set to the target data from the start of that datablock.

A critical requirement for our approach, of course, is correctness. We present a C++

library for creating and managing datablock-marshalled objects, and an algorithm, which

we have implemented using the Clang LibTooling framework [18], for conservatively

transforming persisted aggregate objects’ de�nitions into our marshalled representation.

We also present a set of possible optimizations to the output of our conservative transfor-

mation, and provide a set of run-time sanity checks to augment the correctness-checking

process when applying these less-general optimizations.

Since the overarching goal of this work is to improve the productivity of an application

programmer writing code for an OCR-like runtime (either directly via the OCR API or

6 While the terms serialize and marshal are sometimes used interchangeably, we draw a traditional
distinction between these two concepts. To serialize an object means to transform it into a contiguous
byte stream, which can then be sent somewhere else, and eventually deserialized into an equivalent object.
Marshalling is a more general term used for data representation transformations in memory, inclusive of
(but not restricted to) serialization. A traditional example where the term marshal (but not serialize) would
be appropriate is when transforming an object for compatibility with a foreign-function interface.

9

1 struct Node {
2 int value;
3 Node *left;
4 Node *right;
5 };
6

7 struct Tree {
8 Node *root;
9 // ... methods ...

10 };

Listing 2.1: A simple tree data structure using native pointers.

through a programming system that targets OCR), our assumptions are based on the OCR

programming model. The assumptions are as follows:

1. All persisting data must be stored within a runtime-managed datablock. We de�ne

persisting data as any data that may be accessed from more than one task.

2. The runtime is free to relocate a datablock after it is released by a task, but a datablock

cannot move while currently in use by some task.

3. The contents of datablocks are opaque to the runtime.7

4. Each datablock has a corresponding Globally Unique ID (GUID), which is a valid

global handle for the datablock regardless of where it currently resides in memory.

We can discuss these assumptions more concretely in terms of the simple tree data

structure de�nition shown in listing 2.1. If a single instance of the tree data structure is

accessed by more than one task, then it must be allocated within one or more datablocks.

This is a consequence of #1, because between tasks, the runtime may relocate those

datablocks, as per #2. Since the underlying runtime has no access to type information

7 We do not require information on which data block entries contain pointers, as is required by GC maps
for strongly typed languages like Java that include automatic memory management. Instead, memory is
managed at the granularity of datablocks either manually or semi-automatically via reference-counting
techniques.

10

on the contents of datablocks, as per #3, the contents of datablocks are copied byte-by-

byte (as done by the standard memcpy function) to the destination when moved, such that

the bitwise representation of our tree data structure remains the same before and after

migration. However, since the destination address most likely does not match the source

address, we should assume this opaque data transfer invalidates the pointer values of the

�elds declared on lines 3 to 8. Although the base address of the datablock containing our

tree root may change several times throughout the program execution, as a consequence

of #4, each task can still request access to that datablock via the datablock’s GUID, since

the runtime maintains a mapping from each datablock’s GUID to its current location.

2.4 Pointer Usage in Tasks and Datablocks

Following the trend described in section 2.1, many simulation frameworks are being

developed in C++ and are targeting exascale computing. An example of one such framework

is Tempest [19, 20], a hydrodynamics simulation kernel developed entirely in C++, heavily

using standard C++ idioms and aggregate data types. Many object-oriented C++ codebases,

such as Tempest, use several persistent aggregate objects. Based on our past experience

with a port of a subset of the Tempest framework onto OCR,8 we know that the presence

of pointers in aggregate objects (used extensively throughout the framework’s API) is a

major complication of porting an object-oriented C++ framework onto a datablock-based

memory system, like that of OCR. More speci�cally, the assumptions we are making

regarding memory (enumerated in section 2.3) have three non-trivial consequences for

C++ applications targeting the OCR programming model:

1. Objects that persist across task boundaries cannot contain native pointer types,9

since any pointer value is immediately invalidated if the target datablock is migrated

to a new base address.

8 Tempest is a very large simulation framework (with over 70k lines of code), and the port to OCR is still
a work in progress.

9 Note that task-local variables are permitted to contain native pointers, but their lifetimes are limited by
task boundaries.

11

2. C++ code cannot make use of the built-in new and delete operators for dynamic

memory management. The built-in new and delete operators in C++ simply delegate

to the standard malloc and free functions for memory allocation, which would place

new objects at arbitrary locations in the heap, whereas OCR requires that all persist-

ing objects be allocated within a datablock. Instead, we require a custom allocation

API for managing placement of new C++ objects within existing OCR datablocks. We

do not see this as a major limitation since best practices in object-oriented program-

ming often recommend the use of factory methods rather than using new directly.

For example, we see a similar pattern with the usage of std::make_shared in C++11.

Note that temporary objects that do not persist across multiple tasks need not be

placed within datablocks, and thus can be allocated normally.

3. Due to the allocation descriptions already described, using C++ standard tem-

plate library containers (e.g., std::vector) will not work unless an alternative

to std::allocator is provided that both avoids native pointers and uses datablock-

based allocation.

The base address of an acquired datablock must remain constant until it is released

by the acquiring task; therefore, it is both legal and desirable to use native (position-

dependent) pointers as local variables within a task, since the lifetime of that pointer is

bounded by the task’s lifetime. Only pointers that persist across multiple tasks must use

a position-independent encoding. In the following two subsections, we describe the two

additional classes of pointer use in OCR application code, and introduce a new position-

independent representation for each class of pointer. These position-independent pointer

objects can legally persist within OCR datablocks, and can simplify the process of porting

object-oriented C++ code to OCR.

2.4.1 Intra-datablock Pointers

In the case when a pointer must address an object that resides within the same datablock

as the pointer itself, then the pointer will always be at the same relative location with

12

regard to the target object, regardless of the base address of the datablock; therefore, a

relative o�set can be used to position-independently encode that pointer. Note that this

o�set is calculated relative to the base address of the pointer-object itself, not the base

address of the datablock.

We de�ne the RelPtr template class to represent this kind of pointer. We assume that

the size of a relative o�set is less than or equal to that of a native pointer; hence, a RelPtr

replacing a native pointer implies no space overhead.10 Note that in C++ we are able to

overload all operators that are typically used with native pointers, making the substitution

of RelPtr objects for native pointers almost11 transparent to the application programmer.

A simpli�ed version of the RelPtr class de�nition is shown in listing 2.2 for reference.

While it is possible to use a RelPtr to address a non-persisting object (e.g., an object stored

on a task’s stack), it is always preferable to use a native pointer in such a case. (Since

non-persisting objects are guaranteed not to move, using position-independent pointer

objects is unnecessary.)

2.4.2 Inter-datablock Pointers

If the pointer object and its target object may reside in distinct datablocks, then it is not

possible to �nd the target object using a constant o�set from the pointer. This is due

to the fact that either of the two datablocks may be arbitrarily moved by the runtime,

changing their relative positions. Instead, we encode the position-independent pointer as

a pair: the o�set of the target object from the base address of its datablock, plus the GUID

of that datablock. Assuming that the target datablock has been acquired by the current

task, converting between the GUID and the base address is straightforward operation.12

10 While a RelPtr introduces no additional memory footprint within a datablock, the additional template
methods for the RelPtr class may increase the global code footprint.

11 We say almost transparent because there are a few edge cases where the application programmer may
need to modify existing code; e.g., when a user-de�ned implicit type conversion was applied to the original
pointer value that the compiler will not automatically apply to the new pointer object.

12 Translating a datablock’s GUID to its base address (or vice versa) is not directly supported by the current
OCR API; however, tracking this mapping for each of a task’s acquired datablocks is just a matter of a little

13

1 template <typename T>
2 class RelPtr {
3 public:
4 constexpr RelPtr() : offset_(1) {}
5 RelPtr(const RelPtr &other) { set(other); }
6 RelPtr(const T *other) { set(other); }
7

8 RelPtr<T> &operator=(const RelPtr &other) {
9 set(other); return *this; }

10 RelPtr<T> &operator=(const T *other) {
11 set(other); return *this; }
12

13 T &operator*() const { return *get(); }
14 T *operator->() const { return get(); }
15 operator T *() const { return get(); }
16 bool operator!() const { return offset_ == 0; }
17 bool operator==(const RelPtr &other) const {
18 return get() == other.get(); }
19 /* ... other pointer operators ... */
20

21 private:
22 ptrdiff_t offset_;
23 ptrdiff_t base_ptr() const {
24 return (ptrdiff_t)(this); }
25

26 void set(const RelPtr &other) { set(other.get()); }
27 void set(const T *other) {
28 if (other == nullptr) offset_ = 0;
29 else offset_ = (ptrdiff_t)(other) - base_ptr(); }
30 T *get() const {
31 assert(offset_ != 1);
32 if (offset_ == 0) return nullptr;
33 else return (T*)(base_ptr() + offset_); }
34 };

Listing 2.2: C++ de�nition of the RelPtr class, simpli�ed for inclusion in this source listing.
Please see the ocxxr repository for the full source code of the RelPtr class.

14

Calculating the target object’s base address using the o�set is trivial. Note that storing

a GUID in addition to the pointer-o�set within BasedPtr objects increases the size of all

aggregate object types. Assuming that GUIDs are 128 bits, and native pointers are 64 bits,

each native pointer replaces by a BasedPtr has a 3x space overhead.

We de�ne the BasedPtr template class to represent this kind of pointer. As with

the RelPtr class, we overload the relevant operators to make using BasedPtr objects

as simple as possible. While the implementation details are not quite as simple as with

RelPtr, it is still possible to make BasedPtr operations appear the same as native pointer

operations in the application code—albeit with some additional overhead (both space and

in computation time). A simpli�ed version of the BasedPtr class de�nition is shown in

listing 2.3 for reference.

Note that a BasedPtr is a valid substitute for any pointer into a datablock. This implies

a simple, conservative process for taking an OCR application that illegally persists native

pointers within datablocks, and correcting those violations: Replace every native pointer

that is persisted in a datablock with a BasedPtr. The details of this process are covered in

section 2.6.

2.5 Additional C++ API Support

To better facilitate the use of C++ code with OCR, we have built the constructs described

in this chapter into a more general C++ library, which additionally provides C++-friendly

wrappers for all existing OCR functions. We call the library ocxxr, which is a portmanteau

of OCR and C++ (CXX). The library contains the RelPtr and BasedPtr classes described

in section 2.4, as well as an API for using datablocks as the backing memory for an arena-

based allocator. The library uses modern C++11 constructs. The allocation API mimics

the style of the interface for allocating memory with an associated shared pointer, and

extra bookkeeping in our C++ code that wraps OCR’s standard C-language API. Since OCR already tracks
all of a task’s acquired datablocks, extending the existing internal bookkeeping to support this translation is
very straightforward.

15

1 template <typename T>
2 class BasedPtr {
3 public:
4 constexpr BasedPtr()
5 : target_guid_(ERROR_GUID), offset_(0) {}
6 BasedPtr(ocrGuid_t target, ptrdiff_t offset)
7 : target_guid_(target), offset_(offset) {}
8 /* ... other constructors and operators ... */
9

10 private:
11 ocrGuid_t target_guid_;
12 ptrdiff_t offset_;
13 ptrdiff_t base_ptr() const {
14 return (ptrdiff_t)(this); }
15

16 void set(const BasedPtr &other) {
17 target_guid_ = other.target_guid_;
18 offset_ = other.offset_; }
19 void set(const T *other) {
20 GuidOffsetForAddress(other, this,
21 &target_guid_, &offset_); }
22 T *get() const {
23 if (ocrGuidIsNull(target_guid_)) return nullptr;
24 else return (T *)(AddressForGuid(target_guid_)
25 + offset_); } }
26 };

Listing 2.3: C++ de�nition of the BasedPtr class, simpli�ed for inclusion in this source
listing. Please see the ocxxr repository for the full source code of the BasedPtr class. The
AddressForGuid and GuidOffsetForAddress routines refer to the GUID–pointer conver-
sion operations discussed in section 2.4.2.

16

thus should be intuitive to C++11-savvy application programmers. E.g., the expression

new T(x,y) can be rewritten as arena.New<T>(x,y) to allocate the object inside the given

datablock arena, or New<T>(x,y) to use an implicit arena set via an earlier API call.

Our C++ wrappers for the C-language OCR API functions further improve the C++

integration, e.g., by adding template type parameters to eliminate C-style void* “generic”

types and provide better static typing. One example of this is the TaskBuilder<F> template

type, which allows construction of task instances that will run a target function, where F

is the target function’s type signature, and all arguments passed to the task instance are

checked against the argument types in F. We also leverage this extra type information in

our pointer conversion algorithm, described in the next section.

Although ocxxr provides a limited set of utility classes and functions, the primary

goal is to provide a foundational framework, enabling development of more complex

object-oriented C++ libraries for OCR. The current version of the library is available on

GitHub.13

2.6 Pointer Conversion Algorithm

To ease the process of porting legacy C++ code to the OCR model, we present a tool for

automatic identi�cation of native pointers that are persisted in OCR datablocks, and a

process for conversion to position-independent representation. Our tool is built on Clang

LibTooling [18], which provides a framework for automatic C++ source code analysis and

source-to-source translation.

The transformation described here hinges on the following two key observations:

1. The BasedPtr class can legally replace any native pointer that addresses an object

residing within a datablock.

2. Any data that persists across multiple tasks must be contained within an aggregate

object that is passed as an argument to an OCR task. In other words, it is possible to

13 https://github.com/DaoWen/ocxxr/tree/ismm17

https://github.com/DaoWen/ocxxr/tree/ismm17

17

1 Subroutine RewritePersistingPointers()
Input: Source program that has been partially ported to ocxxr, but where some

native pointers are included in persistent data.
Result: All persisted native pointers in the input source program have been

replaced with position-independent pointer objects.
2 Let Builders be the set of all TaskBuilder<F> type instances in the input

program.
3 foreach B ∈ Builders do
4 Let ArдTypes be the set of all datablock dependence types speci�ed in the

task function signature of F in B.
5 foreach τ ∈ ArдTypes do
6 Let τ ′ be the base type of τ .
7 if τ ′ is a class type then
8 call RewritePointersInClass(τ ′)
9 else τ is a non-aggregate type.

10 No rewrite is necessary for type τ .

Algorithm 2.1: Top-level routine for whole-program persisting-pointer rewriting.

read a now-invalid pointer value if and only if that pointer is embedded within a

datablock, and some task has an input dependence on that datablock.

The basic pseudocode for this transformation is given in algorithms 2.1 and 2.2. There

are many other subtle details in the full algorithm that are not covered in the pseudocode.

For example, it is not possible to directly replace a C++ reference type on a �eld with

a corresponding BasedPtr type. Instead, a new �eld of type BasedPtr is created with a

unique name, and the original �eld is replaced with a method that returns the original

reference type. All uses of the original �eld are then transformed into method calls by

appending a pair of empty parentheses to the original �eld name. In contrast, since

BasedPtr overloads all pointer-related operators, uses of a transformed pointer-type �eld

work transparently. Another example is handling class subtypes, which requires processing

18

1 Subroutine RewritePointersInClass()
Input: A class type τ .
Result: The class type τ has been rewritten to τ ′, such that τ ′ contains no

persistent-dependent pointers. This property is transitive to all
aggregate members of τ ′.

/* Calls to this subroutine must be memoized to prevent infinite

recursion on mutually-recursive class types */

2 Let Members be the set of all �eld members in τ .
3 foreachM ∈ Members do
4 Let ϕ be the type of M .
5 Let ϕ′ be the base type of ϕ.

/* Rewrite pointer fields in the class */

6 if ϕ is a pointer type ϕ′∗ then
7 Rewrite M from type ϕ′∗ to BasedPtr<ϕ′>.

/* Recursively handle nested class types */

8 if ϕ′ is a class type then
9 call RewritePointersInClass(ϕ′)

Algorithm 2.2: Class-level routine of the persisting-pointer rewriting algorithm. Called
in the inner-loop routine of algorithm 2.1. Recursively handles the rewriting of nested
class de�nitions.

19

the classes in the inheritance hierarchy. For simplicity, we cover only the core concepts of

the transformation in this chapter, and refer interested readers to the source code14 for the

full details of the implementation.

2.6.1 Description of the Algorithm

The top-level transformation routine is described in algorithm 2.1. We assume that the

input program has already been partially translated to the OCR programming model

using the ocxxr library; however, the input program may still store native pointers in

datablocks, meaning the program likely only run in shared memory under the assumption

that datablocks are never migrated.

We use only the types found in task arguments (i.e., the data types of the input depen-

dence datablocks) as the root set for this transformation. This helps us avoid processing

transient datablocks with a single-task duration (essentially being used as task-local scratch

space), and avoid unnecessarily coercing the associated types into the position-independent

encoding. We �nd and iterate through our root set of types in lines 2 to 4).

The base type τ ′ of τ (de�ned on line 6 of algorithm 2.1) corresponds to the target type

of a pointer, or the element type of an array; e.g., the base type of int* is int, the base

type of float[10] is float, and the base type of Node*(*)[] is Node. The conditional call

in the inner loop (on lines 7 to 8) starts the recursive processing of each of the class types

in our root set. Since only class types15 can contain aggregate object pointers, no other

types require rewriting.

The subroutine call in the inner-loop of algorithm 2.1 is described in algorithm 2.2.

This subroutine transforms the speci�ed class to remove native pointers, and it is also

recursively applied to any class types referenced in the �elds of that class. Lines 2 to 4

iterate through each of the target class’s �elds. Lines 6 to 7 transform �elds with native

pointer types into position-independent BasedPtr object types, which are safe to store

14 https://github.com/DaoWen/ocxxr-ptr-xform
15 We consider class and struct to be synonymous here.

https://github.com/DaoWen/ocxxr-ptr-xform

20

within an OCR datablock. Finally, lines 8 to 9 recursively apply this subroutine to any new

class types.

As described in the comment above line 2, calls to the RewritePointersInClass routine

must be memoized in order to avoid potential in�nite recursion. Since the number of

TaskBuilder variable declarations in the input program must be �nite, and the total

number of class types referenced in any typeable C++ program must also be �nite, we can

conclude that this algorithm will always terminate. The overall computational complexity

of the algorithm is linear in the template-expanded size of the input program. Note that if a

declaration of a TaskBuilder<F> type appears inside of a templatized function or method,

then the type F may be de�ned in terms of other type parameters, and each concrete

type instance must be processed. This is analogous to running the algorithm on the fully

template-expanded source code. While further optimizations to this transformation are

possible, we believe the current approach is acceptable since the algorithm is relatively

simple, yet the overall complexity is no worse than that of the code generation necessary

to produce the application binary.

2.6.2 Example of Program Transformation

We now walk through an example of running our pointer conversion algorithm on a simple

ocxxr program, shown in listing 2.4.

1. First, we query for all instances of the TaskBuilder<F> type declared in the input

program. We �nd an instance on line 16 and another on line 26. For the �rst instance,

F is the type signature of the function SubTask.

2. The SubTask function has two parameters, with types int and Arena<Tree>, re-

spectively. The int type is ignored since it’s a primitive type. However, Arena is a

datablock type containing an object of type Tree as its root element. Since Tree is a

class type, we need to process it.

3. The class Tree just one �eld, which has type Node* (line 8). Since this is a pointer

type, we need to rewrite the type to BasedPtr<Node>. We can see this update on the

21

1 struct Node {
2 int value;
3 Node *left;
4 Node *right;
5 };
6

7 struct Tree {
8 Node *root;
9 // ... methods ...

10 };
11

12 void SubTask(int i, Arena<Tree> tree) {
13 Node *tree_root = tree->root;
14 if (i < 10) {
15 // ... do something with tree_root ...
16 TaskBuilder<decltype(SubTask)> builder = /* ... */;
17 builder.CreateTask(i+1, tree);
18 } else {
19 Shutdown();
20 }
21 }
22

23 void MainTask() {
24 Arena<Tree> tree = Arena<Tree>::Create(ARENA_SIZE);
25 // ... set up tree ...
26 TaskBuilder<decltype(SubTask)> builder = /* ... */;
27 builder.CreateTask(0, tree);
28 }

Listing 2.4: Simple tree data structure in ocxxr using native pointers, using the tree data
structure originally from listing 2.1.

22

same line in listing 2.5. Since the base type of the �eld is the class type Node, we also

need to recursively handle that class type.

4. The class Node has three �elds (lines 2 to 4).

(a) The �rst �eld has primitive type int, so we ignore it.

(b) The second �eld has pointer type Node*, so we rewrite the type to BasedPtr<Node>.

However, due to memoization we see that the Node class has already been pro-

cessed (or, rather, that it is currently being processed) so we skip recursively

handling the Node class, and immediately return to processing the �elds of

Node.

(c) The third �eld also has pointer type Node*, so we also rewrite its type to

BasedPtr<Node>, and again skip recursively processing Node due to memoiza-

tion.

5. Now that we have processed all of the �elds of Node, we return to processing the

other �elds of Tree. However, there are no other �elds in Tree, so we return to the

top-level routine to process the next task argument type.

6. There are no more arguments to process in SubTask’s signature, which means that

we are done processing the current TaskBuilder<F> instance.

7. We move on to the next TaskBuilder<F> instance, which is on line 26. This instance

actually has the same type for F; however, since we would have to iterate over the

whole type signature to see if it is equal to a previously processed signature, it is

simpler to naïvely process the whole signature again. Again, the primitive type int

is skipped. The second argument has type Arena<Tree>, which means we need to

process the class Tree; however, we return immediately due to memoization.

8. There are no more TaskBuilder<F> instances to process, which means that the

transformation of the input program is complete! The resulting rewritten code is

shown in listing 2.5.

Notice that the type of tree_root on line 13 was not altered. This is because the

scope of the pointer value stored in tree_root is limited to the currently-executing task,

23

1 struct Node {
2 int value;
3 BasedPtr<Node> left;
4 BasedPtr<Node> right;
5 };
6

7 struct Tree {
8 BasedPtr<Node> root;
9 // ... methods ...

10 };
11

12 void SubTask(int i, Arena<Tree> tree) {
13 Node *tree_root = tree->root;
14 if (i < 10) {
15 // ... do something with tree_root ...
16 TaskBuilder<decltype(SubTask)> builder = /* ... */;
17 builder.CreateTask(i+1, tree);
18 } else {
19 Shutdown();
20 }
21 }
22

23 void MainTask() {
24 Arena<Tree> tree = Arena<Tree>::Create(ARENA_SIZE);
25 // ... set up tree ...
26 TaskBuilder<decltype(SubTask)> builder = /* ... */;
27 builder.CreateTask(0, tree);
28 }

Listing 2.5: Transformed tree data structure code from listing 2.4, now using BasedPtr
objects for all persisted pointer values.

24

which means it does not persist across multiple tasks, and thus does not need a position-

independent encoding.

Source �les corresponding to listings 2.4 and 2.5 are available as examples in the ocxxr

repository.

2.6.3 Limitations of the Algorithm

The primary purpose of this algorithm is to identify native pointer �elds in aggregate

objects that are persisted across multiple tasks. We do not attempt to identify pointers

stored directly in global memory; i.e., we assume that all data that is accessed across

multiple tasks is stored within a runtime-managed datablock. We also assume that the full

set of types that may be embedded within datablocks and shared across tasks are reachable

from the TaskBuilder de�nitions. This assumption means that programs that are written

directly in OCR rather than using our ocxxr library are not analyzable using this method.

It also means that if the application programmer uses explicit casts to read or write objects

stored in a datablock, we will not �nd the type information used in the cast, and we may

not correctly transform the corresponding class de�nitions. However, explicit casts are

only problematic if they add otherwise “hidden” type information, such as long→T* or

void*→U*. Valid casts up or down a class hierarchy are not problematic.

We assume that all of the source code for a program is accessible, and the entire program

can be recompiled after the transformation. This can be problematic when data types from

third-party libraries are used, as the user’s application might just compile against a header

�le and then link against a pre-compiled library.

Since we transform the class de�nition for any objects that may be persisted in a

datablock, it is possible that an objects used as temporary data will also be re-encoded

using our technique. The programmer could manually create separate versions of the class

de�nition (one for temporary objects and one for persistent objects); however, automating

that process is beyond the scope of this work.

25

Finally, our algorithm only addresses the pointers stored in objects, assuming that all of

the aggregate objects are allocated within datablocks. The ideal partitioning of aggregate

objects into discrete datablocks is currently determined manually by the application

programmer. The programmer must ensure that any calls to new associated with the

transformed types are properly rewritten to use our ocxxr API to allocate the objects within

a datablock rather than placing them directly in unmanaged heap memory; however, in our

experience, manually rewriting the new operations after identifying and transforming the

class de�nitions for all persisting data is much more straightforward and less error-prone

than the pointer identi�cation and transformation.

2.7 Position-independent Encoding Optimization

The automatic conversion described in section 2.6 only makes use of the more general

BasedPtr type. While correct, programs produced by this conservative approach will

obviously be outperformed by a program that utilizes the RelPtr type for storing intra-

datablock pointers. For example, assuming the Tree and all of its Nodes are allocated within

the same Arena datablock in listing 2.5, then it would be legal to replace the BasedPtr<Node>

types on lines 3, 4 and 8 with RelPtr<Node> types.

It is possible to hook into Clang’s alias analysis framework to attempt to automatically

identify possible RelPtr candidates; however, we would require a custom alias analysis

for determining if a candidate pointer and its target are always allocated within the same

datablock. Traditional alias analysis algorithms check if pointer A and pointer B both alias

to the same object C; in contrast, we need to know if pointer A that points to object B

must reside in the same datablock as object B, for all possible targets B of the pointer A.

Since we do not currently have a datablock-aware alias-analysis framework available, we

propose two alternatives to help with optimization.

One option is to create a third class of pointer object that uses the relative-o�set

encoding for intra-datablock references, but falls back to the base-o�set encoding for

inter-datablock references. We name this hybrid representation BasedDbPtr, since it is

26

very similar to the BasedPtr semantically, but we add Db to the name as a reminder that

it must be allocated within a datablock in order to support the relative-o�set encoding.

It is included along with RelPtr and BasedPtr in ocxxr. Note that while a BasedDbPtr

should be much more e�cient than a BasedPtr for intra-datablock data accesses, the copy-

initialization operation is much more expensive since we must check if the BasedDbPtr

object and the target object are allocated within the same datablock (and use RelPtr-style

encoding for intra-datablock references), rather than simply copying the target GUID and

o�set values.

One additional interesting feature of the BasedDbPtr class is that it explicitly distin-

guishes between inter- and intra-datablock pointers. By exposing a predicate for checking

that property, we can leverage this encoding to more e�ciently build and traverse data

structures where the partitioning of data across datablocks is dynamically encoded within

the pointers to the data.

A second method is to optionally store additional bookkeeping information in BasedPtr

objects, and log any references to inter-datablock addresses from a speci�c BasedPtr �eld.

The application programmer then runs the program with several inputs, producing a list of

the RelPtr candidate �elds (i.e., the complement of the set of logged �elds). Programmers

can then focus on a (hopefully) smaller list of candidates, and convert into RelPtr type just

the pointers that they can guarantee must be intra-datablock references. The BasedDbPtr

class could hypothetically be extended to perform this extra bookkeeping; however, this is

not currently supported in ocxxr. We leave the exploration of this optimization method

for future work.

2.8 Position-independent Pointer Sanity Checks

Compiling with OCXXR_PTR_CHECKS de�ned enables a set of sanity checks that should be

useful during development and debugging of ocxxr applications. These checks help ensure

that all ocxxr pointer objects have targets that are either null or are located in a datablock

that is accessible from the current task. For a RelPtr, the check ensures that the pointer

27

object and the target object are in fact within the same datablock, which must be one of the

datablocks that was acquired for access by the current task. The BasedPtr and BasedDbPtr

classes make similar checks, but without the requirement of being in the same datablock.

The RelPtr checks are done on assignment to the pointer object, whereas the BasedPtr

checks must be deferred until the pointer object is dereferenced in order to guarantee

access to the target datablock. The BasedDbPtr class does checks both when assigning and

when dereferencing, depending on whether the target is located intra- or inter-datablock.

We enabled these checks during the development of our benchmarks. The checks

correctly �agged invalid references to objects allocated on the execution stack or in other

non-datablock sections of memory. These checks also uncovered RelPtr objects allocated

on the execution stack. While a RelPtr will still function correctly in this context (since

the target datablock will not be moved while the current task is still accessing it), using a

native pointer is a better �t for such pointers that are limited in scope to the current task.

We discuss the overheads associated with these extra sanity checks in the next section.

2.9 Experimental Evaluation and Analysis

We chose to focus our experimental analysis on the additional overhead introduced by

using our position-independent pointer objects in place of native pointers. However, it is

important to note that while our pointer abstractions do introduce a measurable overhead,

the native-pointer variants of the benchmarks violate the OCR data model restrictions

discussed in section 2.4, and therefore will almost always result in errors when run on a

multi-node distributed OCR con�guration.

2.9.1 Benchmarks

We use a set of �ve benchmarks to evaluate the performance of our implementation,

and speci�cally to measure the overhead introduced by our position-independent pointer

objects when compared with using native pointers. The full source code for the benchmarks

28

and the scripts used to run them are available in the ocxxr repository. A brief description

of each of these benchmarks follows.

BinaryTree Performs a large number of lookups and insertions of key/value pairs stored

in an unbalanced binary tree. The tree data structure is naïvely implemented in a single

OCR datablock, which allows us to use the RelPtr pointer representation for all of the

internal pointers to tree node objects (since all pointers are intra-datablock pointers). This

benchmark is also the basis for the sample code shown in listings 2.1 to 2.5. The pointer

type used by the tree class is parameterized, making it easy to switch among our multiple

pointer representations to test a particular implementation.

Hashtable Performs a large number of lookups and insertions of key/value pairs stored

in a hashtable, which is implemented as an array with a linked-list in each “bucket” to

hold entries with colliding hashes. This hashtable implementation is adapted from a proof-

of-concept general concurrent hashtable code included in the CnC-OCR framework. The

top-level array is allocated in one datablock. The buckets are composed of �xed-sized

blocks of key/value pair entries, with each of these blocks allocated in its own datablock.

New entries are always added to the �rst block in a bucket, and a new block is inserted if

the �rst block is full. All inter-block pointers in these internal structures use the BasedPtr

representation.

LULESH A port of LULESH 2.0 [21] (a hydrodynamics simulation kernel) to ocxxr. Our

implementation is based on an existing port of the code to the CnC-OCR programming

model [22]. LULESH uses “indirection arrays” to represent the relationships in an unstruc-

tured hex mesh, which we implement using the RelPtr class. The application also includes

a large aggregate data structure for storing constant data, where we again used the RelPtr

class to encode the base pointers to the dynamically-sized arrays used to store the initial

state of the mesh.

29

Tempest Performs climate modeling calculations on a cubed-sphere grid using a subset

of the Tempest framework [20], ported to OCR using ocxxr constructs. Our Tempest

mini-app creates a small set of patches (each covering a section of the cubed-sphere grid),

and simulates 500 time-steps on the grid. Since the Tempest framework is written in

idiomatic C++—making heavy use of aggregate objects in the code, including standard

library containers such as std::vector—this mini Tempest application is a prime example

for the techniques presented in this chapter. Note that, although our kernel is fairly simple,

the supporting library code involves a large set of classes, making the full application code

non-trivial.

UTS A port of the Unbalanced Tree Search benchmark [23] to ocxxr. Unlike many

traditional implementations, which simply allocate transient tree nodes on the runtime

stack during the recursive search calls, we reify the entire tree data structure with OCR

datablocks. Clusters of connected nodes are allocated within discrete datablocks, and all

inter-node pointers are represented using our BasedDbPtr class. Since the BasedDbPtr

class can represent both intra-datablock relative o�sets (as done by RelPtr) and inter-

datablock based o�sets (as done by BasedPtr), these objects can be used for all inter-node

pointers in the tree. Furthermore, the BasedDbPtr provides a simple way to check if the

pointer’s target is local or within another datablock, which allows us to determine when

to create a new task to acquire the target data when the node pointers cross datablock

boundaries.

2.9.2 Experimental Setup

All experiments were run on a dedicated server with a 3.50GHz Intel Core i7 Ivy Bridge

4-core CPU (Turbo Boost disabled) and 8GiB DDR3 memory, running Ubuntu 16.04. All

benchmarks were compiled with Clang v3.8. We used commit e38167bf of OCR,16 running

on the x86/x64 build with assertions disabled. Each reported time is the average of 100

16 https://xstack.exascale-tech.com/git/public?p=ocr.git;a=commit;h=e38167bf260b

https://xstack.exascale-tech.com/git/public?p=ocr.git;a=commit;h=e38167bf260b

30

runs, with the error bars representing a 95% con�dence interval. The workload of each

benchmark was adjusted to a single-threaded execution time of about 2–10 seconds, as we

found that run times shorter than 1 second often do not provide a su�ciently high signal

to noise ratio, resulting in much more volatile measurements.

Since we are concerned with the overheads introduced by our pointer objects rather

than the baseline performance of the benchmarks—and the pointer object usage is orthog-

onal to any multi-threading performance bottlenecks—we chose to run these experiments

with a 1-thread worker pool. Although all of our benchmarks can be executed in parallel

on multiple threads, running single-threaded helps to eliminate some schedule-related

volatility. Likewise, since we chose to use native-pointer versions of our benchmarks as

our performance baseline, our experiments are restricted to shared-memory runs (as the

native-pointer versions will not run on distributed OCR).

2.9.3 Results and Analysis

Figure 2.2 shows the mean execution times for each of our �ve benchmarks. For each

benchmark, we compare the performance of three di�erent versions: (1) a baseline version

using native pointers, (2) a transformed version using position-independent pointer objects,

and (3) the position-independent pointer version with the additional checks described in

section 2.8.

For all cases except the BinaryTree benchmark, the overhead incurred due to using

position-independent pointer objects was very minimal. Even with the extra sanity checks

enabled, the mean execution time only exceeded the baseline by a few percent at most. The

reason for the signi�cantly-higher overhead observed in the BinaryTree benchmark can be

seen in �gure 2.3; the number of operations performed on our ocxxr pointer objects in

the BinaryTree benchmark is over 20x higher than in Hashtable, which is the next closest

benchmark with regard to this metric.

BinaryTree can be considered as the worse-case scenario for measuring the ocxxr

pointer object overheads, as the benchmark’s computation time is dominated by creating

31

BinaryTree Hashtable Lulesh Tempest UTS
Benchmark

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Sl
ow

do
w

n

Native Pointers
Position-independent Pointers

Sanity-check Pointers

Figure 2.2: Execution times for three variants of each of our benchmarks. Times are
normalized to the native pointer version of each benchmark. The sanity check variants
are the same as the position-independent pointer versions, but with the addition of the
debug checks discussed in section 2.8.

BinaryTree Hashtable Lulesh Tempest UTS
Benchmark

10−3

10−1

101

103

105

Fr
eq

ue
nc

y
(o

p/
m

s)

Initialization Dereference Total

Figure 2.3: A comparison of the relative density of ocxxr position-independent pointer
object operations in the total execution time of each benchmark. The times here correspond
to the mean position-independent times from �gure 2.2. Note that the y-axis uses log scale.

32

Native RelPtr BasedPtr BasedDbPtr
Pointer Type

0

1

2

3

Sl
ow

do
w

n

Figure 2.4: Execution time for the BinaryTree benchmark using each of the four pointer
encodings discussed in this chapter. The times are normalized to the native pointer version.

and traversing the pointer objects that form the edges for the tree data structure. Even

in this high-utilization scenario, we only observed about 13% slowdown when using our

position-independent pointer objects compared to the native pointer baseline, and 67%

total slowdown with the additional sanity checks.

In �gure 2.4, we have reused the BinaryTree benchmark to measure the overhead of all

three variants of the ocxxr position-independent pointer objects. As mentioned previously,

this benchmark is structured very similarly to the code shown in listing 2.5. Since the

entire binary tree data structure is allocated within a single datablock in this benchmark,

we can choose any of our three pointer object types to encode the references from parent

to child nodes.

The native and RelPtr times shown in �gure 2.4 are identical to the �rst two cases

shown in �gure 2.2. In the case where we use BasedPtr objects to encode the pointers

among our tree node objects, we see an overhead of about 3.5x the native pointer baseline.

Since each pointer dereference operation requires a function call to translate the pointer

target GUID into the corresponding datablock base address, it is not surprising that the

33

overhead is signi�cantly higher than for the RelPtr representation, which is able to

directly compute the target address directly by using its stored relative o�set. While a 3.5x

slowdown for BasedPtr is non-trivial, we believe this pathological case is very unlikely

in real applications. First, having the pointer operations constitute the majority of the

computation in an application is unusual. Most real-world applications would also perform

some heavy computation on non-pointer data (e.g., interpolations or matrix multiplies),

which would o�set the overall slowdown of the application. Additionally, code performing

this kind of heavy pointer access would most likely include multiple objects within a single

OCR datablock, meaning that the BasedDbPtr type is probably a better candidate. The

UTS benchmark shows a more realistic example of an application that includes signi�cant

pointer-chasing, and the observed slowdown for that case is marginal.

We see that the BasedDbPtr variant’s execution time falls about halfway between that

for RelPtr and BasedPtr. This is as expected, since the BasedDbPtr class can be thought

of as a compromise of the tradeo�s for our RelPtr and BasedPtr classes. However, note

in �gure 2.3 that the pointer-dereferencing operations in the BinaryTree benchmark are

much more common than the pointer-initialization operations. The BasedDbPtr case

bene�ts from this fact since it uses the relative-o�set encoding for intra-datablock pointers

(which is always the case here), and thus can avoid the extra function call incurred when

dereferencing a BasedPtr object. However, the BasedDbPtr case still incurs the function-

call overhead when initializing the pointer objects, since it must still perform the lookup

for the target datablock’s base address and size to determine if the BasedDbPtr resides

within the same datablock as the target.

Both Tempest and UTS show a higher number of pointer initializations than derefer-

ences in �gure 2.3. Due to the mechanical translation of the library code and the relative

simplicity of our Tempest kernel, many auxiliary data structures are created but not ac-

cessed during the patch updates, leading to this imbalance. In UTS, we instantiate the

entire random tree, but the nodes are not traversed again after construction, making our

UTS implementation our most initialization-focused sample.

34

It is worth noting that although the codebase used for our Tempest benchmark contains

a large number of aggregate objects to model the many aspects of the hydrodynamics

simulation—those objects were rewritten to use our ocxxr position-independent pointer

objects to reference aggregate members—the actual density of pointer-object operations

in the benchmark execution as reported in �gure 2.3 is several orders of magnitude lower

than the other benchmarks. This is because the Tempest code spends a signi�cant amount

of time performing �oating-point operations in a loop to update the state of each grid

patch. Furthermore, the absolute pointer addresses used in a particular task are computed

once using the position-independent pointer objects stored in the patch’s datablock, and

then cached in a native pointer variable for the remainder of the task. Since the pointer-

arithmetic to access the individual entries in the patches is done via that task-scoped

native pointer value, the impact of the position-independent encoding on the execution

time is very minimal. We would expect to see a similar trend in other compute-intensive

applications.

Although one might expect our LULESH benchmark to exhibit similar properties to

what we observed for Tempest, theCnC-OCR codebase that we used when porting LULESH

to ocxxr performs element-wise updates rather than using tiles on the mesh, which means

we perform only a few �oating-point instructions when updating the individual element

values on each iteration. While it would de�nitely be bene�cial from a performance

perspective to refactor the code to perform tiled updates, we prefer the untiled version for

this study since it emphasizes the overhead of our ocxxr pointer objects used to encode

the mesh structure, as evidenced by the higher proportion of pointer operations shown in

�gure 2.3 for our version of LULESH compared to our Tempest framework mini-app.

2.10 Related Work

MPI allows communication of non-contiguous data through its derived datatypes sup-

port [24]. OpenSHMEM currently has a much more limited functionality for puts and

gets of strided array elements [25]. The functions in both MPI and OpenSHMEM for com-

35

municating non-contiguous data constitute a form of serialization support. Higher-level

runtimes such as Charm++ and HPX use high-level serialization frameworks (resembling

the popular Boost.Serialize API) to enable communication of user-de�ned data types types

among compute nodes [26, 27].

A close analog in another runtime system to OCR’s datablock concept is Realm’s concept

of physical regions [15]. While Realm’s physical regions di�er from OCR datablocks in

some ways (e.g., reduction support and data-type homogeneity), they are similar in that

both are discrete chunks of application data that are transparently migrated by the runtime

to satisfy task dependencies. Individual elements in a region can be accessed via a Realm

pointer. Realm pointers remain valid even after data migration because they are stored

as an o�set rather than an absolute address. However, in contrast to our BasedPtr class,

Realm pointers do not store the handle of the target physical region. Other examples of

programming models with datablock-like constructs include data items in distributed-

memory Concurrent Collections (CnC) [28, 29], and distributed data-driven futures in

HCMPI [30].

Most PGAS languages de�ne a concept of a global pointer. Many PGAS languages

depend on compiler support to handle global pointer accesses (e.g., X10 [31], UPC [12]).

In contrast, UPC++ is a library-based solution with no specialized compiler support re-

quirements [32]. Instead, UPC++ uses its global_ptr template class to handle globally-

addressable data. Like our inter-datablock pointers, UPC++ global pointers are encoded as

an o�set into a block of data; however, the base address of each UPC++ global memory

region is �xed, and only one such region exists per process, whereas in the OCR model we

have multiple datablocks that may be dynamically relocated by the runtime.

Using o�sets as position-independent pointers is also an established concept in some

mainstream C++ libraries. Examples include offset_ptr from Boost.Interprocess [33] and

based pointers in Microsoft Visual C++ [34]. The primary use case for these constructs is

in data structures placed within memory-mapped �les, where the �le may be loaded at a

di�erent base address in each process that maps the �le.

36

2.11 Future Research Directions

The ideas presented in this paper suggest several possible directions for future research on

further optimizations and related concepts. For example, there may be many cases where

it is possible to avoid the overhead of the base-address lookup for a BasedPtr’s target by

directly supplying that value if it is already known. This optimization could be manually

applied by the application programmer, or automatically applied by the compiler toolchain.

As mentioned in section 2.7, a custom alias analysis in the compiler toolchain could also

help identify ocxxr pointer objects that are provably safe to encode using the RelPtr class.

Ideally, the transformation from native pointers to our position-independent pointer-object

encoding would be handled automatically by an advanced compiler toolchain. One way to

achieve that goal might be to start by making extensions to the type system, as was done

with the place types proposal for X10 [35]. We assumed that the application programmer

will manually partition the application data into discrete datablocks; however, automating

the process of �nding e�cient data partitioning schemes would be another way to improve

the application development process.

2.12 Summary

In this chapter, we presented a marshalled encoding for relocatable data blocks. We

introduced ocxxr, a C++ library providing position-independent pointer objects and other

useful classes for developing object-oriented OCR applications in C++. We also de�ned a

conservative algorithm for rewriting native pointer types in an ocxxr application into our

position-independent pointer types, allowing the rewritten classes to persist in datablocks

that may be relocated by the runtime during a gap between task executions. We provide

an implementation of this algorithm using Clang LibTooling.

To further aid in ocxxr application development, we outline possible optimizations

for the output of our conservative rewrite algorithm, and provide a set of optional sanity

checks to help maintain the correctness of the applications during the development and

optimization process. We measured the overhead introduced when C++ aggregate objects

37

are marshalled using our ocxxr position-independent pointer objects compared to a naïve

baseline using native pointers. We found that the overhead observed in all but the most

extreme case was minimal. The measured overhead compared to our baseline performance

was less than 1.2x for the typical scenarios represented by our benchmarks, and still

less than 3.6x for even the most extreme constructed scenario. Considering that the

baseline implementations used for our benchmarks violate the OCR data model and will

not correctly execute in distributed memory, we believe the tradeo� is acceptable.

38

Chapter 3

Practical Support for Lightweight Tasks
with Blocking Constructs

While many extreme-scale runtime candidates are converging on the lightweight, non-

blocking task model of execution [5,36], the fact remains that the majority of programmers

prefer to think in terms of imperative, serial control �ows with blocking semantics. Since

the performance impact of blocking resources (e.g., hardware threads) is expected to worsen

as we move further toward extreme-scale technology, the desire of programmers to write

straight-line, blocking code is directly at odds with performance-tuning best practices.

Software toolchains need to address this discrepancy, and will ideally do so while adding

minimal burden on the programmer.

In this chapter, we analyze the problem of supporting blocking constructs in a light-

weight tasking runtime. We present several implementation strategies for supporting

such constructs, including the use of threads, �bers and continuations. We evaluate these

di�erent solutions, and provide a discussion of the strengths and weaknesses of each

approach. Although this chapter focuses on the Habanero-C programming model [30, 37],

the concepts are transferable to other task-based runtimes.

3.1 Background

3.1.1 Continuations Support in Mainstream Languages

Support for continuations is no longer restricted to traditional functional languages (e.g.,

Scheme [38] or ML [39]). Many modern mainstream languages include compiler support

for implicit transformations to continuation-passing style. Examples include C# [40],

Scala [41, 42], Microsoft Visual C++ [43] (with proposed C++20 features [44]). Limited

39

continuation support is also becoming more common in libraries, where support for

�bers or coroutines is implemented without dedicated compiler transformations. This is

especially common for supporting asynchronous I/O operations, such as in Boost.Asio [45].

This approach is also becoming more common in libraries for parallel computing, such

as Sandia Qthreads [46], HPX [47], and Fibril [48] (a library-based implementation of the

Cilk programming model [49]).

3.1.2 The Habanero-C Programming Model

The Habanero-C programming model [30,50] builds o� of past work in Habanero-Java [51]

and X10 [31]. At the core of the Habanero-C programming model are the async and

finish constructs. The async construct starts an asynchronous (potentially parallel)

computation. Cilk’s spawn keyword is very similar to async. The finish construct creates a

new synchronization scope, such that the finish construct blocks awaiting the completion

of all asynchronous tasks created within the �nish scope. This di�ers from the behavior

of Cilk’s sync keyword, because the �nish scope created by finish is a dynamic scope.

Asynchronous tasks created within nested function calls, or even those created within

other asynchronous tasks, must also complete before the finish construct completes

(rather than just the asynchronous tasks created within the current function scope).

In addition to async and finish, Habanero-C model provides a number of other

devices for parallelism, such as promises, futures, and data-driven tasks. All three of those

devices are closely related to the async_await construct on Habanero-C. The key di�erence

between async and async_await is that the latter allows the programmer to specify a list

of dependencies that must be satis�ed before the task is scheduled for execution. This

allows the application programmer to write fully non-blocking code, using async_await

to delay computation until all of the input data becomes available. In recent years, we

have seen similar constructs appear in OpenMP [52] and HPX [47].

As a practical application of async_await, HCMPI [30] integrated data-driven tasks

with the MPI programming model, allowing application programmers to use async_await

40

with the handle returned by an asynchronous MPI function call (e.g., MPI_Irecv). This

abstraction enables runtime-management of the overlap of communication and computa-

tion. This is typically much simpler for the application programmer than estimating how

much computation is needed to cover a communication delay, and manually scheduling

the computation between the non-blocking function call and a corresponding MPI_Test or

MPI_Wait call.

There are currently two major implementations of the Habanero-C programming

model. The �rst is the Habanero-C language, which depends on a custom source-to-

source compiler to support extensions to the C language. We refer to the Habanero-C

language as HC. The second is the Habanero-C library, which requires no special compiler

support, but still provides a large subset of the constructs available in HC. We refer to

this library implementation of Habanero-C as HClib. The HClib API supports both C and

C++; however, the C++ API is usually preferred since C++11 lambdas provide programmer-

friendly variable-capture support for passing lexically-scoped values to asynchronous

tasks. The HClib project heavily reuses code from the earlier HC runtime, forming a single

Habanero-C runtime ecosystem.

3.1.3 Deadlock

The bane of any multitasking system with blocking constructs is the possibility of deadlock,

where two or more tasks block inde�nitely due to unsatis�able cyclic dependences. Co�man

et al. [53] de�ned a set of four conditions that are both necessary and su�cient for deadlock

to occur. The conditions are summarized by Tanenbaum [54] as follows:

1. Mutual exclusion condition: Each resource is either currently as-

signed to exactly one process or is available.

2. Hold and wait condition: Processes currently holding resources that

were granted earlier can request new resources.

41

3. No preemption condition: Resources previously granted cannot be

forcibly taken away from a process. They must be explicitly released by

the process holding them.

4. Circular wait condition: There must be a circular chain of two or

more processes, each of which is waiting for a resource held by the next

member of the chain.

Note that all four conditions must be present in order for deadlock to be possible in a

system. In other words, if we can guarantee that any one of these conditions is not present

in a given system, then that system must be deadlock-free.

3.2 Overview of Our Approach

We examine the di�culties tied to supporting blocking constructs in a lightweight tasking

runtime, speci�cally in the context of the Habanero-C programming model. We enumerate

possible strategies used for scheduling tasks in the runtime in existing runtimes, paying

particular attention to the property of deadlock-freedom. We select six strategies to

implement within HC and HClib, including thread-based and �ber-based solutions within

the runtime, compiler-supported continuation-passing-style (CPS) transformed code, as

well as solutions where the application code is manually transformed to use only non-

blocking constructs (i.e., manual CPS transformation, making heavy use of futures and

data-driven tasks). Finally, we evaluate our six strategies implemented in the Habanero-C

programming model (including HC and HClib), with regard to usability, performance, and

resilience.

To the best of our knowledge, this is the �rst work to evaluate a wide variety of blocking

construct support options (threads, �bers, continuations, and fully non-blocking) within

the context of a single runtime ecosystem.

42

3.3 Deadlock Scenarios in the Habanero-C Runtime

Since the Habanero-C programming model provides blocking constructs (e.g., finish), it is

important to ensure that programs using these constructs are deadlock-free— i.e., we don’t

want our software to hang. The possibility that the dependences among program tasks

may introduce a dependence cycle is a problem, but there are well established techniques

to avoid these problems; e.g., you can sort resources to get a global acquisition order,

thus avoiding hold-and-wait cycles. We would expect programmers writing concurrent

software to either use these techniques, or to use a deadlock-free subset of the available

concurrency constructs.

3.3.1 Simple Task Scheduling for Async/Finish Programs

The core Habanero programming model, including only the async and finish constructs,

has many desirable properties, including serializability, race-freedom, determinism, and

deadlock-freedom [51]. We now describe a few possible methods of scheduling async

tasks to run on a set of threads in an application process.

One Thread per Async

The simplest way to schedule a program written with async and finish is to create a new

thread for each async, and destroy that thread when the async completes. This strategy

matches the semantics described in the C++11 standard [55], where a function launched

with std::async must run “as if in a new thread of execution.”1 While simple, this strategy

can easily exhaust system resources by creating thousands of parallel threads, e.g., when

executing a parallel divide-and-conquer task tree. For example, current versions of OS

X limit the maximum threads per process to around 2k, meaning that a naïve recursive

1 This description applies to std::async only when called with the std::launch::async policy. If
std::launch::deferred is used instead, then the corresponding function is run lazily (i.e., when the result
value is demanded and awaited) “in the thread that called the waiting function” [55].

43

1 uint64_t fib(uint8_t n) {
2 // Base case
3 if (n < 2) return n;
4 // Recursive case
5 uint64_t result_left, result_right;
6 HCLIB_FINISH {
7 hclib::async([&, n]() { result_left = fib(n - 1); });
8 hclib::async([&, n]() { result_right = fib(n - 2); });
9 }

10 return result_left + result_right;
11 }

Listing 3.1: Naïve recursive function for computing the nth Fibonacci number in parallel.

Fibonacci program—as shown in listing 3.1—will crash when computing Fib (n) for n ≥ 16

(assuming that each async requires a new thread, as just described).2

Fixed-sized Worker Thread Pools

It is almost always desirable to avoid creating a potentially unbounded number of threads

for executing the asynchronous tasks in a parallel program; e.g., limiting the number of

threads to the number of processor cores in the system helps to avoid oversubscription

of hardware resources. A common solution for this problem is to execute all tasks on a

�xed number of threads, which form a thread pool. Rather than destroying a thread when

a task completes, the thread waits until a new task is available, and then executes the new

task. These long-lived threads are referred to as workers, and they continue to execute

asynchronous tasks (assigned through some scheduling mechanism) until the program

completes and the worker thread pool is destroyed.

However, using a �xed-sized worker pool in conjunction with blocking constructs

can easily introduce deadlocks into an otherwise error-free program. If all of the worker

threads become blocked at the same time, then the program can no longer progress (i.e., it

2 The naïve recursive Fibonacci function makes 2 · Fib (n + 1) − 2 recursive function calls to compute
Fib (n), meaning Fib (16) requires over 3k asyncs in this case.

44

deadlocks). The finish construct in HClib can easily cause such deadlocks if the runtime

is executing with this strategy. For example, the recursive Fibonacci program shown in

listing 3.1 will deadlock with high probability for n ≥ 10 because all workers will become

blocked in one of the many �nish scopes (i.e., none of the workers will be doing any useful

computation).

Worker Pools with Compensation for Blocking

One solution to the blocking-thread problem with a �xed-sized worker pool is to relax the

constraint for a completely static worker pool. A naïve approach would be to simply create

a new replacement thread every time a one of our worker threads blocks; however, more

intelligent (but more complex) variants of this strategy exist in production multitasking

runtimes. For example, the Java Fork/Join framework [56] supports worker thread pools

that attempt to maintain a constant level of parallelism rather than a constant worker

thread count. A worker thread can cooperatively signal to the pool that it is about to

block, which may cause the thread pool to compensate for the blocked thread by creating

a new worker thread [57]. The key here is may, not must. The ForkJoinPool uses some

internal heuristics to decide when it is worthwhile to expand the current thread pool, and

conversely when the “spare” worker threads should be destroyed. Another example of a

runtime that uses this type of blocked-worker compensation includes with worker pools

is X10 [31].

While this strategy may be a vast improvement over using one thread per async, it is

still very easy to exhaust system resources if the given program executes many blocking

tasks in parallel. For example, the Fibonacci program shown in listing 3.1—when run for

su�ciently large n—could easily result in the creation of tens of thousands of threads

because each non-leaf node in the recursive computation tree contains a blocking finish

operation, resulting in the exact same situation that we described for the �rst case, where

a new thread is created for each async.

45

Worker Threads with Helping

Another possible solution for enabling blocking tasks within our �xed-sized worker pool

is to execute multiple tasks on the same thread. When a worker is suspended by a blocking

call, it can decide to help to make progress by �nding another task, and executing that task

on top of the blocked task’s stack frames. We call this extra work stealing behavior global

helping, where global refers to the scope from which workers are allowed to steal tasks

when helping. In other words, when using global helping, workers may execute any task

that is ready to run.

Several runtimes use a �xed thread pool with some form of helping optimization. Intel

Thread Building Blocks uses a restricted variant of global helping where only tasks deeper

in the task tree than the blocked task are allowed to execute on the current worker [58].

OCR [5]—and, by proxy, HClib built on OCR [59]—use a �xed-sized worker pool with

global helping. As per the conditions outlined in section 3.1.3, the absence of dependence

cycles implies that this optimization does not introduce any new deadlocks.

Theorem 3.1. Given that a program uses only the async and finish concurrency constructs,

and that the program is free of data races, if that program is deadlock-free when run with one

thread per async, then that program is also deadlock-free when run with global helping.

Since all four of the conditions discussed in section 3.1.3 are necessary to enable

deadlock, proving the absence of any one of those properties is su�cient to prove the

absence of deadlocks. We will prove the absence of a circular wait condition (#4).

In the following proof we use the term task-block to refer to a “basic block” of work

within the program. Such a basic block of code begins at a start-async or just after an

end-finish; similarly, the basic blocks end at an end-async or at an end-finish. We

reasoning about the synchronization among tasks during concurrent program’s execution

in terms of orderings of task-blocks.

Proof. As stated in the theorem, we assume that the original program is deadlock-free

and data-race-free when executed using one thread per async. Since the global helping

46

optimization is the only change in the execution model, it follows that any new deadlocks

must be introduced as a result of this optimization. The global helping optimization only

introduces a one type of dependence: When a running task blocks, it can be buried under

another task that is executed by the current worker on the top of the current stack, creating

a dependence from the buried task on the new burying task’s completion. Or, said another

way, the current worker holds the blocked task’s execution context until the burying task

completes execution, preventing any other worker from completing the buried task even

when its original blocking condition is resolved. Thus, a buried-task buried
−−−−−→ burying-task

dependence is introduced each time a worker helps rather than simply blocking.

In the async/finish execution model—ignoring task burying via global helping—all

dependence edges point from older task-blocks to newer task-blocks.

Lemma 3.2. If the completion of some task-block BlockA depends on the completion of

another task-block BlockB , then BlockB must start after BlockA.

end(BlockA)
f inish
−−−−−→ end(BlockB) =⇒ begin(BlockA) ≺ begin(BlockB)

This property trivially follows from the fact that all orderings in this execution model

are introduced via the finish construct,3 which orders all of the tasks nested within

the finish strictly before all tasks speci�ed after the finish in the program text—and

the finish-block obviously must start before any of the tasks nested within that block.

While the task-blocks following the end-finish in the program text also have an implied

dependence, those task-blocks cannot begin until after the finish ends; therefore, those

task-blocks cannot execute concurrently with the finish, and that lack of concurrency

precludes all dependence edges of the form begin(BlockX)
f inish
−−−−−→ end(BlockY) from being

part of a circular wait condition.

Assume some BlockX blocks and is subsequently buried by some other BlockY . Since

the two tasks are serialized within a single worker context, there is an implied ordering.

3 Note that the absence of data races means that two tasks cannot communicate by spin-waiting on a
volatile condition �ag, or other similar behavior.

47

Lemma 3.3. If BlockY buries BlockX in the execution stack, then BlockY began executing

after BlockX : BlockY
buried
−−−−−→ BlockX =⇒ begin(BlockX) ≺ begin(BlockY)

Or, conversely: BlockY
buried
−−−−−→ BlockX =⇒ begin(BlockY) ⊀ begin(BlockX)

Finally, by combining lemma 3.3 with the contrapositive of lemma 3.2, we know that

end(BlockX)
f inish
−−−−−→ end(BlockY) would be a contradiction; i.e., following from the implied

ordering of task-blocks, both types of dependences must �ow in the same direction between

any pair task-blocks.

The buried and �nish dependence relations are obviously transitive, and the orderings

on the right-hand sides of the implications in lemma 3.3 and lemma 3.2 also force all

dependences of a single type between two task-blocks to �ow in the same direction. Since

all dependences between two task-blocks must �ow in the same direction, we conclude

that a circular wait condition cannot occur. �

3.3.2 Issues Combining Global Helping with Blocking Constructs

Even a simple deviation from the core async/finish model introduces new possibilities

for deadlocks. For example, the addition of futures into the model is su�cient to introduce

possible deadlocks with global helping. This may be a surprising result since—in the

absence of data races—the async/finish model plus futures is provably deadlock-free [51];

however, improper use of optimizations like global helping within the runtime can create

new opportunities for deadlock.

Listing 3.2 illustrates a sample of HClib program snippet that uses the blocking future

wait method, and as a result may deadlock when run with global helping. Note that

the code snippet in listing 3.3, which uses async_await rather than the wait method, is

functionally equivalent to that in listing 3.2. In other words, the f0.wait() operation

yields identical behavior to nesting an async_await on f0 within a finish.4 Therefore,

4 The fact that these two idioms are functionally equivalent does not imply that they have identical
performance. In our implementations, the future’s wait method is more e�cient because the blocking
operation is implemented internally without the need to create a new finish scope.

48

using the non-blocking async_await construct within a blocking finish scope can lead

to the same deadlock scenarios as with the future’s blocking wait method.

The potential for deadlocking is a serious issue to be aware of when contemplating

applying the global helping optimization. This deadlocking issue is not limited to a

speci�c subset of the HClib programming model. In fact, similar deadlock scenarios may

also manifest in the current reference implementation of OCR when using the default

distributed-memory con�guration settings (see appendix A). The deadlock conditions of

the global helping optimization can be more generally phrased as follows:

Theorem 3.4. The global helping worker optimization, applied to a �xed set of worker

contexts, can cause deadlocks in an otherwise correct program if and only if it is possible to

have a dependence on a blocking TaskX from another blocking TaskY , and TaskY may start

before TaskX .

Proof. Three of the four necessary and su�cient conditions for deadlock are fairly simple

to establish in terms of a worker thread’s execution of tasks on its private stack. Only

one worker at a time can execute a task, establishing mutual exclusion (#1). As previously

discussed, a worker holds a task in its execution stack when it blocks, and if that task is

buried by a newer task then the worker holds the buried task while waiting for the newer

task to complete (#2). Finally, there is no mechanism for one worker thread to forcefully

take over execution of a task that has begun execution on another thread. The ability to

capture references to stack-allocated data prevents migration of partially-executed tasks

between two thread stacks in general, since the captured references would be invalidated.

Therefore, there is no preemption (#3).

The remainder of this proof focuses on establishing the possibility of circular wait

conditions (#4). The reverse-ordering of the tasks’ dependence relationship relative to their

potential execution order is the key condition that allows a dependence cycle to form via

the stack in a worker’s execution context. As stated in the theorem, we assume that there

are no deadlock in the absence of the global helping optimization, which means any new

deadlocks must be introduced via buried-task dependences in the worker stacks.

49

1 // This code executes on Worker-A.
2 auto f0 = hclib::async_future([]() {
3 HCLIB_FINISH {
4 hclib::async([]() { /* . . . */ });
5 // . . .
6 }
7 });
8 // The future-task for f0 is stolen by Worker-C. The async task nested within f0
9 // is stolen by Worker-B. Worker-C blocks awaiting completion of its stolen async,

10 // and starts looking for more work to execute while it waits.
11 hclib::async([]() { f0.wait(); });
12 // Worker-C steals the above async task, and blocks on f0.wait(). There is now
13 // a dependence cycle between this blocked task and the task for f0
14 // (buried deeper in Worker-C’s stack), resulting in deadlock.

Listing 3.2: Simple HClib sample code using futures. This program can deadlock when
using global helping. The comments outline one possible deadlock scenario involving three
workers. This code is functionally equivalent to that in listing 3.3.

1 // This code executes on Worker-A.
2 auto f0 = hclib::async_future([]() {
3 HCLIB_FINISH {
4 hclib::async([]() { /* . . . */ });
5 // . . .
6 }
7 });
8 // The future-task for f0 is stolen by Worker-C. The async task nested within f0
9 // is stolen by Worker-B. Worker-C blocks awaiting completion of its stolen async,

10 // and starts looking for more work to execute while it waits.
11 hclib::async([]() {
12 HCLIB_FINISH {
13 hclib::async_await([]() { /* . . . */ }, f0);
14 }
15 });
16 // Worker-C steals the above async-task, and blocks awaiting the completion of the
17 // async_await task. There is now a dependence cycle between this blocked task and
18 // the task for f0 (buried deeper in Worker-C’s stack), resulting in deadlock.

Listing 3.3: Simple HClib sample code using futures and data-driven tasks. This program
can deadlock when using global helping. The comments outline one possible deadlock
scenario involving three workers. This code is functionally equivalent to that in listing 3.2.

50

Lemma 3.3 establishes that the buried dependencies among task-blocks all �ow in

the same direction; speci�cally, from earlier-started tasks to later-started tasks. Thus, a

non-buried-dependence edge must exist from a later-started task to an earlier-started task

in order to form a dependence cycle and create deadlock. Both tasks must be held in a

worker’s execution stack in order for a deadlock to form, which implies that both tasks

must be blocking tasks (otherwise there would be no hold and wait, since one of the tasks

in the cycle would eventually complete, breaking the cycle and thus breaking the deadlock).

Therefore, if the conditions described in theorem 3.4 are present, then a cycle can form and

deadlock can occur. Conversely, if either the dependence is missing, or one of the tasks

does not block, or the tasks’ order �ows with the dependence, then a cycle cannot form

and a deadlock cannot occur. �

3.3.3 Program Compatibility with Global Helping

As described in theorem 3.4, programs that can deadlock with the global helping opti-

mization all involve a blocking task that depends on an earlier blocking task. Therefore, if

the application programmer avoids all blocking constructs by writing all HClib code in

non-blocking style, then those programs can be safely and e�ciently executed using the

Master/Helper scheduling strategy. Note that a single top-level finish construct would

not be problematic since no code within the finish can depend on that finish.

We can generalize this observation to de�ne a set of intuitive rules for identifying

application logic that may lead to a deadlock when using the global helping optimization.

Assume we inspect two events in an application:

1. EC : A consumer event that completes only after synchronizing with an event in

some other task(s). E.g., a finish scope that blocks awaiting for completion of all

sub-tasks, or a blocking get() call requesting a future’s value.

2. EP : A producer event whose completion may be awaited by other tasks. E.g., the

completion of an async, or the satisfaction of a promise with a value.

51

If EC ≺ EP , then the program will deadlock regardless of how the tasks are scheduled;

thus, this case has no potential to introduce new deadlocks when using the global helping

optimization. If EP ≺ EC , then the consuming-task has no need to block and thus no new

deadlocks will be introduced by global helping. However, if EC ‖ EP ,5 then a deadlock

can be introduced via global helping if the task containing EP executes �rst, but blocks

before EP , and is subsequently buried by the task containing EC . In other words, the global

helping optimization can introduce new deadlocks into an otherwise correct program if a

consumer task (the task containing some consumer event EC) and a corresponding producer

task (the task containing some producer event EP) are unordered, and the producer task

contains another blocking call before producing the value awaited by the consumer. Note

that this additional blocking event in the producer task, cannot be ordered after the start

of the consuming task, otherwise the producer would never be buried by the consumer.

3.4 Alternative Strategies for Scheduling Blocking Tasks

Although theorem 3.4 provides a clear de�nition of how new deadlocks are introduced by

the global helping optimization, verifying that a program does not contain the condition

described in may be di�cult in practice. Constructing a proof of correctness—even an

informal proof—may not be feasible in many real-world applications. This would be

especially di�cult for large software projects that are maintained by multiple developers,

where changes made by two di�erent developers in separate places may together result in

the scenario from theorem 3.4. Therefore, it becomes necessary to �nd a way to eliminate

any chance of creating a deadlock via blocking calls. We focus on such alternative strategies

for the rest of this section.

3.4.1 Requirements for an Alternative Strategy

We now de�ne what an alternative tasking strategy must provide in order to avoid the

introduction of runtime-internal deadlocks (i.e., deadlocks not caused directly by errors in

5 Note that x ‖ y means that elements x and y are incomparable, i.e., x � y ∧ y � x [60].

52

the user’s code). Referring back to the necessary conditions for deadlock in section 3.1.3,

the only condition that an be reasonably addressed within the runtime is #2 (hold and wait).

We eliminate this condition in our runtime by providing a means for a worker to release a

blocked task back to the scheduler, rather than holding the blocked task, executing another

(potentially blocking) task on the same stack, and waiting for that task to complete before

resuming the buried task.

In order to suspend the blocked task and return control to the scheduler, we must have

a way to capture the task’s current state, and also have a way for the scheduler to resume

that task (using the saved state) sometime after the blocking condition is satis�ed. One

obvious solution would be to capture the continuation at the point where the task blocks,

and use the continuation to restore the task after we detect that it is no longer blocked.

However, full continuations (whether delimited or undelimited) are much more powerful

than what we need in this situation. Additionally, most programming languages, including

C and C++, lack native support for capturing continuations.

Interestingly, the requirements of our blocked tasks correspond exactly with the func-

tionality provided by semi-coroutines: a suspend function for saving the local state and

returning control back to the scheduler, and a resume function to restore the state and

continue the computation from the previous suspend point.6 Semi-coroutines are a limited

type of continuation. More speci�cally, a suspended semi-coroutine are a limited type

of one-shot continuation. This distinction means that when a suspended semi-coroutine

is resumed, the previously-saved state is invalidated. The fact that the saved-state can

be invalidated by the resume operation makes it easier for us to implement the local

state capture. For example, a typical thread satis�es the requirements: when a thread

is suspended its local state is preserved, and when a thread is resumed that local state

is restored, but that state is immediately altered by continuing the thread’s execution.

6 A full coroutine di�ers from a semi-coroutine in that it also supports a transfer function, which allows
the coroutine to explicitly pass control to another coroutine [61], whereas semi-coroutines can only yield
control back to the scheduler [62]. Semi-coroutines are also commonly known as generators in Python and
other programming languages [63].

53

Similarly, �bers (lightweight cooperative threads) are also su�ciently powerful to imple-

ment semi-coroutines. Note that both threads and �bers are limited types of one-shot

undelimited continuations.

As discussed in section 3.3.3, it is also possible to sidestep the potential deadlock

issues in the runtime by instead transforming the application code to avoid problematic

constructs. In addition to eliminating the hold-and-wait condition in the runtime code, we

also consider the case where the application is manually rewritten using only non-blocking

constructs, and can thus safely execute using the global-helping optimization.

3.4.2 Our Selected Strategies

We present four viable tasking strategies for the Habanero-C programming model, allowing

us to avoid runtime-induced deadlocks. Our strategies are as follows:

1. Compensation with Threads: Create a new OS thread to compensate each time a

worker thread blocks. This is basically equivalent to the strategy described as “worker

pools with compensation for blocking” in section 3.3.1; however, we maintain a �xed

number of active threads and use work-stealing among the active threads, whereas

most implementations of this strategy use work-sharing. We do this speci�cally for

the purpose of providing a more analogous baseline for our other strategies (which

all use work-stealing).

2. Compensation with Fibers: Similar to the thread-compensating strategy, except

that rather than using OS threads we use �bers (i.e., lightweight, cooperative, user-

space threads). Our �ber implementation is build on code from Boost.Context [64].

3. Transformation to Semi-coroutines: Requires HC compiler support. All ap-

plication code containing blocking constructs is automatically transformed into

continuation-passing style (CPS). There are some restrictions placed on application

code to ensure the validity of the CPS transformation. For example, arrays cannot

be stack-allocated in a�ected functions.

54

4. Fully Non-blocking Rewrite: Requires that the application code be written in a

non-blocking style. This entails avoiding finish and blocking future calls, instead

using promises and futures with data-driven tasks for all synchronization in the

application.

Additionally, we present two variant strategies based on an optimization that we call

�nish-helping, which is a restriction on the global-helping strategy where only sub-tasks

belonging to the �nish scope that caused a task to block are allowed to bury that task. The

variant strategies based on the �nish-helping optimization are as follows:

1. Compensation with Threads + Finish-Helping: This is the compensation with

threads strategy with one additional optimization. When blocking at the end of a

�nish scope, we �rst peek at the top of our local task deque to see if that task belongs

to the current �nish scope. If so, we execute that task on the current worker’s stack

in the same manner as global-helping.

2. Compensation with Fibers + Finish-Helping: This is the compensation with

threads strategy with the addition of the �nish-helping optimization.

Unlike the problematic global-helping optimization discussed earlier, the �nish-helping

optimization that we apply in these two strategy variants is guaranteed not to introduce

new deadlocks into the execution of an otherwise correct Habanero-C programs.

Theorem 3.5. The �nish-helping optimization cannot introduce a new deadlock scenario

into a race-free Habanero-C program.

Proof. Lemma 3.3 establishes that the buried dependencies among task-blocks all �ow in the

same direction: from earlier-started tasks to later-started tasks. If some BlockA is buried

by BlockB , then BlockA
f inish
−−−−−→ BlockB by de�nition of the �nish-helping optimization;

therefore, the burying dependence edge introduced via �nish-helping is redundant because

the existing �nish edge already expresses the same dependence. Thus, we conclude that

all burying dependences introduced by �nish-helping are redundant with existing �nish

55

dependence edges. Since there are no new (non-redundant) dependence edges introduced

by this optimization, �nish-helping cannot introduce new deadlocks. �

3.5 Evaluation of Selected Strategies

We now evaluate our selected tasking strategies to assess the strengths and weaknesses

of each approach in a range of potential applications. First, we include a performance

evaluation comparing all of the strategies, using the global-helping strategy on a �xed

worker-thread pool as the performance baseline (despite the fact that it is not safe in

the general case). Second, we present the tradeo�s of each strategy in terms of various

usability properties (e.g., programmability and ease of debugging). Third, we analyze the

implications of each strategy with regard to resilience, and rank the strategies accordingly.

Note that we don’t expect to have a single, clear-cut winner among the strategies that

we are evaluating. Rather, we expect the result to be a classi�cation of the strategies based

on their strengths and weaknesses, such that the reader can choose the best solution for

the particular properties of their application.

3.5.1 Benchmarks

This evaluation includes a variety of performance benchmarks that test di�erent represen-

tative use cases of the Habanero-C concurrency API. Our benchmarks are brie�y described

in the following paragraphs, but the full source code is also available online.7

Fibonacci A naïve parallel implementation of the recursive Fibonacci function, struc-

turally identical to the function shown in listing 3.1. We consider this benchmark to repre-

sent the worst-case scenario for async/finish-style computation with regard to blocking,

since a huge number of blocking finish scopes are created, but the work-to-finish ratio

is extremely low (just a couple of function calls and integer additions per finish scope).

When computing Fib (35)—which is the target value we use for our benchmarks—the

7 https://github.com/DaoWen/hc-blocking-benchmarks

https://github.com/DaoWen/hc-blocking-benchmarks

56

algorithm creates over 14 million finish scopes.8 Unlike our other benchmarks, this

application was written exclusively using the C API, meaning that we don’t use C++11

closures in this benchmark. The explicit nature of the C API makes it easier to pinpoint

the sources of overhead, which is especially informative in this worst-case usage of the

blocking finish construct.

Cilk-sort A parallel sorting algorithm, based on mergesort, ported from the standard

Cilk benchmarks [49]. The algorithm follows a traditional recursive divide-and-conquer

structure, with multiple finish scopes at each level of recursive sorting to ensure proper

synchronization among the recursive calls (i.e., the async tasks that sort smaller sub-ranges

of the array). For our benchmark, we sort an array of 9 million deterministically-generated

random 64-bit integer values (i.e., the random number generator’s seed is constant). This

benchmark is representative of a typical divide-and-conquer algorithm with a non-trivial

workload for each task (this is in contrast with our Fibonacci benchmark, where the work

for each async is almost nil).

Cholesky This parallel implementation of the Cholesky factorization kernel uses a tiled,

iterative algorithm with barrier-like utilization of finish scopes for synchronization. The

sequential Cholesky step in each iteration is followed by a finish scope for computing

new values for the trisolve tiles, and then another after for new values for the remaining

update tiles. For our benchmarks, we use a 500 × 500 matrix with tiles of size 5 × 5.

This benchmark is representative of a typical OpenMP-style iterative computation (using

barriers for synchronization between computation steps) being translated directly to the

Habanero-C programming model.

Needleman-Wunsch A gene sequence alignment kernel using the standard Needleman-

Wunsch algorithm, which performs an edit-distance computation using dynamic program-

8 The general formula for the number of finish scopes created when computing Fib (n) is simply
Fib (n + 1); therefore, computing Fib (35) creates Fib (36) or 14,930,352 finish scopes.

57

ming. To allow maximal wavefront parallelism, we use futures to manage task dependences

on input score tiles. For our benchmarks, we use input sequences of length 18,560 and

19,200, and tiles of size 232 × 240. The result is a dynamic-programming scoring matrix

composed of 80 × 80 tiles total. This kernel is representative of applications that use

future-based synchronization with non-trivial task workloads.

Quicksort A standard recursive parallel quicksort implementation. Quicksort is in-

teresting in that it only requires a single point of synchronization at the very top level

for a correct parallel implementation; i.e., it is embarrassingly parallel since there is no

synchronization required among the parallel tasks. Since there is only a single top-level

finish scope in this program, it acts as a sanity-check to demonstrate that our strategies

for handling blocking constructs do not introduce excessive overhead when no blocking

constructs (or just a few) are used in an application.

Unbalanced Tree Search (UTS) A port of the standard UTS benchmark [23] into the

Habanero-C programming model. This app creates a random, unbalanced tree, and per-

forms a parallel search. For our benchmarks, we use the default random tree con�guration

with a seed value of zero. This benchmark is similar to our Quicksort benchmark with

regard to a general lack of �ne-grained synchronization; however, the greater complexity

of the code relative to Quicksort accentuates some di�erences between our HC and HClib

implementations (described in the performance analysis discussion).

3.5.2 Experimental Setup

All of the experiments in this section were run on a dual-socket 18-core Haswell system (36

cores total) at 2.30GHz, running RHEL7 with 128GB DDR3 memory. To avoid cross-socket

communication overheads, we con�gured the Habanero-C runtime to use only 18 workers,

and thread-pinning is enabled by default. To reduce bottlenecks in the default allocator, all

benchmarks were run using TCmalloc [65], built from the gperftools v2.6.1 source release.

We also disabled TurboBoost in the OS to improve performance predictability. Finally, we

58

manually set the stack size to 256KiB via ulimit—which is the same as our default �ber

stack size—in order to reduce the overhead of allocating new kernel threads. We believe

using a consistent stack size provides a better comparison between using kernel threads

and user-level �bers.

However, there was one case where this reduced stack size was not su�cient: The

global-helping version of the Fibonacci benchmark required a larger stack,9 so in that case

we left the stack size as the system default (8MiB). Since the global-helping variant runs

with a �xed-sized thread pool, no new stacks are allocated during the benchmark timing

phase. The larger stack sizes likely slightly in�uence the runtime startup overhead, but

this has no impact on our benchmark timing results since we only measure the elapsed

time for each benchmark application’s computation kernel, excluding time for runtime

start-up, �le I/O, etc. (This is common practice with HPC benchmarks, since �ne-tuning

the computation-time overheads of runtime constructs usually has a much higher impact

on real-world long-running compute kernels than the time used for runtime startup.)

All reported times are the mean of 30 runs of each con�guration, and the error ranges

represent a 95% con�dence interval. For simplicity in analyzing and rendering the results,

all execution times are reported as slowdowns relative to the global-helping version of each

benchmark (which runs in a �xed thread pool, and is potentially unsafe in the general

case). All benchmarks were compiled using GCC 6.3.0 with -O3 for optimization, with

commit c6d392b7 from the HClib repository.10

9 Since the global-helping strategy can steal and execute any ready async task, the worst-case stack depth
in an application is the sum of call-stack depth of all async tasks that can execute concurrently and block. This
is usually not an issue in practical applications since the number of concurrently blocked tasks is usually small,
and the probability that a large number will be stolen and executed by the same worker thread is also low;
however, this problem has also come up in OCR, where excessive numbers of tasked blocked on inter-node
communications may result in a stack over�ow (see https://xstack.exascale-tech.com/redmine/issues/657).

10 https://github.com/habanero-rice/hclib/tree/vrvilo2017

https://xstack.exascale-tech.com/redmine/issues/657
https://github.com/habanero-rice/hclib/tree/vrvilo2017

59

3.5.3 Results and Analysis

The results of our main experiments are summarized in �gures 3.1(a) to 3.1(g). Note

that the global-help label refers to our performance baseline (hence it will always have a

slowdown of 1.00x). The hcc-cps label refers to the HC (compiler-transformed) versions of

each benchmark, and the non-blocking label refers to our hand-transformed versions of

each benchmark that use only non-blocking constructs. The other labels should be self

explanatory.

Fibonacci

Figure 3.1(a) shows the slowdown results for our Fibonacci benchmark. Since several of

the slowdowns were very high (exceeding the y-axis maximum for �gure 3.1(a)), we also

included a second version of the graph, �gure 3.1(b), which uses log-scale on the y-axis to

better accommodate all of the results. As explained in the benchmark descriptions, the

Fibonacci benchmark represents an extreme scenario for blocking task overhead since

there is very little computation in each task to o�set the runtime overheads; therefore,

we would expect the performance with each of our selected strategies to represent the

worst-case performance of the overhead for the Habanero-C blocking finish construct.

Using blocking calls on futures should have similar overhead to the finish construct;

however, the �nish-helping optimization obviously doesn’t apply when using blocking

futures rather than finish scopes.

The Fibonacci variant using new threads to compensate for blocked workers performs

far worse than the other strategy variants of this benchmark, with a slowdown of more

than 200x over the baseline. This result is unsurprising since invoking OS kernel services,

such as creating new kernel threads, typically have a non-trivial overhead. This variant

of the Fibonacci benchmark creates over 14 million threads throughout the course of the

computation, which is obviously a severe performance bottleneck.

In contrast, the variant using new �bers to compensate for blocked workers only yields

a 1.72x slowdown over the baseline. Fiber creation is much more lightweight than thread

60

global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

0.0

0.5

1.0

1.5

2.0

2.5

Sl
ow

do
w

n

1.00x

3.31x 2.41x

1.72x

1.01x

231.9x

1.81x

(a) Fibonacci

global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

100

101

102

Sl
ow

do
w

n

1.00x

3.31x
2.41x

1.72x
1.01x

231.9x

1.81x

(b) Fibonacci (log scale)

61

global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sl
ow

do
w

n

1.00x 1.02x
1.10x 1.05x 1.00x

7.46x

1.17x

(c) Cilk-sort

global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sl
ow

do
w

n

1.00x

0.87x

1.10x
1.03x 0.96x 1.02x 1.02x

(d) Cholesky

62

global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sl
ow

do
w

n

1.00x
1.09x

1.00x
1.07x 1.06x

1.17x 1.18x

(e) Needleman-Wunsch

global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sl
ow

do
w

n

1.00x 0.97x 1.00x 1.02x 1.01x 1.00x 1.01x

(f) Quicksort

63

global-help hcc-cps non-blocking �bers �bers +
�nish-help

threads threads +
�nish-help

Worker Context Strategy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sl
ow

do
w

n

1.00x

1.17x

0.98x 1.01x 1.01x 0.99x 1.01x

(g) Unbalanced Tree Search (UTS)

Figure 3.1: Execution overheads for our worker context strategies with �ve benchmarks.
Slowdowns are normalized to the potentially-unsafe global-helping strategy’s mean execu-
tion times for each benchmark. The reported times are the average of 30 runs, and error
bars indicate a 95% con�dence interval.

64

creation since the �bers are fully managed in user-space, and thus do require any services

from the OS kernel. Despite needing to create over 14 million �bers for this benchmark

(the same as the thread count in the thread-compensating variant), the overhead is still

under 2x . This is in part due to the �ne-tuned performance of the Boost.Context library

which is used to support �bers in HClib, and in part due to the use of TCmalloc for fast

allocation of each new �ber’s 256KiB execution stack.

Perhaps a more surprising result is that the compiler-transformed HC variant of

Fibonacci had a slowdown of 3.31x , which is worse than the variant using �bers. One

might expect that a compiler toolchain that has been optimized for the Habanero-C

programming paradigm would outperform a pure library-based solution; however, this is

an instance of the classic time–memory tradeo�. For the Fibonacci benchmark with 16

workers, the HC variant has a maximum memory size (measured with /usr/bin/time -v)

of about 9KiB, whereas the HC �bers variant uses over 900KiB. Whereas the HC compiler

transformation copies a small portion of the execution stack to preserve the state of the

blocking task (i.e., it saves the continuation), the HClib �bers variant simply allocates a

whole new execution stack each time one of the workers blocks, avoiding the need to

save or restore the local stack frame state, but at the cost of larger up-front allocations.

Using a high-performance allocation library such as TCmalloc eliminates a large amount

of the overhead that would normally be associated with these extra �ber stack allocations,

making the creation of each new �ber relatively cheap from a computation perspective.

The �nish-helping optimization signi�cantly improves the performance for both the

�bers and threads strategies of blocked-worker compensation. Since the Fibonacci bench-

mark has a signi�cant number of tasks nested within the upper-level finish scopes, each

worker begins work on one of the higher-level �nish scopes early in the computation,

and the �nish-helping optimization allows the workers to safely execute tasks in almost

the same manner as the global-helping baseline, resulting in very good performance. At

the end of the computation, work stealing may cause finish scopes to block when other

workers have stolen the remaining tasks in that scope, in which case a new �ber or thread

65

must be created to avoid blocking the current worker from continuing computation. Since

�ber creation is relatively cheap, and relatively few new �bers are created in this scenario,

the �bers variant with �nish-helping has almost identical performance to the baseline. Due

to the higher overhead of kernel thread creation, the threads variant with �nish-helping is

a bit slower, with a 1.81x slowdown versus the baseline; however, this is a very signi�cant

improvement when compared with its 231.9x slowdown.

The only Fibonacci variant we have not discussed so far is the non-blocking version of

the benchmark. While the baseline, threads and �bers variants all used identical HClib

source code (i.e., the only di�erence was which version of the runtime was used), the

non-blocking variant is written completely di�erently to avoid using the blocking finish

construct. Instead, each Fibonacci task creates two promises, which are passed to its two

sub-tasks as destinations for their result values, and then it creates an async_await task

that depends on the two sub-task results, sums the two sub-task results, and puts the result

into its parent-task’s promise. The extra allocations for tasks, promises and argument

structures add additional overhead compared to the other HClib versions—aside from the

very slow thread-compensating variant. We will discuss the non-blocking performance in

more depth later in this section.

Cilk-sort

Figure 3.1(c) shows the relative performance of our Habanero-C variants of the Cilk-sort

benchmark. Since the work/task ratio is much higher for this benchmark than for Fibonacci,

the overheads for the di�erent blocking-compensating strategies are not as high as they

were for Fibonacci. The HClib �bers variant and the HC compiler-transformed variant

only add a few percent overhead compared to the baseline, and the �bers variant with

�nish-helping has no measurable overhead compared to the global-helping baseline. The

HClib non-blocking variant and threads with �nish-helping variant have a more noticeable

overhead (1.10x and 1.17x , respectively), and these variants have more overhead for the

same reasons as the corresponding variants of the Fibonacci benchmark. Lastly, the HClib

66

threads variant has a very obvious overhead of 7.46x . While that’s not has extreme as the

threads variant of the Fibonacci benchmark, the extra overhead of creating new kernel

threads each time a worker blocks still becomes a major performance bottleneck in this

benchmark despite its non-trivial work/task ratio and the fewer total number of finish

scopes in the program.

Cholesky

Since the Cholesky benchmark only uses one finish scope per iteration, the blocking-

compensating strategy overheads are not obvious for this benchmark. The results are

shown in �gure 3.1(d). The higher variance seen in some cases (e.g., �bers + �nish-help)

can be attributed to work imbalance when scheduling tasks. The variant using �bers with

�nish-helping appears to be particularly unpredictable, with its average execution time

actually slightly below the baseline (0.96x); however, the error ranges for this variant

and the baseline overlap, implying that the baseline still performed better on some runs.

We see that the non-blocking variant has signi�cantly more overhead than the other

variants due to the necessary restructuring to avoid the blocking finish scopes. The HC

compiler-transformed variant of Cholesky is signi�cantly faster than the baseline (0.87x

slowdown). We attribute this performance di�erence to the overheads introduced by the

C++11 closures used in this benchmark. We look at the closure-induced overhead in more

detail later in this section, speci�cally in �gure 3.2 and the corresponding discussion. The

results for the other variants of our Cholesky benchmark are fairly unremarkable.

Needleman-Wunsch

The slowdown results for the Needleman-Wunsch benchmark variants are show in �g-

ure 3.1(e). In the variants that are safe for general blocking (i.e., all variants except

non-blocking and the global-helping baseline), the three input tiles for each async task are

synchronized and read using the blocking future.get() operation; however, since this use

of blocking futures almost always causes a deadlock when using the global-helping strategy,

67

we used the non-blocking variant for our baseline, hence the identical performance for

those two variants. The non-blocking variant of this benchmark performs better than the

blocking variants because we use the async_await construct to avoid scheduling a task

until all of its inputs are available, whereas the blocking variants eagerly-schedule tasks

and block if an input is not yet available. The use of async_await is more idiomatic in

the Habanero-C paradigm; however, we decided to use future.get() calls in the other

variants so that (1) blocking future operations are represented in our benchmarks, and

(2) because programmers familiar with the C++11 futures library might naïvely compose

code like this if they’re not yet familiar with the Habanero-C async_await construct.

Since this benchmark does not create async tasks nested inside multiple finish scopes,

we would expect the �nish-helping optimization to have no e�ect on the performance,

which is exactly what we observe with the �bers and threads variants. The tasks in this

benchmark are only created once the “upper” input becomes available, which means that

many of the tasks are not scheduled to run until all of the inputs are already available,

meaning that many of the blocking future.get() operations do not actually have to

suspend the current worker since the input data is already available. However, some of the

tasks are scheduled early enough to require blocking, hence the di�erence in slowdown

between the �bers and threads variants (1.07x and 1.17x , respectively). Finally, the HC

compiler-transformed variant again exhibits very similar performance to the �bers variant,

with a slowdown of 1.09x .

Quicksort

Figure 3.1(f) shows the performance results for the Quicksort benchmark variants. Parallel

quicksort only requires one top-level finish to properly synchronize among all of the

divide-and-conquer async tasks. This means that the application is embarrassingly parallel,

and that our blocking construct overheads should not be evident since there is only one

blocking call and a signi�cant amount of computation to o�set it. As expected, none of

the quicksort variants show a signi�cant deviation from the baseline performance.

68

Unbalanced Tree Search (UTS)

Figure 3.1(g) shows the performance results for the UTS benchmark variants. As with

quicksort, the UTS program only requires a single top-level finish scope, meaning that

the blocking task overheads should not be evident. While most of the UTS benchmark

variants do not exhibit a signi�cant slowdown compared to the baseline performance,

the HC compiler-transformed variant averaged a 1.17x slowdown. This slowdown isn’t

caused by blocking tasks, but rather by a limitation of the Habanero-C compiler (HCC).

The compiler does not allow async tasks to capture stack-allocated arrays (since the whole

array must be copied by-value). This limitation forced us to heap-allocate a �xed-sized

array that was stack-allocated in all of the HClib variants of UTS. Since this additional

call to malloc is the only notable di�erence between the HC code for UTS and the HClib

version, we assume it is the source of the extra overhead.

Sources of Overheads in Fibonacci

Figure 3.2 shows some further analysis of the sources of overheads for a subset of our

strategies on the Fibonacci benchmark (which accentuates the runtime overheads due to

the low work/task ratio). Figure 3.2 uses the global-helping optimization as a baseline.

Since the Fibonacci application uses only async and finish, global-helping is a valid

and e�cient tasking strategy. Note that unlike the previous results, we did not disable

TurboBoost for these measurements; however, comparing these results with those in

�gure 3.1(a) shows that although the variance is higher in these results, the mean relative

performance is very similar. We can draw several conclusions from these results about the

sources of overhead in the Fibers and Non-blocking variants.

First, even in this pathological example, compensating with Fibers when blocking

results in less than a 1.8x slowdown, which seems very reasonable since our baseline is a

potentially unsafe optimization in the general case. Choosing a �ber stack size of 4KiB

(the default in the Qthreads runtime [46]) or 256KiB (the default in HClib) does not have a

69

Baseline
(Global-Helping)

Fibers
4KiB Stacks

Fibers
256KiB Stacks

Non-blocking Non-blocking +
Explicit Sync

Basline +
Heap Args

λ Baseline
(C++11 API)

Worker Context Strategy

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Sl

ow
do

w
n

1.00x

1.67x 1.77x

2.50x

1.89x

1.14x
1.28x

Figure 3.2: Comparing the global-helping baseline for HClib Fibonacci against �bers and
non-blocking variants to highlight possible sources of overhead, speci�cally stack size
for �bers. For non-blocking we show both async/finish bookkeeping overheads and
overhead from the heap-allocation of async arguments. TurboBoost was enabled for these
measurements.

very large impact even in this pathological scenario; therefore, we would not expect it to

signi�cantly in�uence performance in a more realistic application.

The Non-blocking variant has a relatively high overhead of 2.5x . However, we can

attribute a large chunk of that overhead to implicit synchronization of all of the async

tasks with the top-level finish scope in the benchmark (all Habanero-C applications have

an implicit top-level finish scope to ensure all tasks are �nished before tearing down the

runtime). However, this synchronization is completely redundant in this variant of the

benchmark since all tasks are explicitly synchronized via promises and the async_await

construct. Since all of our synchronization is explicit, we can specify that we do not need

implicit synchronization on our async tasks11 to eliminate that overhead. We see that

using explicitly-synchronized asyncs drops the overhead from 2.5x to about 1.9x .

11 An async can be marked as explicitly-synchronized in HClib by using the PROP_EXPLICIT_SYNC �ag.

70

Another source of overhead is the heap-allocation of arguments to the asyncs. Since the

parent async does not block awaiting the children, it is not safe to allocate the child-tasks’

arguments on the parent’s stack; therefore, all task arguments must be allocated in the

heap. To demonstrate the overhead for the heap-allocated arguments, we rewrote the

baseline version running with global-helping to also heap-allocate all of its task arguments.

The fact that this transformed version runs 1.14x slower than the baseline accounts for a

fraction of the non-blocking variant’s overhead, implying that without the heap-allocated

arguments we could expect the explicitly-synchronized non-blocking version to have

only a 1.66x slowdown compared to the global-helping baseline. We suspect that the

extra allocations for creating promise objects also accounts for part of the remaining

performance delta. However, the additional heap allocations (both for the task arguments

and for the synchronization objects) are a necessary tradeo� for eliminating the long-lived

tasks and their corresponding long-lived execution stacks.

The �nal bar in the graph shows the overhead introduced when we use the HClib

C++11 API to implement the Fibonacci benchmark, using the same global-helping version

of the runtime as the baseline. In this variant, we use the C++11 λ (lambda function)

construct to automatically build closures for our async tasks, making the code simpler to

write and to understand; however, we see that this causes a 1.28x slowdown compared to

the pure C API baseline. While this overhead is less than that introduced by �bers, it is still

signi�cant, which is why we used the pure C API for most of the �ne-grained overhead

analysis on the Fibonacci benchmark.

Comparison with Other Runtimes

To demonstrate that HC and HClib provide a reasonable performance baseline, we com-

pared the performance of our Fibonacci benchmark running in our Habanero-C variants

to versions ported onto Cilk Plus, OpenMP and HPX-5. We use HPX-5 [66] version 4.1.0,12

12 We chose to use the HPX-5 implementation of HPX since it uses a pure C API like we use in our baseline
Fibonacci benchmark. This lets us avoid questions about language-construct induced overheads like those

71

con�gured to link with libc malloc, which we override with TCmalloc by using LD_PRELOAD.

We use the versions of OpenMP and Cilk Plus shipped with GCC 6.3.0, similarly using

TCmalloc for allocation. We again use the HClib runtime with global-helping on a �xed

worker thread pool as our performance baseline. Figures 3.3(a) to 3.3(b) summarize the

results.

The �rst four bars show the results of our HClib version using global-helping, the

compiled HC version, the HClib version compensating with �bers, and the HClib version

compensating with �bers. These results are the same shown in �gure 3.1(a). We include

these as points of reference for comparison of the Habanero-C implementations with the

other tasking runtimes that were tested.

The Cilk Plus runtime is close to 8x faster than our HClib baseline. One of the key

features of Cilk is its lightweight continuation support with its work-�rst scheduling

policy. Basically, in the absence of work-stealing, a Cilk Plus application should invoking a

subtask via cilk_spawn has close performance to the serial version doing normal function

calls. Since the Cilk programming model only supports fork/join tasking (no support for

futures or async_await-like constructs), it’s not surprising that Cilk Plus signi�cantly

outperforms the other runtimes, all of which support a more general set of concurrency

constructs. At the same time, since this benchmark represents the worst-case scenario for

tasking overhead, the fact that the Cilk Plus version of Fibonacci only runs about 8x faster

than our baseline HClib version tells us that the HClib performance is in the right ballpark.

OpenMP’s task-based parallelism support is a relatively new feature, and as such the

current OpenMP runtime implementations are not as �ne-tuned as the more traditional

features. The fact that the OpenMP version of our Fibonacci benchmark only outperformed

the thread-compensating strategy in HClib by about 2x strongly supports the conclusion

that current OpenMP tasking implementations need improvement. The fact that creating

shown in the HClib C++11 λ variant in �gure 3.2. If we used the C++11 HClib API for our benchmark
baseline, then the Stellar Group’s implementation of HPX for C++ would have been a better choice.

72

HClib
Baseline

HC
Compiled

HClib
Fibers

HClib
�reads

Cilk Plus OpenMP HPX-5

Worker Context Strategy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Sl

ow
do

w
n

1.00x

3.31x

1.72x

231.9x

0.13x

111.2x

2.29x

(a) Tasking runtimes comparison with Fibonacci benchmark.

HClib
Baseline

HC
Compiled

HClib
Fibers

HClib
�reads

Cilk Plus OpenMP HPX-5

Worker Context Strategy

10−1

100

101

102

Sl
ow

do
w

n

1.00x

3.31x
1.72x

231.9x

0.13x

111.2x

2.29x

(b) Tasking runtimes comparison with Fibonacci benchmark (log scale).

Figure 3.3: Initial performance results for a subset of our selected tasking strategies using
the recursive Fibonacci benchmark. Slowdown is measured against an HClib baseline that
uses the global-helping optimization.

73

a new kernel thread is only a factor of two slower than using an OpenMP task directive

suggests that there is still signi�cant room for optimization.

Finally, the HPX-5 version of Fibonacci (which was adapted directly from the HPX-5

example code included with their source distribution) had a slowdown of 2.29x versus our

baseline. This falls between our HClib �ber-compensating strategy (1.72x) and our HC

compiler-transformed code (3.31x). We did not do a detailed performance analysis to �nd

why the HClib version of Fibonacci using �bers outperformed the HPX-5 implementation

of Fibonacci, but we su�ce to say that this result con�rms that our Habanero-C runtimes’

task overheads are competitive.

3.5.4 Implications for Resilience

As a second facet of our evaluation, we now brie�y analyze the implications of each

strategy with regard to resilience.

All of the thread and �ber-based strategies involve long-lived task contexts. These

contexts are not amenable to recovery since they may contain references to task-local

temporary data (i.e., pointers into the stack), which is di�cult and expensive to save and

restore in case of a failure. Furthermore, the prospect that we will have su�cient resources

in an extreme-scale system to allocate the additional thread and �ber contexts to support

blocking tasks also does not seem reasonable.

In contrast, the CPS transformation (automated by the HC compiler) and (manual)

non-blocking transformations of the application code actually split the long-lived blocking

tasks into multiple short-lived non-blocking tasks. The memory footprint for saving

the continuation state is no more than any other task’s input data, which seems more

reasonable for a memory-constrained extreme-scale system. Although the thread-based and

�ber-based strategies are less restrictive from the application programmer’s perspective,

we hypothesize that there is a well-de�ned point with respect to the system’s mean time

between failures (MTBF) where the context-saving strategies cease to make computational

74

progress (due to continual failure of blocked tasks), and a transformation of the application

to a non-blocking style becomes a necessity.

3.5.5 Strategy Tradeo�s

We now discuss the strengths and weaknesses for each of our blocked-worker compensation

strategies in terms of programmability, debugging, and deployment. For each property, we

rank our four strategies from best (#1) to worst (#4).

Computation Time

1. HC Compiled: The compiled HC variants of our benchmarks performed very well

in most cases, and actually outperformed the unsafe baseline in both the Cholesky

and Quicksort benchmarks. Since the performance issue for UTS could be solved

simply by removing the array-copy restriction in the compiler, we decided not to

count that case against it. The only other case where the HC compiled variant

performed poorly was on the Fibonacci benchmark, but since that is not a realistic

workload, and it was still within a factor of 2 of the �bers performance even in

that pathological case, we feel that the HC code supported by its custom compiler

toolchain gave the best overall for computation time.

2. HClib Fibers: The �bers variants of our benchmarks gave good, stable performance

on every benchmark; therefore, we rank the �bers-compensating strategy in second

place overall for for computation time.

3. HClib Non-blocking: The non-blocking strategy su�ered from extra overhead in

the Fibonacci, Cilk-sort and Cholesky benchmarks. For Needleman-Wunsch, this

strategy only outperformed the others because we purposely used less-e�cient

future.get() calls in order to test blocking future operations in that benchmark;

however, we were forced to use the more e�cient async_await construct for the

non-blocking code, which is actually more idiomatic and equally applicable for all of

our blocked-worker compensation strategies.

75

4. HClib Threads: We rank the thread-compensating strategy last in terms of for

computation time due to its disproportionately large slowdown on both the Fibonacci

and Cilk-sort benchmarks,

Memory Usage

1. HC Compiled: The compiled variants of our benchmarks have relatively low mem-

ory overhead since they run on a �xed-sized worker pool and the compiler is fairly

e�cient at saving the state for suspended async tasks.

2. HClib Non-blocking: Although our non-blocking HClib applications can also run

on a �xed-sized pool of worker threads, we saw that the C++11 API used to capture

state for async tasks is less e�cient than the HC compiler (see �gure 3.2).

3. HClib Fibers: While our �ber-compensating strategy technically uses a �xed-sized

worker thread pool, the fact that it allocates a new �ber stack to be used by the

worker each time a task blocks means that the actual memory overhead is close to

the same as creating a new thread each time a task blocks, especially if the thread

stack size is set to match our �ber stack size.

4. HClib Threads: The thread-compensating strategy exhibits a similar memory

footprint to our �ber-compensating strategy when the stacks are set to the same

size; however, kernel threads have additional data structures that add to the memory

overhead of creating new threads. In addition, since most users do not manually

limit the thread size before running an application, we would generally expect a

much larger memory footprint overhead when using threads than when using �bers.

Programmability

1. HClib Threads: Using the HClib C++11 API a�ords all of the programmability

of an internal DSL (naturally expressing our domain-speci�c async, finish and

other constructs using macros, lambdas, and other language features), while the

thread-compensating strategy provides the same intuitive behavior as one would

76

expect if the runtime created a new thread for each async. However, if the �nish-

helping optimization is enabled, then the programmer may need to take care with

how thread-local variables are used across blocking calls.

2. HClib Fibers: Using the �ber-compensating strategy to manage blocked workers

a�ords almost all of the same bene�ts as using thread-compensating, and is almost

indistinguishable from threads in terms of programmability and deadlock-avoidance.

One downside of using �bers and not threads is that application code using thread-

local state will not have a consistent view of the thread-local state across blocking

calls (since �bers may be migrated among worker threads), which may cause some

programmability issues. However, all but the thread-compensating strategy have

this same issue with thread-local state (including the thread-compensating strategy

when the �nish-helping optimization is enabled); therefore, proper support (or lack

thereof) for thread-local state is really a feature of the thread-compensating strategy

rather than a shortcoming of the �ber-compensating strategy.

3. HC Compiled: Although HC adds the Habanero-C concurrency constructs (e.g.,

async and finish) as �rst-class constructs to the C language, we �nd that the internal

DSL support a�ords almost all of the same bene�ts without the need for a specialized

compiler toolchain. The HC compiler has some quirks that hurt programmability,

such as the restriction on closing over arrays (previously discussed in the context of

the UTS benchmark), reserving common variable names like in and out, and poor

diagnostic messages in the case of a syntax error. While many of these compiler-

related issues could be overcome with an overhaul of the compiler’s code base, the

HC compiler was under active development for several years, but these issues were

never corrected. For HC or a similar custom compiler toolchain, one would expect

these types of quirks until the custom language gained a larger user base and thus

merited full time support and more focus on user experience.

4. HClib Non-blocking: Writing a non-blocking version of an application in HClib

basically amounts to the programmer doing by hand what the HC compiler would

77

do automatically. Eliminating a blocking call from serial task code usually requires

both splitting the task in two—the computation before the blocking call and the

continuation after the blocking call completes—as well as adding some new synchro-

nization mechanism to trigger the continuation task. All of these additional tasks

and additional synchronization logic increase the complexity of the code, making it

harder for the programmer to initially write the code, to reason about its correctness,

and to maintain in the long-term. The programmer also must take extra care to

only use blocking constructs at the top level (to synchronize the sequential main

function with the concurrent HClib code), otherwise potential deadlocks may be

inadvertently introduced in the code. While there may be some applications or

algorithms where a non-blocking solution in simple and intuitive, we believe that

in the general case the fully non-blocking approach ranks lower than our other

strategies for programmability and productivity.

Debugging

1. HClib Threads: Using the thread-compensating strategy—although it has higher

overhead—works very well when debugging for several reasons. Firstly, mainstream

debuggers (e.g., gdb and lldb) have built-in support for inspecting the state of all

kernel threads in the application currently attached to the debugger; e.g., if at

the time the debugger his a breakpoint there are currently three threads blocked

in finish scopes and �ve threads executing async tasks, then running the info

threads command in gdb would reveal all of this state information. If the �nish-

helping optimization is enabled, the state is a bit more opaque (since multiple blocked

tasks may be “buried” in one thread’s stack), but inspecting the stack trace of each

thread would quickly reveal the number of blocked tasks and where they are blocked.

Secondly, debugging problems with stack over�ows is easier since kernel threads

allocate a guard page at the bottom of the stack. Diagnosing dependence on thread-

local state is likewise easier if you can con�rm an application works when using

78

thread-compensating but breaks when switching to one of the other strategies.

Finally, third-party debugging tools such as valgrind work better when using standard

kernel threads rather than custom �ber support or some other transformation. All of

these factors together make the thread-compensating strategy the strategy of choice

for debugging.

2. HClib Fibers: While �bers and threads are very similar conceptually, debuggers

are not aware of our �ber contexts, which can potentially confuse tools like gdb and

valgrind. When inspecting the program state in the debugger, the currently-running

async tasks’ �ber states are readily available via the worker threads’ contexts; how-

ever, any blocked �ber states would only be visible by traversing runtime data

structures, which would either require intimate knowledge of the runtime internals

or HClib-speci�c extensions to the debugger. Debugging stack over�ows when using

�bers is also more di�cult since the �ber stacks are allocated in the heap, meaning

that stack over�ows degenerate into heap bu�er underruns. It would not be di�cult

to also allocate guard pages when allocating �ber stacks—but this requires additional

system calls, and we �nd it simpler to just use the thread-compensating strategy,

which gives us guard pages and the other advantages described above.

3. HClib Non-blocking: Application code that has been manually transformed into

continuation-passing style can be di�cult to debug for a few reasons. First, the code

can simply be hard to read due to its complexity when compared with equivalent

straight-line code. If the code is di�cult for the programmer to understand, then

debugging that code will also become much more di�cult. Likewise, tracing the

�ow of control through a continuation-passing style (CPS) program is much more

complex than tracing the execution of equivalent straight-line code. If an error

occurs in some continuation async task, but the error was caused by a logic bug in

an earlier task, then tracing the error back to the source can be very di�cult. This is

a problem in all programs that have asynchronous computations, but the problem is

compounded in CPS programs by the potential explosion in number of tasks.

79

4. HC Compiled: The HC compiler-transformed code has all of the same problems as

the manually-transformed non-blockingHClib code, but with the added complication

that the debug symbols stored in the binary don’t even map back to the HC source

code that was written by the application programmer. Since the HC compiler

toolchain performs a source-to-source transformation, generating pure C89 code

from the HC source �les, debug symbols generated by the C compiler correspond to

the mangled C89 code rather than to the code that the programmer writes and sees.

In fact, the C89 code is usually stored in a temporary �le that is deleted by the HC

compiler toolchain after it is compiled, meaning that the application programmer

typically doesn’t even know that the intermediate C89 source code exists. Again,

these shortcomings should be �xable through more work on the compiler and/or

debugger toolchains—but again, expecting this level of support for a toolchain

with a small user base (even the entire HPC community is small compared to the

general user base of GCC or Clang) does not seem reasonable. Therefore, even if HC

development and maintenance were resumed immediately with a full-time sta� of

several researchers, we wouldn’t expect the same user experience as what’s available

for the pure C++11 library solution used by HClib.

Deployment

1. HClibNon-blocking: Since the non-blocking HClib code uses no special toolchain,

relies on no system-speci�c code, and can run correctly on a �xed-sized thread pool,

applications using this strategy be easily deployed on most systems.

2. HClib Threads: Although POSIX threads are very portable—meaning that appli-

cations using the thread-compensating strategy should compile and run on a wide

variety of systems—applications that create a large number of blocking tasks may

run into problems with system resource limits set by the OS. For example, the hard

limit of around 2k threads per process on Mac OS X could cause problems when

deploying on that platform or on other platforms with similar resource limits.

80

3. HClib Fibers: Our �bers support depends on platform-speci�c assembly code

to save and swap �ber contexts, which can cause problems when deploying on

a less-common platform. We derived our �bers support from the Boost.Context

library [64], which allows us to use the platform-speci�c machine code for each of

that project’s supported platforms directly with HClib, which in theory should make

it simple to port to almost any platform where a user might want to deploy an HClib

application; however, we have run into problems with bugs in the machine code for

some platforms that are relatively common in the HPC community,13 suggesting

that we may encounter similar problems in the future when deploying to other

non-x86-based platforms such as ARM.

4. HC Compiled: While there are some small obstacles to deploying applications

that use the other strategies as described above, the custom toolchain supporting

HC is much more di�cult to deploy on a new platform or even a new machine.

Due to complex dependencies in the HC compiler toolchain, it is very di�cult to

build the compiler on a modern Linux or OS X system. To support the benchmarks

described in this section, we created scripts to perform the HC source-to-source

translation either within a Docker appliance (a lightweight virtual machine) or on a

remote machine, and then copy the resulting C89 code back to the local machine for

compilation with the local C compiler toolchain. While this solution is workable, it

is much less user-friendly than using HClib.

Resilience

1. HC Compiled: Based on the assumption that long-lived tasks are bad for resilience,

the HC compiler is in the best position to transform application code that uses

blocking API calls into something more resilience-friendly. The compiler could even

automatically transform known blocking calls that are not necessarily part of the

Habanero-C API (e.g., blocking I/O functions) into non-blocking variants, and split

13 See this bug report about 64-bit PowerPC support: https://github.com/boostorg/context/issues/50

https://github.com/boostorg/context/issues/50

81

straight-line task code across those calls (i.e., doing a CPS transformation). The

compiler could also help to facilitate restarting an application after a failure, by

providing an alternate restart entry point that bypasses the bootstrapping code in

the main routine and directly launches the tasks that need to be resumed. Although

the compiler does not currently do these transformations, they seem like an obvious

extension for failure-prone systems (failures have not been considered as a key issue

in any past work in the Habanero-C programming model).

2. HClibNon-blocking: WhileHClib code written using only the non-blocking subset

of the API should closely resemble code generated by the HC compiler, the fact that

the programmer must write it by hand makes it error-prone; e.g., the programmer

may inadvertently make a blocking call by invoking a function written by someone

else. Furthermore, we always make use of blocking calls at the top level in HClib

applications in order to synchronize all Habanero-C async tasks before returning

control back to the sequential C program that drives our parallel Habanero-C program

(i.e., we need to block the main program thread at some point so that the C main

function doesn’t return before our HClib code completes). Again, if we assume that

long-lived blocking tasks are bad for resilience, then these top-level blocking calls

would be problematic.

3. HClib Fibers: Using the �ber-compensating strategy to support blocking calls does

not eliminate long-lived tasks; instead, it creates additional live-task contexts so

that worker threads can continue doing work while awaiting completion of the

task-blocking calls. The limited size of the �ber stacks may make it easier to save and

restore the state of blocked �bers to support checkpointing and restarting of blocked

tasks; however, under our assumption that long-lived tasks are bad for resilience,

the �ber-compensating strategy does nothing to avoid long-lived blocking tasks.

4. HClib Threads: Using the thread-compensating strategy has all of the same prob-

lems associated with the �ber-compensating strategy, plus the extra complication

that the blocked tasks each occupy a dedicated kernel thread, which would most

82

Threads Fibers Non-blocking HCC

Performance (3x) 4 2 3 1
Memory Footprint 4 3 2 1
Programmability (2x) 1 2 4 3
Debugging 1 2 3 4
Deployment 2 3 1 4
Resilience (2x) 4 3 2 1
Weighted Total 29 24 27 20

Table 3.1: Summary of the rankings of our blocked-worker compensation strategies, as
discussed in section 3.5.5.

likely make saving and restoring the state of blocked tasks for automatic recovery

more complicated than when using �bers.

3.5.6 Recommendations for Strategy Selection

Based on the analysis in this section—and speci�cally the strategy rankings given in

section 3.5.5—we now give some general recommendations on how to select a good

blocked-worker compensation strategy for a given situation.

Table 3.1 summarizes the results of the discussion in section 3.5.5. We assigned weights

to three of our properties, and calculated the weighted totals of the scores for each strategy

to get a rough idea of the general applicability of each strategy. We assigned the heaviest

weight, 3x , to performance since that is usually the primary concern of HPC application

developers (developers are usually willing to deal with other issues if it gets their apps to

run signi�cantly faster, which is also why the majority of this evaluation is dedicated to

our performance analysis). We also assigned a 2x weight to both programmability and

resilience. If a developer can throw together an app in half the time that gets 90% of the

performance they could have achieved using a toolchain with poor programmability, the

10% performance hit is probably worth the productivity gain. Conversely, if an app is

easy to write and gets good performance, but can’t run to completion on a failure-prone

83

extreme scale system because it has poor resilience properties, that is most likely not an

acceptable tradeo�.

Based on the weighted total scores, the HC compiler (HCC) toolchain was the best

choice overall. The HC compiled code had good performance on the majority of our

benchmarks, it has a lower memory footprint than the other strategies (which will be very

important in memory-constrained extreme-scale systems), and it had the best resilience

properties. In addition, many of the issues with programmability and debugging could be

addressed with more work on the compiler toolchain, which would result in an even better

overall experience. However, due to the di�culty of actually deploying the HC compiler

toolchain—speci�cally its lack of public availability14 —our general recommendation for

running Habanero-C applications is to use HClib with the �ber-compensating strategy.

In fact, using the �ber-compensating strategy with the �nish-helping optimization is

currently the default con�guration for the HClib runtime.

Although the thread-compensating strategy has poor performance for some workloads

and a much higher memory footprint in general, the many advantages for debugging

when using this strategy makes it our favorite con�guration when actively debugging an

application. Since the HClib blocked-worker compensation strategy can be selected via

environment variables when launching any HClib application not built in production-mode,

application developers can easily choose to use thread-compensating (with or without

�nish-helping) when they encounter a di�cult bugs during the development process,

instantly improving the user experience with gdb, valgrind, and other debugging tools.

14 Unlike HClib—which is open source and publicly distributed under the Apache 2 license on GitHub—the
HC compiler and runtime are not currently available to the public. The Habanero group has shared the
toolchain with collaborators in the past, but due to license issues around portions of both the compiler and
the runtime code, it was never approved for a public release. Since the toolchain is no longer under active
development (being mostly superseded by the HClib project), it is unlikely to be released in the near future.

84

3.6 Related Work

Although many other lightweight task-based runtimes exist, the primary focus of this

chapter is on the comparison of multiple task-scheduling strategies and their tradeo�s,

rather than on the performance of Habanero-C versus other runtimes. Other C/C++-based

runtimes, such as Sandia Qthreads [46] and Intel Thread Building Blocks (TBB) [58],

implement similar strategies to those discussed here; however, evaluations of these models

focus on performance compared to di�erent programming models on di�erent runtimes.

While the TBB documentation encourages users to write applications in continuation-

passing style rather than relying on the depth-bound worker “helper” strategy, we are not

aware of any direct comparison of TBB benchmarks written for both strategies.

Yang et al. [48] performed a comparison of the compiler-based Cilk Plus framework

included in GCC5—which uses a delimited CPS transformation on Cilk functions—with

Fibril, their library implementation of Cilk. Fibril uses some clever optimizations to support

the work-�rst execution policy without assuming special compiler support. Their runtime

allocates a new thread context (not a new thread—just a new stack) at each Cilk function

call, but remaps unused physical pages in the stack to maintain a reasonable bound on

the total physical memory footprint. These memory optimizations could be applied to our

�ber-compensating strategy to maintain a smaller resource footprint.

Imam et al. [67] presented a solution for cooperatively scheduling blocking tasks in

HJ-lib, a work stealing runtime on the JVM. While their solution is su�cient for correctness,

one-shot delimited continuations are not the minimal necessary programming element

needed to support such scheduling. We precisely de�ne the necessary characteristics

for this type of scheduling, and compare several solutions of varying generality. The

study includes a comparison of a cooperative work-stealing runtime and a thread-blocking

work-sharing runtime, both part of HJ-lib. We believe the HJ-lib runtime would also be

amenable to the Finish/Helper optimization described in this work.

The cooperative runtime in HJ-lib is very similar in design to that in Quasar [68];

in fact, both rely heavily on the same underlying continuations library [69], written by

85

Matthias Mann. It is interesting to note that Mann’s continuations library—which is the

currently the state of the art for continuations on the JVM—is basically a stack copying

scheme triggered by a special exception. Since Java does not allow the user to capture

references into the stack, it is safe to copy the stack-allocated values from one thread

and restore them in another, whereas in C/C++ runtimes the possibility of pointers into

the stack makes this much more di�cult. In fact, many of the restrictions placed by the

HC compiler center around the issue of capturing stack addresses in continuation frames,

which makes frames non-migratable among worker threads.

The goal of HPX [47] is to provide a reference implementation of the runtime for a

future version of the C++ standard library’s parallel programming features. Since their

work adheres strictly to the current C++ standard, it is possible to do a good comparison

between current C++ standard library implementations of std::async and std::future

versus their implementations. However, their studies instead compare with other non-

standard C++ runtimes (Qthreads and TBB)—ostensibly because the performance of current

standard-library implementations of these parallelism constructs is not at all competitive.

3.7 Summary

We have examined the di�culties tied to supporting blocking constructs in a lightweight

tasking runtime, speci�cally in the context of the Habanero-C programming model. We

have discussed the possible strategies used for scheduling tasks in the runtime, paying

particular attention to the property of deadlock-freedom. We presented six strategies

for handling blocked worker contexts in Habanero-C programs, including four main

strategies, and two variants using the �nish-help optimization. We evaluated our six

selected strategies implemented in the Habanero-C programming model—including HC

and HClib—with regard to usability, performance, and resilience. Finally, we presented our

general recommendations based on our analysis for which strategy to use in each situation.

While we found that the compiler-supported HC toolchain appears to be the best option,

unfortunately we cannot recommend it to potential Habanero-C application programmers

86

due to its lack of public availability. Instead, we suggest using HClib for application

development, recommending the �bers-compensating strategy as the default runtime

con�guration choice, and the thread-compensating strategy speci�cally for debugging.

We hope that compiler support can be leveraged in the future to take advantage of the

productivity bene�ts a�orded by domain-speci�c languages, as well as the performance

and resilience bene�ts provided by the compiler-transformed source code.

87

Chapter 4

CnC-OCR: A Productivity Environment for OCR

In this chapter, we present CnC-OCR as a higher-level programming model and productiv-

ity environment for OCR, providing key abstractions for hierarchy, tuning, and dependence

coordination. To the best of our knowledge, this is currently the only high-level program-

ming model that maps to OCR while being faithful to OCR’s data model.

4.1 Background

4.1.1 The Open Community Runtime (OCR)

The Open Community Runtime (OCR) is a set of low-level APIs aimed to provide a portable,

resilient, and high-performance abstraction layer between extreme-scale hardware and

applications. The API is intended as a target for compilers, a back-end for high-performance

libraries, and as a tool for expert programmers writing performance-critical code. Being

a low-level API, the design is much more focused on unambiguity and �exibility, rather

than on programmability. Seeing as the average application programmer is not meant

to program directly to the OCR API, it is necessary to provide one or more productivity

layers on top of OCR for use by these developers.

4.1.2 The CnC Programming Model

CnC [70] is a graph-based dependence programmingmodel. Note that CnC is a programming

model rather than a programming language. There are many implementations of the CnC

model in many programming languages, including C [71], C++ [72], Python [73], Scala [74],

and Haskell [75]. The focus of this chapter is a C-based implementation of CnC, which is

built on top of the C-language OCR API.

88

In CnC, programs are expressed in graph form. The CnC programmer decomposes an

application into item collections, which represent data, and step collections, which represent

computation. The item and step instances comprise the nodes of the CnC graph, while

the edges represent data and control dependencies among the nodes. This speci�cation of

the inherent dependencies between the data and computation within a CnC application is

called the domain spec.

While CnC is not an explicit parallel programming model, the dependence edges in the

CnC graph implicitly restrict parallelism among task nodes, meaning that a CnC runtime

implementation is free to schedule two tasks (or computation steps) in parallel so long as

there is no dependence relationship speci�ed between them.

a b c d

Figure 4.1: Example of a simple, abstract CnC graph that does not correspond to a traditional
loop nest, since the back-edges c→a and d→b would create a pair of partially-overlapping
loop regions.

Since many CnC programs are ports of various parallel research kernels, the dependence

graph structures for these ported codes resemble the structure of the loop nest in the source

application. However, the CnC model is in fact more general than traditional loop-based

parallelism. One can easily construct a simple parallel CnC program that is not readily

translatable to an equivalent parallel loop nest. Figure 4.1 shows an example of such a

graph.

In CnC, the domain speci�cation comprises all of the constraints that are necessary

for correctness in the application. Any additional constraints that may be provided are

classi�ed as tunings.

89

4.1.3 Separation of Concerns in CnC vs. OCR

The mantra of CnC is separation of concerns. When designing a CnC application, the details

of step function implementations are separate from the domain speci�cation (i.e., the

dependence graph), and application tunings are separate from both the domain speci�cation

and the step codes. This separation makes it easy for someone unfamiliar with a CnC

application’s codebase to get a high-level sketch of the program semantics (by studying

the domain speci�cation), analyze the implementation details of a particular computation

step, or quickly understand the current performance-tuning strategy (by examining any

tuning speci�cations currently in use).

Similarly, OCR aims for a separation of concerns between the application code, control

(scheduling), and resource management. OCR has been designed with a modular, extensible

scheduler and resource managers that can be customized to take advantage of performance

tuning hints supplied in the application code. However, the separation of concerns in OCR

is at more of a conceptual goal rather than a philosophy realized the level of the source

code, since tuning hint code is embedded within the application code.

The fact that the tuning hint code is sprinkled throughout an OCR application’s source

code makes it di�cult to get a big-picture view of the tuning strategy being employed in an

OCR program. Likewise, having tuning and dependence information scattered throughout

an application’s source code can obfuscate the core computation of that application. Addi-

tionally, the verbosity of the OCR API makes it toilsome to modify existing source code

in order to experiment with di�erent tuning strategies. Furthermore, the interleaving of

domain code with tuning code complicates the job of maintaining multiple tuning options

within a single application.

We claim that all of these programmability issues in OCR can be overcome by o�ering

a higher-level programming model to developers, and providing a programming system

that automatically maps to OCR. We demonstrate this via the implementation of CnC on

OCR, and an analysis of the resulting framework for developing OCR application.

90

4.1.4 CnC Graph Notation

In this chapter, we will use the following notation for CnC items and steps:

[X: i, j, k] An instance from an item collection named X, with the tag 〈i, j, k〉. The square

brackets correspond with the rectangular nodes typically used in graphical repre-

sentations of CnC item collection.

(Y: i, j, k) An instance from a step collection named Y, with the tag 〈i, j, k〉. The round

brackets correspond with the elliptical nodes typically used in graphical representa-

tions of CnC step collections.

This notation is fairly standard in the CnC literature. See appendix B for a more detailed

explanation of CnC graphical and textual representations.

4.2 Overview of Our Approach

We propose CnC-OCR—an implementation of the CnC programming model on top of the

Open Community Runtime API—as a higher-level programming model and productivity

environment for OCR. CnC-OCR is included in the OCR open source release [5], and is

also available as a standalone project on GitHub [71]. The CnC-OCR toolchain consists of

four main components:

1. A domain-speci�c language (DSL) for declaring a CnC application graph, including

its step and item collections, as well as the dependence relationships among those

collections.

2. A tuning language, based on the graph DSL, for expressing additional graph con-

straints for the purpose of performance tuning.

3. A prototype system for automatic inference of hierarchical structures within a CnC

dependence graph, used for applying hierarchy-based optimizations.

4. An automatic code-generation toolchain for translating the domain and tuning

speci�cation into a skeleton CnC-OCR application, including function stubs for the

computation step implementations.

91

We describe the implementation of the CnC-OCR toolchain, and demonstrate the

bene�ts to programmer productivity and the improved separation of concerns attained

by the use of the CnC domain speci�cation for dependence coordination, as well as the

external speci�cations for performance tuning. We de�ne a set of rules for automatic

generation of CnC application hierarchies, and demonstrate the bene�ts of hierarchy

through improved distributed memory locality. We show that the performance of CnC-

OCR applications is comparable to much more verbose hand-coded OCR solutions, and is

competitive with an existing production-grade CnC implementation.

4.3 Design and Implementation of CnC on OCR

4.3.1 Mapping CnC onto the OCR Programming Model

While there exist other higher-level programming models built on top of OCR [59,76,77], it

is our opinion that these fail to provide a true and faithful abstraction layer over OCR. This

is because these solutions eschew key OCR concepts (e.g., datablocks), and thus produce

applications that can only work correctly on a limited set OCR’s target platforms. For

example, programs that do not by store all shared data within OCR datablocks—and thus

do not conform to OCR’s data model—will not function correctly in distributed-memory

implementations of OCR. Although we considered these programming models speci�cally

in the context of OCR, we see this as a general problem when building higher-level

productivity layers for exascale programming models.

The Open Community Runtime was designed based on a fundamental set of axioms, e.g.,

that all persistent data must reside in runtime-controlled datablocks. Similarly, existing

candidates for higher-level layers were also designed under some set of fundamental

assumptions. It is unlikely that a programming model designed for shared-memory—or

even HPC clusters of the previous decade—will have axioms that match these assumptions

of extreme-scale computing. This suggests that one of two things is necessary: (1) existing

programming models must be heavily modi�ed to �t the exascale paradigm, or (2) we need

92

to design new higher-level programming models from scratch, based on the new axioms

for extreme-scale computing.

However, the CnC programming model happens to share a very similar set of assump-

tions with that of the Open Community Runtime model. As shown in table 4.1, there is a

direct correspondence between most of the core concepts in CnC and OCR.

Concept CnC construct OCR construct

Task classes (code) Step collection Task template
Task instance Step instance Task
Data classes Item collection —
Data instance Item instance Datablock
Unique instance identi�er Step/item tag GUID
Dependence registration Item get Event add dependence
Dependence satisfaction Item put Event satisfy

Table 4.1: Mapping of software concepts between CnC and OCR.

While there is some divergence between the assumptions made in traditional CnC

implementations and those for CnC-OCR, we were able to address all of those di�erences

without radical changes to the CnC paradigm. In fact, in some cases the choices we made

for CnC-OCR actually lead to a model that we found truer to the themes of CnC than what

had been done in previous CnC implementations. These di�erences are discussed in more

detail in section 4.3.4.

This clean mapping between the CnC and OCR programming models makes it fairly

straightforward to generate sca�olding code for a CnC application to run on top of OCR.

Similarly, declarations in the CnC tuning speci�cation are used to automatically generate

hint-annotated OCR code.

The CnC-OCR toolchain automatically generates OCR sca�olding code based on the

dependences declared in the CnC graph speci�cation, and the additional declarations in the

tuning speci�cation. For example, an OCR task is generated to wrap each CnC computation

task, and the generated code automatically sets up the OCR task’s dependences based on

93

the declarations in the CnC graph speci�cation. The CnC application programmer does

not deal with any OCR-speci�c code, while the CnC program is entirely OCR compliant.

This makes CnC-OCR an e�ective programming abstraction for OCR.

4.3.2 Software Architecture

Tuning Specs

CnC API Glue Code
 (auto-generated)

CnC-OCR Support Module Open Community Runtime

Domain Spec

Step Code

Figure 4.2: The software architecture of a CnC-OCR application. Dotted-line edges repre-
sent code generation relationships between programmer-speci�ed inputs and the generated
outputs, whereas solid-line edges represent coupling between software components. Green
nodes represent speci�cation �les written by the application programmer. The yellow node
represents source code that is partially generated from the domain speci�cation, but must
be completed by the application programmer. Orange nodes represent code that is viewed
as part of the CnC-OCR runtime and API support, and thus are considered opaque by the
application programmer. The purple node represents the underlying tasking runtime.

The software architecture of a CnC-OCR application is illustrated in �gure 4.2. The

application data and computation dependencies are described using the graph DSL, and

provided as a domain speci�cation �le. This domain speci�cation is use to automatically

generate skeleton code for the application, including initialization, the compute steps,

and �nalization code. The application programmer then �eshes out the skeleton code to

perform the desired computations.

In addition to the domain speci�cation, one or more tuning speci�cations may also

be provided. These tuning speci�cations are written in a DSL similar to that of the graph

94

speci�cation, and they are used to generate better-optimized code in the CnC API glue

code and support module components. Since the tuning speci�cations are decoupled from

the rest of the input, and they do not a�ect any code that is altered by the application

programmer, tunings can be easily analyzed and adjusted. CnC tuning will be discussed in

more detail in section 4.6.

The C language provides very limited facilities for type-specialized APIs. Basically

all type-generic code involves pervasive use of void* types, which a�ord very little type

safety, and thus can hurt productivity. Although CnC-OCR is implemented in C, we are still

able to attain much of the type safety features that would be available through a C++-based

API by leveraging our custom code generation toolchain. The type information from the

domain speci�cation is used to generate a set of customized API functions for the given CnC

application, based on the declarations of its item and step collections. This auto-generated

layer of glue code allows static checking of the parameters for CnC operations—such as

verifying the correct number of tag components for a prescribe operation, or the correct

payload data type for a put operation—before passing the arguments through to the CnC

runtime support layer, which is implemented in terms of void pointers and byte arrays.

Note that none of the user-modi�ed code (i.e., the domain and tuning specs, and the

step code implementations) is directly coupled with the underlying tasking runtime; or in

other words, the underlying tasking runtime API details do not leak through into the CnC

application code. This design allows the framework to support other back-end runtimes

in addition to OCR, while leaving all CnC application code unchanged. This feature is

discussed further in section 4.3.4.

95

4.3.3 Development Work�ow

We now give a brief description1 of the typical work�ow for a CnC-OCR application

developer. The process of creating a new CnC application usually roughly involves the

following steps:

1. Write a CnC domain speci�cation. This often simply means translating a white-

board sketch of the application’s dependence graph into the CnC graph DSL syntax,

even if the design wasn’t originally made speci�cally with CnC in mind for the

implementation paradigm. See �gures 4.3 and 4.4 for an example of a whiteboard

sketch of an application and the corresponding CnC graph.

2. Generate a skeleton project. The project is generated via the CnC framework

graph translator tool, using the domain speci�cation as input. The translator tool

creates all of the auto-generated �les shown in �gure 4.2. Note that the generated

skeleton project can be compiled and run immediately after generation, although the

skeleton code will not do any useful computation. We feel that this feature enhances

the incremental development process.

3. Flesh out the skeleton step code. Unfortunately, our toolchain is currently unable

to infer the computation that the application is meant to perform. The programmer

is still expected to do some coding. Automatic synthesis of the step code implemen-

tations is left as an exercise for the reader.

4. Debug the application. It is our experience that application programmers typically

do not get the application right on their �rst try, and the code requires some debug-

ging. The CnC toolchain supports various debugging techniques, such as execution

traces and visualizations. If a bug is found in the domain speci�cation rather than

the step code, then it may be necessary to re-generate some of the project code

using the graph translator tool. By default, the tool will not overwrite any of the

�les that are edited by the application programmer. For example, if the number of

1 For a more detailed description of the CnC-OCR development work�ow, see the Habanero CnC Frame-
work wiki: https://github.com/habanero-rice/cnc-framework/wiki/Work�ow

https://github.com/habanero-rice/cnc-framework/wiki/Workflow

96

inputs to a step changes, it will be necessary to update the signature of the function

implementing that step. In this case, we recommend that programmers save the

existing code, generate a fresh copy of the skeleton step, and then use their favorite

di� tool to manually merge the changes.

5. Tune the application. Once the application is functioning correctly, the focus

shifts to optimization. The tuning process is discussed in section 4.6.

4.3.4 Uni�ed CnC

As discussed in section 4.3.2, the software architecture of the CnC toolchain used to support

CnC-OCR is made up of several decoupled layers. This design allows us to support multiple

backend runtimes for CnC applications developed using our framework. The common

set of abstractions used to support CnC applications across multiple runtime is known as

uni�ed CnC [78]. The Open CnC community identi�ed three pillars of CnC uni�cation

in a series of multi-institution discussions, all three of which are realized in our CnC

framework:

1. Uni�ed graph language

Several variants of the text-based CnC graph representation have been introduced

over the years; however, these past notations are always closely coupled with a par-

ticular implementation. We provide a graph language that is su�ciently expressive

for de�ning detailed dependence relationships among the step and item collections

in a graph, while leaving implementation-dependent features for external tuning

speci�cations. See appendix D for more details on the graph language de�ned in our

framework.

2. Uni�ed graph code generation toolchain

Just as there are several variants of the graph speci�cation language, there are many

tools that can generate a CnC project codebase from a graph speci�cation. These

tools are (understandably) each tightly coupled with the syntax of its respective

97

Drawing by John Feo, Pacific Northwest National Laboratory.

Figure 4.3: Whiteboard sketch of the LULESH proxy application. This graph was designed
by a group of scientists with no speci�c knowledge of CnC, and the diagram was simply
meant to describe the control and data �ow of the application.

CALC_TIME_
CONSTRAINTS_
FOR_ELEMENTS

STRESS_FOR_
ELEMENTS

CALC_HOUR
GLASS_CONTROL_
FOR_ELEMENTS

CALC_POSITION_
FOR_NODES

CALC_Q_FOR_
ELEMENTS

CALC_LAGRANGE_
FOR_ELEMENTS

APPLY_MATERIAL
PROPERTIES_

FOR_ELEMENTS

dx

cs

p

e

q ql

qq

f f u

x

dv

v

Adapted from a figure by Ellen Porter, Pacific Northwest National Laboratory.

Figure 4.4: CnC graph structure of the LULESH proxy application. Item collections are
represented as labels on edges rather than independent nodes in order to emphasize the
symmetry with the whiteboard sketch in �gure 4.3.

98

graph language, which is in turn tightly bound to a speci�c CnC implementation.

We introduce a modular code generation framework that is designed for supporting

multiple front-end graph representations and multiple back-end runtime targets for

translating a CnC graph speci�cation into application code.

3. Uni�ed developer API

While porting application code among the several CnC implementations is usually a

fairly straightforward process, it seems counterproductive to have such a level of

fragmentation in the CnC ecosystem—especially for implementations with compati-

ble host languages. We de�ne a C language API for use in CnC step and environment

code, allowing programmers to write application code that is compatible with any

supported C or C++ back-end runtime of the translator tool. See appendix E for a

full description of the API.

Our uni�ed CnC framework currently provides support for two di�erent runtime

backends: OCR [5] and the Intel CnC runtime (iCnC) [72]. This allows for a more straight-

forward performance comparison of CnC-OCR applications against a production-quality

CnC implementation (iCnC) on current x86-64 shared-memory and distributed-memory

systems. Providing multiple target runtimes also improves debuggability: If an application

works on iCnC but not CnC-OCR, the problem is likely somewhere in the CnC-OCR layer,

rather than in the logic of the user’s application.

As mentioned in section 4.3.1, the �nal API for our CnC framework diverged in some

ways from the patterns in previous CnC implementations. Most of these divergences were

motivated by restrictions in the OCR programming model. We give a summary of the four

major di�erences below.

Explicit Environment Pseudo-steps: To the best of our knowledge, all previous CnC

implementations used the following pattern at the top level in CnC applications: initialize

the graph, make a blocking call to await completion of the graph computation, and then

read the desired output data. However, OCR applications use a purely event-driven

99

model, where such blocking semantics are best avoided if possible. We determined that in

previous CnC implementations, the blocking semantics were simply an artifact of the CnC

application being embedded in a serial C/C++ program. In our framework, we instead split

the setup and teardown code into two pseudo-steps, thus avoiding the need for blocking

calls in the API. These pseudo-steps are denoted by the special identi�ers $initialize

and $finalize in the CnC graph and tuning DSLs.

Runtime Hooks for Memory Allocation: As explained in section 2.2.2, all data that

persists across more than one OCR task must be allocated within an OCR datablock;

therefore, we must provide an API abstraction for managing persistent item data. The

cncItemAlloc and cncItemFree functions are used for allocating memory for items, which

typically have a scope larger than a single CnC step. We also provide the cncLocalAlloc

and cncLocalFree functions to allow optimized allocation of step-local temporary data.

Opaque Data Items: As explained in section 2.2.2, OCR considers datablocks to be

completely opaque, simply doing byte-for-byte copies to relocate datablocks; therefore,

the items in our CnC programs are also assumed to be self-contained, trivially-copyable

objects. In contrast, iCnC automatically serializes/deserializes objects when transferring

items in distributed memory systems. The techniques introduced in chapter 2 also could

be applied in CnC applications to help work around this restriction for CnC-OCR.

Optional Static Data Dependencies: While some CnC implementations require all

step inputs to be declared statically [79], most previous CnC implementations provide a

mechanism for data-dependent gets; i.e., a computation step can request access to additional

CnC item instances based on data read from already-obtained items. While OCR requires

that all datablocks be acquired before a task begins execution, we provide a simple mecha-

nism in the graph DSL—the $when clause—to provide a static function (de�ned in terms of

instance tag components) to determine whether or not a particular input is required for a

given step instance. Note that while one previous CnC implementation explored a �exible

100

precondition model for inputs [80], this was in fact a hybrid approach allowing both static

and data-dependent input dependencies, not a way to support optional dependencies that

are determined statically. We found that the �exibility provided by the $when clause was

su�cient for the majority of our CnC applications; therefore, due to both implementation

restrictions and lack of demand, data-dependent gets are not supported in our framework.

4.3.5 Code Generation Support

For source code generation, we use Jinja2 [81], a well known Python-based source code

template framework. Although Jinja2 is typically used for generation of template-based

web pages, this template framework also works well for generating our CnC skeleton

projects from our source code templates written in C, GNU Make, and other languages.

We make heavy use of template inheritance, a key feature in Jinja2, in order to better

support multiple runtime backends. Jinja2 templates allow the declaration of named blocks,

which can later be overridden to specialize the template. For example, we use this feature

to provide a common make�le template for CnC projects across all runtime targets, while

allowing speci�c implementations to override blocks to add additional build targets, extra

compiler �ags, linker options, etc.

This �exible template framework allows us to reuse all of the templates for the templates

for the skeleton source code �les (which are runtime agnostic), leaving only the runtime-

speci�c API implementation �les to be de�ned when targeting a new backend runtime.

Our CnC framework system was designed from the start to support two di�erent runtime

backends—OCR [5] and Intel CnC (iCnC) [72]—and we heavily reuse template code to

generate CnC projects that target these two di�erent backends.

Table 4.2 gives a summary of the number of lines of code required to implement each

of our currently supported platform targets. These line counts can be used as a rough

estimation of the e�ort needed to add support for a new backend runtime. Note that all

implementations make heavy use of template inheritance. For example, the OCR x86-

64 distributed memory platform extends and specializes the shared memory platform

101

Common iCnC OCR

Base TG x86-64
Shared Distributed
Memory Memory

Source Code 458 734 1101 240 81 53
Make�les 57 86 0 53 58 21
Total 515 820 1101 293 139 74

Table 4.2: Line counts of template �les for the various CnC framework runtime backend
targets. All counts are measured in terms of logical software lines of code using UCC [82].

templates, which in turn extend and specialize the OCR base templates. All OCR and

iCnC targets also reuse the templates that are common across all CnC implementations;

however, since the majority of the common template code is used for generating the

runtime-agnostic application code skeleton, most of these templates are not extended by

the OCR or iCnC implementations. (The only exception is the base make�le template,

which is specialized for the platform-speci�c project builds.) The common template code

also provides some macro functions for common tasks, such as printing the variables for a

step tag, or generating a loop nest for processing a range of input items.

Note that the implementation of CnC-OCR for the Traleika Glacier (TG) hardware

simulator [83] is implemented purely in terms of OCR constructs—as per the OCR v1.1.0

speci�cation [84]—and thus will run correctly on any platform supporting OCR. (In

other words, the x86-64 specializations make optimizations that may be unsafe on other

platforms.) Similarly, the same iCnC code works for shared memory, distributed via MPI,

and distributed via raw TCP sockets. The only di�erence among the three iCnC targets is

their make�les, all three of which are included in the count in table 4.2.

For both CnC-OCR and iCnC projects, the runtime-agnostic common templates con-

stitute over 30% of a project’s template code. For the various CnC-OCR specializations,

the majority of the runtime-speci�c template code is contained in base templates, which

are extended by each of the specialized targets. The specialized templates for x86-64 and

102

TG need only provide item collection implementations and platform-speci�c make�le

con�gurations, since all of the remaining logic is contained in the base templates.

Past e�orts have added support for HCMPI and HPX-5 as alternative backend run-

times [85,86]. Since neither of these projects are actively maintained, accurate source code

line counts were not available for inclusion in table 4.2; however, both of these projects

required an amount of code in the specialized templates that is comparable to the iCnC

backend (i.e., less than 1000 logical lines of source code). We believe this supports a general

claim that our toolchain design allows for the addition of new runtime backends with only

a modest e�ort.

4.4 CnC Programming Example: Fibonacci Numbers

In this section, we give a simple example of programming an application in CnC. We cover

steps 1–3 from the work�ow described in section 4.3.3. Step 4 (debugging) is not discussed

in this thesis, but suggestions on debugging are available on the CnC framework wiki.

Step 5 (tuning) is discussed in section 4.6.

Our example CnC application will compute the nth Fibonacci number, using the tradi-

tional Fibonacci recurrence relation shown in equation (4.1).

Fib (n) =




0 n = 0

1 n = 1

Fib (n − 2) + Fib (n − 1) otherwise

(4.1)

4.4.1 Writing the CnC Graph Speci�cation

Based on equation (4.1), we will want at least two collections in our CnC application graph:

a step collection to compute each Fib (n) value in the recurrence relation, and an item

collection to store each of those values. We will call the step collection for computing the

values compute_fib, and the item collection for storing the values fib. The CnC graph

speci�cation for our Fibonacci numbers application is shown in listing 4.1.

103

1 $context { int n; };
2

3 [int *fib: i];
4

5 ($initialize: ()) -> (compute_fib:$rangeTo(0, #n));
6

7 (compute_fib: i)
8 <- [x @ fib: i-2]$when(i > 1),
9 [y @ fib: i-1]$when(i > 1)

10 -> [z @ fib: i];
11

12 ($finalize: ()) <- [fib: #n];

Listing 4.1: CnC graph speci�cation �le for computing Fibonacci numbers.

We now give a brief description2 of the syntax used to describe our CnC application.

Line 3 of listing 4.1 shows the declaration of our fib item collection, which stores integer

values identi�ed by the tag i. The step collection compute_fib is declared on line 7, with

its input relations on lines 8 to 9, and its output relation on line 10. The step collection

also has a single tag component, named i , which directly corresponds with the i in fib.

This correspondence is de�ned on line 10, which says that each (compute_fib: i) step

puts (i.e., produces) the corresponding [fib: i] item value. Lines 8 to 9 specify that each

(compute_fib: i) instance reads the item values [fib: i-2] and [fib: i-1] as input, but only

when i > 1. This conditional input relationship enables the base cases for n = 0 and n = 1

shown in equation (4.1).

The context declaration on line 1 of listing 4.1 speci�es the global parameters available

to the entire CnC graph computation. In this case, we have a single integer value n, which

represents the argument value for our Fib (n) computation. The $initializer pseudo-

step declaration on line 5 bootstraps the computation by prescribing the step instances for

(compute_fib: 0) through (compute_fib: n). The #n notation refers to the parameter n in

2 See appendix D for a complete description of the CnC graph DSL.

104

the graph context. The $finalize pseudo-step declaration on line 12 speci�es that the

desired output of the application is the value of [fib: #n], i.e., Fib (n).

4.4.2 Generating the CnC Project Skeleton

Assume that we have created a new directory for our CnC project, and saved the code from

listing 4.1 in a �le named Fibonacci.cnc within that directory. If we run our ucnc_t translator

script in the project directory,3 then the following �les are automatically generated (listed

here in lexicographical order):

• Fibonacci.c: Contains the skeleton functions for the $initializer and $finalizer.

• Fibonacci_compute_�b.c: Contains the skeleton function for compute_fib.

• Fibonacci_defs.h: A global header for the project, useful for things like de�nitions of

custom types used in your graph.

• Main.c: Contains the cncMain function, which is the entry point for all uni�ed CnC

applications. This has the same signature as, and generally corresponds with, the

traditional C/C++ main function.

• Make�le: A symbolic link to Make�le.x86.

• Make�le.x86: The platform-speci�c Make�le for building this uni�ed CnC application

on the shared-memory (x86-64) CnC-OCR platform.

• cnc_support: A directory containing the CnC runtime support modules. The CnC

application programmer needs neither read nor modify the source �les that are

generated in this directory.

This skeleton program can immediately be compiled an run (via make run); however,

the application gives no meaningful output since the skeleton functions have not yet been

modi�ed to do any meaningful computation.

3 There are no arguments required for the ucnc_t script. By default, the script looks for a .cnc �le in the
current directory (which is assumed to be the target CnC graph speci�cation), and assumes that CnC-OCR
shared memory (x86-64) is the desired target platform.

105

4.4.3 Fleshing Out the Project Skeleton

For this simple application, the CnC framework’s graph translator tool actually generates

all but a few lines of the needed code. The source code for all modi�ed �les is shown in

full in listings 4.2 to 4.4.

The two lines added in listing 4.2 verify that a command-line argument was given, and

then parses that argument, and sets the value as the graph parameter n. The line added in

listing 4.3 implements the Fibonacci recurrence relation function. Note that the conditional

expression only adds the optional inputs when i ≥ 2, as speci�ed in equation (4.1). Finally,

the printf statement added to the �nalization function in listing 4.4 simply prints the

computed result value for Fib (n). Note that each place in the skeleton code where we

needed to add some custom code was denoted in the auto-generated code with a TODO

comment.

Our example CnC application is now complete! The project can be compiled and run,

and it will display the correct value for Fib (n), barring out-of-range inputs (e.g., n < 0) or

integer over�ow. The following is sample output for computing Fib (5) and Fib (8):

$ make run 5
Extracting WORKLOAD_ARGS from the command-line
WORKLOAD_ARGS used: '5'
cd ./install/x86 && \

OCR_CONFIG=generated.cfg \
./Fibonacci 5

Fibonacci(5) = 5
$ make run 8
Extracting WORKLOAD_ARGS from the command-line
WORKLOAD_ARGS used: '8'
cd ./install/x86 && \

OCR_CONFIG=generated.cfg \
./Fibonacci 8

Fibonacci(8) = 21

106

1 #include "Fibonacci.h"
2

3 int cncMain(int argc, char *argv[]) {
4 // Create a new graph context
5 FibonacciCtx *context = Fibonacci_create();
6

7 // TODO: Set up arguments for new graph initialization
8 // Note that you should define the members of
9 // this struct by editing Fibonacci_defs.h.

10 FibonacciArgs *args = NULL;
11

12 // TODO: initialize graph context parameters
13 // int n;
14 CNC_REQUIRE(argc >= 2, "Required argument N for Fibonacci(N)\n");
15 context->n = atoi(argv[1]);
16

17 // Launch the graph for execution
18 Fibonacci_launch(args, context);
19

20 // Exit when the graph execution completes
21 CNC_SHUTDOWN_ON_FINISH(context);
22

23 return 0;
24 }

Listing 4.2: Source code for Main.c. The highlighted lines were added manually, whereas
all other lines were auto-generated.

107

1 #include "Fibonacci.h"
2

3 /**
4 * Step function definition for "compute_fib"
5 */
6 void Fibonacci_compute_fib(cncTag_t i, int *x, int *y, FibonacciCtx *ctx) {
7 //
8 // OUTPUTS
9 //

10

11 // Put "z" items
12 int *z = cncItemAlloc(sizeof(*z));
13 /* TODO: Initialize z */
14 *z = (i>1) ? *x + *y : i;
15 cncPut_fib(z, i, ctx);
16

17 }

Listing 4.3: Source code for Fibonacci_compute_�b.c. The highlighted line was added
manually, whereas all other lines were auto-generated.

1 #include "Fibonacci.h"
2

3 void Fibonacci_cncFinalize(int *fib, FibonacciCtx *ctx) {
4 /* TODO: Do something with fib */
5 printf("Fibonacci(%d) = %d\n", ctx->n, *fib);
6 }
7

8 void Fibonacci_cncInitialize(FibonacciArgs *args, FibonacciCtx *ctx) {
9 { // Prescribe "compute_fib" steps

10 s64 _i;
11 for (_i = 0; _i <= ctx->n; _i++) {
12 cncPrescribe_compute_fib(_i, ctx);
13 }
14 }
15

16 // Set finalizer function’s tag
17 Fibonacci_await(ctx);
18 }

Listing 4.4: Source code for Fibonacci.c. The highlighted line was added manually, whereas
all other lines were auto-generated.

108

4.5 CnC Program Hierarchy

In this section, we present a prototype system for automatic inference of hierarchical

structures within a CnC dependence graph, used for applying hierarchy-based optimiza-

tions. We assert that a hierarchical organization is essential for a program to achieve good

performance when running at scale. This assertion is supported by past work [29, 87].

While one can hand-instrument such a hierarchical structure in a program, automatic

inference of legal and useful hierarchies eases the burden on the programmer.

For a given CnC program, we automatically infer the set of legal hierarchies by itera-

tively applying restricted transformations on the intermediate graphs. While the set of

all legal hierarchies holds theoretical interest, it is only possible to exhaustively examine

all possible hierarchy options for the most trivial CnC application graphs; therefore, our

search can be guided by a heuristic metric, which is used to identify potentially bene�cial

hierarchies. Possible metrics include the following:

1. Data locality (communication avoidance)

2. Improving parallel task prescription fanout

3. Item-lifetime scoping (ease of memory management)

In this work, we use data locality as the basis for our heuristic. To evaluate the e�ective-

ness of our metrics in selecting useful hierarchies, we manually transform several copies

of the input program to correspond with the granularity of the selected hierarchies.This

transformation would be done automatically by a more mature version of the toolchain.

We then compare the relative performance of the di�erent versions, which should exhibit

a similar trend to the heuristic metric scores.

4.5.1 CnC Collection Granularities

A CnC application is made up of a set of step collections, and a set of item collections.

Although the collections have a de�nite granularity in their de�nitions in the graph, a

sophisticated CnC compiler or runtime might choose to use di�erent granularities than

109

those given in the program source code for the actual execution of the program. Optimizing

compilers that perform inlining, loop optimizations and data layout optimizations serve a

similar function for traditional (non-graph-based) code.

Assume we have a simple CnC graph consisting of only two step collections, X and

Y, each with a single tag component i. Using the notation from section 4.1.4, we would

refer to instances from these collections as (X: i) and (Y: i), respectively. An optimizing CnC

compiler could perform any of the following granularity-related transformations on these

two step collections:

• (X: i′) (Y: i): Chunk instances of step collection X, but do nothing to Y.

• (X: i) (Y: i′): Chunk instances of step collection Y, but do nothing to X.

• (X: i′) (Y: i′): Chunk corresponding instances of both X and Y identically.

• (X: i′) (Y: i′′): Chunk instances of step collection X with one chunking factor, and

chunk instances of step collection Y with a di�erent chunking factor.

• (XY: i): Merge pairs of corresponding instances from step collections X and Y.

The compiler could also combine these transformations to perform more complex

optimizations. Instances from two collections could be merged and then chunked, such as

transforming (X: i) and (Y: i) from the example above into (XY: i′). Instances from a single

collection could be chunked at multiple levels or across multiple tag components, such

as chunking instances from a collection (Z: i, j) into (Z: i′, j′′). Of course, these transforma-

tions are only legal if all dependences in the original program are preserved, as per the

fundamental theorem of dependence [88].

4.5.2 CnC Hierarchy De�ntions

We will now introduce a set of terms and de�nitions that we will use throughout the

remainder of this thesis.

Homogeneous composition: The coarsening of a single collection in the graph by

composing instances across the value of a single tag component. The transformation from

110

(X: i) to (X: i′) is an example of a homogeneous composition. If a single tag component is

totally composed—i.e., all instances di�erentiated by that tag component are merged—then

that tag component is eliminated. For example, the transformation from (X: i) to (X) totally

composes the tag component i.

Heterogeneous composition: The coarsening of a pair of collections in the graph by

composing pairs of corresponding instances from the two collections, resulting in a new

composite step collection. The transformation of (X: i) and (Y: i) into (XY: i) is an example

of a heterogeneous composition.

Hierarchy space: The union of all possible granularity choices for a CnC program.

It constitutes a join-semilattice, with the granularity choices as the elements, and the

homogeneous and heterogeneous composition options forming the partial ordering among

the elements. The greatest element, or >, is the singleton graph, where the entire CnC

graph is composed into a single step instance. Since there exists a serial schedule for every

dynamic CnC graph (although the serialization might not be known statically), it follows

that such a singleton step exists for all graphs. Although the exact encoding of the step

might di�er, all encodings of the singleton step must be functionally equivalent due to the

determinacy guarantees of CnC [89].

Figure 4.5 illustrates the hierarchy space of the simple CnC program discussed in

section 4.5.1. Even for such a simple program, explicitly representing homogeneous

composition options such as (Y: i′) and (Y: i′′) signi�cantly complicate the graph, even if

multi-level chunking is not considered. In order to maintain simplicity and readability of

such graphical representations of CnC hierarchy concepts, we assume that a homogeneous

composition edge always represents the full range of corresponding legal transformations,

up to and including totally composing a given tag component. Figure 4.5(a) demonstrates

this simpli�ed graphical representation.

111

X: i
X

X: i′

Y: i
Y

Y: i′

Y: i″

XY

XY: i′

XY: i

(a) Hierarchy space representation including many homogeneous composition options.

X: i X

Y: i
Y

XY
XY: i

(b) Simpli�ed hierarchy space representation.

Figure 4.5: Two samples of graphical representation for the CnC hierarchy space of a simple
CnC graph, corresponding to the example in section 4.5.1. The step granularity grows
coarser from left to right. The heavy blue edges represent homogeneous compositions
across a single tag component, whereas the green edges (with • join points) represent
binary heterogeneous compositions of step collections. The simpli�ed representation used
in (b), which includes only total homogeneous compositions, is used throughout the
remainder of this chapter.

112

Hierarchy: A set of valid granularity choices for the item and step instances in a CnC

program. Note that each collection may have multiple levels of granularity choices in a

given hierarchy, analogous to multi-level data tiling. In other words, each minimal element

in the semilattice is dominated by exactly one maximal element in the hierarchy. This

property follows from the intuition that any given collection that is coarsened through

some set of compositions will still be a single collection after the coarsening transforma-

tions—although multiple collections from the original graph may comprise the resulting

coarser-grained collection. More precisely, for any CnC hierarchy H in a hierarchy space

(semilattice) L:4

D ≡ {x ∈ H | ∀y ∈ H (y � x ∨ y ‖ x)} (4.2)

M ≡ {x ∈ L | ∀y ∈ L (x � y ∨ x ‖ y)} (4.3)

∀x ∈ M (∃!y ∈ D (x � y)) (4.4)

Full hierarchy: A hierarchy in which no additional elements from the hierarchy space

can be legally included (hence being full). In other words, for a full CnC hierarchy H in

a heirarchy space (semilattice) L, equations (4.2) to (4.4) all apply, but with an additional

constraint to ensure that any elements from the hierarchy space that are not included in

the hierarchy must con�ict with an element in the hierarchy:

x con�icty ≡ x ‖ y ∧ ∃m ∈ L (m ≺ x ∧m ≺ y) (4.5)

∀x ∈ L (x < H ⇐⇒ ∃y ∈ H (x con�icty)) (4.6)

Hierarchy slice: A single granularity choice for each step and item collection in a

CnC program. Note that a hierarchy slice is also a trivial case of a hierarchy, where each

collection has a single granularity rather than simultaneously having multiple levels of

granularity choices. In other words, for a CnC hierarchy slice H in a hierarchy space

4 Note that x ‖ y means that elements x and y are incomparable, i.e., x � y ∧y � x [60]. Additionally, ∃!z
denotes unique existential quanti�cation of z, i.e., “there exists exactly one z” [90].

113

C: i

T: i, r

T: i

U: i, r, c

U: i, r

U: i, c

CTUCTU: i

CT: i

TU: i
U: i

TU: i, r

TU: i, rc

Figure 4.6: The hierarchy space for all computation steps in the Cholesky decomposition
CnC kernel.

(semilattice) L, equations (4.2) to (4.4) all still apply, but with the addition of one more

constraint that ensures each collection has a single granularity:

∀x ∈ L (x ∈ H =⇒ x ∈ D) (4.7)

4.5.3 Algorithmically Building Hierarchies

The equations in section 4.5.2 are useful for clearly de�ning the CnC hierarchy concepts;

however, since the equations are framed as declarative logic expressions, it is not immedi-

ately obvious how one would e�ciently derive the hierarchy space or the di�erent types

of hierarchy from an input CnC application. We now introduce a set of precise algorithms

for CnC hierarchy derivations. These algorithms form the basis for the hierarchy-related

tools implemented in our CnC toolchain.

To better illustrate the concepts from section 4.5.2, we will use a hierarchical version

of the Cholesky decomposition kernel. Listing 4.5 shows the hierarchy space of the CnC

graph speci�cation for this application, and �gure 4.6 shows the corresponding hierarchy

space semilattice.

114

1 $context { int numTiles, tileSize; };
2

3 // Matrix tiles
4 [double MC[]: i];
5 [double MT[]: i, r];
6 [double MU[]: i, r, c];
7

8 // Sequential Cholesky step
9 (C: i)

10 <- [data1D @ MU: i, i, i]
11 -> [MC: i+1];
12

13 // Trisolve step
14 (T: i, r)
15 <- [dataA1D @ MU: i, r, i],
16 [dataB1D @ MC: i+1]
17 -> [MT: i+1, r];
18

19 // Update step
20 (U: i, r, c)
21 <- [dataA1D @ MU: i, r, c],
22 [dataB1D @ MT: i+1, r],
23 [dataC1D @ MT: i+1, c]
24 -> [MU: i+1, r, c];
25

26 // Bootstrap computation
27 ($initialize: ())
28 -> [MU: 0, $range(#numTiles), $range(#numTiles)],
29 (kComputeStep: ());
30

31 // Check results and print checksum
32 ($finalize: ()) <- [MC: #numTiles];

Listing 4.5: Graph speci�cation for a Cholesky decomposition kernel in CnC. Note that i
represents an iteration number, r represents a matrix tile row, and c represents a matrix
tile column.

115

There are many possible transformations that we could apply at each step of the

algorithm; however, for simplicity we restrict our model with the following choices and

assumptions:

• We include only two types of transformations: homogeneous compositions across a

single tag component of a collection, and heterogeneous compositions of disjoint

collections. Future work may extend the foundational framework presented here

with additional transformations and heuristics.

• All step-collection compositions in our hierarchy form new step-like collections.

A broader de�nition of the CnC hierarchy space could also include graph-like col-

lections, which may exhibit coroutine-like behavior. While such an abstraction

might have useful applications for programmers reasoning about CnC graphs, it

does not readily translate into a coarser-grained representation of the input graph.

For this reason, we choose to only allow compositions that can be represented as

coarser-grained steps in an optimized output graph.

• The programmer writes the application code at the �nest granularity of interest

for execution. This input code could already be tiled in some way, or it could be

an element-wise computation. The CnC runtime does not distinguish between the

two cases. Computation steps and data items are opaque to the runtime, meaning

that any input program appears identical to an element-wise computation from the

toolchain’s perspective.

• All dependence functions are included in the input. These might be provided by the

user, or automatically inferred using traditional dependence-analysis techniques [88].

These functions include the produces, consumes, prescribes and prescribed-by rela-

tionships for steps, whereas the functions for items include the produced-by and

consumed-by relationships.

• The item collection structure is symmetric with the step collection structure, meaning

that we can build a hierarchy for the step collections, and apply the same hierarchy

to the item collections.

116

• If two tag components in di�erent collections have the same name, then they must

have a direct correspondence; i.e., when composing two collections, tag components

with the same name may always be merged. This guarantee can be achieved by re-

naming distinct tag components before applying the hierarchy derivation algorithm.

Deriving the Hierarchy Space

Algorithm 4.1 describes the process used to derive the hierarchy space for a CnC program.

Figure 4.6 was derived from the Cholesky domain speci�cation using this algorithm. The

intuition of the algorithm is simple: starting from the base collections (i.e., the input

graph’s elements), try adding a homogeneous composition for each tag components of

each element, and try adding a heterogeneous composition for each element with each

other element.

A collection can be homogeneously composed across a tag component if and only if

removing that tag component from all dependence functions does not result in an indirect

cyclic dependence. For example, (T: i, r) cannot be composed across i to form (T: r) because

there is a con�icting input/output cycle: (T: 1, r) → (U: 1, r, 2) → (T: 2, r), which reduces

to (T: r) → (U: r, 2) → (T: r) when the i components of the tags are removed. This is the

basis of the can_compose_across method on line 10 of algorithm 4.1.

Similarly, two collections can be heterogeneously composed if and only if composing

the two collections does not result in an indirect cyclic dependence. For example, (C: i)

and (U: i) cannot be merged into a new collection (CU: i) because there is a con�icting

input/output cycle: (C: i) → (T: i) → (U: i), which becomes (CU: i) → (T: i) → (CU: i)

after the heterogeneous composition. This is the basis of the can_compose_with method

on line 15 of algorithm 4.1.

The computational complexity of algorithm 4.1 is O (|L|2); i.e., it is quadratic in the

number of elements in the hierarchy space. The space complexity of the algorithm is

also O (|L|2), as a hierarchy space may have O (|L|2) edges in the case when virtually all

compositions among elements are unrestricted. Note that the hierarchy space’s element

117

Input: CnC domain graph with complete dependence functions.
Result: Join-semilattice comprising the hierarchy space for the input graph.

1 let BaseCollections be the set of all step collections in the input graph.
2 let HSpace be an empty data structure representing a CnC hierarchy space.
3 letWorklist be an empty queue of step elements to be processed.
4 let Processed be an empty list of step elements.
5 HSpace .add_all(BaseCollections)

6 Worklist .enqueue_all(BaseCollections)

7 while notWorklist .empty() do
8 Step ←−Worklist .dequeue()

// Homogeneous compositions

9 foreach i in Step .tag_components() do
10 if Step .can_compose_across(i) then
11 Step′ ←− Step .compose_across(i)

12 HSpace .add_derivation(Step, Step′)

13 Worklist .enqueue(Step′)

// Heterogeneous compositions

14 foreach X ∈ Processed do
15 if X .can_compose_with(Step) then
16 XStep ←− X .compose_with(Step)

17 HSpace .add_derivation(X , Step, XStep)

18 Worklist .enqueue(XStep)

// Record current element as processed

19 Processed .add(Step)

20 return HSpace

Algorithm 4.1: Hierarchy space derivation from a CnC graph.

118

count always dominates the tag component count of the individual elements. This is

because each of those tag components are composed to create new elements in the hierarchy

space; i.e., any element with n tag components will have at least n elements above it in the

hierarchy space. Although the hierarchy space element count is exponential in relation to

the number of base collections, the collection count is typically a small number in practice.

Deriving Hierarchy Slices

Algorithm 4.2 describes the process used to derive all hierarchy slices for a CnC program

from that program’s hierarchy space. The algorithm is easily described in terms of equa-

tions (4.2) to (4.4). We recursively search for slices by choosing to include or not include

each element from the hierarchy space, adding elements to the partial slice that do not

cause a violation of equation (4.2) (i.e., the base collection sets of the current slice and

the new element do not intersect), with a base case yielding a complete slice whenever

equation (4.4) is satis�ed (i.e., all base collections in the hierarchy space are included in

the current slice’s base collection set).

The space complexity bound is proportional to the total number of hierarchy slices

derived, or O (|M | · |L|C |M |), where |L| denotes the number of elements in the hierarchy

space, and |M | denotes the number of elements in the set de�ned in equation (4.3), which is

simply the number of base collections. This is bound deduced from the fact that no slice can

consist of more than |M | elements from L. If implemented naïvely, the algorithm 4.2 has

two recursive branches for each element in the hierarchy space, resulting an exponential

time complexity; i.e., O (2|L|). However, the algorithm can be optimized with dynamic

programming, using the current index in the Elements list and the base collections set of the

current partial slice as the memoization parameters. With this optimization, we potentially

have one call per 〈Index , Set〉 pair. Since the number of possible base collection sets is

O (2|M |), the computational complexity in the optimized case is O (|L| · 2|M |). Since M is

typically a very small subset of the elements of L, this optimization is important in practice.

119

Input: The hierarchy space for a CnC application.
Result: The list of all hierarchy slices in the hierarchy space.

1 let HSpace be the input data structure representing a CnC hierarchy space.
2 let Slices be an empty list.
// Recursive function for finding all hierarchy slices

3 function �nd_slices(Slice, Elements) :
4 if not Elements .empty() then
5 X ←− Elements .first()

6 Elements′ ←− Elements .rest()

// Don’t include element X, and recur

7 �nd_slices(Slice, Elements′)

// Try to include element X and recur

8 if X .base_collections() ∩ Slice .base_collections() = ∅ then
9 Slice′ ←− Slice ∪ {X }

10 if Slice′ .base_collections() = HSpace .base_collections() then
// Found a complete slice

11 Slices .add(Slice′)

12 else // The current slice is incomplete, keep searching

13 �nd_slices(Slice′, Elements′)

// Start the recursive search

14 �nd_slices(∅, HSpace .elements())

15 return Slices

Algorithm 4.2: Hierarchy slice derivation from a CnC hierarchy space. The result of
algorithm 4.1 can be used as input for this algorithm.

120

Deriving Full Hierarchies

Algorithm 4.3 describes the process used to derive all full hierarchies for a CnC program

from that program’s hierarchy space. The basic intuition behind the algorithm is that each

full hierarchy represents a single path from the top element down to each base element.

The algorithm is recursive: each element aggregates the paths of the elements directly

below it in the semilattice and prepends itself to each path, but heterogeneous compositions

also require aggregating all possible combinations of the two sets of paths comprising the

composition. Figure 4.7 shows all six of the full hierarchies that can be derived from the

Cholesky graph’s hierarchy space.

While the complexity of generating all the full hierarchies is very high, we can compute

the corresponding count much more e�ciently. Algorithm 4.4—which is structurally very

similar to algorithm 4.3—computes the total number of full hierarchies in a hierarchy

space. Note the symmetry between the Cartesian product computed on lines 7 to 10 of

algorithm 4.3, and the product calculated in lines 6 to 8 of algorithm 4.4.

Algorithm 4.4 can be optimized by memoizing the sub-result of counting the hierarchy

options under each element. This reduces the total number of recursive calls to O (|L|),

with one table lookup for each edge in the semilattice. The result is a O (|L| + |E |) compu-

tational complexity (where |E | is the number of edges in the semilattice), and O (|L|) space

complexity.

We can apply a similar optimization strategy to algorithm 4.3 by memoizing the sub-

hierarchy results for each element, and reusing immutable sub-sequences of hierarchy

elements to compose each of our full hierarchy results. This gives us a time complexity

that is proportional to the total number of elements in each full hierarchy, which is a

tight lower bound if we expect to process each element in each full hierarchy. The space

complexity is similarly dominated by the memory used to store the generated results.

121

Input: The hierarchy space for a CnC application.
Result: The list of all full hierarchies in the hierarchy space.
// Recursive function for finding all full hierarchies

1 function �nd_full_hierarchies(Element) :
2 let FullHierarchies be an empty list.
3 foreach X in Element .homogeneous_decompositions() do
4 foreach HX in �nd_full_hierarchies(X) do
5 FullHierarchies .add(HX .prepend(Element))

6 foreach 〈X ,Y 〉 in Element .heterogeneous_decompositions() do
// Compute Cartesian product of X and Y hierarchies

7 foreach HX in �nd_full_hierarchies(X) do
8 foreach HY in �nd_full_hierarchies(Y) do
9 HXY ←− HX .concat(HY)

10 FullHierarchies .add(HXY .prepend(Element))

11 if FullHierarchies .empty() then
// No decompositions (base case)

12 FullHierarchies .add(empty_seq().prepend(Element))

13 return FullHierarchies

// Start the recursive search

14 let Top be the top element from the hierarchy space semilattice.
15 return �nd_full_hierarchies(Top)

Algorithm 4.3: Derivation of full hierarchies from a CnC hierarchy space. The result of
algorithm 4.1 can be used as input for this algorithm. Note that the concat and prepend

operations are functional (i.e., they return a new sequence).

122

(a) C: i

T: i, r T: i

U: i, r, c U: i, c

CTUCTU: i

CT: i

U: i

(b) C: i

T: i, r T: i

U: i, r, c U: i, r

CTUCTU: i

CT: i

U: i

(c)

C: i

T: i, r

U: i, r, c U: i, c

CTUCTU: i

TU: iTU: i, rc

(d)

C: i

T: i, r

U: i, r, c U: i, r

CTUCTU: i

TU: iTU: i, r

(e)

C: i

T: i, r T: i

U: i, r, c U: i, c

CTUCTU: i

TU: i

U: i

(f)

C: i

T: i, r T: i

U: i, r, c U: i, r

CTUCTU: i

TU: i

U: i

Figure 4.7: The six full-hierarchy variants of the Cholesky CnC graph speci�ed in listing 4.5,
corresponding to the hierarchy space in �gure 4.6. Note that (a)–(b) di�er from (c)–(f) in
the choice of decomposition from (CTU: i), and (c)–(d) di�er from (e)–(f) in the choice of
decomposition from (TU: i). For each of the hierarchy pairs (separated by horizontal rules),
the two hierarchies di�er based on their choice of including either (U: i, r) or (U: i, c).

123

Input: The hierarchy space for a CnC application.
Result: The total number full hierarchies in the hierarchy space.
// Recursive function for counting all full hierarchies

1 function count_full_hierarchies(Element) :
2 Count ←− 0
3 foreach X in Element .homogeneous_decompositions() do
4 Count ←− Count + count_full_hierarchies(X)

5 foreach 〈X ,Y 〉 in Element .heterogeneous_decompositions() do
6 CX ←− count_full_hierarchies(X)

7 CY ←− count_full_hierarchies(Y)

8 Count ←− Count +CX ×CY

9 if Count = 0 then
// No decompositions (base case)

10 Count ←− 1

11 return Count

// Start the recursive count

12 let Top be the top element from the hierarchy space semilattice.
13 return count_full_hierarchies(Top)

Algorithm 4.4: Counting the full hierarchies in a CnC hierarchy space. The result of
algorithm 4.1 can be used as input for this algorithm.

124

Input: The list of all full hierarchies for a CnC application.
Result: The set of all hierarchies in the hierarchy space.

1 let FullHierarchies be the input list of all full hierarchies.
2 Hierarchies ←− ∅

// Recursive function for finding all hierarchies

3 function �nd_hierarchies(Hierarchy, Elements) :
4 if not Elements .empty() then
5 X ←− Elements .first()

6 Elements′ ←− Elements .rest()

// Include element X, and recur

7 �nd_hierarchies(Hierarchy, Elements′)

// Try removing element X

8 if Hierarchy .can_remove(X) then
9 Hierarchy′ ←− Hierarchy \ {X }

// Check if this hierarchy has already been seen

10 if Hierarchy′ < Hierarchies then
// Record this hierarchy and recur

11 Hierarchies ←− Hierarchies ∪ {Hierarchy′}

12 �nd_hierarchies(Hierarchy′, Elements′)

// Start the recursive search

13 foreach FH in FullHierarchies do
14 �nd_hierarchies(FH, FH .elements())

15 return Hierarchies

Algorithm 4.5: Hierarchy derivation from full CnC hierarchies. The output of algo-
rithm 4.3 can be used as input to this algorithm.

125

Deriving All Hierarchies

Algorithm 4.5 describes the process used to derive all hierarchies for a CnC program from

that program’s full hierarchies.

The can_remove operation used on line 8 of algorithm 4.5 means that removing the

given element from the current hierarchy would not cause the resulting set to violate

equation (4.4). This can be e�ciently checked if the base collections associated with each

element in the hierarchy are precomputed, and we track the current element count for

each base collection. If removing an element would cause a base collection counter to

hit zero, then that element cannot be removed. Unfortunately, this algorithm can yield

duplicate results as �nd_hierarchies is applied to each of the full hierarchies, which forces

us to deduplicate the output using a set. If the hierarchies are represented as bitsets (with

each bit corresponding to an index in the Elements list), then membership in the results

set is easy to check; however, this implies that the set update operation on line 11 has a

complexity proportional to |L|. This leads to a super-exponential compute complexity. The

space complexity bound is also exponential, since the worst-case set of result hierarchies

is similar to the power set of the elements of L.

Table 4.3 lists the element counts in the results of the algorithms in this section when

run on our Cholesky example graph. These results can be reproduced via the Cholesky.py

script included with the hierarchical Cholesky example in the CnC Framework repository.5

The complexity of computing all hierarchies compared with the other hierarchy-related

algorithms is demonstrated by the total hierarchy count, which is two orders of magnitude

larger than the result set size of any of the other algorithms described in this section.

Table 4.4 shows some results for how hierarchy choices can impact performance. For

these results, we used each of the possible hierarchy slices for the Cholesky application,

and used the hierarchy information to distribute the steps across an 8-node cluster. Items

were co-located with their producer steps. The di�erent hierarchy slice choices resulted

in vastly di�erent performance, with execution times ranging from 3.2 seconds to over a

5 https://github.com/habanero-rice/cnc-framework/blob/hierarchy2016/examples/hierarchy/Cholesky/

https://github.com/habanero-rice/cnc-framework/blob/hierarchy2016/examples/hierarchy/Cholesky/

126

Count

Hierarchy Base Collections 3
Hierarchy Space Elements 13
Full Hierarchies 6
Hierarchy Slices 17
All Hierarchies 1257

Table 4.3: Summary of sizes of the several classes of hierarchies, derived by applying
algorithms 4.1 to 4.5 to our Cholesky example program graph.

Hierarchy Slice Run-time

(CT: i) + (U: i, c) 3.2 seconds
(C: i) + (T: i, r) + (U: i, c) 5.6 seconds
(CT: i) + (U: i, r) 9.0 seconds
(CTU:) 41.6 seconds
(C: i) + (T: i, r) + (U: i) 60.3 seconds

Table 4.4: Performance results for a selection of the generated hierarchy slices for our
Cholesky application. The hierarchy information was used for determining distribution in
an 8-node cluster. The input matrix was 8100x8100, with items tiled at 50x50. All items
were co-located with their producer steps.

minute. We feel that there is a great deal of potential for more applications of hierarchy in

CnC and other programming models.

4.6 CnC Application Tuning

Programming directly to OCR requires using a very verbose, low-level C API. The verbosity

of the API makes it di�cult to experiment with di�erent tuning strategies. Additionally,

the separation of concerns in OCR is at more of a conceptual level than at a source-code

level, since tuning hint code is embedded within the application code. The fact that the

tuning hint code is sprinkled throughout the application source code makes it di�cult to

get a big-picture view of the tuning strategy being employed in an OCR program.

127

Fortunately, we can still get the best of both worlds. By using CnC on top of OCR, we

get the expressiveness and clean separation of concerns provided by CnC, while still being

able to take advantage of the runtime features and design in OCR.

Whereas OCR hints are speci�ed inline throughout the application code, the CnC-

OCR tunings are speci�ed in a completely separate �le. We believe this provides a better

separation of concerns during the development process, and also makes it easier to get a

big-picture view of an application’s tunings (since all the tunings are in one place). We

believe this is an important advantage available through higher-level abstractions built on

top of OCR.

In this work, we demonstrate the utility of CnC as a high-level language on OCR

for productivity and performance tuning. We de�ne a set of �ve tuning annotations for

CnC-OCR, describe the implementation of runtime-support for these tuning hints within

OCR, and analyze the performance impact of the tuning hints on several CnC kernels. Our

�ve tuning hints are as follows:

1. Distribution functions: Declare the a�nity of the instances in a step or item

collection as a function of the instance’s tag components. (The a�nity value typically

corresponds to an MPI rank.)

2. Step a�nity with input: A more declarative option for step instance a�nities.

Rather than declaring an explicit function, the instance can be a�nitized to the same

location as one of its input items.

3. Step priority: Give step instances priority weights, declared as a function of the

step instance’s tag components.

4. Scheduler throttling: Partition step collections into stoker steps, which create

more work, and quencher steps, which complete some work. The stoker steps are

preferred for stealing, whereas the quencher tasks are preferred for local execution.

128

5. Item collection dense mapping: Declare a mapping from an item collection’s

instance tags onto a dense array, allowing for more e�cient storage and lookup.6

We also demonstrate the productivity boost in performance tuning—ascribed to our

separation of concerns between the tuning and domain spec—provided by the ability

to mix in several di�erent tuning speci�cations with a single domain speci�cation, and

quickly switch among combinations of tunings to �nd an ideal con�guration on a given

platform or for a speci�c workload.

Finally, since our code-generation framework for CnC-OCR tuning was designed

to support multiple targets, we have implemented support for running our CnC-OCR

applications with both OCR and Intel CnC as compatible back-end runtime systems. For

a subset of tunings that are available in both CnC-OCR and Intel CnC, we compare and

contrast the performance results for application tunings.

4.6.1 Tuning Evaluation

We now demonstrate the bene�ts of our external tuning language by showing the large

performance deltas between di�erent tunings of the same application. We also compare

the performance of the CnC-OCR version with an existing tuned version using Intel CnC.

Additional tuning results for CnC-OCR are available in past work [91].

We use the Smith-Waterman kernel for this demonstration. The domain speci�cation

for this kernel is shown in listing 4.6, and the tuning speci�cation is shown in listing 4.7.

This tuning speci�es that the items should be distributed row-block-cyclic, with each

block consisting of 16 rows of the item values (where each item contains a tile of scores).

Figure 4.8 shows the distributed performance of the Smith-Waterman kernel for both Intel

CnC and CnC-OCR using a custom distribution tuning. By default (if no tuning is given),

the items are distributed round-robin across the ranks based on the �nal component

in the item’s tag. For Smith-Waterman, the last tag component j index, which would

6 In the general case, item collections are backed by a hashtable because the item collection is not
guaranteed to be dense with regard to the tuple space of its instances’ tags.

129

1 2 4 8
Node Count

0

10

20

30

40

50
Av

er
ag

eE
xe

cu
tio

n
Ti

m
e

(se
c)

13.4

115.4 141.5 45.7

13.1
10.8

7.6 6.0
11.2

7.2 6.8 5.4

CnC-OCR Default CnC-OCR Row-Block iCnC Row-Block

Figure 4.8: Smith-Waterman distributed tuning performance. Each input sequence has
a length ≈200k, with tiles of size 177 × 153 and 1138 × 1322 total tiles. The distribution
tuning is shown in listing 4.7.

1 [int above[] : i, j];
2 [int left[] : i, j];
3 [SeqData *data : ()];
4

5 (swStep: i, j)
6 <- [data: ()],
7 [above: i, j] $when(i > 0),
8 [left: i, j] $when(j > 0)
9 -> [below @ above: i+1, j],

10 [right @ left: i, j+1],
11 (swStep: i+1, j) $when(i+1 < #nth);

Listing 4.6: Domain speci�cation for the
Smith-Waterman kernel.

1 [above]: {
2 distfn: (i / 16) % $RANKS
3 };
4

5 [left]: {
6 distfn: (i / 16) % $RANKS
7 };
8

9 (swStep): {
10 placeWith: above
11 };

Listing 4.7: Distributed tuning speci�-
cation for the Smith-Waterman kernel.

130

result in a column-cyclic distribution. We see that the row-block distribution results in

much better performance than the naïve default distribution. This is due to the increased

locality, and thus decreased network-communication overhead, a�orded by the block-

cyclic distribution. The fact that it was possible to get this large performance gain over

the default simply by adding a few simple lines of code in our declarative tuning language

obviously demonstrates the importance of performance-tuning functionality. However,

the fact that we did not have to modify any of the existing application code, and that the

tuning strategy is available as a stand-alone �le (separate from the core computation logic

of the application) is another powerful bene�t.

4.7 Productivity in CnC-OCR

One way that CnC-OCR increases productivity is through code generation. By eliminating

boilerplate code and generating statically-typed interfaces for the user’s CnC domain

speci�cation, CnC-OCR eliminates a lot of the boilerplate and general verbosity that is

typically present in an application written directly in OCR. As shown in table 4.5, the

amount of user code in a CnC-OCR project—including the graph DSL code—is much

less than an equivalent project written directly in OCR. Furthermore, since the CnC-OCR

toolchain actually generates some of the user-code automatically as part of the skeleton

project, the amount of user code can be argued to be less; e.g., we only had to add 4 lines

to the generated code for the Fibonacci numbers example application in section 4.4, in

addition to the code for the graph speci�cation.

Cholesky Smith-Waterman

Base OCR 492 314
CnC-OCR 171 164
Reduction 65% 47%

Table 4.5: Comparison of Logical Lines of Code counts between the base OCR and CnC-
OCR implementations of two kernels. These code counts were measured with UCC [82].

131

1 2 4 8 16
Number of Worker �reads

0

1

2

3

4

5
Av

er
ag

eE
xe

cu
tio

n
Ti

m
e

(se
c)

3.98

2.01

1.07

0.58
0.38

3.77

2.03

1.12

0.68 0.68

5.03

2.54

1.37

0.73
0.44

Figure 4.9: Single-node scaling with Cholesky, a 3000x3000 matrix with 50x50 tiles. Results
are for Intel CnC, CnC-OCR, and OCR implementations of Cholesky.

In addition to the general reduction in lines of code, the static type information provided

through CnC-OCR’s code generation yields similar productivity gains to those from the

ocxxr API; however, rather than using C++ templates, custom code is generated based on

the type information derived from the user’s domain speci�cation.

These productivity bene�ts come with little overhead. As shown in �gure 4.9, a carefully

designed CnC-OCR application can meet or even beat the performance of a hand-coded

OCR version. In this case, the increased performance can be attributed to the high-level

abstractions provided by CnC-OCR, which allow for a more complex (but more e�cient)

coordination among tasks, whereas the hand-coded version opts for a simpler (but less

performant) solution for coordination.

132

4.8 Related Work

There are only a few higher-level programming models that currently provide back-ends

targeting OCR. Hierarchically Tiled Arrays for OCR (HTA) provides parallel, distributed

array objects, and a set of highly-e�cient linear algebra operations for the array objects [92].

HTA for OCR [76] removes the Intel Thread Building Blocks back-end from the previous

C++ implementation, instead using OCR for dependence management and task scheduling.

However, HTA does not currently integrate with the OCR data model since none of the

HTA objects are allocated in OCR datablocks. HClib [59] similarly used OCR as a task

and dependence management runtime, while eschewing datablocks and the OCR data

model. Furthermore, as described in chapter 3, the blocking semantics of many of the

HClib constructs can lead to deadlocks with the current OCR scheduler’s limited legacy

support for blocking tasks. Due to these limitations, current versions of HClib [37] no

longer maintain an option to use OCR as the underlying tasking runtime.

Legion [4] and Regent [93] are two higher-level programming models that target the

Realm runtime [15]. These two higher-level languages provide the productivity layer

for the Realm runtime, much as is our goal for OCR with CnC-OCR. Since Legion and

Regent have been co-designed with Realm, the assumptions in these higher-level models

perfectly match those made in the lower-level Realm runtime. Work is currently underway

for supporting the Legion programming model on OCR [77]; however, there are some

mismatches between the concepts assumed by Legion and those provided by OCR, which

will most likely require reworking the Legion programming model to adapt it to OCR. The

e�ort to unify Legion’s data model and blocking task semantics with the OCR programming

model are still ongoing.

R-Stream [94] is a production-grade polyhedral optimizing compiler developed by

Reservoir Labs. One feature of R-Stream is automatic translation of legacy C programs

to OCR. The compiler has the usual limitations of polyhedral analysis and optimization

(although their implementation is more scalable than academic alternatives), but that

does not diminish the utility of R-Stream. It might not be possible to apply the R-Stream

133

optimizations to a full application (due to limitations in analyzability and program size),

however, we believe that there is good potential for using R-Stream in conjunction with

CnC-OCR to optimize individual step function implementations.

There is a large amount of previous work on tuning for CnC. The �agship Intel CnC

implementation provides several tuning options as part of its C++ API [28]. Our toolchain

uses iCnC’s tuning APIs when generating iCnC back-end code. While tuning code is not

declared in a separate speci�cation �le, a separation of concerns can still be maintained

since all tuning code is implemented in discrete tuning objects, which can be stored in

separate source code �les if desired. Knobe and Burke previously described a hypothetical

declarative tuning language for CnC [95]. A variation of that proposed tuning language,

speci�cally targeting tuning for distribution and hierarchy, was later implemented on a

fork of the CnC-OCR codebase [29].

While our work is the �rst to automatically generate and select explicit hierarchies for

a CnC program, there has been past work that performs related optimizations. Sharma et al.

did auto-tuning for CnC programs, demonstrating a technique for automatic distribution

function selection [96]. Automatic tiling, and other polyhedral optimizations, have also

been implemented for the CnC programming model in DFGL [79] and PIPES [97]. Tuned-

CnC allows the programmer to manually specify hierarchical a�nity groups [29]. Liu et al.

experimented with manual tiling and step fusion optimizations in CnC for LULESH [98].

4.9 Future Directions

The order of tag components as speci�ed in a tag collection declaration do not restrict

the underlying storage representation of individual items. For example, individual items

in the collection [Matrix: row, column] could be stored in row major, column-major, or

some other arbitrary order. Thus it is clear that an item collection speci�ed at the �nest

granularity constitutes a layout-agnostic data representation. To improved locality for

CnC applications, it follows that we could use an automatic layout selection framework

134

(such as the framework presented by Sharma et al. [99]) to compute the metric value for

selecting an optimal data hierarchy.

The long-term vision is to see this work integrated into an advanced toolchain, where

the entire process would be automated and transparent. New hierarchies could be se-

lected at runtime based on varying trends in the data, or a change of performance goals

communicated to the runtime.

4.10 Summary

In this chapter we presented CnC-OCR, a higher-level programming model and productiv-

ity environment for OCR. We described the implementation of the CnC-OCR toolchain,

and demonstrated the bene�ts to programmer productivity and the improved separation

of concerns attained by the use of the CnC domain speci�cation for dependence coordi-

nation, as well as the external speci�cations for performance tuning. We de�ned a set

of rules for automatic generation of CnC application hierarchies, and demonstrate the

bene�ts of hierarchy for distributed memory locality. We showed that the performance of

CnC-OCR applications is comparable to much more verbose hand-coded OCR solutions,

and is competitive with an existing production-grade CnC implementation.

135

Chapter 5

Conclusions and Future Work

In this thesis, we identi�ed three problems associated with emerging programming models

for extreme-scale runtimes—speci�cally the Open Community Runtime (OCR)—and pre-

sented solutions for each problem. The solutions are given in terms of new abstractions,

either at the level of the runtime, user APIs, or the application programming model. We

demonstrated the bene�ts and practicality of our proposed solutions by measuring the

overhead of the new abstractions against an appropriate performance baseline for the

given feature. Where appropriate, we also demonstrated the potential gains in productivity

by measuring the lines of code necessary to write equivalent programs with and without

our enhancements to the programming model and APIs. Table 5.1 summarizes the contri-

butions in this thesis to the OCR programming model, presented in the context of other

HPC programming models that are currently under development for future extreme-scale

hardware.

Pointer Safety Blocking High-level languages

Charm++ Programmer’s responsibility ucontext Not yet supported
HPX Programmer’s responsibility Fibers Not yet supported
OCR Static and dynamic checks Several options CnC
Realm Programmer’s responsibility ucontext Legion, Regent
UPC++ No data migration SPMD blocking Not yet supported

Table 5.1: Runtime Feature Comparison

136

5.1 General Conclusions

Sections 2.12, 3.7 and 4.10 summarized our conclusions on the e�ectiveness and practicality

of our solutions to the problems presented in those respective chapters. In addition to

those speci�c discussions, we now make three general conclusions about encouraging and

supporting application development on extreme-scale runtime systems.

No one wants to be a “hero”

Higher-level languages and libraries are a critical component of a runtime ecosystem.

Forcing application writers to become “hero programmers”—coding directly to a verbose,

low-level API—does not encourage growth in the developer community around the runtime.

If the application-facing API is just as complex as MPI+OpenMP, then it is hard to justify

adopting a new programming model. While some runtimes may gain some traction by

showcasing impressive performance with a carefully-tuned �agship application— unless

new developers are provided with the tools to develop basic functionality quickly, and

then incrementally �ne-tune for performance and scalability, then the users won’t be able

to reproduce the advertised success. While a higher-level language or library might not

allow users to obtain 100% of the optimal performance, a clear path to get a functioning

application quickly, and then achieve incremental performance gains via a reasonable

amount of additional work is a much more friendly path for new developers.

One size doesn’t �t all

Providing alternative implementations help avoid forced choice between productivity and

performance. For example, providing both the thread-based worker and �ber-based worker

alternatives for the Habanero-C runtime scheduler allows the application programmer to

develop and debug using the slower, but more easily inspectable threaded version, and

then switch to the �ber-based version for production runs. Providing multiple, compatible

implementations of a runtime that are tailored for development, debugging or production

eases the burden on the application programmer; however, this convenience for the users

137

comes at the additional cost of maintaining multiple implementations for the runtime

team. Depending on the size and scope of the project, multiple implementations may not

be possible (at least initially), but a runtime project that is serious about gaining users and

supporting application development would be wise to invest time in productivity features

as well as performance enhancements.

Concerns should be separate

Separation of concerns, as demonstrated with CnC-OCR, is simply an extension of a well-

accepted principle of engineering: divide your problem up into smaller pieces, and attack

them one at a time. Being able to reason about a complex application at di�erent levels

without being weighed-down with higher- or lower-level details makes an application

easier to understand, which in turn should lead to better code and fewer bugs. Additionally,

having separation between high-level dependencies among application components, low-

level implementation details of individual modules, and platform-speci�c performance

tuning strategies means that new developers and code reviewers also have less of a barrier

to understand the software system. While the method of literally splitting the high-level

graph speci�cation, the step implementations and the tuning annotations into separate �les

(as done in CnC-OCR) may not be practical in other projects, providing tools to identify

and extract the relevant information from an application would probably be just as useful.

For example, having the ability to take an execution log and generate a graphical overview

of the high-level �ow of data and control in an application would give all of the same

bene�ts as having a CnC-OCR graph speci�cation. This also eases some of the burden on

the developers for documenting the application behavior, and avoids the problem of the

documentation being invalidated when the application is refactored.

138

5.2 Future Work

The earlier chapters include ideas for future work that directly builds on details of the

solutions and techniques described in those chapters. We now discuss possible future

research that relates to the overarching themes in this thesis.

The work in chapters chapters 2 and 3 addressed two big programmability problems for

OCR applications: compatibility of many C++ prevalent features, and correctly supporting

blocking synchronization constructs. While we have presented possible solutions to these

two problems, there are still a plethora of other issues that have yet to be tackled. For

example, our technique for sanitizing pointers stored in OCR datablocks assumes that the

application data has already been partitioned into datablocks. Finding such a partitioning—

especially one that works well in a distributed system—is not an easy task. Techniques for

automatically �nding an optimal partitioning, or even suggesting a set of partitions to a

tuning expert, would be invaluable to the OCR application developer. Similarly, compiler

or toolchain support for automatically transforming long-lived, blocking tasks into short-

lived, non-blocking tasks would be very helpful for improving resilience guarantees for

large-scale fault-prone systems.

Finally, while we presented CnC-OCR in chapter 4 as a higher-level productivity layer

for OCR application development—as discussed in the previous section—there is seldom

a one-size-�ts-all solution to any problem. While CnC-OCR is a good �t for some HPC

applications, there are undoubtedly many applications that would be much better ex-

pressed using some other programming model; therefore, it would be bene�cial to develop

additional higher-level productivity layers on top of OCR in order to give application

developers multiple options. Two such options that are currently under investigation are

implementations of Legion [4, 77] and Chapel [100] for OCR.

139

5.3 Possible Applications in Other Runtime Systems

While the techniques presented in this thesis have mainly focused on applications for

OCR and Habanero-C, they also have value for potential future integration with other

extreme-scale runtime systems.

The relative pointer object encodings and toolchain presented in chapter 2 were applied

in the context of OCR; however, as explained in section 2.2.1, the pointer-object encodings

presented in chapter 2 would be useful in any system using one-sided communication.

Furthermore, other runtimes that use relocatable data blocks could also bene�t by sup-

porting our position-independent pointer variants. For example, although the Legion

programming model (built on top of the Realm runtime) supports a position-independent

pointer-object type for use within its relocatable data regions, it requires the target region

handle to be provided when dereferencing one of these pointer objects.1 Legion program-

mers could bene�t from the increased productivity a�orded by our BasedPtr types if the

Legion system supported automatic region lookup for an embedded handle within the

pointer object, or by using our RelPtr type for pointers with targets that are guaranteed

to be in the same region.

The blocked-worker compensation strategies described in chapter 3 were presented in

the context of the Habanero-C programming paradigm; however, we are currently working

on implementing a subset of the strategies in OCR to support blocking APIs in the Legion

on OCR project [77]. Additionally, the runtimes in table 5.1 listed as using the ucontext

library (i.e., Charm++ and Realm) would gain the development and debugging bene�ts de-

scribed in section 3.5.5 by implementing an alternative worker scheme using kernel threads.

Swapping the ucontext library (deprecated from POSIX in 2004) for the Boost.Context-based

�bers support used in our implementations would also2 Finally, the �nish-helping optimiza-

1 See logical_regions.cc in the Legion/Realm tutorial for a description of the ptr_t type and an
example of its usage with a local region:
https://github.com/StanfordLegion/legion/blob/legion-17.05.0/tutorial/04_logical_regions/

2 The Boost.Context performance benchmarks report speedups of up to 20x compared to the deprecated
ucontext library: http://www.boost.org/doc/libs/1_59_0/libs/context/doc/html/context/performance.html

https://github.com/StanfordLegion/legion/blob/legion-17.05.0/tutorial/04_logical_regions/
http://www.boost.org/doc/libs/1_59_0/libs/context/doc/html/context/performance.html

140

tion introduced in section 3.4.2 can be applied in other runtimes using the async/finish

model or similar constructs parallelism. The async/finish constructs in UPC++ could be

implemented to take advantage of this optimization; however, current drafts of the UPC++

v1.0 speci�cation [101] indicate that UPC++ is moving away from supporting blocking

constructs and instead requiring users to manually CPS-transform their code (i.e., all of

the UPC++ 1.0 APIs are non-blocking). There are other multitasking runtimes that support

similar constructs that could bene�t from the �nish-helping optimization, such as X10 [31]

(which also uses async/finish), and Chapel [100] (for the cobegin statement).

The high-level CnC programming model work presented in chapter 4 mainly focused

on our CnC-OCR implementation; however, as a high-level programming model, CnC

can be—and has previously been—ported to run on top of other runtimes (as long as

they have su�cient support for event-driven constructs). As mentioned in section 4.3.5,

there is a fork of the CnC-Framework that targets HPX-5 [86], but there also is a project

called HPXnC that ports the Intel CnC API onto Stellar-HPX [102]. These ports of the

CnC programming model bring all of the bene�ts of CnC (e.g., separation of concerns and

explicit hierarchy) to the HPX-5 and Stellar-HPX runtimes. CnC should also map well

onto the actor-like Charm++ model, as well as the event-driven UPC++ and Legion/Realm

tasking models; however, to the best of our knowledge no implementation of CnC currently

exists for any of those runtimes. Again, adding any of those runtimes as a new backend

target for the CnC-Framework would allow existing CnC applications to work on those

runtimes, and—assuming the tuning support is also properly implemented—allow users

to automatically generate tuned application code for any (or all) of the supported backend

runtimes.

141

Appendix A

Global Helping Deadlocks in OCR

Although our discussion of how the global-helping optimization can introduce new dead-

locks (chapter 3) was focused on HClib, the same issue manifests in other runtimes.

Speci�cally, global-helping induced deadlocks are a known problem in OCR. The Traleika

Glacier implementation of OCR—which shares a common heritage with HClib—also uses

the global helping1 optimization within the runtime, but it is only enabled by default in

distributed-memory (x86-mpi). Rather than supporting blocking operations in the applica-

tion code, the goal was to hide the latency of synchronous network communication by

running another OCR task while the runtime awaits a response from a remote OCR peer

process. Although this application seems fairly innocuous, it is possible to construct a

legal OCR program that can deadlock when using the global-helping optimization, but that

would never deadlock without the optimization. Listing A.1 shows one such program.2

Although the global-helping optimization is not enabled by default for shared-memory

OCR builds, it is often enabled in order to support blocking calls in legacy APIs. For example,

the Legion-OCR project [77] uses this functionality to support blocking a task until a

given event has been triggered. The naïve recursive Fibonacci example distributed with

Legion will almost deadlock when run on Legion-OCR if the global-helping-based blocking

support is used. To address this problem, a branch of OCR is currently under development

to support legacy blocking constructs for Legion-OCR using �bers integration,3 which is

1 The global helping optimization is referred to using the terms master-helper or work-shifting in the
context of OCR. We use the term global helping because we �nd it more intuitive, and it allows us to extend
the *-helping naming pattern to similar optimizations (e.g., �nish helping).

2 See https://xstack.exascale-tech.com/redmine/issues/964 for original bug report, along with links to the
original version of the deadlock example code.

3 https://xstack.exascale-tech.com/git/public?p=ocr.git;h=refs/heads/sandbox/nbvrvilo/blocking-�bers

https://xstack.exascale-tech.com/redmine/issues/964
https://xstack.exascale-tech.com/git/public?p=ocr.git;h=refs/heads/sandbox/nbvrvilo/blocking-fibers

142

based on our work integrating �bers with HClib. Fibers are also used by the �agship Legion

implementation from Stanford [4], making the application of �bers in Legion-OCR an

obvious solution. However, it’s interesting to note that the Stanford Legion implementation

uses the ucontext library to support �bers, which is not only deprecated from the POSIX

standard (removed in 2004), but also up to 20x slower than using the Boost.Context library

for �bers.4 Therefore, the �agship implementation would likely also bene�t by switching

to the Boost.Context library to support blocking calls via �bers. However, since blocking

calls are infrequent in well-written Legion code, the impact on most real-world applications

would probably be minimal.

4 The Boost.Context performance benchmarks report speedups of up to 20x compared to the deprecated
ucontext library: http://www.boost.org/doc/libs/1_59_0/libs/context/doc/html/context/performance.html

http://www.boost.org/doc/libs/1_59_0/libs/context/doc/html/context/performance.html

143

1 #include "ocr.h"
2 #define ENABLE_EXTENSION_AFFINITY
3 #include <extensions/ocr-affinity.h>
4 #include <stdlib.h>
5 #include <unistd.h>
6 #include <assert.h>
7

8 #define SZ_32MB ((size_t)(1L << 25))
9

10 #define SLEEP() sleep(2)
11

12 typedef struct {
13 volatile u8 flag;
14 ocrGuid_t signal;
15 ocrGuid_t affinities[2];
16 } DbData;
17

18 ocrGuid_t aEdt(u32 paramc, u64* paramv, u32 depc, ocrEdtDep_t depv[]) {
19 DbData *data = depv[0].ptr;
20 ocrGuid_t *affinities = data->affinities;
21 char name[2] = { paramv[0], 0 };
22 assert(name[0] == ’A’);
23

24 PRINTF("%s started ...\n", name);
25

26 ocrHint_t p1DbAffinityHint;
27 ocrHintInit(&p1DbAffinityHint,OCR_HINT_DB_T);
28 ocrSetHintValue(&p1DbAffinityHint, OCR_HINT_DB_AFFINITY,

ocrAffinityToHintValue(affinities[1]));↪→

29

30 ocrEventSatisfy(data->signal, NULL_GUID);
31

32 // Create a nice, big, remote datablock.
33 // On x86-mpi, this operation will cause the current worker thread
34 // to perform a "work-shift" to try to keep busy while communicating
35 // with the remote policy domain.
36 ocrGuid_t Y_DbGuid;
37 void *Y_Ptr;
38 ocrDbCreate(&Y_DbGuid, &Y_Ptr, SZ_32MB, DB_PROP_NONE, &p1DbAffinityHint,

NO_ALLOC);↪→

39

40 PRINTF("%s (DB created) ...\n", name);
41

42 data->flag = 1;
43

44 SLEEP();
45 PRINTF("%s ended ...\n", name);
46 return NULL_GUID;
47 }
48

49 ocrGuid_t bEdt(u32 paramc, u64* paramv, u32 depc, ocrEdtDep_t depv[]) {

144

50 DbData *data = depv[0].ptr;
51 char name[2] = { paramv[0], 0 };
52 assert(name[0] == ’B’);
53

54 PRINTF("%s started ...\n", name);
55

56 // NOTE: The OCR v1.1.0 spec specifically states in section 1.1.4
57 // that it is legal for OCR programs to contain data races.
58 // Furthermore, this statement is made specifically in the context
59 // of defining Read-Write Mode access to datablocks, implying that
60 // such accesses may race. I.e., as per the spec, this
61 // busy-loop on the "flag" value is completely legal.
62 while (data->flag == 0) {
63 PRINTF("%s is spinning...\n", name);
64 SLEEP();
65 }
66

67 SLEEP();
68

69 PRINTF("%s ended ...\n", name);
70 return NULL_GUID;
71 }
72

73 ocrGuid_t shutdownEdt(u32 paramc, u64* paramv, u32 depc, ocrEdtDep_t depv[]) {
74 PRINTF("shutdownEdt started ...\n");
75

76 ocrShutdown();
77

78 PRINTF("shutdownEdt ended ...\n");
79 return NULL_GUID;
80 }
81

82 ocrGuid_t mainEdt(u32 paramc, u64* paramv, u32 depc, ocrEdtDep_t depv[]) {
83 //create templates
84 ocrGuid_t aEdtTemplateGuid, bEdtTemplateGuid, shutdownEdtTemplateGuid;
85 ocrEdtTemplateCreate(&aEdtTemplateGuid, aEdt, 1 /*paramc*/, 1 /*depc*/);
86 ocrEdtTemplateCreate(&bEdtTemplateGuid, bEdt, 1 /*paramc*/, 2 /*depc*/);
87 ocrEdtTemplateCreate(&shutdownEdtTemplateGuid, shutdownEdt, 0 /*paramc*/, 2

/*depc*/);↪→

88

89 ocrGuid_t affinities[2];
90 u64 affinityCount = 2;
91 ocrAffinityGet(AFFINITY_PD, &affinityCount, affinities);
92 assert(affinityCount == 2);
93

94 // EDT Hint
95 ocrHint_t p0EdtAffinityHint;
96 ocrHintInit(&p0EdtAffinityHint,OCR_HINT_EDT_T);
97 ocrSetHintValue(&p0EdtAffinityHint, OCR_HINT_EDT_AFFINITY,

ocrAffinityToHintValue(affinities[0]));↪→

98

145

99 // DB hint
100 ocrHint_t p0DbAffinityHint;
101 ocrHintInit(&p0DbAffinityHint,OCR_HINT_DB_T);
102 ocrSetHintValue(&p0DbAffinityHint, OCR_HINT_DB_AFFINITY,

ocrAffinityToHintValue(affinities[0]));↪→

103

104 ocrGuid_t signalGuid;
105 ocrEventCreate(&signalGuid, OCR_EVENT_STICKY_T, EVT_PROP_NONE);
106

107 ocrGuid_t xDbGuid;
108 DbData *xPtr;
109 ocrDbCreate(&xDbGuid, (void**)&xPtr, sizeof(*xPtr), DB_PROP_NONE,

&p0DbAffinityHint, NO_ALLOC);↪→

110 xPtr->flag = 0;
111 xPtr->signal = signalGuid;
112 xPtr->affinities[0] = affinities[0];
113 xPtr->affinities[1] = affinities[1];
114 ocrDbRelease(xDbGuid);
115

116 // create EDTs A@P0 and B@P0
117 u64 A = ’A’, B = ’B’;
118 ocrGuid_t aEventGuid, bEventGuid;
119 ocrGuid_t aEdtGuid, bEdtGuid;
120 ocrEdtCreate(&aEdtGuid, aEdtTemplateGuid, 1, &A, EDT_PARAM_DEF, NULL,
121 /*prop=*/EDT_PROP_NONE, &p0EdtAffinityHint, &aEventGuid);
122

123 ocrEdtCreate(&bEdtGuid, bEdtTemplateGuid, 1, &B, EDT_PARAM_DEF, NULL,
124 /*prop=*/EDT_PROP_NONE, &p0EdtAffinityHint, &bEventGuid);
125

126 ocrGuid_t shutdownEdtGuid;
127 ocrEdtCreate(&shutdownEdtGuid , shutdownEdtTemplateGuid , EDT_PARAM_DEF, NULL,

EDT_PARAM_DEF, NULL,↪→

128 /*prop=*/EDT_PROP_NONE, &p0EdtAffinityHint, NULL);
129

130 ocrAddDependence(aEventGuid, shutdownEdtGuid, 0, DB_MODE_RO);
131 ocrAddDependence(bEventGuid, shutdownEdtGuid, 1, DB_MODE_RO);
132

133 // A and B depend on X in RW mode (i.e., they may access it concurrently)
134 ocrAddDependence(xDbGuid, aEdtGuid, 0, DB_MODE_RW);
135

136 ocrAddDependence(xDbGuid, bEdtGuid, 0, DB_MODE_RW);
137 ocrAddDependence(signalGuid, bEdtGuid, 1, DB_MODE_RO);
138

139 return NULL_GUID;
140 }

Listing A.1: Sample program that will deadlock with the default con�guration for dis-
tributed memory OCR (x86-mpi), which uses the global-helping strategy. This example
uses only core OCR API (no legacy blocking extensions), and the behavior is legal as per
the OCR v1.1.0 speci�cation.

146

Appendix B

Introduction to CnC

Concurrent Collections (CnC) is a system for describing the structure of parallel com-

putation, or coordinating the data- and control-�ow between the individual steps of a

computation [70, 89]. A CnC application speci�es a set of discrete step functions, and

the data collections used as input to and output from those step functions.1 The CnC

coordination language describes the relationship between a speci�c invocation of a step

function, its input and output data, as well as parent/child relationships between to other

step function invocations.

B.1 Key Properties of CnC

In this section we outline several distinctive characteristics of the CnC programming

model. These are the same characteristics that make the CnC programming model well

suited for expressing large-scale parallel computations. The characteristics include graph

representation, single-assignment data, monotonically growing state, discrete computation

steps, and side-e�ect-free computation steps.

B.1.1 Graph Representation of the Application

A fundamental characteristic of a CnC application is that the entire computation �ow is

represented as a graph. An application is partitioned into collections of computation steps

and data items, each of which describe a class of step (computation) or item (data) instances.

1 This model varies slightly from the traditional CnC model in that it lacks control collections; however,
this elision in our model re�ects the absence of control collections in the Habanero variants of CnC developed
at Rice University, on which this work is based. For a brief overview of control collections, and a discussion
of the equivalence of this simpli�ed CnC model with the traditional model, please see appendix C.

147

Filter 1 Filter 2

Item A Item B Item C

Figure B.1: The abstract graph representation of a simple data-�ltering CnC application.
The two ellipses represent step collections for two separate levels of �ltering. The three
rectangles represent item collections for holding all of the input data (Item A), the results
of the �rst �lter pass (Item B), and the �nal output from the second �lter pass (Item C).
Solid edges represent puts to and gets from item collections. Dashed edges represent
prescriptions (creation) of new step instances. Jagged edges represent the interactions
with the application environment that encloses the CnC graph.

These collections serve as the nodes of the graph. The prescribe (step creation), put (item

creation) and get (item read) relationships among the collections are represented as edges

in the graph. Figure B.1 shows a graph representation for a simple CnC application. By

default, we mean a static program graph, when referring to a CnC graph. When necessary,

we will di�erentiate between a static CnC graph, which de�nes a CnC program, and a

dynamic CnC graph, which de�nes a CnC program execution.

By providing a high-level graphical representation of the application, the user provides

the CnC runtime with all the necessary information to automatically track the incremental

progress of the application. In the case of a failure, the runtime can restart the computation

by simply restarting all of the computation steps that were running at the time of the

failure, and providing the input data for those steps to run to completion.

B.1.2 Single-Assignment Data

In a traditional imperative computation model, an application calculates incremental

solutions to a problem by updating (or mutating) its in-memory data, eventually resulting

in the �nal output. In such a system, it is possible to checkpoint an inconsistent state if

some data is updated during the process of saving the checkpoint, such that part of the

148

checkpoint re�ects the update and part does not. In contrast, CnC takes a functional rather

than imperative approach to modeling state. All data available at the level of the CnC

computation graph is single-assignment, meaning that once a data item is created it is

never updated. An individual computation step is free to mutate data local to that step,

but all such mutations must be fully encapsulated within the step.

B.1.3 Monotonically Growing State

A property that follows from the single-assignment property is the monotonicity property.

Since data cannot be updated after appearing in the graph, the overall state of a CnC

application appears to only add new data, never removing or mutating previous data. A

CnC implementation can optionally free data that is no longer required, though this process

can, in general, be more complicated than garbage collection in functional languages [103].

B.1.4 Discrete and Side-E�ect-Free Computation Steps

A traditional application may be implicitly divided into several logical computations, but

the CnC programming model makes these divisions explicit. The CnC runtime takes

advantage of discrete computation steps to run computation steps in parallel on multicore

hardware. The fact that CnC applications have discrete computation steps with explicit

inputs allows us to restart any given computation at the CnC step granularity. In addition,

computation steps in CnC are side-e�ect-free because the only observable outputs of

CnC steps are their items put and steps prescribed. This means that if a computation

failed mid-step, there is no possibility that some incremental updates made by the step

will corrupt the global CnC graphs state. These properties allow us to safely restart an

application that failed at any point in the computation.

149

n

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

0 1 2 3 4 5 6 7 8

k

Figure B.2: The �rst nine rows of Pascal’s Triangle. The entries of Pascal’s Triangle
correspond to the binomial coe�cients, such that the entry at row n, column k is nCk .

B.2 A Sample CnC Application

To better describe the CnC programming model, we now introduce a simple CnC appli-

cation as an example. This sample application computes binomial coe�cients—i.e., the

values of nCk (n choose k)—via Pascal’s Triangle.

B.2.1 Review of Pascal’s Triangle

Figure B.2 shows the �rst nine rows of Pascal’s Triangle. If P (n,k) is the value at row n,

column k of Pascal’s Triangle (where both the row and column numbers are zero-based),

then for all n ≥ k ≥ 0:

150

P (n, 0) = P (n,n) = 1 (B.1a)

P (n,k) = P (n − 1,k − 1) + P (n − 1,k) (B.1b)

Equations (B.1a) and (B.1b) exactly match the recursive de�nition for the binomial

coe�cients [104]; hence, the entry of Pascal’s Triangle at row n, column k corresponds to

the binomial coe�cient nCk [105].

B.2.2 Structure of the CnC Graph

As explained earlier in this section, every CnC application must specify a set of step collec-

tions, corresponding to the functions used in computation, and a set of item collections,

corresponding to the data on which the steps operate. To compute the value of nCk , we

must compute n rows and k columns of Pascal’s Triangle. Since the only type of data

we use in this computation (both for building the triangle and in the result) is the set of

values in the triangle, we only need a single item collection to hold that data, which we

can call pascal-entries. Since we have two di�erent equations for computing the entries of

the triangle, we have one step collection for computing values based on equation (B.1a),

and another based on equation (B.1b). We call the �rst step collection edge-step since it

computes the values along the left and right edges of the triangle, and the second inner-step

since it computes the remaining values inside the triangle. A high-level sketch of the CnC

graph for this application is illustrated in �gure B.3.

In CnC, instances of step and item collections are di�erentiated by a unique tag, often

represented by an integer tuple; however, to di�erentiate step and item collections, we

typically refer to the tag of an item instance as a key. We identify instances of both the

item and step collections by the row and column of the corresponding entry in Pascal’s

Triangle; therefore, the tags and keys for instances in all three collections are integer pairs

of the form ⟨row, col⟩. For simplicity, we use the notation (S: T) to denote an instance of

151

step collection S with the tag T , where the round brackets correspond to the round nodes

used for steps in the graphical representation (as shown in �gure B.3). Similarly, we use

the notation [I: K] to denote an instance of item collection I with the key K , or [I: K→V]

to denote that the item instance has the value V , where the square brackets correspond to

the rectangular nodes used for items in the graphical representation.

To give our application a more dynamic feel, each step instance with tag ⟨row, col⟩

prescribes the step instance with tag ⟨row+1, col⟩. Since each row of Pascal’s Triangle has

one more column than the previous row, steps with tags where row = col also need to

prescribe the step with tag ⟨row+1, col+1⟩. Each step instance also puts a single data item

to the pascal-entries collection, with a key matching the step’s tag, and the value rowCcol .

Figure B.4 illustrates these relationships among the step and item collections, with the

mapping between step tags and item keys shown explicitly.

It is often useful in a CnC application to parameterize some aspects of the graph

structure. For example, one might want to parameterize the dimensions of the input

matrices to a matrix kernel in order to make the code more generic. In our application, we

want to parameterize the values n and k , which allows us to stop computation at row n of

Pascal’s triangle. We do this by setting values for n and k in the CnC graph’s context, which

is available to all CnC functions. These parameters are considered constant throughout

the graph execution. The step functions in our application use these parameter values to

compute whether or not to prescribe a new step instance corresponding to the next row of

the triangle.

B.2.3 Executing CnC Steps

Before a CnC step instance is executed, that step must be prescribed (created) and all of

its input data items must be available. The CnC runtime tracks the status of step and

item instances via attributes attached to the instances. When some step instance (or the

environment) prescribed a step in collection S with tag T , step (S: T) is created with the

control ready attribute. If a step has a single input dependence on [I: K], the step gains

152

edge-step inner-step

pascal-entries

Figure B.3: The abstract graph representation of the Pascal’s Triangle CnC application.
Ellipses represent step collections (computation), and rectangles represent item collections
(data). Dashed edges represent step prescriptions (creation), and solid edges represent puts
to or gets from item collections. Jagged edges represent interactions with the application
environment that encloses this CnC graph.

edge-step
〈row, col〉

pascal-entries
〈row, col〉

edge-step
〈row + 1, col〉

(a) Left-edge instances: col = 0

edge-step
〈row, col〉

pascal-entries
〈row, col〉

inner-step
〈row + 1, col〉

edge-step
〈row + 1, col + 1〉

(b) Right-edge instances: row = col

pascal-entries
〈row − 1, col − 1〉

pascal-entries
〈row − 1, col〉

inner-step
〈row, col〉

pascal-entries
〈row, col〉

inner-step
〈row + 1, col〉

(c) Inner instances: 0 < col < row

Figure B.4: The prescribe, put and get relationships among the step and item collections in
the Pascal’s Triangle CnC application. Note that the topmost entry of the triangle, where
row = col = 0, is actually a special case that does the edge-step prescription from the left
edge and the edge-step prescription from the right edge without an inner-step prescription.

153

the data ready attribute when an item with key K has been put to item collection I . If a

step has two or more such dependencies, the step is data ready only when all of the input

items have been put. If a step has zero input dependencies then it is always considered

data ready. Once a step is both control ready and data ready, it gains the ready attribute,

and is only then eligible to execute.

In our Pascal’s Triangle application, an instance of edge-step is ready as soon as it is

prescribed because it has no input dependencies on the item collection. Since instances of

inner-step depend on two item instances from pascal-entries, an inner-step instance is only

ready to execute after it has been prescribed and both of the corresponding item instances

have been put.

B.2.4 Interaction with the Environment

A CnC graph is typically embedded within a driver application, and we refer to the portions

of the application that interact with the CnC graph as the environment. When CnC program

execution is completed, the environment must put all data, prescribe all steps, and set any

parameters necessary to properly initialize the CnC graph. The environment may also get

values from item collections, which acts as an output mechanism for the graph.

In our Pascal’s Triangle application, the environment initializes the graph’s n and k

parameters, then prescribes an (edge-step: 0, 0), which corresponds to the topmost entry of

the triangle. From that point, the CnC runtime has all the information it needs to compute

the value for nCk . When the CnC graph has completed its execution, the environment gets

[pascal-entries: n, k], which holds the computed value of nCk .

B.2.5 Example Execution

We will now outline an example of an execution trace for our Pascal’s Triangle application.

For simplicity in tracing the execution, we assume that the runtime has only a single

worker thread, meaning that only one step can run at a time. This assumption eliminates

154

any possible concurrency among steps in the computation and simpli�es reasoning about

program execution and execution trace creation.

We pick 2C1 as the target value for this execution, therefore the environment initializes

an instance of our CnC graph with the parameters n = 2 and k = 1. The environment also

prescribes (edge-step: 0, 0) to start the graph’s execution. Since (edge-step: 0, 0) has been

prescribed and has no input dependencies, it is ready to execute. The graph execution is

described textually below, and graphically in �gure B.5.

(edge-step: 0, 0)
puts [pascal-entries: 0, 0→1];
prescribes (edge-step: 1, 0) and (edge-step: 1, 1).

All steps in row 0 have now run to completion.

(edge-step: 1, 0)
puts [pascal-entries: 1, 0→1];
prescribes (edge-step: 2, 0).

(edge-step: 1, 1)
puts [pascal-entries: 1, 1→1];
prescribes (inner-step: 2, 1) and (edge-step: 2, 2).

All steps in row 1 have now run to completion.

(edge-step: 2, 0)
puts [pascal-entries: 2, 0→1];
prescribes no steps since row = n = 2.

(inner-step: 2, 1) depends on [pascal-entries: 1, 0] and [pascal-entries: 1, 1], but since

both items were already put, it is ready to execute.

(inner-step: 2, 1)
gets [pascal-entries: 1, 0→1] and [pascal-entries: 1, 1→1];
puts [pascal-entries: 2, 1→2];
prescribes no steps since row = n = 2.

(edge-step: 2, 2)
puts [pascal-entries: 2, 2→1];
prescribes no steps since row = n = 2.

155

edge-step
〈0,0〉

pascal-entries
〈0,0〉 → 1

edge-step
〈1,0〉

pascal-entries
〈1,0〉 → 1

edge-step
〈1,1〉

pascal-entries
〈1,1〉 → 1

edge-step
〈2,0〉

pascal-entries
〈2,0〉 → 1

inner-step
〈2,1〉

pascal-entries
〈2,1〉 → 2

edge-step
〈2,2〉

pascal-entries
〈2,2〉 → 1

Figure B.5: Dynamic CnC graph for the computation of 2C1.

All steps in row 2 have now run to completion. Since all prescribed steps have run

to completion, the CnC graph execution is �nished. The environment gets item instance

[pascal-entries: 2, 1→2] and correctly yields the answer 2C1 = 2.

B.3 The CnC Continuum

CnC describes a programming paradigm rather than a speci�c runtime implementation.

As a result, there is quite a bit of �exibility in how a particular CnC runtime may behave,

and what requirements it might impose. One example of this is the static or dynamic

nature of the CnC graph. CnC has no restrictions about how much of a application’s graph

structure must be computable statically versus computed dynamically at runtime. This

results in a variety of requirements in the existing CnC implementations pertaining to the

speci�cation of inputs and outputs of CnC step functions. Some implementations require

that some or all of step tags and item keys to be computed statically, whereas others allow

all the inputs and outputs of a step instance to be computed dynamically.

156

Appendix C

CnC Sans Control Collections

In this appendix, we brie�y explain how the CnC model used in CnC-OCR varies from the

traditional CnC model in the literature in terms of explicit control. We also explain how

the two models are functionally equivalent.

Control collections are traditionally used in CnC to help abstract away the creation of

new step instances. In the traditional model, a CnC step can only create a new step instance

indirectly by putting a control tag into a control collection, which in turn causes a new

step instance to be prescribed in each step collection driven by that control collection [89].

Figure C.1 illustrates the graph structure of a simple application implementing a two-level

�lter (originally shown in �gure C.1) in the CnC model with control collections.

Although this is a useful abstraction for reasoning about some programs, in practice we

have found that the concept of control collections tends to confuse new users. Furthermore,

we have found that in the majority of our CnC applications there is always a single step

collection associated with each control collection. These observations are re�ected in the

absence of control collections in the Habanero variants of CnC, including CnC-OCR.1

We now demonstrate that CnC sans control collection has equivalent functional power

to CnC with explicit control collections. In the case that the control–step relationship is

a bijection, we can safely substitute each control put with the equivalent step prescribe,

while maintaining identical program behavior. In the rare case that a control collection

drives multiple step collections, each put must be replaced by one prescribe per associated

step collection. These two transformations enable us to transform any traditional CnC

1 See https://habanero.rice.edu/cnc for more information on other Habanero CnC implementations.

https://habanero.rice.edu/cnc

157

Filter 1 Filter 2

Tag 1

Item A Item B Item C

Control 1 Control 2

Figure C.1: The CnC graph representation of a simple data �ltering application with explicit
control collections. This corresponds with the graph shown in �gure B.1, where control is
represented by prescription edges between step collections. The two control collections,
which drive the two step collections, are represented by the hexagonal nodes. Solid edges
ending at a control collection represent a put of a tag to that control collection.

application to one without control collections; therefore, we know that modeling only the

step and item collections of CnC is su�cient to describe CnC applications in general.

Recent work on hierarchical and modular graph organization in CnC has suggested

that explicit control collections provide a crucial abstraction for connecting independent

sibling graphs [106]. We maintain that explicit control collections are never necessary.

The explicit control collections could be used in the domain speci�cations of the modular

components, but transformed away in the actual program. It may be the case that control

collections (or a similar abstraction) prove to be an essential software engineering abstract

in future work; however, for current applications, it has been our experience that our users

prefer using CnC sans control collections.

158

Appendix D

CnC Graph Domain Speci�c Languages

In this appendix, we provide detailed de�nitions of the domain speci�c languages used in

our CnC framework. Appendix D.1 de�nes the DSL for CnC domain speci�cations, and

appendix D.2 de�nes the DSL for tuning speci�cations. The most current version of this

documentation is available on the CnC Framework wiki.1

D.1 The Graph Spec Language

CnC-OCR uses a graph speci�cation �le to generate a lot of the sca�olding code needed

to interface CnC with the Open Community Runtime (OCR). It also uses the graph spec

to generate some skeleton code for the user’s CnC step functions. This page explains the

ASCII representation used for this declarative CnC graph speci�cation.

D.1.1 Structure

All CnC graph speci�cations should have the following structure:

• Begins with an optional «context» declaration

• Zero or more «item-collection» declarations

• Multiple «function-io» declarations

1 https://github.com/habanero-rice/cnc-framework/wiki

https://github.com/habanero-rice/cnc-framework/wiki

159

D.1.2 Syntax

Comments and Whitespace

The graph spec supports C-style block comments (/* ... */) and C++-style line comments

(// ...). Whitespace is not signi�cant since all declarations are terminated by a sentinel

(e.g. ; or ,).

Context

The «context» begins with the identi�er $context, followed by a pair of braces { } contain-

ing some �eld declarations in the host-language’s syntax (C), and ends with a semicolon.

Here’s an example:

$context {
int a, b, c;
double x, y, z;

};

The «context» declaration is optional. You can safely leave it out if your application

doesn’t need to store any parameters in the “global” context for your graph.

Item Collection Declarations

Item collections are always denoted by square brackets, corresponding to the rectangle

representation used for item collections in the graphical CnC representation. Each «item-

collection» has the following general structure:

[«data-type» «collection-name» : «key-id0», «key-id1», . . .] ;

The «data-type» «collection-name» portion of the declaration should just look like a

variable declaration in the host language. The current version should support most C

types. However, there are a few cases that will not work, such as function pointers. If

you have a complex data type you might consider using a typedef in your application’s

AppName_defs.h �le, and used the type alias in the graph spec. To declare an array of some

160

item type, simply use a pointer. The generated CnC-API includes parameters for creating

items that contain some count of elements of the type referenced by the pointer.

The portion of the declaration after the colon corresponds to the declaration of the

item collection’s key shape. We assume that the keys are tuples of integer values (s64).

The zero-ary tuple can be represented using a pair of empty parentheses (). Each tuple

component should have a unique identi�er. These identi�ers are used in the generated

API functions related to this collection.

Some examples of item collection declarations:

[double *Lkji: i, j, k];
[double ts: x];
[struct timeval startTime: ()];

Function Declarations

Functions include all step functions, as well as the $initialize and $finalize pseudo-

steps. Functions are declared with all of their input and output relationships relative to

the other collections. Thus, a function declaration is actually a full speci�cation of the

I/O relationship for that function relative to the step and item collections declared in the

graph. There should be a relationship declared for each item read, each item put, and each

step prescribed by an instance of the function.

Function declarations have the following components:

• Declaration of the function, with its name and tag.

• An optional inputs clause, starting with the <- symbol, and followed by one or more

item instance references.

• An optional outputs clause, starting with the -> symbol, and followed by one or

more step or item instance references.

• As with everything else, it’s terminated by a trailing semicolon.

The inputs clause should always be omitted for the $initialize function, and same

for the outputs clause for the $finalize function.

161

Step Declaration Step collections (along with the pseudo-steps) are always denoted by

round brackets, corresponding to the ellipse representation used for step collections in the

graphic CnC representation. A function declaration has the following form:

(«collection-name» : «tag-id0», «tag-id1», . . .)

The «collection-name» is a single identi�er used to identify the step collection. For the

pseudo-steps, the special identi�ers $initialize and $finalize are used. The portion

after the colon is a list of identi�ers used to specify the shape of the function’s tag. These

identi�ers are used in the tag functions for the item and step instance references in the

input and output clauses.

Collection Instance References Item and step instance references have the same form

as their declaration, except that they key and tag components comma-separated lists of

host-language expressions rather than identi�ers. These expressions should be declared in

terms of the tag component identi�ers of the function for that input/output clause. This

allows the CnC-OCR runtime to determine the inputs and outputs of a step (or psuedo-step)

based on its unique tag. Here are some examples of function I/O declarations:

(addToInside: row, col)
<- [cells: row-1, col-1],

[cells: row-1, col]
-> [cells: row, col],

(addToInside: row+1, col);

($initialize: ())
-> [cells: 0, 0],

(addToLeftEdge: 1, 0),
(addToRightEdge: 1, 1);

($finalize: n, k) <- [cells: n, k];

Note that while the input relationships must be speci�ed exactly, the output relation-

ships are not as strict. The translator tool needs exact input relationships in order to create

step instances with the correct inputs, but the output relationships are only used to gener-

ate skeleton code for the user. It’s still good practice to include the output relationships in

162

the graph speci�cation, but if a particular output relationship is too complex to express in

the speci�cation, it can be simpli�ed or omitted. This also means that outputs listed might

actually be conditional outputs in the function’s implementation.

Item Instance Binding Item instance references can optionally be bound to a local

name for use in a function’s implementation:

[«instance-name» @ «collection-name» : «key-expr0», «key-expr1», . . .]

For example, in the step I/O declaration for addToInside above, the step has two

di�erent inputs from the cells item collection, and one output from the same collection.

By default, the generated function will use the name cells for these values, appending

integers to the end of the identi�ers. In this case, you would end up with two parameters

named cells0 and cells1, and an output variable named cells2. If we wanted more

succinct names instead—such as a, b and c—we could change the de�nition as follows:

(addToInside: row, col)
<- [a @ cells: row-1, col-1],

[b @ cells: row-1, col]
-> [c @ cells: row, col],

(addToInside: row+1, col);

Tag Ranges We provide two built-in functions for specifying ranged key/tag com-

ponents: $range and $rangeTo. Both functions take a start and an end argument. The

end is exclusive for $range, but inclusive for $rangeTo. Both functions also have a single-

argument variant, where the start value is assumed to be zero. In other words, $rangeTo(a,

b) is equivalent to $range(a, b+1), and $range(x) is equivalent to $range(0, x).

Ranges can be used on input or output instances. Let’s say that we have an application

that creates 5 item instances, updates them “iteratively” in some processing step, and then

reads the results after 10 iterations. Here is an example of how we might specify this

application using ranges:

163

[SomeType data: index, iter];

($initialize: ())
-> [data: $rangeTo(1, 5), 0],

(process: $rangeTo(1, 5), $rangeTo(1, 10));

(process: index, iter)
<- [in @ data: index, iter-1]
-> [out @ data: index, iter];

($finalize: ()) <- [data: $rangeTo(1, 5), 10];

Conditional I/O Not all applications have completely static input / output relation-

ships. Sometimes it is helpful if we can make an input or output instance conditional. Let’s

say we have a compute step that depends on a data item at i, and at i-1. However, the

step with tag i=0 does not have a corresponding i-1 value. We can make the i-1 input

conditional by using the $when built-in with a condition:

(compute: i)
<- [x @ data: i-1] $when(i > 0),

[y @ data: i];

If data has a pointer type, then x will be null when the condition is false. Conditions

are currently not supported for inputs with raw (non-pointer) types.

D.2 The CnC Tuning Language

The Habanero CnC framework provides a domain-speci�c language (DSL) for tuning

application performance. The DSL somewhat resembles the graph speci�cation DSL.

D.2.1 Structure

All CnC graph speci�cations should have the following structure:

• Zero or more «item-collection-tuning» declarations

• Multiple «step-function-tuning» declarations

164

D.2.2 Syntax

Tuning declarations

Declaring an item collection tuning:

[«collection-name»] : { «property-name» : «property-value» , . . . } ;

Declaring a step collection tuning:

(«collection-name») : { «property-name» : «property-value» , . . . } ;

Comments and Whitespace

The graph spec supports C-style block comments (/* ... */) and C++-style line comments

(// ...). Whitespace is not signi�cant since all declarations are terminated by a sentinel

(e.g. ; or ,).

D.2.3 Currently supported tunings

The following tunings are supported on both the OCR and iCnC runtime backends.

Distribution functions

You can declare distribution functions using the distfn property. You can use the special

variable $RANK to get the number of ranks (or policy domains in OCR).

Step priorities

You can set a weight for step exectution order using the priority property. A larger value

means higher priority. The value is assumed to be a signed integer value, with a default

priority of zero.

D.2.4 Using a tuning speci�cation

You can specify one or more tuning �les, via the -t �ag, to use when generating the

application/runtime sca�olding code.

165

ucnc_t -t tuningA.cnct -t tuningB.cnct graph.cnc

Since the translator tool can accept multiple tuning �les as input, the programmer

can keep orthogonal tuning speci�cations in separate �les, and then mix-and-match the

tunings to �nd the ideal combination for a given hardware platform or application input.

166

Appendix E

CnC Uni�ed C API

This appendix describes the Uni�ed CnC API for the C programming language. This API

is utilized in all applications that use the Habanero CnC Framework, which allows the

applications to work on top of all compliant runtime backends supported by the framework.

The most current version of the API is available on the CnC Framework wiki.1

Below, italicized variable names indicate metavariables, which are replaced with con-

crete names during code generation. G stands for the graph name. S stands for a step

collection name. t0, . . . , tN stand for step tag component names. I stands for an item

collection name. k0, . . . , kN stand for item key component names.

Data structures

GCtx

The CnC graph context data structure. Contains runtime data structure information,

as well as any members declared by the applications programmer as part of the

$context in the CnC graph spec �le. Most CnC API functions require a graph context

pointer as the last argument.

GArgs

A struct used for passing arguments from external (environment) code into the CnC

graph’s initialization function. For many applications, this struct can be left empty.

You can safely use a NULL pointer in place of a pointer to an empty argument struct.

1 https://github.com/habanero-rice/cnc-framework/wiki

https://github.com/habanero-rice/cnc-framework/wiki

167

Generated skeleton functions

int cncMain(int argc, char *argv[])

Entry point to the CnC application. The argc and argv parameters contain the

command line parameters passed to the application, just as in a vanilla C main

function.

void G_S(cncTag_t t0, ..., cncTag_t tN, TX x, ..., TZ z, GCtx *ctx)

A CnC step function implementation. The parameters include the step instance’s

tag component values, along with all item instances speci�ed as input to the step,

which constitute the step inputs. The step can prescribe new step instances or put

new item instances as output.

void G_cncInitialize(GArgs *args, GCtx *ctx)

This is the �rst function run after the CnC graph is launched. It corresponds to the

$initialize pseudo-step in the CnC graph speci�cation. This function considered

a pseudo-step because it is step-like in its outputs, but the input does not come from

the item collections. This function might use �le I/O, or just read parameters from

the GCtx and GArgs structs.

void G_cncFinalize(cncTag_t t0, ..., cncTag_t tN, GCtx *ctx)

This function corresponds to the $finalize pseudo-step in the CnC graph speci�ca-

tion. Its tag is set via the G_await function. This function considered a pseudo-step

because its input is step-like (item instances), but the output is not. This function

might use �le I/O or manipulate non-CnC data structures to produce output.

CnC graph operations

GCtx *G_create()

Creates a CnC graph context (GCtx) struct for use in the CnC computation. Since

168

the runtime stores much of the information about an executing CnC graph within

this structure, this is usually the �rst CnC function called within a CnC application.

void G_destroy(GCtx *ctx)

Frees memory used by the CnC graph’s internal data structures (e.g. the item

collections). After this call, the graph context is no longer valid.

void G_launch(GArgs *args, GCtx *ctx)

Launches the CnC graph. This is essentially the “prescribe” action for the initializer

pseudo-step. The args parameter may be NULL if the initializer function does not

require any arguments.

void G_await(cncTag_t t0, ..., cncTag_t tN, GCtx *ctx)

Sets the tag for the �nalizer pseudo-step. This function is typically called within the

G_cncInitialize function body. Typically we consider the computation complete

when the inputs for the �nalizer pseudo-step are available, which is why the CnC

graph execution “awaits” the values computed via the provided tag.

CnC step operations

void cncPrescribe_S(cncTag_t t0, ..., cncTag_t tN, GCtx *ctx)

Prescribe an instance of a step from the collection S with the given tag. Prescriptions

should only be made from the G_cncInitialize function, or from step functions

within the same CnC graph instance.

CnC item operations

void *cncItemAlloc(size_t bytes)

Allocates a given number of bytes of memory that can be shared across steps as an

item (or possibly just part of an item) in an item collection.

169

void cncItemFree(void *item)

Frees the memory associated with the given item value. Note that this function

does not use the graph context. Freeing the item value will not free any memory for

entries in item collections that are associated with this value.

void cncPut_I(T *item, cncTag_t k0, ..., cncTag_t kN, GCtx *ctx)

Associates the value given in item, with the given key, in the collection I. The

item argument must be created by a call to one of the cncItemAlloc*_I() family

of functions. Note that there’s no corresponding “get” operation, since the gets are

handled automatically in the generated code.

Miscellaneous functions and macros

CNC_REQUIRE(condition, format_str, format_args...)

This is just a convenience macro for checking required conditions in the code, and

failing with an error message if the condition isn’t met. The error message uses a

printf-style format string with variable arguments. This macro provides no CnC-

speci�c functionality, but is provided for convenience in writing CnC applications.

CNC_SHUTDOWN_ON_FINISH(graph_context_ptr)

Sets a trigger to automatically terminate the application when the graph execution

is completely �nished (i.e., all prescribed steps have completed, and the initializer

and �nalizer pseudo-steps have also completed).

CNC_SHUTDOWN_ON_FINALIZE(graph_context_ptr)

Sets a trigger to automatically terminate the application as soon as the �nalizer

pseudo-step completes (i.e., it doesn’t wait for any straggling step function compu-

tations or even the initializer). It is usually better to use CNC_SHUTDOWN_ON_FINISH

when possible.

170

void *cncLocalAlloc(size_t bytes)

Some implementations of the CnC runtime require the use of special-purpose mem-

ory allocators. This is a wrapper for the special-purpose runtime allocator. The

pointer returned by this function should only be considered valid within of the

current step (or pseudo-step). Using the pointer outside of that scope results in

unde�ned behavior.

void cncLocalFree(void *ptr)

Frees memory allocated by cncLocalAlloc. Should be called from within the same

step (or pseudo-step) as the matching cncLocalAlloc call, otherwise the behavior is

unde�ned.

171

References

[1] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue, F. Liu, F. Qiao,

et al., “The Sunway TaihuLight supercomputer: system and applications,” Science

China Information Sciences, pp. 1–16, 2016.

[2] V. Sarkar, W. Harrod, and A. E. Snavely, “Software Challenges in Extreme Scale

Systems,” Jan. 2010. Special Issue on Advanced Computing: The Roadmap to

Exascale.

[3] V. Sarkar, ed., ExaScale Software Study: Software Challenges in Extreme Scale Systems.

DARPA IPTO, Air Force Research Labs, 2009.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.3944.

[4] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing Locality and

Independence with Logical Regions,” in Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis, SC ’12, (Los

Alamitos, CA, USA), pp. 66:1–66:11, IEEE Computer Society Press, 2012.

[5] T. G. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee, J. Fryman,

I. Ganev, R. Knauerhase, M. Lee, B. Meister, B. Nickerson, N. Pepperling,

B. Seshasayee, S. Tasirlar, J. Teller, and N. Vrvilo, “The open community runtime: A

runtime system for extreme scale computing,” in 2016 IEEE High Performance

Extreme Computing Conference (HPEC), pp. 1–7, Sept. 2016.

[6] N. Vrvilo, L. Yu, and V. Sarkar, “A Marshalled Data Format for Pointers in

Relocatable Data Blocks,” in Proceedings of the 9th International Symposium on

Memory Management, ISMM’17, (New York, NY, USA), ACM, 2017.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.3944

172

[7] R. D. Hornung and J. A. Keasler, “The RAJA Poratability Layer: Overview and

Status,” Tech. Rep. LLNL-TR-661403, Lawrence Livermore National Laboratory, Sept.

2014.

[8] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore

performance portability through polymorphic memory access patterns,” Journal of

Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202–3216, 2014.

[9] A. Hendricks, T. Heller, H. Jordan, P. Thoman, T. Fahringer, and D. Fey, “The

Allscale Runtime Interface: Theoretical Foundation and Concept,” in Proceedings of

the 9th Workshop on Many-Task Computing on Clouds, Grids, and Supercomputers,

MTAGS’16, (Piscataway, NJ, USA), pp. 13–19, IEEE Press, 2016.

[10] H. Shan, B. Austin, N. J. Wright, E. Strohmaier, J. Shalf, and K. Yelick, “Accelerating

applications at scale using one-sided communication,” in Proceedings of the

Conference on Partitioned Global Address Space Programming Models (PGAS’12), 2012.

[11] T. G. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee, J. Fryman,

I. Ganev, R. Knauerhase, M. Lee, B. Meister, B. Nickerson, N. Pepperling,

B. Seshasayee, S. Tasirlar, J. Teller, and N. Vrvilo, “The Open Community Runtime:

A runtime system for extreme scale computing,” in 2016 IEEE High Performance

Extreme Computing Conference (HPEC), pp. 1–7, Sept. 2016.

[12] UPC Consortium, “UPC language speci�cations v1.2,” Tech. Rep. LBNL-59208,

Lawrence Berkeley National Laboratory, 2005.

[13] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L. Smith,

“Introducing OpenSHMEM: SHMEM for the PGAS Community,” in Proceedings of

the Fourth Conference on Partitioned Global Address Space Programming Model,

PGAS’10, (New York, NY, USA), pp. 2:1–2:3, ACM, 2010.

[14] J. R. Hammond, S. Ghosh, and B. M. Chapman, “Implementing OpenSHMEM Using

MPI-3 One-Sided Communication,” in Proceedings of the First Workshop on

173

OpenSHMEM and Related Technologies. Experiences, Implementations, and Tools -

Volume 8356, OpenSHMEM 2014, (New York, NY, USA), pp. 44–58, Springer-Verlag

New York, Inc., 2014.

[15] S. Treichler, M. Bauer, and A. Aiken, “Realm: An Event-based Low-level Runtime

for Distributed Memory Architectures,” in Proceedings of the 23rd International

Conference on Parallel Architectures and Compilation, PACT ’14, (New York, NY,

USA), pp. 263–276, ACM, 2014.

[16] R. Ramey, “Boost Serialization Library.” Boost.org, 2002.

http://www.boost.org/libs/serialization/.

[17] “cereal - a c++11 library for serialization.” GitHub.com, 2013.

http://uscilab.github.io/cereal/.

[18] “LibTooling.” Clang 3.9 documentation, 2016.

http://clang.llvm.org/docs/LibTooling.html.

[19] P. A. Ullrich, “A global �nite-element shallow-water model supporting continuous

and discontinuous elements,” Geoscienti�c Model Development, vol. 7, no. 6,

pp. 3017–3035, 2014. https://github.com/paullric/tempestmodel/.

[20] P. Ullrich, G. Jost, B. A. Lelbach, and H. Johansen, “Exascale-Ready Programming

Models for Climate,” in Workshop on Advancing X-cutting Ideas for Computational

Climate Science, AXICCS ’16, Jan. 2016.

[21] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 Updates and Changes,” Tech. Rep.

LLNL-TR-641973, Aug. 2013.

[22] E. Porter, K. Knobe, and J. Feo, “Experience Porting LULESH to CnC,” in CnC’14:

The Sixth Annual Concurrent Collections Workshop, Sept. 2014. Slides available

online: http://cass-mt.pnnl.gov/cnc2014/. Source code:

http://www.boost.org/libs/serialization/
http://uscilab.github.io/cereal/
http://clang.llvm.org/docs/LibTooling.html
https://github.com/paullric/tempestmodel/
http://cass-mt.pnnl.gov/cnc2014/

174

https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/lulesh-2.0.3/

refactored/cnc-ocr/pnnl/per-element;.

[23] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W. Tseng, “UTS:

An Unbalanced Tree Search Benchmark,” in Proceedings of the 19th International

Conference on Languages and Compilers for Parallel Computing, LCPC’06, (Berlin,

Heidelberg), pp. 235–250, Springer-Verlag, 2007.

[24] Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard

Version 3.1,” June 2015. http://mpi-forum.org/docs/.

[25] OpenSHMEM.org, “OpenSHMEM: Application Programming Interface, Version 1.3,”

Feb. 2016. http://www.openshmem.org/site/Speci�cation/.

[26] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson, Y. Sun,

E. Totoni, L. Wesolowski, and L. Kale, “Parallel Programming with Migratable

Objects: Charm++ in Practice,” in SC14: International Conference for High

Performance Computing, Networking, Storage and Analysis, pp. 647–658, Nov. 2014.

[27] T. Heller, “Removal of Boost.Serialization.” Mailing list announcement

(gmane.comp.lib.hpx.devel), Apr. 2015.

http://thread.gmane.org/gmane.comp.lib.hpx.devel/196.

[28] F. Schlimbach, J. C. Brodman, and K. Knobe, “Concurrent Collections on Distributed

Memory Theory Put into Practice,” in 2013 21st Euromicro International Conference

on Parallel, Distributed, and Network-Based Processing, pp. 225–232, Feb. 2013.

[29] S. Chatterjee, N. Vrvilo, Z. Budimlić, K. Knobe, and V. Sarkar, “Declarative Tuning

for Locality in Parallel Programs,” in Proceedings of the 45th International Conference

on Parallel Processing, ICPP ’16, Aug. 2016.

[30] S. Chatterjee, S. Tasirlar, Z. Budimlić, V. Cavé, M. Chabbi, M. Grossman, Y. Yan, and

V. Sarkar, “Integrating Asynchronous Task Parallelism with MPI,” in IPDPS ’13:

https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/lulesh-2.0.3/refactored/cnc-ocr/pnnl/per-element;
https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/lulesh-2.0.3/refactored/cnc-ocr/pnnl/per-element;
http://mpi-forum.org/docs/
http://www.openshmem.org/site/Specification/
http://thread.gmane.org/gmane.comp.lib.hpx.devel/196

175

Proceedings of the 2013 IEEE International Symposium on Parallel & Distributed

Processing, IEEE Computer Society, 2013.

[31] P. Charles, C. Grotho�, V. A. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar, “X10: an Object-Oriented Approach to Non-Uniform Cluster

Computing,” in Proceedings of the Twentieth Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05,

pp. 519–538, Oct. 2005.

[32] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick, “UPC++: a PGAS

extension for C++,” in Parallel and Distributed Processing Symposium, 2014 IEEE 28th

International, pp. 1105–1114, IEEE, 2014.

[33] I. Gaztanaga, “Boost Interprocess Library.” Boost.org, 2005.

http://www.boost.org/libs/interprocess/.

[34] “Based Pointers (C++).” MSDN Library, 2008.

https://msdn.microsoft.com/en-us/library/57a97k4e.aspx.

[35] S. Chandra, V. Saraswat, V. Sarkar, and R. Bodik, “Type inference for locality

analysis of distributed data structures,” in Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP’08, (New York,

NY, USA), pp. 11–22, ACM, 2008.

[36] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using a “Codelet”

Program Execution Model for Exascale Machines: Position Paper,” in Proceedings of

the 1st International Workshop on Adaptive Self-Tuning Computing Systems for the

Exa�op Era, EXADAPT’11, (New York, NY, USA), pp. 64–69, ACM, 2011.

[37] V. Kumar et al., “HClib: A C/C++ task-based programming model for shared

memory and distributed parallel computing.” GitHub.com.

https://github.com/habanero-rice/hclib/.

http://www.boost.org/libs/interprocess/
https://msdn.microsoft.com/en-us/library/57a97k4e.aspx
https://github.com/habanero-rice/hclib/

176

[38] M. Flatt, R. B. Findler, and PLT, “Continuations.” The Racket Guide (v.6.5), 2016.

https://docs.racket-lang.org/guide/conts.html.

[39] B. Labs and L. Technologies, “First-class Continuations.” SML/NJ Documentation,

1997. http://www.smlnj.org/doc/SMLofNJ/pages/cont.html.

[40] “Asynchronous Programming with async and await (C#).” MSDN Library, 2015.

https://msdn.microsoft.com/en-us/library/mt674882.aspx.

[41] P. Haller and J. Zaugg, “SIP-22 - Async.” Scala Improvement Process, 2013.

http://docs.scala-lang.org/sips/pending/async.html.

[42] “Continuations API.” Scala Standard Library Documentation, 2014.

http://www.scala-lang.org/�les/archive/api/2.11.8/scala-continuations-library/

scala/util/continuations/package.html.

[43] E. Mittelette, “Coroutines in Visual Studio 2015 – Update 1.” Visual C++ Team Blog,

2015. https://blogs.msdn.microsoft.com/vcblog/2015/11/30/

coroutines-in-visual-studio-2015-update-1/.

[44] G. Nishanov, “Working Draft, Technical Speci�cation for C++ Extensions for

Coroutines.” C++ Standards Committee Papers, 2017.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4649.pdf.

[45] C. Kohlho�, “Boost.Asio (Asynchronous I/O).” Boost.org, 2015.

http://www.boost.org/libs/asio/.

[46] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for programming

with millions of lightweight threads,” in Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on, pp. 1–8, Apr. 2008.

[47] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “HPX: A Task Based

Programming Model in a Global Address Space,” in Proceedings of the 8th

https://docs.racket-lang.org/guide/conts.html
http://www.smlnj.org/doc/SMLofNJ/pages/cont.html
https://msdn.microsoft.com/en-us/library/mt674882.aspx
http://docs.scala-lang.org/sips/pending/async.html
http://www.scala-lang.org/files/archive/api/2.11.8/scala-continuations-library/scala/util/continuations/package.html
http://www.scala-lang.org/files/archive/api/2.11.8/scala-continuations-library/scala/util/continuations/package.html
https://blogs.msdn.microsoft.com/vcblog/2015/11/30/coroutines-in-visual-studio-2015-update-1/
https://blogs.msdn.microsoft.com/vcblog/2015/11/30/coroutines-in-visual-studio-2015-update-1/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4649.pdf
http://www.boost.org/libs/asio/

177

International Conference on Partitioned Global Address Space Programming Models,

PGAS ’14, (New York, NY, USA), pp. 6:1–6:11, ACM, 2014.

[48] C. Yang and J. Mellor-Crummey, “A Practical Solution to the Cactus Stack Problem,”

in Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’16, (New York, NY, USA), ACM, 2016.

https://github.com/chaoran/�bril/.

[49] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou, “Cilk: An E�cient Multithreaded Runtime System,” in Proceedings of the

Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPOPP ’95, (New York, NY, USA), pp. 207–216, ACM, 1995.

[50] The Habanero Extreme Scale Software Research Project at Rice University,

“Habanero-C.” https://habanero.rice.edu/hc/.

[51] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java: the New Adventures of

Old X10,” in PPPJ’11: Proceedings of the 9th International Conference on the Principles

and Practice of Programming in Java, 2011.

[52] J. Shirako, P. Unnikrishnan, S. Chatterjee, K. Li, and V. Sarkar, “Expressing

DOACROSS Loop Dependencies in OpenMP,” in 9th International Workshop on

OpenMP (IWOMP), Sept. 2013.

[53] E. G. Co�man, M. Elphick, and A. Shoshani, “System Deadlocks,” ACM Computing

Surveys (CSUR), vol. 3, no. 2, pp. 67–78, 1971.

[54] A. S. Tanenbaum, Modern Operating Systems, ch. 6, p. 438. New York, NY, USA:

Pearson, 3 ed., 2007.

[55] C++ Standards Committee, “ISO/IEC 14882: 2011, Standard for Programming

Language C++,” tech. rep., http://www.open-std.org/jtc1/sc22/wg21, 2011.

https://github.com/chaoran/fibril/
https://habanero.rice.edu/hc/
http://www.open-std.org/jtc1/sc22/wg21

178

[56] D. Lea, “A Java Fork/Join Framework,” in Proceedings of the ACM 2000 Conference on

Java Grande, JAVA ’00, (New York, NY, USA), pp. 36–43, ACM, 2000.

[57] “Interface ForkJoinPool.ManagedBlocker.” Java Platform Standard Edition 8

Documentation, 2016. https://docs.oracle.com/javase/8/docs/api/java/util/

concurrent/ForkJoinPool.ManagedBlocker.html.

[58] J. Reinders, Intel Threading Building Blocks: Out�tting C++ for Multi-core Processor

Parallelism, ch. 9, p. 141. O’Reilly Media, 2007.

[59] V. Cavé, “HClib: A library implementation of the Habanero-C language.”

GitHub.com. http://habanero-rice.github.io/hclib-legacy/.

[60] Wikipedia, “Comparability — Wikipedia, The Free Encyclopedia,” 2016. Accessed:

2016-12-05.

[61] Wikipedia, “Coroutine — Wikipedia, The Free Encyclopedia,” 2016. Accessed:

2016-12-05.

[62] Flaise, “Semicoroutine,” 2016. Accessed: 2017-05-05.

[63] Python 3 Documentation, “Yield expressions,” 2001. Accessed: 2017-05-05.

[64] O. Kowalke, “Boost.Context.” Boost.org, 2014. http://www.boost.org/libs/context/.

[65] S. Ghemawat and P. Menage, “TCMalloc: Thread-Caching Malloc.” GitHub.com,

2007. https://gperftools.github.io/gperftools/tcmalloc.html.

[66] The Center for Research in Extreme Scale Technologies (CREST), “High

Performance ParalleX: HPX-5.” Indiana University, 2015. https://hpx.crest.iu.edu/.

[67] S. Imam and V. Sarkar, “Cooperative Scheduling of Parallel Tasks with General

Synchronization Patterns,” in 28th European Conference on Object-Oriented

Programming (ECOOP), July 2014.

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html
http://habanero-rice.github.io/hclib-legacy/
http://www.boost.org/libs/context/
https://gperftools.github.io/gperftools/tcmalloc.html
https://hpx.crest.iu.edu/

179

[68] Parallel Universe, “Quasar: Fibers, Channels and Actors for the JVM,” 2013.

http://docs.paralleluniverse.co/quasar/.

[69] M. Mann, “Continuations Library.”

http://www.matthiasmann.de/content/view/24/26/.

[70] M. G. Burke, K. Knobe, R. Newton, and V. Sarkar, “Concurrent Collections

Programming Model,” in Encyclopedia of Parallel Computing (D. Padua, ed.),

pp. 364–371, Springer US, 2011. A pre-print copy of this article is available at

https://habanero.rice.edu/publications.

[71] “The Habanero CnC Framework.” GitHub.com.

https://github.com/habanero-rice/cnc-framework.

[72] “CnC: Intel Concurrent Collections for C++.” GitHub.com. https://icnc.github.io/.

[73] “CnC-Python.” Habanero Extreme Scale Software Research Project Wiki.

https://habanero.rice.edu/CnC-Python.

[74] “CnC-Scala.” Habanero Extreme Scale Software Research Project Wiki.

https://habanero.rice.edu/CnC-Scala.

[75] “Intel Concurrent Collections for Haskell.” GitHub.com.

https://github.com/rrnewton/Haskell-CnC.

[76] C.-C. Yang and D. Padua, “Hierarchically Tiled Arrays for OCR.” Bitbucket.org.

https://bitbucket.org/cyang49/htaocr.git.

[77] “Legion-OCR.” GitHub.com. https://github.com/srirajpaul/legion-ocr.

[78] N. Vrvilo, “The Habanero CnC Framework: A Demonstration of CnC Uni�cation,”

in Proceedings of the The Seventh Annual Concurrent Collections Workshop (CnC’15),

2015. Slides available online:

https://engineering.purdue.edu/plcl/cnc2015/program.html.

http://docs.paralleluniverse.co/quasar/
http://www.matthiasmann.de/content/view/24/26/
https://habanero.rice.edu/publications
https://github.com/habanero-rice/cnc-framework
https://icnc.github.io/
https://habanero.rice.edu/CnC-Python
https://habanero.rice.edu/CnC-Scala
https://github.com/rrnewton/Haskell-CnC
https://bitbucket.org/cyang49/htaocr.git
https://github.com/srirajpaul/legion-ocr
https://engineering.purdue.edu/plcl/cnc2015/program.html

180

[79] A. Sbîrlea, J. Shirako, L.-N. Pouchet, and V. Sarkar, “Polyhedral Optimizations for a

Data-Flow Graph Language,” in The 28th International Workshop on Languages and

Compilers for Parallel Computing, LCPC ’15, Sept. 2015.

[80] K. B. W. Dragoş Sbîrlea, Alina Sbîrlea and V. Sarkar, “The Flexible Preconditions

Model for Macro-Data�ow Execution,” in The 3rd Data-Flow Execution Models for

Extreme Scale Computing Workshop (DFM), Sept. 2013.

[81] “Jinja2: The Python Template Engine.” http://jinja.pocoo.org/.

[82] The Center for Systems and Software Engineering at the University of Southern

California, “UCC: Uni�ed CodeCount.” http://csse.usc.edu/ucc_wp/.

[83] N. P. Carter, A. Agrawal, S. Borkar, R. Cledat, H. David, D. Dunning, J. Fryman,

I. Ganev, R. A. Golliver, R. Knauerhase, R. Lethin, B. Meister, A. K. Mishra, W. R.

Pinfold, J. Teller, J. Torrellas, N. Vasilache, G. Venkatesh, and J. Xu, “Runnemede: An

Architecture for Ubiquitous High-Performance Computing,” in Proceedings of the

2013 IEEE 19th International Symposium on High Performance Computer Architecture,

HPCA ’13, (Washington, DC, USA), pp. 198–209, IEEE Computer Society, 2013.

[84] T. Mattson and R. Cledat, “OCR: The Open Community Runtime Interface, Version

1.1.0.” Modelado.org, 3 2016. https://xstack.exascale-tech.com/git/public?p=ocr.git;

a=blob;h=c99da307;f=ocr/spec/ocr-1.1.0.pdf.

[85] “CnC on HCMPI with Tuning.” GitHub.com.

https://github.com/habanero-rice/cnc-ocr/tree/icpp2016-tuned-cnc.

[86] B. Chamith, “CnC Framework (forked).” GitHub.com.

https://github.com/chamibuddhika/cnc-framework. This fork has experimental

support for HPX-5 code generation.

[87] Z. Budimlić, M. Burke, K. Knobe, R. Newton, D. Peixotto, V. Sarkar, and

E. Westbrook, “Deterministic Reductions in an Asynchronous Parallel Language,” in

http://jinja.pocoo.org/
http://csse.usc.edu/ucc_wp/
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;h=c99da307;f=ocr/spec/ocr-1.1.0.pdf
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;h=c99da307;f=ocr/spec/ocr-1.1.0.pdf
https://github.com/habanero-rice/cnc-ocr/tree/icpp2016-tuned-cnc
https://github.com/chamibuddhika/cnc-framework

181

Proceedings of The 2nd Workshop on Determinism and Correctness in Parallel

Programming, WoDet’11, Mar. 2011.

[88] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2002.

[89] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg,

D. Peixotto, V. Sarkar, F. Schlimbach, and S. Taşırlar, “Concurrent Collections,”

Scienti�c Programming, vol. 18, pp. 203–217, Aug. 2010.

[90] Wikipedia, “Uniqueness quanti�cation — Wikipedia, The Free Encyclopedia,” 2016.

Accessed: 2016-12-05.

[91] N. Vrvilo and R. Cledat, “Implementing a High-level Tuning Language on the Open

Community Runtime: Experience Report,” in Runtime Systems for Extreme Scale

Programming Models and Architectures (RESPA), Nov. 2015.

[92] G. Bikshandi, J. Guo, D. Hoe�inger, G. Almasi, B. B. Fraguela, M. J. Garzarán,

D. Padua, and C. von Praun, “Programming for Parallelism and Locality with

Hierarchically Tiled Arrays,” in Proceedings of the Eleventh ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’06, (New

York, NY, USA), pp. 48–57, ACM, 2006.

[93] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken, “Regent: A

High-productivity Programming Language for HPC with Logical Regions,” in

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’15, (New York, NY, USA), pp. 81:1–81:12,

ACM, 2015.

[94] B. Meister, M. Baskaran, B. Pradelle, T. Henretty, and R. Lethin, “E�cient

Compilation to Event-Driven Task Programs,” ArXiv e-prints: arXiv:1601.05458v1

[cs.DC], Jan. 2016.

182

[95] K. Knobe and M. G. Burke, “The Tuning Language for Concurrent Collections,” 16th

Workshop on Compilers for Parallel Computing (CPC), 2012.

[96] K. Sharma, Locality Transformations of Computation and Data for Portable

Performance. PhD thesis, Rice University, Aug. 2014.

[97] M. Kong et al., “PIPES,” 2016. To appear.

[98] C. Liu and M. Kulkarni, “Optimizing the LULESH Stencil Code Using Concurrent

Collections,” in Proceedings of the 5th International Workshop on Domain-Speci�c

Languages and High-Level Frameworks for High Performance Computing, WOLFHPC

’15, (New York, NY, USA), pp. 5:1–5:10, ACM, 2015.

[99] K. Sharma, I. Karlin, J. Keasler, J. R. McGraw, and V. Sarkar, “Data Layout

Optimization for Portable Performance,” in Euro-Par 2015: Parallel Processing: 21st

International Conference on Parallel and Distributed Computing, pp. 250–262,

Springer, 2015.

[100] C. Inc., “The Chapel language speci�cation version 0.4,” tech. rep., Cray Inc., Feb.

2005.

[101] UPC++ Speci�cation Working Group, “UPC++ Speci�cation v1.0 Draft 2,” June 2017.

https://bitbucket.org/upcxx/upcxx/downloads/upcxx-spec-V1.0-Draft2.pdf.

[102] H. Kaiser, “HPXnC - HPX Concurrent Collections.” GitHub.com.

https://github.com/STEllAR-GROUP/hpxnc.

[103] D. Sbîrlea, K. Knobe, and V. Sarkar, “Folding of tagged single assignment values for

memory-e�cient parallelism,” in Euro-Par 2012 Parallel Processing, pp. 601–613,

Springer, 2012.

[104] E. W. Weisstein, “Binomial Coe�cient. From MathWorld–A Wolfram Web Resource.”

http://mathworld.wolfram.com/BinomialCoe�cient.html. Accessed: 2016-12-05.

https://bitbucket.org/upcxx/upcxx/downloads/upcxx-spec-V1.0-Draft2.pdf
https://github.com/STEllAR-GROUP/hpxnc
http://mathworld.wolfram.com/BinomialCoefficient.html

183

[105] E. W. Weisstein, “Pascal’s Triangle. From MathWorld–A Wolfram Web Resource.”

http://mathworld.wolfram.com/PascalsTriangle.html. Accessed: 2016-12-05.

[106] Z. Budimlić and K. Knobe, “Declarative Communication for CnC,” in The Eighth

Annual Concurrent Collections Workshop (CnC’16), 2016. Slides available online:

https://cncworkshop2016.github.io/.

http://mathworld.wolfram.com/PascalsTriangle.html
https://cncworkshop2016.github.io/

	Abstract
	Acknowledgments
	Contents
	Introduction
	Efficient Encoding for Pointers in Relocatable Data Blocks
	Motivation
	Background
	One-sided Communication
	Data Block Migration
	Serialization

	Overview of Our Approach
	Pointer Usage in Tasks and Datablocks
	Intra-datablock Pointers
	Inter-datablock Pointers

	Additional C++ API Support
	Pointer Conversion Algorithm
	Description of the Algorithm
	Example of Program Transformation
	Limitations of the Algorithm

	Position-independent Encoding Optimization
	Position-independent Pointer Sanity Checks
	Experimental Evaluation and Analysis
	Benchmarks
	Experimental Setup
	Results and Analysis

	Related Work
	Future Research Directions
	Summary

	Practical Support for Tasks with Blocking Constructs
	Background
	Continuations Support in Mainstream Languages
	The Habanero-C Programming Model
	Deadlock

	Overview of Our Approach
	Deadlock Scenarios in the Habanero-C Runtime
	Simple Task Scheduling for Async/Finish Programs
	Issues Combining Global Helping with Blocking Constructs
	Program Compatibility with Global Helping

	Alternative Strategies for Scheduling Blocking Tasks
	Requirements for an Alternative Strategy
	Our Selected Strategies

	Evaluation of Selected Strategies
	Benchmarks
	Experimental Setup
	Results and Analysis
	Implications for Resilience
	Strategy Tradeoffs
	Recommendations for Strategy Selection

	Related Work
	Summary

	CnC-OCR: A Productivity Environment for OCR
	Background
	The Open Community Runtime (OCR)
	The CnC Programming Model
	Separation of Concerns in CnC vs. OCR
	CnC Graph Notation

	Overview of Our Approach
	Design and Implementation of CnC on OCR
	Mapping CnC onto the OCR Programming Model
	Software Architecture
	Development Workflow
	Unified CnC
	Code Generation Support

	CnC Programming Example: Fibonacci Numbers
	Writing the CnC Graph Specification
	Generating the CnC Project Skeleton
	Fleshing Out the Project Skeleton

	CnC Program Hierarchy
	CnC Collection Granularities
	CnC Hierarchy Defintions
	Algorithmically Building Hierarchies

	CnC Application Tuning
	Tuning Evaluation

	Productivity in CnC-OCR
	Related Work
	Future Directions
	Summary

	Conclusions and Future Work
	General Conclusions
	Future Work
	Possible Applications in Other Runtime Systems

	Appendices
	Global Helping Deadlocks in OCR
	Introduction to CnC
	Key Properties of CnC
	Graph Representation of the Application
	Single-Assignment Data
	Monotonically Growing State
	Discrete and Side-Effect-Free Computation Steps

	A Sample CnC Application
	Review of Pascal's Triangle
	Structure of the CnC Graph
	Executing CnC Steps
	Interaction with the Environment
	Example Execution

	The CnC Continuum

	CnC Sans Control Collections
	CnC Graph Domain Specific Languages
	The Graph Spec Language
	Structure
	Syntax

	The CnC Tuning Language
	Structure
	Syntax
	Currently supported tunings
	Using a tuning specification

	CnC Unified C API

	References

