COMP 322: Fundamentals of
Parallel Programming

Lecture 38: Comparison of Programming
Models

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
COMP 322 Lecture 38 18 April 2012

Acknowledgments

“Introduction to Parallel Computing” by Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Addison Wesley, 2003,
and accompanying slides

— http://www-users.cs.umn.edu/~karypis/parbook/

Slides from COMP 422 course at Rice University

— http://www.clear.rice.edu/comp422/

Bradford Nichols, Dick Buttlar, Jacqueline Proulx Farrell. "Pthreads Programming: A POSIX Standard for Better
Multiprocessing.” O'Reilly Media, 1996

Slides from OpenMP tutorial given by Ruud van der Paas at HPCC 2007
— http://www.tlc2.uh.edu/hpcc07/Schedule/OpenMP

“Towards OpenMP 3.0“, Larry Meadows, HPCC 2007 presentation
— http://www.tlc2.uh.edu/hpcc07/Schedule/speakers/hpccO7 Larry.ppt

Pthreads: A Brief Introduction, CSCI 8530 lecture, University of Nebraska Omaha
— http://cs.unomaha.edu/~stanw/053/csci8530/pthreads. pdf

“Principles of Parallel Programming”, Calvin Lin & Lawrence Snyder

— Includes resources available at http://www.pearsonhighered.com/educator/academic/product/0,3110,0321487907,00.html

Tim Warburton, Rice University, “"Introduction to GPGPU Programming”

— b-day course taught at Danish Technical University (DTU) in May 2011

David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2010.

COMP 322, Spring 2012 (V.Sarkar)

Parallel Programming is a Cross-Cutting
Concern

Developer Pyramid (not drawn to scale!)

Software Stack

R Application

Application
Domain-Specific Langs. Develope I's
Middleware
Programming Parallel

Runtime Systems Programming " nfrastructure
Compilers Developers

System Libraries Sys!m

OS and Hypervisors 4 Programmers

3 COMP 322, Spring 2012 (V.Sarkar) D

Different Parallel Programming Models for different
Levels of Developer Pyramid and Software Stack

Software Stack

Application Appl ication A
Domain-Specific Langs.
Middleware Developers Matlab
Chapel, X10

Programming

Runtime Systems Habanero-Java

Inf Habanero-C
Compilers nfrastructure T thread
Developers ava threads
System Libraries OpenMP MPI
OS and Hypervisors Syszm CUDA OpenCL
Programmers Pthreads

4 COMP 322, Spring 2012 (V.Sarkar) &

Pthreads

OpenMP
CUDA

Outline

COMP 322, Spring 2012 (V.Sarkar)

POSIX Thread API (Pthreads)

* Standard user threads API supported by most vendors
* Library interface, intended for system programmers

* Concepts behind Pthreads interface are broadly applicable
—largely independent of the API

—useful for programming with other thread APIs as well
— Windows threads
— Solaris threads
— Java threads

* Threads are peers, unlike Linux/Unix processes
—no parent/child relationship

6 COMP 322, Spring 2012 (V.Sarkar) &

PThread Creation

Asynchronously invoke thread_function in a new thread

#include <pthread.h>
int pthread create(

pthread t *thread handle, /* returns handle here */
const pthread attr t *attribute,
void * (*thread function) (void *),

void *arg); /* single argument; perhaps a structure */

attribute created by pthread attr init

contains details about

 whether scheduling policy is inherited or explicit
« scheduling policy, scheduling priority

« stack size, stack guard region size

Can use NULL for pthread _attr_ init for default values

7 COMP 322, Spring 2012 (V.Sarkar) D

Pthread Termination

* A thread terminates by calling the function pthread_exit(). A
single argument, a pointer to a void* object, is supplied as the
argument to pthread_exit. This value is returned to any thread
that has blocked while waiting for this thread to exit.

* Suspend parent thread until child thread terminates

#include <pthread.h>
int pthread join (
pthread t thread, /* thread id */
void **ptr); /* ptr to location for return code a terminating

thread passes to pthread_exit */

8 COMP 322, Spring 2012 (V.Sarkar)

Example: Creation and Termination (main)

#include <pthread.h>
#include <stdlib.h>
##define NUM_THREADS 32
void *compute pi (void *);

int main(...) { default attributes

pthread t p threads[NUM_ THREADS];
pthread attr_t attr;
pthread attr init(&attr);
for (i=0; i< NUM_THREADS; i++) {
hits[i] = i;
pthread create(&p_ threads[i], &aktr, compute pi,
(void*) &hits[i]);

} \
for (i=0; i< NUM_THREADS; i++) ({

pthread join(p_threads[i], NULL);
total_hits += hits[i];

thread function

thread argument

9 COMP 322, Spring 2012 (V.Sarkar) %}&Q

Example of Implementing a Reduction
Using Mutex Locks

pthread mutex t cost_lock;

oo use default (normal) lock type

int main() { /

pthread mutex_init (&cost_lock, NULL);

}
void *find best(void *list ptr) {

pthread mutex lock(&cost lock); /* lock the mutex */
if (my_cost < best_cost) critical section

best cost = my_ cost;

pthread mutex unlock(&cost lock); /* unlock the mutex */

10 COMP 322, Spring 2012 (V.Sarkar) %ﬁ

Pthread’s Condition Variable API

/* initialize or destroy a condition variable */

int pthread cond init(pthread cond_t *cond,
const pthread condattr_t *attr);
int pthread cond destroy(pthread cond t *cond);

/* block until a condition is true */

int pthread cond wait(pthread cond t *cond,
pthread mutex_t *mutex);

int pthread cond timedwait (pthread cond t *cond,

pthread mutex_t *mutex, f\ abort wait if time exceeded

const struct timespec *wtime);

/* signal one or all waiting threads that condition is true */
int pthread cond signal(pthread cond t *cond);
int pthread cond broadcast(pthread cond t *cond);

wake one WakKe a EAC

11 COMP 322, Spring 2012 (V.Sarkar) D

Condition Variable Producer-Consumer
(main)

pthread cond_t cond queue_empty, cond queue full;
pthread mutex_t task queue cond_ lock;

int task available;

/* other data structures here */

/* declarations and initializations */
task_available = 0; ’/////

pthread init();

pthread cond init(&cond_queue_empty, NULL)%
pthread cond init (&cond_queue_ full, NULL);
pthread mutex init(&task_queue_cond lock, NULL);

/* create and join producer and consumer threads */

12 COMP 322, Spring 2012 (V.Sarkar) D

Producer Using Condition Variables

void *producer(void *producer_thread_data) ({

int inserted;

while (!done
(0) { releases mutex on wait

create_ task();
pthread mutex lock(&task_queue_cond lock);

while (task_available == 1)

Eis pthread cond wait (&cond_queue empty,
&task queue_cond _lock); <—
insert_into_queue();
task available = 1;
pthread cond signal (&cond_queue_ full);
pthread mutex unlock(&task _queue_cond_ lock);
}
}

reacquires mutex when woken

13 COMP 322, Spring 2012 (V.Sarkar) %@

Consumer Using Condition Variables

void *consumer (void *consumer thread data) ({

releases mutex on wait
while (!done()) {

pthread mutex lock(&task_queue_cond lock);

note while (task_available == 0)

loop pthread cond wait (&cond_queue_ full,

&task_queuetcnnd=lngkl:—ﬁ

my_task = extract_from_queue();

task available = 0;
pthread cond signal (&cond_queue_empty);
pthread mutex unlock(&task _queue_ cond_lock);

process_ task(my_ task);

} reacquires mutex when woken

14 COMP 322, Spring 2012 (V.Sarkar) %@

Composite Synchronization Constructs

* Pthreads provides only basic synchronization constructs

* Build higher-level constructs from basic ones e.g., barriers

—Pthreads extension includes barriers as synchronization objects
(available in Single UNIX Specification)

- Enable by #define _XOPEN_SOURCE 600 at start of file
—Initialize a barrier for count threads

- int pthread_barrier init(pthread barrier_t *barrier,
const pthread barrier attr t *attr, int count);

—Each thread waits on a barrier by calling
- int pthread barrier wait (pthread barrier t *barrier);

—Destroy a barrier

- 1int pthread barrier destroy(pthread barrier t
*barrier) ;

* Java threads and HJ worker threads are also implemented as
pthreads

15 COMP 322, Spring 2012 (V.Sarkar) <

Summary of key features in Pthreads

Pthreads construct

Related HJ/Java constructs

pthread_create()

HJ's async; Java's "new Thread” and
“"Thread.start()"”

pthread_join()

HJ's finish & future get(). Java's
"Thread. join()"

pthread_mutex_lock()

HJ's begin-isolated, actors; Java's begin-
synchronized, and lock() libray calls

pthread_mutex_unlock()

HJ's end-isolated, actors; Java's begin-
synchronized, and lock() librray calls

pthread_cond_signal()

Deterministic use: HJ's phasers;
Nondeterministic use: j.u.c.locks.condition

pthread_cond_wait()

Deterministic use: HJ's phasers:
Nondeterministic use: j.u.c.locks.condition

16

COMP 322, Spring 2012 (V.Sarkar)

Outline

e Pthreads

* OpenMP
e CUDA

17 COMP 322, Spring 2012 (V.Sarkar)

What is OpenMP?

* Well-established standard for writing shared-memory parallel
programs in C, C++ Fortran

* Programming model is expressed via
—Pragmas/directives (not language extensions)
—Runtime routines
—Environment variables

—Specification maintained by the OpenMP Architecture Review
Board (http://www.openmp.org)

—Latest specification: Version 3.0 (May 2008)

—Previous specification: Version 2.5 (May 2005)

18 COMP 322, Spring 2012 (V.Sarkar) &

A first OpenMP example

For-loop with independent
iterations

For-loop parallelized using
an OpenMP pragma

for (i = 0; i < n; i++)
C[i] = a[i] + b[i];

#pragma omp parallel for \
shared(n, a, b, c)\
private(i)

for (1 = 0; i < n; i++)

c[i] = a[i] + b[i];

% CC -xopenmp source.cC
% setenv OMP_NUM THREADS 4
% a.out

19 COMP 322, Spring 2012 (V.Sarkar) G

20

The OpenMP Execution Model

Fork and Join Model

Master
Thread

Worker
Parallel region
d regi * { * * { Threads
Work
Parallel region * * * * * Th‘r)cle‘ aceirs

Terminology

QO OpenMP Team := Master + Workers

Q A Parallel Region is a block of code executed by all
threads simultaneously

«~ The master thread always has thread ID 0

< Thread adjustment (if enabled) is only done before entering a
parallel region

<~ Parallel regions can be nested, but support for this is
implementation dependent

<~ An "if" clause can be used to guard the parallel region; in case
the condition evaluates to "false", the code is executed serially

Q A work-sharing construct divides the execution of the

enclosed code region among the members of the team; in
other words: they split the work

21 COMP 322, Spring 2012 (V.Sarkar)

Parallel Region

{

#pragma omp parallel [clause[[,] clause] ...]
"this is executed in parallel”

} (implied barrier)

A parallel region is a block of code executed by multiple
threads simultaneously, and supports the following clauses:

22

if

private
shared
default
default
reduction
copyin
firstprivate

(scalar expression)

(list)

(list)

(nonelshared) (C/C++)
(nonelsharediprivate) (Fortran)
(operator: list)

(list)

(list)

num_threads (scalar_int_expr)

COMP 322, Spring 2012 (V.Sarkar)

Work-sharing constructs in a Parallel Region

#pragma omp for | #pragma omp sections | #pragma omp single
{ { {
} } }

* The work is distributed over the threads

* Must be enclosed in a parallel region

* Must be encountered by all threads in the team,
or none at all

* No implied barrier on entry: implied barrier on
exit (unless nowait is specified)

* A work-sharing construct does not launch any new

#pragma omp parallel #pragma omp parallel for
#pragma omp for for
fo (® ® o 0)

r (o o o —
witTn smg);le WOrKk-snari Cconsiruct €.g.,
23 COMP 322, Spring 2012 (V.Sarkar)

Legality constraints for work-sharing
constructs

Each worksharing region must be encountered by all threads in a team or by
hone at all.

The sequence of worksharing regions and barrier regions encountered must
be the same for every thread in a team.

#pragma omp parallel

{
do {
// cl and c2 may depend on the OpenMP thread-id
boolean cl = .. ; boolean c2 = .. ;

if (c2) {
// Start of work-sharing region with no wait clause
#pragma omp ..
. . « // Worksharing statement
Yy // if (c2)
} while (! cl);
}

==> No OpenMP implementation checks for conformance with this rule

24 COMP 322, Spring 2012 (V.Sarkar) %}&Q

Example of work-sharing “omp for” loop
_— Implicit finish

#pragma omp parallel default(none)\ |
shared(n,a,b,c,d) private(1i)

{ Like HJ|s forasync
#pragma omp for nowait’///

for (i=0; i<n-1; i++)
b[i] = (a[i] + a[i+1l])/2;

#pragma omp for nowait—— Like HJ's|forasy

for (i=0; i<n; i++)
d[i] = 1.0/c[i];

} /*-- End of parallel region --%*/
(implied barrier)

25 COMP 322, Spring 2012 (V.Sarkar) <

Reduction Clause in OpenMP

* The reduction clause specifies how multiple local copies of a
variable at different threads are combined into a single copy at
the master when threads exit.

* The syntax of the reduction clause is as follows

— reduction (operator: variable list).

* The variables in the list are implicitly specified as being private
to threads.

* The operator can be one of +, *, -, &, |, *, &&, and |]|.
#pragma omp parallel reduction(+: sum) num threads(8) {
/* compute local instances of sum here */

}

/*sum here contains sum of all local instances of sum */

26 COMP 322, Spring 2012 (V.Sarkar) %}Q

“single” and “master” constructs in a parallel region

Only one thread in the team executes the code enclosed

#pragma omp single [clause[[,] clause] ...]
{

<code-block>
}

Only the master thread executes the code block.

#pragma omp master
{<code-block>}

* Single and master are useful for computations that are intended
for single-processor execution e.g., I/0 and initializations

* There is no implied barrier on entry or exit of a single or master
construct

27 COMP 322, Spring 2012 (V.Sarkar) G

task Construct

#pragma omp task [clause[[,]clause]
structured-block

where clause can be one of:

if (expression)

untied

shared (list)

private (list)
firstprivate (list)
default(shared | none)

28

COMP 322, Spring 2012 (V.Sarkar)

Example — parallel pointer chasing using tasks

l.#pragma omp parallel

2.{

3. #pragma omp single private (p)
'g: {p _ listhead : Spawn call to process (p)
6. while (p) { ///

/. #pragma omp task

8. process (p);

9. p= p->next ;

10. }

11. }

12.

Implicit finish at end of parallel region

29 COMP 322, Spring 2012 (V.Sarkar) G

30

Example — parallel pointer chasing on multiple lists
using tasks (nested parallelism)

1.#pragma omp parallel

R |

3. #pragma omp for private (p)
4, for (int 1 =0; i <numlists ; i++) {
5. p = listheads [1] ;
6. while (p) {

7. #pragma omp task

8. process (p)

9. p=next (p) -

10. }

11. }

12.}

COMP 322, Spring 2012 (V.Sarkar)

A

Example: postorder tree traversal

void postorder (node *p) {
if (p—->left)
#pragma omp task
postorder (p->left) ;
if (p->right)
#pragma omp task
postorder (p->right) ;
#pragma omp taskwait // wait for child tasks
process (p->data) ;

e Parent task suspended until children tasks complete

31 COMP 322, Spring 2012 (V.Sarkar) &

Summary of key features in OpenMP

OpenMP construct Related HJ/Java constructs

Parallel region HJ forall (forall iteration = OpenMP thread)
#pragma omp parallel

Work-sharing constructs: No direct analogy in HJ or Java

parallel loops, parallel sections

Barrier HJ forall-next on implicit phaser
#pragma omp barrier

Single HJ's forall-next-single on implicit phaser
#pragma omp single (but HJ does not support single + nowait)
Reduction clauses HJ's finish accumulators (in forall)
Critical section HJ's isolated statement

#pragma omp critical

Task creation HJ's async statement

#pragma omp task

Task termination HJ's finish statement

#pragma omp taskwait

32 COMP 322, Spring 2012 (V.Sarkar) %\Q

Outline

e Pthreads
* OpenMP
e CUDA

33 COMP 322, Spring 2012 (V.Sarkar)

CPUs and GPUs have fundamentally
different design philosophies

6PU = Graphics Processing Unit

Single CPU core Multiple GPU processors
= Streaming Multiprocessor .
-
-
-
E
-

GPUs are provided to accelerate graphics, but they can also be used
for non-graphics applications that exhibit large amounts of data
parallelism and require large amounts of “streaming” throughput

34 COMP 322, Spring 2012 (V.Sarkar)

Process Flow of a CUDA Kernel Call
(Compute Unified Device Architecture)

Data parallel programming architecture from
NVIDIA

—Execute programmer-defined kernels on
extremely parallel GPUs

—CUDA program flow:
1. Push data on device
2. Launch kernel

3. Execute kernel and memory accesses in
parallel

4. Pull data off device

Device threads are launched in batches
—Blocks of Threads, 6rid of Blocks

Explicit device memory management
—cudaMalloc, cudaMemcpy, cudaFree, etc.

Main
Memory

GPU
Memory

CPU

Euro-Par 2009.

GPU

[]

[B .
| B

U
[
O

Figure source: Y. Yan et. al "JCUDA: a
Programmer Friendly Interface for
Accelerating Java Programs with CUDA."”

COMP 322, Spring 2012 (V.Sarkar)

Execution of a CUDA program

« Integrated host+device application
— Serial or modestly parallel parts on CPU host

— Highly parallel kernels on GPU device
Host Code
(small number of threads)
Device Kernel D | LD S R
(large number of threads) 55 | i e | e
Host Code
(small number of threads)
Device Kernel DN OIINY SIS
DOOOD OO > OO
(large number of threads) &L R 3 Ce. | S
Host Code

(small number of threads)

36 COMP 322, Spring 2012 (V.Sarkar) <

Matrix multiplication kernel code in CUDA
(SPMD model with index = threadldx)

// Matrixmultiplication kernel - thread specification
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// 2D Thread ID

int tx =threadldx.x;

int ty = threadlIdx.y;

// Pvalue stores the Pd element that is computed by the thread
float Pvalue =0;

for (int k=0; k <Width; ++k)

{
float Mdelement =Md[ty * Width + k];
float Ndelement = Nd[k * Width + tx];
Pvalue += Mdelement * Ndelement;

}

// Write thematrix to device memory each thread writes one element
Pd[ty * Width + tx] = Pvalue;

37 COMP 322, Spring 2012 (V.Sarkar) G

Host Code in C for Matrix Multiplication

1. void MatrixMultiplication(float* M, float* N, float* P, int Width)
{

2. int size = Width*Width*sizeof (float); // matrix size

3. float* Md, Nd, Pd; // pointers to device arrays

4. cudaMalloc ((void**) &Md, size); // allocate Md on device

5. cudaMemcpy (Md, M, size, cudaMemcpyHostToDevice); // copy M to Md
6. cudaMalloc ((void**) &Nd, size); // allocate Nd on device

7. cudaMemcpy (Nd, M, size, cudaMemcpyHostToDevice); // copy N to Nd
8. cudaMalloc ((void**) &Pd, size); // allocate Pd on device

9. dim3 dimBlock (Width,Width); dim3 dimGrid(1,1);

10. // launch kernel (equivalent to “async at(GPU), forall, forall”
11. MatrixMulKernel<<<dimGrid,dimBlock>>>(Md, Nd, Pd, Width) ;

12. cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost); // copy Pd to P
13. // Free device matrices

14. cudaFree (Md) ; cudaFree (Nd); cudaFree (Pd) ;

15. }

38 COMP 322, Spring 2012 (V.Sarkar) %}Q

Organization of a CUDA grid
(Figure 4)

Host

Device
async at(GPU) Grid 1forall(blockIdx)
Kernel Block Block
1 (0, 0) (1, 0)
Block, 7 i Block
.1 @1

async at(GPU) ,,’érid 2 ,'I

|}

L]

1

1

)

r'd / !
]

]

1

]

e

Kernel 7 » y
2 r [

4

- -

Block (1, 1)

39

COMP 322, Spring 2012 (V.Sarkar)

CUDA Host-Device Data Transfer

cudaError_t cudaMemcpy(void* dst, const
void* src, size_t count, enum cudaMemcpyKind
kind)

copies count bytes from the memory area
pointed to by src to the memory area pointed to
by dst, where kind is one of

—cudaMemcpyHostToHost
—cudaMemcpyHostToDevice
—cudaMemcpyDevice ToHost
—cudaMemcpyDeviceToDevice

The memory areas may not overlap

Calling cudaMemcpy() with dst and src pointers
that do not match the direction of the copy
results in an undefined behavior.

(Device) Grid

Block (0, 0)

Block (1, 0)

=0

Thread Thread

40

COMP 322, Spring 2012 (V.Sarkar)

CUDA Storage Classes

e Device code can:

— R/W per-thread registers

— R/W per-thread local memory
— R/W per-block shared memory
— R/W per-grid global memory

— Read only per-grid constant

memory

e Host code can

— Transfer data to/from per-grid
global and constant memories

(Device) Grid

Block (0, 0)

=

Block (1, 0)

’

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

T

T

T

T

Host

41 COMP 322, Spring 2012 (V.Sarkar)

A\
5%

CUDA Variable Type Qualifiers

Variable declaration Memory | Scope | Lifetime
__device local int LocalVar; local thread thread
__device = shared = int SharedVar; shared | block block
__device int GlobalVar; g|oba| g"d app"cation
__device = constant int ConstantVar; constant | grid |application
. device is optional when used with 1ocal , shared |, or

constant

* Automatic variables without any qualifier reside in a register
— Except arrays that reside in local memory

+ Pointers can only point to memory allocated or declared in global memory:

— Allocated in the host and passed to the kernel:
__global void KernelFunc(float* ptr)

—Obtained as the address of a global variable: float* ptr =
&Globalvar;

42 COMP 322, Spring 2012 (V.Sarkar) %ﬁ

CUDA Storage Classes

Thread * Local Memory: per-thread
— Private per thread

§<—> Local Memory — Auto variables, register spill

« Shared Memory: per-Block
Block — Shared by threads of the same

block
g “ﬁhared — Inter-thread communication
emo L
R4 « Global Memory: per-application

— Shared by all threads
— Inter-6rid communication

Grid 0
DO DI SUSSINNNNS DO

;;;; ;;) S ;;;; 2777 S PO D] S PO >)]
P & P < K PG H
L] L] L

)

= obs Sequential
_ Grid 1 BMC Grids
£ (< & (< £ (< () . . . < (<« H

43 COMP 322, Spring 2012 (V.Sarkar)

Summary of key features in CUDA

CUDA construct Related HJ/Java constructs
Kernel invocation, async at(gpu-place)
<<<. . .>>>

1D/2D grid with 1D/2D/3D |Outer 1D/2D forall with inner 1D/2D/3D
blocks of threads forall

Intra-block barrier, HJ forall-next on implicit phaser for inner
__syncthreads() forall
cudaMemcpy() No direct equivalent in HJ/Java (can use

System.arraycopy() if needed)

Storage classes: local, No direct equivalent in HJ/Java (method-local
shared, global variables are scalars)

44 COMP 322, Spring 2012 (V.Sarkar) D

