
COMP 322: Fundamentals of
Parallel Programming

Lecture 4: Abstract Performance Metrics
(contd), Parallel Efficiency, Amdahl’s Law,

Weak Scaling

Vivek Sarkar
Department of Computer Science, Rice University

vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

COMP 322 Lecture 4 14 January 2013

COMP 322, Spring 2013 (V.Sarkar)

Announcements
• Coursera access

—You should only access the course site via rice.coursera.org and Shibboleth

• Coursera forum on HJ Environment and Setup Issues
—Please post your issues, and also respond to postings by other students

when you can help

• Week 1 lecture quiz will be posted by Tuesday

• Homework 1 has been posted
—Contains written and programming components
—Due by 5pm on Wednesday, Jan 23rd
—Must be submitted using “turnin” script introduced in Lab 1

– In case of problems, email a zip file to comp322-staff at
mailman.rice.edu before the deadline

—See course web site for penalties for late submissions

2

COMP 322, Spring 2013 (V.Sarkar)

Coursera web site
(https://rice.coursera.org/parallelprog-001)

3

Fundamentals of Parallel Programming
Vivek Sarkar

Login via Shibboleth
You can login via your school credentials to this class.

Coursera Account Login

Copyright© 2011-2013 Coursera and Partners. All Rights Reserved.
Terms of Service | Contact Us | Twitter (@coursera)

Use this link

Not this one

COMP 322, Spring 2013 (V.Sarkar)4

Solution to Worksheet #3: Strong Scaling for Array Sum

• Assume T(S,P) ~ WORK(G,S)/P + CPL(G,S) = (S-1)/P + log2(S) for a
parallel array sum computation with input size S on P processors

• Strong scaling
—Assume S = 1024 ==> log2(S) = 10

—Compute Speedup(P) for S=1024 on 10, 100, 1000 processors
– T(P) = 1023/P + 10
– Speedup(10) = T(1)/T(10) ~ 9.2
– Speedup(100) = T(1)/T(100) ~ 51.1
– Speedup(1000) = T(1)/T(1000) ~ 102.3

– Ideal parallelism = T(1)/T(∞) = 1033/10 = 103.3

—Why is it worse than linear?
– The critical path limits speedup as P increases (speedup is limited by

ideal parallelism)

COMP 322, Spring 2013 (V.Sarkar)

Plot of Speedup(P) as a function of P

5

0"

20"

40"

60"

80"

100"

120"

1.E+00" 1.E+01" 1.E+02" 1.E+03" 1.E+04" 1.E+05" 1.E+06"

Speedup&as&a&func,on&of&number&of&processors,&P&

Ideal parallelism

COMP 322, Spring 2013 (V.Sarkar)

Plot of parallel time, T(P), as a function of P

6

0"

20"

40"

60"

80"

100"

120"

1.E+01" 1.E+02" 1.E+03" 1.E+04" 1.E+05" 1.E+06"

Parallel&'me&as&a&func'on&of&number&of&processors,&P&

Critical path length

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Abstract Performance Metrics (contd)

• Parallel Efficiency, Amdahl's Law

• Weak Scaling

• Acknowledgments
—COMP 322 Module 1 handout, Sections 3.3, 3.4

– https://svn.rice.edu/r/comp322/course/
module1-2013-01-06.pdf

7

COMP 322, Spring 2013 (V.Sarkar)8

HJ Abstract Performance Metrics
• Basic Idea

—Count operations of interest, as in big-O analysis
—Abstraction ignores overheads that occur on real systems

• Calls to perf.doWork()
—Programmer inserts calls of the form, perf.doWork(N),

within a step to indicate abstraction execution of N
application-specific abstract operations
– e.g., adds, compares, stencil ops, data structure ops

—Multiple calls add to the execution time of the step

• Enabled by selecting “Show Abstract Execution Metrics” in
DrHJ compiler options (or -perf=true runtime option)
—If an HJ program is executed with this option, abstract

metrics are printed at end of program execution with
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)

COMP 322, Spring 2013 (V.Sarkar)9

Inserting call to perf.doWork() in
ArraySum1

1.for (int stride = 1; stride < X.length ; stride *= 2) {

2. // Compute size = number of adds to be performed in stride

3. int size=ceilDiv(X.length,2*stride);

4. finish for(int i = 0; i < size; i++)

5. async {

6. if ((2*i+1)*stride < X.length) {

7. perf.doWork(1);

8. X[2*i*stride] += X[(2*i+1)*stride];

9. }

10. } // finish-for-async

11.} // for

12.

COMP 322, Spring 2013 (V.Sarkar)10

Big-O notation --- where should
doWork() calls be placed?

• Answer: It depends. For ArraySum, we counted each
add operator as 1 unit. In HW1 (Quicksort), we asked
you to count each call to combine() as 1 unit. Here’s
the general idea …

• We'll say that a cost function Cost(n) is “order f(n)”,
or simply “O(f (n))” (read “Big-O of f (n))”) if
—Cost-X(n) < factor * f (n), for sufficiently large n,
for some constant factor

• Examples:
—Cost-A(n) = 2*n3 + n2 + 1 Cost-A is O(n3)
—Cost-B(n) = 3*n2 + 10 Cost-B is O(n2)
—Cost-C(n) = 2n Cost-C is O(2n)

COMP 322, Spring 2013 (V.Sarkar)11

Some well-known “Complexity Classes"

• O (1)	
 	
 constant-time (head, tail)

• O (log n)	
	
 logarithmic (binary search)

• O (n)	
 	
 linear (vector multiplication)

• O (n * log n) 	
 "n logn" (sorting)

• O (n2)	
 	
 quadratic (matrix addition)

• O (n3)	
 	
 cubic (matrix multiplication)

• nO(1)	
 	
 polynomial (…many! …)

• 2O(n)	
 	
 exponential (guess password)

COMP 322, Spring 2013 (V.Sarkar)12

So, where should doWork() calls be
placed?

• Focus on key metric of interest in your algorithm

• Don’t count operations that are incidental to your
algorithm
—They can be important implementation
considerations, but may not contribute to
understanding your algorithm

• Since big-O analysis ignores differences within a
constant factor, you can always use a unit cost as a
stand-in for a constant number of operations

COMP 322, Spring 2013 (V.Sarkar)

Another example: String Search
(count of all occurrences)

• Inputs
— text: a long string with N characters to search in
— pattern: a short string of M characters to search for

• Output
— count of all occurrences of pattern in text

• Example
— text: “abacadabrabracabracadababacadabrabracabracadabrabrabr”
— pattern: aca
— number of occurrences: 6

• Applications
—Word processing, virus scans, information retrieval, computational

biology, web search engines, ...

• Variations
—Existence of an occurrence, index of any occurrence, indices of all

occurrences

13

COMP 322, Spring 2013 (V.Sarkar)

Brute Force Sequential Algorithm for
String Search

1. public static int search(char[] pattern, char[] text) {

2. int M = pattern.length; int N = text.length; int count = 0;

3. for (int i = 0; i <= N - M; i++) {

4. int j; // search for pattern starting at text[i]

5. for (j = 0; j < M; j++) {

6. // Count each char comparison as 1 unit of work

7. perf.doWork(1); // Assume that all else takes zero time!

8. if (text[i+j] != pattern[j]) break;

9. } // for (j = ...)

10. if (j == M) count = count+1; // found at offset i

11. }

12. return count;

13. }

 What is the complexity of this algorithm?

14

COMP 322, Spring 2013 (V.Sarkar)

Parallel Algorithm for String Search
• Consider a parallel algorithm in which each i iteration is spawned

as a separate async task
—Some modifications will be needed to ensure that there are no “data

races” on count in line 10
– For example, replace count by an array indexed by iteration i,

and set each element to 0 or 1 depending on whether or not an
occurrence was found. Sum up the array elements at the end.

—Other parallel algorithms are possible too

• For the above algorithm
—WORK = O(M*N)
—CPL = O(M)
—Abstract execution time can be approximated by its upper bound,

– T(M,N,P) = M*N/P + M
—Ignores time for Array Sum, etc. since only character comparison is

counted as work

15

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Abstract Performance Metrics (contd)

• Parallel Efficiency, Amdahl's Law

• Weak Scaling

• Acknowledgments
—COMP 322 Module 1 handout, Sections 3.3, 3.4

– https://svn.rice.edu/r/comp322/course/
module1-2013-01-06.pdf

16

COMP 322, Spring 2013 (V.Sarkar)

How many processors should we use?
• Efficiency(P) = Speedup(P)/ P = T1/(P * TP)

—Processor efficiency --- figure of merit that indicates how well a
parallel program uses available processors

—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

• Half-performance metric
—S1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to

obtain efficient parallelism
—A larger value of S1/2 indicates that the problem is harder to

parallelize efficiently

• How many processors to use?
—Common goal: choose number of processors, P for a given input size,

S, so that efficiency is at least 0.5

17

COMP 322, Spring 2013 (V.Sarkar)18

ArraySum: Speedup as function of array size,
S, and number of processors, P

• Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))

• Asymptotically, Speedup(S,P) --> S/log2S, as P --> infinity

P

Speedup(S,P)

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1" 2" 4" 8" 16" 32" 64" 128" 256" 512" 1024"

Speedup"(N=1024)" Speedup"(N=2048)"

How many
processors should we

use?
Time for worksheet

#3!

COMP 322, Spring 2013 (V.Sarkar)19

Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be

executed sequentially for a given input size S, then the best speedup
that can be obtained for that program is Speedup(S,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on
parallel execution time
— CPL >= q * T(S,1)
— T(S,P) >= q * T(S,1)
— Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in program
can be divided into sequential and parallel portions
— Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)

— Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into account

COMP 322, Spring 2013 (V.Sarkar)20

Illustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)

COMP 322, Spring 2013 (V.Sarkar)

Outline of Today’s Lecture

• Abstract Performance Metrics (contd)

• Parallel Efficiency, Amdahl's Law

• Weak Scaling

• Acknowledgments
—COMP 322 Module 1 handout, Sections 3.3, 3.4

– https://svn.rice.edu/r/comp322/course/
module1-2013-01-06.pdf

21

COMP 322, Spring 2013 (V.Sarkar)

Strong Scaling and Speedup (Recap)

• Define Speedup(P) = T1 / TP

—Factor by which the use of P processors speeds
up execution time relative to 1 processor, for a
fixed input size

—For ideal executions without overhead, 1 <=
Speedup(P) <= P

—Linear speedup
– When Speedup(P) = k*P, for some constant k,

0 < k < 1

• Referred to as “strong scaling” because input size
is fixed

22

COMP 322, Spring 2013 (V.Sarkar)

Weak Scaling
• Consider a computation graph, CG, in which all node execution

times are parameterized by input size S
—TIME(N,S) = time to execute node N with input size S
—WORK(G,S) = sum of TIME(N,S) for all nodes N
—CPL(G,S) = critical path length for G, assuming node N takes

TIME(N,S)

• Let T(S,P) = time to execute CG with input size S on P processors

• Weak scaling
—Allow input size S to increase with number of processors i.e., make S

a function of P
—Define Weak-Speedup(S(P),P) = T(S(P),1)/T(S(P),P), where input size

S(P) increases with P
– Note that T(S(P),1) is a hypothetical projection of running a

larger problem size, S(P), on 1 processor

23

COMP 322, Spring 2013 (V.Sarkar)24

Weak Scaling for Array Sum

• Recall that T(S,P) = (S-1)/P + log2(S) for a parallel array sum
computation

• For weak scaling, assume S(P) = 1024*P

==> Weak-Speedup(S(P),P) = T(S(P),1)/T(S(P),P)

 = ((1024*P-1)+log2(1024*P)) / ((1024*P-1)/P+log2(1024*P)) ~ P

1.E+00&

1.E+01&

1.E+02&

1.E+03&

1.E+04&

1.E+05&

1.E+06&

1.E+00& 1.E+01& 1.E+02& 1.E+03& 1.E+04& 1.E+05& 1.E+06&

Weak%Speedup*as*a*func/on*of*P*

COMP 322, Spring 2013 (V.Sarkar)25

Worksheet #4: how many processors
should we use for ArraySum?

For ArraySum on P processors and input array size, S,

Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))

• Question: For a given S, what value of P should we choose to obtain Efficiency(P) = 0.5?
Recall that Efficiency(P) = 0.5 ==> Speedup(S,P)/P = 0.5.

• Answer (derive value of P as a symbolic function of S):

Name 1: ___________________ Name 2: ___________________

