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Announcements
• Coursera access

—You should only access the course site via rice.coursera.org and Shibboleth

• Coursera forum on HJ Environment and Setup Issues
—Please post your issues, and also respond to postings by other students 

when you can help

• Week 1 lecture quiz will be posted by Tuesday

• Homework 1 has been posted
—Contains written and programming components
—Due by 5pm on Wednesday, Jan 23rd
—Must be submitted using “turnin” script introduced in Lab 1

– In case of problems, email a zip file to comp322-staff at 
mailman.rice.edu before the deadline

—See course web site for penalties for late submissions
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Coursera web site
(https://rice.coursera.org/parallelprog-001)
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Solution to Worksheet #3: Strong Scaling for Array Sum

• Assume T(S,P) ~ WORK(G,S)/P + CPL(G,S) = (S-1)/P + log2(S) for a  
parallel array sum computation with input size S on P processors

• Strong scaling
—Assume S = 1024 ==> log2(S) = 10

—Compute Speedup(P) for S=1024 on 10, 100, 1000 processors
– T(P) = 1023/P + 10
– Speedup(10) = T(1)/T(10) ~ 9.2
– Speedup(100) = T(1)/T(100) ~ 51.1 
– Speedup(1000) = T(1)/T(1000) ~ 102.3

– Ideal parallelism = T(1)/T(∞) = 1033/10 = 103.3

—Why is it worse than linear?
– The critical path limits speedup as P increases (speedup is limited by 

ideal parallelism)
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Plot of Speedup(P) as a function of P
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Plot of parallel time, T(P), as a function of P
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Outline of Today’s Lecture

• Abstract Performance Metrics (contd)

• Parallel Efficiency, Amdahl's Law

• Weak Scaling

• Acknowledgments
—COMP 322 Module 1 handout, Sections 3.3, 3.4

– https://svn.rice.edu/r/comp322/course/
module1-2013-01-06.pdf
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HJ Abstract Performance Metrics
• Basic Idea

—Count operations of interest, as in big-O analysis
—Abstraction ignores overheads that occur on real systems

• Calls to perf.doWork()
—Programmer inserts calls of the form, perf.doWork(N), 

within a step to indicate abstraction execution of N 
application-specific abstract operations 
– e.g., adds, compares, stencil ops, data structure ops

—Multiple calls add to the execution time of the step

• Enabled by selecting “Show Abstract Execution Metrics” in 
DrHJ compiler options (or -perf=true runtime option)
—If an HJ program is executed with this option, abstract 

metrics are printed at end of program execution with 
WORK(G), CPL(G), Ideal Speedup = WORK(G)/ CPL(G)
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Inserting call to perf.doWork() in 
ArraySum1

1.for ( int stride = 1; stride < X.length ; stride *= 2 ) {

2.  // Compute size = number of adds to be performed in stride

3.  int size=ceilDiv(X.length,2*stride);

4.  finish for(int i = 0; i < size; i++)

5.    async {

6.      if ( (2*i+1)*stride < X.length ) {

7.        perf.doWork(1);

8.        X[2*i*stride] += X[(2*i+1)*stride]; 

9.      }

10.    } // finish-for-async

11.} // for

12. 
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Big-O notation --- where should 
doWork() calls be placed? 

• Answer: It depends. For ArraySum, we counted each 
add operator as 1 unit.  In HW1 (Quicksort), we asked 
you to count each call to combine() as 1 unit. Here’s 
the general idea …

• We'll say that a cost function Cost(n) is “order f(n)”, 
or simply “O(f (n))” (read “Big-O of f (n))”) if
—Cost-X(n) < factor * f (n), for sufficiently large n, 
for some constant factor

• Examples:
—Cost-A(n) = 2*n3 + n2 + 1 Cost-A is O(n3)
—Cost-B(n) = 3*n2 + 10  Cost-B is O(n2)
—Cost-C(n) = 2n   Cost-C is O(2n)
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Some well-known “Complexity Classes"

• O (1)	
 	
 constant-time        (head, tail)

• O (log n)	
	
 logarithmic      (binary search)

• O (n)	
 	
 linear    (vector multiplication)

• O (n * log n) 	
 "n logn"                (sorting)

• O (n2)	
 	
 quadratic      (matrix addition)

• O (n3)	
 	
 cubic    (matrix multiplication)

• nO(1)	
 	
 polynomial         (…many! …)

• 2O(n)	
 	
 exponential (guess password)
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So, where should doWork() calls be 
placed? 

• Focus on key metric of interest in your algorithm

• Don’t count operations that are incidental to your 
algorithm
—They can be important implementation 
considerations, but may not contribute to 
understanding your algorithm

• Since big-O analysis ignores differences within a 
constant factor, you can always use a unit cost as a 
stand-in for a constant number of operations
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Another example: String Search
(count of all occurrences)

• Inputs
— text: a long string with N characters to search in
— pattern: a short string of M characters to search for

• Output
— count of all occurrences of pattern in text 

• Example
— text: “abacadabrabracabracadababacadabrabracabracadabrabrabr”
— pattern: aca
— number of occurrences: 6

• Applications
—Word processing, virus scans, information retrieval, computational 

biology, web search engines, ...

• Variations
—Existence of an occurrence, index of any occurrence, indices of all 

occurrences
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Brute Force Sequential Algorithm for 
String Search

1.  public static int search(char[] pattern, char[] text) {

2.     int M = pattern.length; int N = text.length; int count = 0;

3.     for (int i = 0; i <= N - M; i++) { 

4.       int j; // search for pattern starting at text[i]

5.       for (j = 0; j < M; j++) {

6.         // Count each char comparison as 1 unit of work

7.         perf.doWork(1); // Assume that all else takes zero time!

8.         if (text[i+j] != pattern[j]) break;

9.       } // for (j = ... )

10.      if (j == M) count = count+1; // found at offset i

11.    }

12.    return count;                            

13.  }

   What is the complexity of this algorithm?
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Parallel Algorithm for String Search
• Consider a parallel algorithm in which each i iteration is spawned 

as a separate async task
—Some modifications will be needed to ensure that there are no “data 

races” on count in line 10
– For example, replace count by an array indexed by iteration i, 

and set each element to 0 or 1 depending on whether or not an 
occurrence was found.  Sum up the array elements at the end.

—Other parallel algorithms are possible too

• For the above algorithm
—WORK = O(M*N)
—CPL = O(M)
—Abstract execution time can be approximated by its upper bound, 

– T(M,N,P) = M*N/P + M
—Ignores time for Array Sum, etc. since only character comparison is 

counted as work
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Outline of Today’s Lecture

• Abstract Performance Metrics (contd)

• Parallel Efficiency, Amdahl's Law

• Weak Scaling

• Acknowledgments
—COMP 322 Module 1 handout, Sections 3.3, 3.4

– https://svn.rice.edu/r/comp322/course/
module1-2013-01-06.pdf
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How many processors should we use?
• Efficiency(P) = Speedup(P)/ P = T1/(P * TP)

—Processor efficiency --- figure of merit that indicates how well a 
parallel program uses available processors

—For ideal executions without overhead, 1/P <= Efficiency(P) <= 1

• Half-performance metric
—S1/2 = input size that achieves Efficiency(P) = 0.5 for a given P
—Figure of merit that indicates how large an input size is needed to 

obtain efficient parallelism
—A larger value of S1/2 indicates that the problem is harder to 

parallelize efficiently

• How many processors to use?
—Common goal: choose number of processors, P for a given input size, 

S, so that efficiency is at least 0.5
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ArraySum: Speedup as function of array size, 
S, and number of processors, P

• Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))

• Asymptotically, Speedup(S,P) --> S/log2S, as P --> infinity

P

Speedup(S,P)
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Amdahl’s Law [1967]
• If q ≤ 1 is the fraction of WORK in a parallel program that must be 

executed sequentially for a given input size S, then the best speedup 
that can be obtained for that program is Speedup(S,P) ≤ 1/q.

• Observation follows directly from critical path length lower bound on 
parallel execution time
—  CPL >= q * T(S,1)
—  T(S,P) >= q * T(S,1) 
—  Speedup(S,P) = T(S,1)/T(S,P) <= 1/q

• This upper bound on speedup simplistically assumes that work in program 
can be divided into sequential and parallel portions
— Sequential portion of WORK = q

– also denoted as fS (fraction of sequential work)

— Parallel portion of WORK = 1-q

– also denoted as fp (fraction of parallel work)

• Computation graph is more general and takes dependences into account
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Illustration of Amdahl’s Law:
Best Case Speedup as function of Parallel Portion

Figure source: http://en.wikipedia.org/wiki/Amdahl’s law

(log scale)
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Outline of Today’s Lecture

• Abstract Performance Metrics (contd)

• Parallel Efficiency, Amdahl's Law

• Weak Scaling

• Acknowledgments
—COMP 322 Module 1 handout, Sections 3.3, 3.4

– https://svn.rice.edu/r/comp322/course/
module1-2013-01-06.pdf
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Strong Scaling and Speedup (Recap)

• Define Speedup(P) = T1 / TP

—Factor by which the use of P processors speeds 
up execution time relative to 1 processor, for a 
fixed input size

—For ideal executions without overhead, 1 <= 
Speedup(P) <= P

—Linear speedup 
– When Speedup(P) = k*P, for some constant k, 

0 < k < 1

• Referred to as “strong scaling” because input size 
is fixed
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Weak Scaling
• Consider a computation graph, CG, in which all node execution 

times are parameterized by input size S
—TIME(N,S) = time to execute node N with input size S
—WORK(G,S) = sum of TIME(N,S) for all nodes N
—CPL(G,S) = critical path length for G, assuming node N takes 

TIME(N,S)

• Let T(S,P) = time to execute CG with input size S on P processors 

• Weak scaling
—Allow input size S to increase with number of processors i.e., make S 

a function of P
—Define Weak-Speedup(S(P),P) = T(S(P),1)/T(S(P),P), where input size 

S(P) increases with P
– Note that T(S(P),1) is a hypothetical projection of running a 

larger problem size, S(P), on 1 processor
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Weak Scaling for Array Sum

• Recall that T(S,P) = (S-1)/P + log2(S) for a  parallel array sum 
computation

• For weak scaling, assume S(P) = 1024*P 

==> Weak-Speedup(S(P),P) = T(S(P),1)/T(S(P),P) 

    = ((1024*P-1)+log2(1024*P)) / ((1024*P-1)/P+log2(1024*P)) ~ P
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Worksheet #4: how many processors 
should we use for ArraySum?

For ArraySum on P processors and input array size, S,

Speedup(S,P) = T(S,1)/T(S,P) = S/(S/P + log2(S))

• Question: For a given S, what value of P should we choose to obtain Efficiency(P) = 0.5?  
Recall that Efficiency(P) = 0.5 ==> Speedup(S,P)/P = 0.5.

• Answer (derive value of P as a symbolic function of S):

Name 1: ___________________          Name 2: ___________________


