
 1

On to Java!

Corky Cartwright
Stephen Wong

Department of Computer Science
Rice University

COMP 211, Spring 2011

2

From Scheme to Java
• Scheme and Java look completely different
• Don't be fooled. Java is very Scheme-like

underneath (perhaps excessively so).
• Self-identifying data
• Implicit sharing of objects (discouraging mutation);

assignment does not copy!
• C++ → Java?

• Formerly the Rice curriculum.
• In industry. Java/C# is dominant. Anachronisms in

the JVM have blunted Java dominance somewhat.

• DrScheme → DrJava

COMP 211, Spring 2011

3

Java Notation

• Lots of warts thanks to C/C++ syntax. After an
immigration period, they become only minor
annoyances.

• What is a Java program? A collection of classes.
• What is a class? Rough answer: a Scheme struct on

steroids. Instead of writing functions that manipulate
structs, you add "methods" to a class. The methods
are attached to each object in the class so they can
directly refer to members (fields in Scheme
terminology) of the class.

• All Java code belongs to some class.

COMP 211, Spring 2011

4

Guiding Vision
• Program design in Java is data-directed.

Design the data abstractions first; they will
determine the structure of the code. In OOP
circles, this data design process is often called
object-modeling.

• Software development is incremental and test-
driven. Essentially the same design recipe as
we used for Functional Programming (FP).

• Key to OO approach: common data and
programming abstractions are codified as
design patterns (much like templates in FP).

COMP 211, Spring 2011

5

Secondary Theme: DrJava
• DrJava, our lightweight, reactive

environment for Java, was created
specifically to foster learning to program in
Java.

• DrJava facilitates active learning; with DrJava
learning Java is a form of exploration.

• DrJava is not a toy; DrJava is developed
using DrJava. It includes everything that we
believe is important and nothing more.

COMP 211, Spring 2011

6

What Is an Object?
• Collection of fields representing the

properties of a conceptual or physical
object.

• Collection of operations called methods for
observing and changing the fields of the
object.

These fields and methods often called the
members of the object.

COMP 211, Spring 2011

7

How Are Objects Defined?
• All objects are created using templates (cookie cutters)

just like Scheme structs. (Not the same notion of
template as in FP design.)

• Instead of writing define-struct statements, we
write class definitions.

• Since all code is contained within a class, class
definitions tend to be much richer (and more complex
in real world examples) that define-struct
statements. After all, the code that would be written in
function definitions in Scheme must be written as
methods of some class.

COMP 211, Spring 2011

8

Example: a Phone Directory

• Task: maintain a directory containing the
office address and phone number for each
person in the Rice Computer Science Dept.

• Each entry in such a directory has a natural
representation as an object with three fields
containing a person’s

• name
• address
• phone number

represented as character strings.

COMP 211, Spring 2011

9

Summary of Entry Data

• Fields:
• String name
• String address
• String phone

• Accessed only through implicitly
generated methods:

• String name()
• String address()
• String phone()

COMP 211, Spring 2011

10

Entry Demo in DrJava

• Write DrJava class code
• Create an object
• How do we perform any

computation with it?

COMP 211, Spring 2011

11

Java Method Invocation

• A Java method m is executed by sending a
method invocation (method call)
 o.m()

to an object o, called the receiver. The
method m must be a member of o.

The code defining the method m can refer to
the entire receiver object using the keyword
this.

COMP 211, Spring 2011

12

Method Invocation Demo

• Apply some auto-generated methods to an
Entry

• How do we build up expressions from
method invocations?

• Apply operators (built-in to Java) on primitive
types (int, double, boolean)

• Invoke methods

COMP 211, Spring 2011

13

Java Expressions

• Java supports essentially the same
expressions over primitive types (int,
double, boolean) as C/C++.

• Notable differences:
• boolean is a distinct type from int
• no unsigned version of integer types
• explicit long type

COMP 211, Spring 2011

14

Defining (Instance) Methods

• Recall our definition of the Entry
class. How can we add methods to
this class?

• Suppose we want Entry to support a
method:
 boolean match(String keyname)
invoked by syntax like
 e.match("Corky")

COMP 211, Spring 2011

15

Method Definition Demo

• Method syntax is C-like.
• Comment notation:

• // opens a line comment (like ";" in
Scheme)

• Block comments are enclosed in /* … */

COMP 211, Spring 2011

16

Code for Entry with match

class Entry {
 /* fields */
 String name;
 String address;
 String phone;

 /** @return true iff name matches keyName.*/
 boolean match(String keyName) {
 return keyName.equals(name));
}

}

COMP 211, Spring 2011

17

For Next Class

• Start thinking about the exam
• Optional Homework due Wednesday after

break.
• Labs introducing Java tomorrow.
• Reading: OO Design Notes, Ch 1.1 – 1.4.2.
• Please send me comments on typos and

suggestions for improving the notes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

