
 1

First-class Functions and Patterns

Corky Cartwright

Stephen Wong

Department of Computer Science

Rice University

2

Encoding First-class Functions in Java

• Java methods are not data values; they cannot be
used as values.

• But java classes include methods so we can
implicitly pass methods (functions) by passing class
instances containing the desired method code.

• Moreover, Java includes a mechanism that closes
over the free variables in the method definition!

• Hence, first-class functions (closures) are available
implicitly, but the syntax is wordy.

• Example: Scheme map

3

 Interfaces for Representing Functions

For accurate typing, we need different interfaces for different arities. With
generics, we can define parameterized interfaces for each arity. In the absence
of generics, we will have to define separate interfaces for each desired typing.

map example:

/** The type of unary functions in Object -> Object. */
interface Lambda {
 Object apply(Object arg);
}

abstract class ObjectList {
 ObjectList cons(Object n) {
 return new ConsObjectList(n, this);
 }
 abstract ObjectList map(Lambda f);
}
 ...

4

 Representing Specific Functions

• For each function that we want to use a value, we must define a class,
preferably a singleton. Since the class has no fields, all instances are
effectively identical.

• Defining a class seems unduly heavyweight, but it works in principle.
• In OO parlance, an instance of such a class is called a strategy.
• Java provides a lightweight notation for singleton classes called

anonymous classes. Moreover these classes can refer to fields and
final method variables that are in scope. In DrJava language levels,
all variables are final. final fields and variables cannot be rebound
to new values after they are initially defined (immutable). final
methods cannot be overridden.

• Anonymous class notation:

new <type>() {
 <member1>
 ...
 <membern>
}

5

 Anonymous Class Example
new Lambda() {

Object apply(Object arg) {
 return EmptyObjectList.ONLY.cons(arg);
}

}

There are pending proposals to provide better notation for lambda
abstractions. For now, you must pay attention to the interface
signature defined in the library/program you are using.

This interface (Lambda) together with its implentation classes is
called the strategy pattern. This pattern enables us to
represent varying behavior. Within an object, a field of this
type can be bound to any unary function.

6

 Another Example: Building Sort Objects

• Recall the IntList class from Lecture 20. Assume that we want to
create sort functions that sort IntLists in different ways (using different
algorithms and orderings). How can create such objects and how can we
apply them to IntLists? By

• Defining a Sorter interface
interface Sorter {
 IntList sort(IntList host);
}

• Defining a hook in IntList for applying Sorter objects to this.
• Defining strategy objects that implement Sorter.

Note: we are introducing an interface specific to this problem (instead of
using Lambda) to support a more precise typing. If Lambda had generic
(parameterized) type, there would be no advantage to creating a special
interface; we could use an instantion of type Lambda instead..

7

 Naive Coding of UpSorter

class UpSorter implements Sorter {
 private UpSorter() { }
 IntList sort(IntList host) {
 if (host.equals(EmptyIntList.ONLY)) return host;
 ConsIntList cHost = (ConsIntList) host;
 return insert(sort(cHost.rest()), cHost.first());
 }
 IntList insert(IntList host, int elt) {
 if (host.equals(EmptyIntList.ONLY))
 return EmptyIntList.ONLY.cons(elt);
 ConsIntList cHost = (ConsIntList) host;
 if (elt <= cHost.first()) return cHost.cons(elt);
 return insert(cHost.rest(), elt).cons(cHost.first());
 }
}

8

What Is Ugly About Class UpSorter?

• The Sorter interface is essentially a copy of Lambda.
• UpSorter defines sorting code statically using a decision tree of

predicates, just like a functional program. Ugh … no inheritance. Not
OO.

• How can we do better? Need to introduce (i) λ-abstractions called
visitors with the same internal structure as the interpreter pattern and (ii)
hooks in our IntList class, namely accept methods, that apply
visitors to this. Special closure objects called visitors that let us
represent the interpreter pattern code for a method on IntList as a
first-class data object. A visitor is simply a closure (first-class function
representation) for a composite with a clause (method) for each variant
(concrete class) in the composite.

• What is this extra work accomplish?
* Decouples operations on composites from composites.
* Inheritance!

9

 Defining upSort Using Interpreter

abstract class IntList { …
 abstract IntList upSort();
 Abstract IntList insert(int i);
}
class EmptyIntList extends IntList { …
 IntList upSort() { return this; }
 IntList insert(int I) { return cons(i); }
}
class ConsIntList extends IntList { ...

IntList upSort() { rest.upSort().insert(first); }
 IntList insert(int i) {
 if (i <= first) return cons(i); /* this.cons(i) */
 return rest.insert(i).cons(first);
 }
}

10

 Deconstructing the Interpreter Pattern
• In the interpreter pattern, the method is declared as
abstract in the root class/interface and defined
concretely in each concrete variant (subclass). To
package the code for a method defined by the interpreter
pattern in a separate closure object (a visitor) we need to
write concrete method definitions corresponding to the
interpreter pattern:

class ...Visitor {
 Object forEmptyIntList(EmptyIntList host) {
 ... <EmptyIntList method code for upSort using host instead of this> ...
 }
 Object forConsIntList(ConsIntList host) {
 ... <ConsIntList method code for upSort using host instead of this> ...
 }
}

11

 Visitors with Arguments

Two approaches:
● Design accept to take an argument list. Disadvantages:

● Must pass empty argument list to 0-ary visitors.
● Cannot accurately type visitor arguments forcing extra casting.

● Embed the arguments in the visitor. Disadvantages:
● Unnatural for programmers who do not want to think in functional terms.

Functional analog: currying and partial application (with receiver as last
argument.

● New visitors (instead of new argument lists) have to be constructed for
recursive calls with different arguments. No efficiency penalty since
visitors with arguments have same (often smaller) footprint as argument
lists!

My preference: embed the arguments. Why? I like functional thinking. More
importantly, accurate typing plays a pivotal role In software engineering.

12

 Defining upsort as a visitor cont.
abstract class IntList {
 abstract Object accept(IntListVisitor v);
 …
}
Class EmptyIntList {
 …
 Object accept(IntListVisitor v) { return v.forEmptyIntList(this); }
 …
}
Class ConsIntList {
 …
 Object accept(ConsIntList v) { return v.forConsIntList(this); }
 …
}
interface InListVisitor {
 Object forEmptyIntList(EmptyIntList host);
 Object forConsIntList(ConsIntList host);
}
class UpSorter implements IntListVisitor { …
 Object forEmptyIntList(EmptyIntList host) { return host; }
 Object forConsIntList(ConsIntList host) {
 IntList sortedRest = (IntList) host.rest().accept(this);
 return sortedRest.accept(new Inserter(host.first()));
 }
}
class Inserter implements IntListVisitor {
 Int i;
 Object forEmptyIntList(EmptyIntList host) { return host; }
 Object forConsIntList(ConsIntList host) {
 if (i <= host.first()) return host.cons(i);
 IntList insertedRest = (IntList) host.rest().accept(this);
 return insertedRest.cons(host.first());
 }
}

13

 Invoking Visitors
The corresponding composite class must include hooks to invoke
visitors for the class. To specify the signature of these hooks, we
need to introduce an accept method in all composite classes and an
interface for all visitors that operate on IntList
 interface IntListVisitor {
 Object forEmptyIntList(EmptyIntList host)
 Object forConsIntList(ConsIntList host)
 }
The hook methods have trivial definitions:

abstract class IntList { ...
 abstract Object accept(IntListVisitor v);
}
class EmptyIntList extends IntList { ...
 Object accept(IntListVisitor v) { return forEmptyIntList(this); }
}
class ConsIntList extends IntList { ...
 Object accept(IntListVisitor v) { return forConsIntList(this); }
}

14

 The Role of Visitors

• OO formulation of closure for a composite.
• Assumes that composite Is not likely to change often.
• Remember: problem decomposition is not affected by

using visitor pattern; only the syntax!
• Why use visitors? There is a compelling reason in addition

to "elegance". It the same reason why the interpreter
pattern is far superior to static method definitions:
inheritance.

• What is the primary software engineering disadvantage of
visitors (and OO in general)? Dynamic dispatch makes
tracing code during debugging difficult.

15

 UpSort Example

• Go to DrJava
• See code files saved with this lecture in

the course wiki.

16

Reprise: Anonymous Classes

• What do free variables mean inside anonymous
classes. What do they mean in λ-expressions?

• In Java, the free variables can be either:
• fields, or
• final local (method) variables.

• Use them in doing the filter problem in HW8.

17

For Next Class
• Master the strategy pattern and anonymous

classes; you need them for HW8.
• Start trying to code with visitors; you will

use them extensively in HW9.
• Please report any problems with the DrJava

Functional Language Level.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

