
1

 Mutable Linked Lists

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Background
• Scheme lists and composite pattern lists in Java are internally

represented using a linked list of Cons nodes. Each Cons node N
is a chunk of memory containing a field first and a field rest.
These fields are the addresses of:
• the node (chunk of memory) representing the first element in the list

rooted at N and
• the Cons node N' representing the list (rest) rooted at N'.

• In functional programming (Java programming with immutable
objects), these fields are never modified after they are initialized.
In imperative (mutable data) programming, they can be modified
by assignment statements executed after initialization.

• Mutation can be performed with discipline and taste. We will
focus initially on the mutable generalization of composite lists.

COMP 211, Spring 2009 3

Pure Mutable Generalization of Functional Lists
• In the notes OO Design, I introduce the notion of Quasi-

functional Lists (LRS structures in the terminology of Nguyen
and Wong) which generalizes the composite formulation of
functional lists by making the first and rest fields mutable.

• But Quasi-functional lists provide no asymptotic speed-up over
functional lists. Inserting or removing elements from the end of
a list takes O(n) time.

• Traditional linked lists can provide asymptotic speed-ups.
• Disciplined use of mutation

• Never modify fields directly.
• Support high level mutation via mutating methods.

COMP 211, Spring 2009 4

Example: BiLists
• In the notes on OO design, I introduce traditional mutable singly-

linked lists before discussing doubly-linked lists. As we hae seen
functional lists are singly linked. Mutable singly-linked lists are
lighter weight (simpler and, in many cases, faster) than mutable
doubly-linked lists. Allowing mutation on singly linked lists can
asymptotically speed-up some operations on lists, but others
(such as deleting the last element of a list) take O(n) time in the
absence of double-linking.

• Furthermore, formulating nodes as objects adds weight (a two
word header in each node) to a linked-list implementation so
double-linking adds only modest extra space (one word) and time
cost more space takes more time).

• A doubly-linked representation adds a predecessor address field
to each Cons node.

COMP 211, Spring 2009 5

Comments BiList code
• Discussed in detail in OO Design notes.
• Supports the iterator design pattern, which is applicable to any

data structure that holds a collection of items.
• Key operations involved in the iterator pattern:

• Factory method for constructing an iterator (in collection class)
• Method for advancing the iterator cursor (in iterator interface)
• Method for getting the current item (in iterator interface)
• Method for testing whether cursor is at the end enumerating the collection

(in iterator interface).

COMP 211, Spring 2009 6

For Next Class
• New homework due next Wednesday. Assignmen specs

are much longer than the code you must write.
Straightforward but not conducive to last-minute solution.

• Two forms for supporting code base:
• Class per file (prepares you for last two assignments)
• All classes in one file (easier)

• DrJava makes it easy to practice writing code
fragments/exercises. Do it! Don't be afraid to experiment.
The interactions pane makes it easy.

