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Large-scale Sorting

Given an array R of records (tuples with named fields), 
construct an array R’ containing the same set of 
records  as R but in ascending (non-descending) order 
according to a specified key field of the record.  The 
type of the key must be totally ordered; in the simple 
standard case the key is an int or a long.

• Two common scenarios and one pathology:
• R comfortably fits in main memory (internal sort)
• R is too big to fit in main memory (external sort)
• R barely fits in main memory (Radix sort [discussed 

later] with links; QuickSort uses a little extra 
memory)



 COMP 211, Spring 2011
 

3

External Sorting
• Not as important as in the past because main memories are so 

large.
• Modern approach: use multiple machines.  If keys are randomly 

distributed, you can pre-partition the data into disjoint ordered 
chunks that will each fit in memory (with very high probability).  
If a chunk doesn’t fit, divide it in 2).   Sort each chunk internally 
and concatenate the sorted chunks into a single file.  In practice 
an array of “chunk” files is probably a better representation 
anyway than a single file.  If pre-partioning is not possible, 
follow the traditional approach adapted to multiple machines.

• Traditional approach: single processor and tape drives.  
Partition file into chunks that fit in memory.  (No key distribution 
is assumed.)  Sort each of them.  Then sort the data in these 
ordered chunks into a single file by repeated merging.  Merging 
can be done cleverly using a tournament tree to reduce I/O.  
See Knuth, Volume 3 (Sorting and Searching)

• Time is O(N log N) except for case where pre-partitioning into 
disjoint, ordered subsets is possible.
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Large Scale Internal Sorting
• Consider the problem of sorting on the order of billion records 

based on an int key field.  How fast can we do it?  O(n2)?  O(n 
log n)?  O(n)?

• First essential kernel: counting sort for small keys
• Central idea (same as in hashing): index a table by the key.
• We can count how many records have a given key value in 

linear time.
• We accumulate these counts to form an offset array so that 

offset[i] is the index of the first record with key I when 
placed in sorted order.

• Given the offset array, we can copy our original array of 
records to a new sorted array in linear time 

• Second essential kernel: radix sorting
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Stable sorting
• A sorting algorithm is stable iff it 

preserves the ordering of records with 
equal keys.
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Radix sorting
• Canonical algorithm for sorting 

punched cards using a card sorter 
(obsolete).

• Stably sort a deck of cards (list of 
records) on each radix digit from LSD 
(least significant digit) to MSD (most 
significant digit) using a counting sort 
to perform each pass.
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Radix sorting using an int/long key

• Divide int/long key into two/four digits of size 216.

• Perform radix sort using these digits.
• Unbelievably fast for a large data set. Runs in linear time (worst 

case!)
• With randomized key distribution, we can do even better by 

using an MSD radix sort (which is messier).  See the Sedgwick 
reference.  But in the int case, we only need to do a counting 
sort on the lead 16 bit digit and clean up with “straight” 
insertion sorting.

• Note: straight insertion is generally the best way to sort a short 
array of ints; it repeatedly inserts the ith element a[I] in proper 
position (relative to a[0], … a[i-1]) by shifting elements among 
a[0], … a[i-1] greater than a[i] up one position.
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 Radix sorting cont.
• Perhaps a good match for C rather than Java.

• Coding is very easy; array is only data structure.
• Storage management is very easy.

• Java Arrays.sort(…) is much, much slower.  What 
good is it?  For smaller arrays, the overhead of 
traversing 216 buckets overwhelms the cost of the 
sort.

• The power of radix sorting is under-emphasized 
in Comp Sci curricula.

• See Algorithms in Java by Robert Sedgwick

•  
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 Minor Sorting Kernel: Straight insertion

• Same idea as functional list insertion (our first soring algorithm that we learned 
in Scheme) applied to arrays

• Given an array int keys[], we can sort it using a for loop

  for (int i = 1; i < keys.length; i++) {
    // insert key[i] in proper position in keys[0:i-1]
    int j = i - 1;
    int current = keys[i];
    // invariant: keys[0:j] || keys[j+1:i] is sorted, 
    //   current < keys[j+1:i], 0 < i < keys.length, -1 <= j < i
    while (j >= 0 && keys[j] > current) { 
      keys[j+1] = keys[j]; 
      j--;
    } 
    keys[j+1] = current;
  }
    

•  
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Exam preparation

• Read the notes on OO Design up through end of Ch. 2.
• Emphasis on how to write clean OO code using design patterns. 

 The functional subset is important.  Given a simple Scheme 
program manipulating inductively defined data, you should be 
able to convert it to a corresponding Java program (same 
recursion pattern) defined on a corresponding composite class 
hierarchy. Then perform tail recursion optimization.  Then 
convert it to a loop. More precisely

• Convert the data definition to OO form (composite with 
optional singleton).

• Convert the Scheme function to a method defined over the 
composite using the interpreter pattern.

• Convert method to tail recursive form (if possible) by 
introducing a help method.
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 Exam preparation cont.
• Convert tail recursive method with help 

function to a loop (with no help function).  
Loop iteration corresponds to a call on help 
function.

• Convert interpreter definition of method to 
visitor form.

• Understanding generics helps.
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For Next Class
• See you next year in Comp 411 (nee 

Comp 311)?
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