
 1

 Faster Sorting Methods

Corky Cartwright
Stephen Wong

Department of Computer Science
Rice University

 COMP 211, Spring 2011

2

Large-scale Sorting

Given an array R of records (tuples with named fields),
construct an array R’ containing the same set of
records as R but in ascending (non-descending) order
according to a specified key field of the record. The
type of the key must be totally ordered; in the simple
standard case the key is an int or a long.

• Two common scenarios and one pathology:
• R comfortably fits in main memory (internal sort)
• R is too big to fit in main memory (external sort)
• R barely fits in main memory (Radix sort [discussed

later] with links; QuickSort uses a little extra
memory)

 COMP 211, Spring 2011

3

External Sorting
• Not as important as in the past because main memories are so

large.
• Modern approach: use multiple machines. If keys are randomly

distributed, you can pre-partition the data into disjoint ordered
chunks that will each fit in memory (with very high probability).
If a chunk doesn’t fit, divide it in 2). Sort each chunk internally
and concatenate the sorted chunks into a single file. In practice
an array of “chunk” files is probably a better representation
anyway than a single file. If pre-partioning is not possible,
follow the traditional approach adapted to multiple machines.

• Traditional approach: single processor and tape drives.
Partition file into chunks that fit in memory. (No key distribution
is assumed.) Sort each of them. Then sort the data in these
ordered chunks into a single file by repeated merging. Merging
can be done cleverly using a tournament tree to reduce I/O.
See Knuth, Volume 3 (Sorting and Searching)

• Time is O(N log N) except for case where pre-partitioning into
disjoint, ordered subsets is possible.

 COMP 211, Spring 2011

4

Large Scale Internal Sorting
• Consider the problem of sorting on the order of billion records

based on an int key field. How fast can we do it? O(n2)? O(n
log n)? O(n)?

• First essential kernel: counting sort for small keys
• Central idea (same as in hashing): index a table by the key.
• We can count how many records have a given key value in

linear time.
• We accumulate these counts to form an offset array so that

offset[i] is the index of the first record with key I when
placed in sorted order.

• Given the offset array, we can copy our original array of
records to a new sorted array in linear time

• Second essential kernel: radix sorting

 COMP 211, Spring 2011

5

Stable sorting
• A sorting algorithm is stable iff it

preserves the ordering of records with
equal keys.

 COMP 211, Spring 2011

6

Radix sorting
• Canonical algorithm for sorting

punched cards using a card sorter
(obsolete).

• Stably sort a deck of cards (list of
records) on each radix digit from LSD
(least significant digit) to MSD (most
significant digit) using a counting sort
to perform each pass.

 COMP 211, Spring 2011

7

Radix sorting using an int/long key

• Divide int/long key into two/four digits of size 216.

• Perform radix sort using these digits.
• Unbelievably fast for a large data set. Runs in linear time (worst

case!)
• With randomized key distribution, we can do even better by

using an MSD radix sort (which is messier). See the Sedgwick
reference. But in the int case, we only need to do a counting
sort on the lead 16 bit digit and clean up with “straight”
insertion sorting.

• Note: straight insertion is generally the best way to sort a short
array of ints; it repeatedly inserts the ith element a[I] in proper
position (relative to a[0], … a[i-1]) by shifting elements among
a[0], … a[i-1] greater than a[i] up one position.

 COMP 211, Spring 2011

8

 Radix sorting cont.
• Perhaps a good match for C rather than Java.

• Coding is very easy; array is only data structure.
• Storage management is very easy.

• Java Arrays.sort(…) is much, much slower. What
good is it? For smaller arrays, the overhead of
traversing 216 buckets overwhelms the cost of the
sort.

• The power of radix sorting is under-emphasized
in Comp Sci curricula.

• See Algorithms in Java by Robert Sedgwick

•

 COMP 211, Spring 2011

9

 Minor Sorting Kernel: Straight insertion

• Same idea as functional list insertion (our first soring algorithm that we learned
in Scheme) applied to arrays

• Given an array int keys[], we can sort it using a for loop

 for (int i = 1; i < keys.length; i++) {
 // insert key[i] in proper position in keys[0:i-1]
 int j = i - 1;
 int current = keys[i];
 // invariant: keys[0:j] || keys[j+1:i] is sorted,
 // current < keys[j+1:i], 0 < i < keys.length, -1 <= j < i
 while (j >= 0 && keys[j] > current) {
 keys[j+1] = keys[j];
 j--;
 }
 keys[j+1] = current;
 }

•

 COMP 211, Spring 2011

10

Exam preparation

• Read the notes on OO Design up through end of Ch. 2.
• Emphasis on how to write clean OO code using design patterns.

 The functional subset is important. Given a simple Scheme
program manipulating inductively defined data, you should be
able to convert it to a corresponding Java program (same
recursion pattern) defined on a corresponding composite class
hierarchy. Then perform tail recursion optimization. Then
convert it to a loop. More precisely

• Convert the data definition to OO form (composite with
optional singleton).

• Convert the Scheme function to a method defined over the
composite using the interpreter pattern.

• Convert method to tail recursive form (if possible) by
introducing a help method.

 COMP 211, Spring 2011

11

 Exam preparation cont.
• Convert tail recursive method with help

function to a loop (with no help function).
Loop iteration corresponds to a call on help
function.

• Convert interpreter definition of method to
visitor form.

• Understanding generics helps.

 COMP 211, Spring 2011

12

For Next Class
• See you next year in Comp 411 (nee

Comp 311)?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

